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ABSTRACT Cloud-edge-collaborative storage (CECS) is a promising framework to process data of the

internet of things (IoT). It allows edge servers to process IoT data in real-time and stores them on a cloud

server. Hence, it can rapidly respond to the requests of IoT devices, provide a massive volume of cloud

storage for IoT data, and conveniently share IoT data with users. However, due to the vulnerability of edge

and cloud servers, CECS suffers from the risk of data leakage. Existing secure CECS schemes are secure only

if all edge servers are trusted. In other words, if any edge server is compromised, all cloud data (generated

by IoT devices) will be leaked. Additionally, it is costly to request expected data from the cloud, which

is linear with respect to the number of edge servers. To address the above problems, we propose a new

secure data search and sharing scheme for CECS. Our scheme improves the existing secure CECS scheme

in the following two ways. First, it enables users to generate a public-and-private key pair and manage

private keys by themselves. In contrast, the existing solution requires edge servers to manage users’ private

keys. Second, it uses searchable public-key encryption to achieve more secure, efficient, and flexible data

searching. In terms of security, our scheme ensures the confidentiality of cloud data and secure data sharing

and searching and avoids a single point of breakthrough. In terms of performance, the experimental results

show that our scheme significantly reduces users’ computing costs by delegating most of the cryptographic

operations to edge servers. Especially, our scheme reduces the computing and communication overhead for

generating a search trapdoor compared with the existing secure CECS scheme.

INDEX TERMS Cloud-edge-collaborative storage, data sharing, data search, searchable encryption.

I. INTRODUCTION

Cloud-edge-collaborative storage (CECS) serves to equip

edge servers between internet of things (IoT) devices and

cloud servers. In CECS, it is clear that the cloud server is rich

in storage and computing resources, edge servers are near to

IoT devices, and IoT devices usually have limited resources.

Hence, the edge servers rapidly respond to requests from IoT

devices, e.g., analyzing data collected from IoT devices in

real-time and forwarding processed data to the cloud server

to save the cost of IoT devices. The authorized users can

also conveniently share IoT data stored on the cloud server

with the help of edge servers. Figure 1 shows the scenario
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FIGURE 1. Scenario of CECS.

of CECS. In it, IoT devices first collect and upload data to

nearby edges. Second, edges process IoT data in real-time,

return the result and store IoT data on a cloud server. Finally,

users can share expected IoT data on the cloud server by

submitting corresponding search requests.

To retain data confidentiality in CECS, Mollah et al. [1]

proposed a scheme in 2017 (called MA’17 in this paper) that

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 15963

https://orcid.org/0000-0002-0152-9905
https://orcid.org/0000-0002-4301-2664
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0003-1911-4676


Y. Tao et al.: Secure Data Sharing and Search for CECS

FIGURE 2. MA’17 scheme.

can securely share and search data for the cloud-and-edge-

assisted IoT. MA’17 supposes that all edge servers are trusted

and that the cloud server is honest-but-curious. Under these

two assumptions, MA’17 consists of the following phases,

as shown in Figure 2.

Setup phase: For each IoT device, the nearby edge server

generates a data-sharing secret keyK and a data-search secret

key KS .

Data Uploading phase. When an IoT device (denoted

by I) wants to store collected data F on the cloud server,

device I sends data F , the extracted keywords W, and the

authorized users listU to a nearby edge server (denoted byA).

Edge A retrieves the private key SKI of device I and the

public keys {PKu|u ∈ U} of the authorized users from the key

generation center (KGC). It then encrypts data F with secret

key K , generates searchable symmetric-key ciphertexts with

secret key KS and keywords W, and encrypts secret key K

with public keys {PKu|u ∈ U}. Finally, it signs data F with

private key SKI to ensure the data integrity and uploads the

above-generated ciphertexts and signature to the cloud server.

Data Search phase. To share the expected data of device

I via the cloud server, an authorized user (denoted by U ,

where U ∈ U) chooses a keyword W as his search request

and sends the request to a nearby edge server (denoted by B).

EdgeB retrieves secret keyKS of edgeA, generates the search

trapdoor with keyword W and secret key KS , and sends this

trapdoor to the cloud server. The cloud server searches for

matched ciphertexts and returns them to edge B. Edge B

retrieves the public key PKI of device I from the KGC and

the private key SKU of user U , decrypts the matched data F ,

verifies the integrity of data F with the public key PKI of

device I, and finally sends data F to user U .

Data Sharing phase. To share all data of device I, user U

sends his sharing request to edge B. Edge B downloads the

corresponding ciphertexts, decrypts all data, verifies the data

integrity, and finally returns all data to user U .

MA’17 is advantageous in reducing the cost of IoT devices

by delegating cryptographic operations to edge servers. How-

ever, it still has the following problems in practice. First,

according to steps 2 and 12 in Figure 2, edge servers can

know the private keys of IoT devices. Thus, if an edge server

is compromised, it can be used to forge IoT data. Second,

according to step 7 in Figure 2, edge servers trust each other

and share their data-search secret keys. Thus, a compromised

edge server can be used to generate search trapdoors with

arbitrary keywords and retrieve expected data from the cloud

server. Finally, suppose that a (mobile) IoT device can upload

its data via different and uncertain edge servers. Step 4 in

Figure 2 implies that the nearby edge server must fetch the

data-search secret keys of all edge servers to retrieve the

expected data for an authorized user. The communication cost

is vast if there are many edge servers in practice.

A. CONTRIBUTIONS

To address the above problems, we propose a new CECS

scheme. First, the new scheme allows IoT devices and users to

generate their public-and-private keys by themselves, and all

private keys are thus known only by their generators. Hence,

the new scheme achieves more secure private-key man-

agement and resists data forgery. Second, the new scheme

applies searchable public-key encryption instead of search-

able symmetric-key encryption. Thus, users can generate key-

word search trapdoors with their private keys and keywords,

and a compromised edge server cannot be used to generate
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keyword search trapdoors. Moreover, the nearby edge server

of a user does not need to fetch the secret keys of all edge

servers. Additionally, the new scheme also saves the cost of

IoT devices and users by delegating cryptographic operations

to the nearby edge servers as much as possible. Finally,

we show that the new scheme is more secure than MA’17 and

experimentally test its performance.

B. RELATED WORKS ON SECURE CLOUD

AND EDGE COMPUTING

Edge computing is flourishing with the rapid development

of cloud computing as a new computing paradigm. Conse-

quently, data confidentiality in the cloud and edge comput-

ing are capturing increasing attention from academia and

industries [2], [3].

1) CLOUD SECURITY

Numerous researchers have used various cryptographic

schemes to achieve data security in cloud storage [4].

Xu et al. introduced a general hybrid proxy re-encryption

(PRE) scheme [5] in cloud storage to protect data secu-

rity against a curious cloud while achieving secure data

sharing. Then, Zeng et al. introduced a conditional PRE

scheme [6] to achieve fine-grained data sharing delegation.

Attribute-based encryption was introduced into cloud com-

puting to achieve fine-grained access control over outsourced

encrypted data [7]–[10]. The problem of how to enable a

semi-trusted cloud to compute between ciphertexts while

guaranteeing the privacy of the encrypted data has also

attracted significant attention [11], [12]. As a result, homo-

morphic encryption was introduced [13]–[15].

How to conduct a secure search over encrypted data is

also a hot topic. For this purpose, searchable encryption has

been proposed. Song et al. [16] first introduced a searchable

symmetric encryption (SSE) scheme. To make SSE more

practical, Kamara et al. [17] introduced dynamic searchable

symmetric encryption (DSSE). Afterward, Xu et al. [18]

improved the practicability of DSSE and enhanced the secu-

rity. Recently, Ghareh Chamani et al. [19] proposed a new

construction for forward and backward private DSSE, which

reduces leakage of the SSE.

Boneh et al. [20] first introduced a public-key encryption

with keyword search (PEKS) scheme for a single keyword

search. Following the first study on PEKS, some researchers

devoted efforts to making PEKS versatile. For example,

Shi et al. [21] proposed a multi-dimensional range query

scheme on ciphertexts, and Boneh and Waters [22] intro-

duced a PEKS scheme supporting range, subset, and conjunc-

tive queries. However, the PEKS schemes were faced with

the obstacle of low retrieval efficiency with linear retrieval

complexity. In 2015, Xu et al. [23] introduced the structured

PEKS scheme and first achieved sub-linear retrieval com-

plexity. Subsequently, Xu et al. devoted effort to researching

the application of PEKS in IoT scenarios and proposed a

parallel keyword search scheme [24] for the cloud-assisted

IoT and a lightweight PEKS [25] scheme for cloud-assisted

wireless sensor networks. In addition to confidentiality,

remote data integrity [26] is another concern for secure

outsourcing storage. Accordingly, proof of data posse-

ssion [27], [28] and proof of data retrievability [29], [30]

were proposed to verify the cloud data integrity.

2) EDGE SECURITY

Researchers are committed to various aspects of security

issues, such as trusted devices, access control, network

security, and intrusion detection [3]. Pettersen et al. [31]

attempted to build a prototype utilizing secure enclave

technologies on edge devices to enforce security isolation.

Vassilakis [32] utilized a formal methodology to deploy

policy enforcement components in mobile edge computing.

To achieve secure communication in edge environments,

Pimentel et al. [33] proposed a secure communication pro-

tocol for federated content networks. Chen et al. [34]

introduced a deep-learning-based model in mobile edge com-

puting to detect malicious applications at the cellular network

edge.

3) CLOUD-EDGE-COLLABORATIVE SECURITY

All of the above works only take the security of either cloud

storage or edge storage into consideration. In other words,

there is almost no research on the security of cloud-edge-

collaborative storage. One of the closest works was proposed

by Mollah et al. [1] to protect the data privacy of outsourced

storage in the the cloud-and-edge-assisted IoT. This work

demonstrated that by deploying searchable encryption (SE)

along with another cryptographic algorithm, it was possible

to share and search outsourced data with privacy preservation

in the cloud-edge-collaborative model. However, the scheme

in [1] is not secure enough, as edges can obtain all private keys

of mobile objects. All edges share the data-search secret key,

which easily leads to the problem that any edge server could

be compromised and then leveraged to break the security of

the entire system.

C. ORGANIZATION

The remaining sections are organized as follows. Section II

defines the cryptographic primitives used in this paper.

Section III models the CECS system and clarifies its security

goals. Section IV instantiates our CECS system. Section V

analyzes the performance of the CECS system. Section VI

concludes this paper.

II. BACKGROUND

Our CECS system utilizes symmetric encryption, public-key

encryption, digital signature, and PEKS to realize the func-

tion and security goals. In this section, we briefly review these

cryptographic primitives.

Symmetric encryption (SE) is a cryptographic primitive

that encrypts data or decrypts ciphertexts with the same secret

key. We define SE as follows:

Definition 1 (Symmetric Encryption): A symmetric encr-

yption scheme SE is composed of the following algorithms:
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• SE.Setup(1k ):Takes as input a security parameter 1k

and probabilistically outputs secret key KSE .

• SE.Enc(KSE ,M ): Takes as inputs a plaintext M

and secret key KSE and probabilistically outputs a

ciphertext CSE .

• SE.Dec(KSE ,CSE ): Takes secret key KSE and ciphertext

CSE as inputs and deterministically outputs plaintext M.
For correction, an SE scheme requires that for any secret

key KSE and plaintext M (let CSE be SE.Enc(KSE ,M )),

M = SE.Dec(KSE ,CSE ) holds except for a negligible proba-

bility. For security, an SE scheme requires that without the

correct secret key, no probabilistic polynomial time (PPT)

adversary can distinguish any two SE ciphertexts encrypted

with the secret key KSE .

Public key encryption (PKE) is a cryptographic primi-

tive that has different encryption key and decryption key.

Furthermore, users can publish the encryption key, and the

decryption must be kept secret. PKE is defined as follows:

Definition 2 (Public Key Encryption): A public key encr-

yption scheme PKE consists of the following algorithms:
• PKE.Setup(1k ): Takes as input security parameter

1k and outputs a pair of public-and-private keys

(PKPKE , SKPKE ).

• PKE.Enc(PKPKE ,M ): Takes a public key PKPKE and

a plaintext M as inputs and probabilistically outputs a

ciphertext CPKE .

• PKE.Dec(SKPKE ,CPKE ): Takes a private key SKPKE
and a ciphertext CPKE as inputs and outputs a

plaintext M.
For correction, a PKE scheme requires that for any

key pair (PKPKE , SKPKE ) and plaintext M (let CPKE be

PKE.Enc(PKPKE ,M )), M = PKE.Dec(SKPKE ,CPKE )

holds except for a negligible probability. For security, a PKE

scheme requires that without the correct SKPKE , a PPT adver-

sary cannot distinguish any two PKE ciphertexts encrypted

with the public key PKPKE .

A digital signature (DS) is a cryptographic primitive for

identifying digital information based on public-key encryp-

tion technology. The signer uses his private key to sign a

message and publishes his public key; the verifier can prove

that the signature belongs to the signer with the signer’s

public key. We define DS as follows:

Definition 3 (Digital Signature): A digital signature sch-

eme DS contains the following algorithms:

• DS.Setup(1k ): Takes as input security parameter 1k

and then outputs a pair of public-and-private keys

(PKDS , SKDS ).

• DS.Sig(SKDS ,M ): Takes as inputs a message M and a

private key SKDS and then outputs a signature Sig.

• DS.Ver(PKDS ,M , Sig): Takes a signature Sig, a mes-

sage M, and a public key PKDS as inputs and then

outputs 1 if Sig is valid or 0 otherwise.

The correction of a DS scheme requires that for any

key pair (PKDS , SKDS ) and message M ∈ {0, 1}∗ (let Sig

be DS.Sig(SKDS ,M )), 1 = DS.Ver(PKDS ,M , Sig) holds

except for a negligible probability. For security, a DS scheme

requires that without the private key, no one can forge a

signature, except for a negligible probability.

PEKS enables secure keyword search over ciphertexts by

setting the public key. It is defined as follows:

Definition 4 (Public Key Encryption with Keyword

Search): A public key encryption with keyword search

scheme PEKS consists of the following algorithms:

• PEKS.Setup(1k ): Takes as input a security param-

eter 1k and outputs a public-and-private key pair

(PKPEKS , SKPEKS ).

• PEKS.Enc(PKPEKS ,W ): Take as inputs a public key

PKPEKS and a keyword W and then probabilistically

outputs a searchable ciphertext CPEKS of keyword W .

• PEKS.Trapdoor(SKPEKS ,W ): Takes a keywordW and

a private key SKPEKS as inputs and then outputs a key-

word trapdoor TW .

• PEKS.Search(PKPEKS ,CPEKS ,TW ): Takes a public

key PKPEKS , a sequence of ciphertexts CPEKS , and a

trapdoor TW as inputs and outputs the ciphertextsCW ⊆

CPEKS of keyword W .

In terms of correction, a PEKS scheme requires that

for any key pair (PKPEKS , SKPEKS ) and keyword W ,

Search(PKPEKS , CPEKS ,TW ) (where TW is generated by

Trapdoor(SKPEKS ,W )) outputs all ciphertexts of keyword

W except for a negligible probability. For security, a PEKS

scheme requires that without SKPEKS , a PPT adversary cannot

distinguish any two PEKS ciphertexts of public key PKPEKS .

III. CLOUD-EDGE-COLLABORATIVE STORAGE MODEL

In this section, we model our CECS scheme and clarify its

security goals.

A. OBJECTS

Our CECS scheme has five entities: IoT devices, users, edges,

cloud, and certificate authority (CA).

• IoT devices can store their data on the cloud through

nearby edges.

• Users can download or retrieve the data shared by IoT

devices from the cloud through nearby edges.

• Edges encrypt data or decrypt ciphertexts for IoT devices

and users and communicate with the cloud.

• The cloud is responsible for storing ciphertexts gen-

erated by edges and returning the data that the edges

request.

• The CA issues digital certificates of IoT devices and

users.

B. FUNCTIONS

The workflow of our CECS scheme is divided into 4 phases,

as follows:

• Setup phase: IoT devices and users register at the CA;

then, the CA stores their certificates.

• Data Uploading phase: An IoT device sends its data and

the corresponding keywords to a nearby edge. The edge

encrypts the data and stores ciphertexts on the cloud.
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• Data Sharing phase: An authorized user submits a

sharing request to a nearby edge. The edge requests

and downloads the encrypted data of the requested IoT

devices from the cloud, decrypts them and verifies their

integrity. Finally, the edge returns the decrypted data to

the user.

• Data Search phase: An authorized user generates a

search request to the cloud through a nearby edge. The

cloud searches for the matched ciphertexts and sends

them to the edge. The edge decrypts them and verifies

their integrity. Finally, the edge returns the decrypted

data to the user.

C. SECURITY ASSUMPTIONS AND GOALS

Our CECS scheme is built among IoT devices, users, edges,

cloud, and the CA. Because these objects are different,

we describe four trust models to clarify the role of each object

in our scheme. The trust models are as follows:

• Trust Model 1: IoT devices and users trust their nearby

edges. This model is reasonable since (1) an edge is

deployed for its IoT devices and users and (2) compared

with the cloud, the data at edges are more scattered and

therefore less likely to be attack targets. This model is

the same as MA’17.

• Trust Model 2: Any two edges do not directly trust each

other. Any edge could be compromised, so we should

prevent the compromised edge from being leveraged

to break other edges’ security. Additionally, different

edges may be deployed by different companies, and

those companies may compete. This model is different

from MA’17, as MA’17 assumes that edges trust each

other.

• Trust Model 3: The cloud is generally assumed to be

honest-but-curious, which means that the cloud will pro-

vide services honestly, but the cloud remains curious

about users’ data. This model is the same as MA’17.

• Trust Model 4: Any outside attacker is untrusted. This

model is a usual one and the same as MA’17.
Our CECS model achieves the following security goals:
• Maintaining the confidentiality of the IoT device data

stored on the cloud. All data must be secret to the cloud

and outside attackers. This goal is the same as that of

MA’17.

• Securely sharing data. This goal requires that only

authorized users are allowed to download the shared data

and verify the data integrity through edges. This security

is the same as that of MA’17.

• Securely retrieving data. This goal requires that only the

authorized users are allowed to retrieve the shared data,

and no important characteristic information about the

shared data is leaked to the cloud. This goal is the same

as that of MA’17.

• Avoiding a single point of breakthrough. If an outside

attacker attacks an edge, it cannot undermine the secu-

rity of other edges. This security is a new goal compared

with MA’17.

IV. CLOUD-EDGE-COLLABORATIVE STORAGE SYSTEM

In this section, we instantiate our CECS scheme. Our scheme

consists of the following four phases.

In the Setup phase, each of the IoT devices and users

generates a public-and-private key pair and then registers the

public key to the certificate authority (CA) while keeping

the private key secret. Compared with MA’17, our scheme

is more secure since all IoT devices and users manage their

private keys by themselves.

The Setup phase is shown in Figure 3. For each IoT device

or user, the details are as follows:

FIGURE 3. Setup phase of our CECS scheme.

1) The IoT device or user runs algorithms (PKPKE ,

SKPKE ) ← PKE.Setup(1k ), (PKPEKS , SKPEKS ) ←

PEKS.Setup(1k ), and (PKDS , SKDS )←DS.Setup(1k ).

2) The device or user registers its/his public keys PKPKE ,

PKPEKS , and PKDS to the CA.

3) The CA runs algorithm DS.Sig(SKCA
PKE ,PKPKE ||

PKPEKS ||PKDS ) to generate the certificate Cert .

4) The CA sends the certificates Cert to the IoT device or

user.
In the Data Uploading phase, an IoT device signs its data

with its private key. It sends the data, the corresponding sig-

nature, the extracted keywords from the data, its certificate,

and a list of the authorized users to a nearby edge server via

a secure channel. Then, the edge server generates a secret

key K and encrypts the received data with this secret key.

To securely share data, the edge server encrypts the secret

key with the public key of the authorized users. Although

using broadcast encryption can reduce the communication

and storage costs of the cloud, an authorized user needs to

acquire other authorized users’ public keys for decrypting a

broadcast ciphertext, which will increase the communication

and computing costs of the user. Hence, we still use the

conventional public-key encryption in the above. To support

secure data retrieval, we apply PEKS to generate keyword

searchable ciphertexts with the authorized users’ public keys.

Compared with MA’17, our scheme reduces the communica-

tion and computing costs of edge servers in making secure

search queries for users.

The Data Uploading phase is shown in Figure 4. The

details are as follows:
1) An IoT device logs into a nearby edge server, extracts

keywords W from its collected data F , and runs algo-

rithm Sig← DS.Sig(SKO
DS ,F) to generate data signa-

ture Sig with its private key SKO
DS .
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FIGURE 4. Data uploading phase of our CECS scheme.

2) The IoT device uses a secure channel to send data F ,

keywordsW, signature Sig, its certificate CertO, and a

list U of authorized users to the edge server.

3) The edge server runs algorithms K ← SE.Setup(1k )

and CSE ← SE.Enc(K ,F) to encrypt data F in the

setting of the symmetric key.

4) The edge server fetches the authorized users’ cer-

tificates {CertR|R ∈ U} from the CA and obtains

the authorized users’ public keys {PKR
PKE ,PKR

PEKS ,

PKR
DS |R ∈ U}.

5) The edge server runs algorithms

CR
PKE ← PKE.Enc(PKR

PKE ,K )

and

C
R,W
PEKS ← PEKS.Enc(PKR

PEKS ,W )

for R ∈ U and W ∈W.

6) The edge server uploads ciphertexts CSE ,CR
PKE ,

C
R,W
PEKS , Sig,Cert

O for R ∈ U andW ∈W to the cloud.

7) The cloud stores the received ciphertexts.

In the Data Sharing phase, an authorized user submits

a data sharing request to the nearby edge server. The edge

server requests and obtains the corresponding ciphertexts

from the cloud and sends the contained PKE ciphertext to the

authorized user. Next, the authorized user decrypts the secret

key and uses a secure channel to send this key to the edge

server. After receiving the secret key, the edge decrypts data

and uses a secure channel to return the data to the authorized

user if the data signature is valid.

TheData Sharing phase is shown in Figure 5. To share the

data of IoT device O, the details are as follows:

1) An authorized user (denoted by U ) submits a data

sharing request to the nearby edge server.

2) The edge server requests and downloads ciphertexts

CSE ,CU
PKE , Sig,CertO of device O from the cloud.

3) The edge server acquires the public keys PKO
PKE and

PKO
DS from certificate CertO.

4) The edge sends ciphertext CU
PKE to the authorized

user U .

FIGURE 5. Data sharing phase of our CECS scheme.

FIGURE 6. Data search phase of our CECS scheme.

5) The authorized user U runs algorithm K ←

PKE.Dec(SKU
PKE ,CU

PKE ) and uses a secure channel to

return secret key K to the edge server.

6) The edge server runs algorithm F ← SE.Dec(K ,CSE ),

verifies the validity of data F by running algorithm

DS.Ver(PKO
DS ,F, Sig), and returns data F to the users

via a secure channel if data F are valid.
In the Data Search phase, an authorized user generates a

keyword search trapdoor with his private key and desired key-

word and submits this trapdoor and his certificate to the cloud

via a nearby edge server. The cloud searches for the matched

ciphertexts and sends them to the edge server. The edge server

decrypts the requested data as it does in the Data Sharing

phase and returns the data to the user via a secure channel if

the data are valid.

The Data Search phase is shown in Figure 6. To share

the data with the expected keyword W from IoT device O,

the details are as follows:
1) An authorized user (denoted by U ) runs algorithm

TW ← PEKS.Trapdoor(SKU
PEKS ,W ) and submits

trapdoor TW and his certificate CertU to the nearby

edge server.

2) The edge server forwards the received request to the

cloud.

3) The cloud obtains the public key PKU
PEKS of the autho-

rized user from certificate CertU .

4) The cloud runs algorithm PEKS.Search(PKU
PEKS ,

C
U
PEKS ,TW ) to find the matching ciphertexts, where
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TABLE 1. Comparisons of communication costs.

C
U
PEKS denotes all PEKS ciphertexts generated by

device O for user U .

5) Supposing ciphertext CSE ,CU
PKE , Sig,CertO to be a

matching one, the cloud returns this ciphertext to the

edge server.

6) The edge server and the user do the same as in theData

Sharing phase; finally, the user receives the data of the

keyword W .

A. SECURITY ANALYSIS

Our CECS scheme achieves the following three security

goals: data confidentiality on the cloud, secure data sharing,

and secure data search.Moreover, compared withMA’17, our

scheme is more secure.

First, we analyze the confidentiality of data on the cloud.

In our CECS scheme, edge servers encrypt IoT devices’ data

locally before uploading them to the cloud. The cloud stores

the SE ciphertexts, the PKE ciphertexts, and the PEKS cipher-

texts. According to the security requirements of SE, PKE, and

PEKS, no one without secure or private keys can infer the

content of IoT device data from the above ciphertexts. Hence,

all data are secret to the cloud and outside attackers.

Next, we analyze secure data sharing. In our CECS

scheme, the shared data secret key is encrypted with autho-

rized users’ public keys. According to the security of PKE,

only the authorized users can access the shared data through

the nearby edge server, and it is not possible to decrypt any

data that does not belong to the IoT device or is not shared

with the requested user. According to the security of the

digital signature, users can verify the IoT device’s signature of

the shared data through a nearby edge to ensure data integrity.

Then, we analyze the security of the data search. It is

easy to find that our search solution has the same essence

in terms of security as a PEKS scheme. According to the

security of PEKS, no important characteristic information

about the requested data is leaked to the cloud; moreover,

outside attackers cannot perform the search.

Finally, we analyze avoiding a single point of break-

through. If an outside attacker compromises an edge server,

because of the security of DS, it cannot forge shared data

without the IoT device’s private key. According to the security

of SE and PKE, the outside attacker cannot decrypt other

ciphertexts on the cloud without the correct symmetric keys

and private keys of the authorized users. Therefore, it cannot

undermine the security of additional data on the cloud.

Compared with MA’17, in terms of key management, our

scheme lets IoT devices and users generate public-and-private

keys and manage private keys by themselves. However,

in MA’17, the users’ public-and-private keys are generated

by the KGC, and edge servers can request users’ private keys

from the KGC. Thus, if an attacker compromises an edge

server, it can use an authorized user’s private key to decrypt

the shared data and forge IoT device data with this device’s

private key.

In terms of data search, our scheme uses PEKS, and the

authorized users can generate trapdoors with their private

keys and submit these trapdoors to edge servers. However,

the MA’17 scheme uses SSE, and edge servers share the

data-search secret keys. Thus, if an attacker compromises an

edge server, it can generate trapdoors with arbitrary keywords

and submit these trapdoors to the cloud to find the matching

data.

B. PERFORMANCE ANALYSIS

Table 1 shows a comparison of the communication cost

between our CECS scheme and MA’17.

In theData Uploading phase, our scheme requires the IoT

device to generate the data signature and upload the data,

the extracted keywords, the authorized users, the generated

signature, and its certificate to the nearby edge server. There-

fore, compared with MA’17, our scheme requires additional

computing and communication overhead to upload data, but

our scheme enables stronger security.

In the Data Sharing phase, our scheme requires the edge

server to send the shared PKE ciphertext to the authorized

user. Next, the authorized user decrypts the received cipher-

text with his private key and returns a data-sharing secret

key to the edge server. Therefore, compared with MA’17, our

scheme requires additional computing and communication

overhead when sharing data, but our scheme enables stronger

security.

In the Data Search phase of our scheme, the autho-

rized user only needs to generate one keyword search

trapdoor. However, in MA’17, the requested edge server

fetches all data-search secret keys from all of the other edge

servers, creates keyword search trapdoors with these received

data-search secret keys, and submits these trapdoors to the

cloud. In other words, the computing and communication

costs of the edge server in MA’17 are linear with respect to

the number of edge servers. Therefore, our scheme reduces
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TABLE 2. Configuration of System Parameters.

the communication and computing overhead for generating

keyword search trapdoors.

V. EXPERIMENTS

In this section, we experimentally evaluate our CECS

scheme’s performance. Table 2 shows the software and

hardware environments. We apply SHA-256, RSA-1024,

and AES-128 to respectively implement a hash function,

public-key encryption, and symmetric encryption. We utilize

the PEKS scheme proposed in [20] to perform a keyword

search over public-key ciphertexts. We code the above cryp-

tographic primitives using JPBC (Java Pairing-Based Cryp-

tography Library) [35] to implement PEKS. Table 3 shows

the bilinear pairing parameters.

TABLE 3. Bilinear mapping parameters.

A. EVALUATING THE DATA UPLOADING PHASE

To test the performance of our CECS scheme in the Data

Uploading phase, we upload the following 4 data sets to the

cloud server: 1 MB of data containing 21 keywords, 5 MB

of data containing 105 keywords, 10 MB of data containing

205 keywords, and 50MBof data containing 1,024 keywords.

Figure 7 shows our CECS scheme’s time cost in the Data

Uploading phase. For example, when an IoT device uploads

50 MB of data to the cloud, the time for the device to sign

the data is approximately 840 ms, the total time for the

nearby edge server to generate the corresponding ciphertexts

is approximately 46,970 ms, and the total time of the Data

Uploading phase is approximately 60,863 ms. When the data

size expands, the time cost for the user to upload data also

increases, but the time cost of the IoT device is very little

compared with the total time cost.

B. EVALUATING THE DATA SHARING PHASE

To test the performance of our CECS scheme in the Data

Sharing phase, we download the following 4 data sets from

the cloud server: 1 MB of data containing 21 files, 5 MB of

data containing 105 files, 10 MB of data containing 205 files,

and 50 MB of data containing 1024 files. Figure 8 shows

FIGURE 7. Time cost of our CECS scheme in the Data Uploading phase.

FIGURE 8. Time cost of our CECS scheme in the Data Sharing phase.

our CECS scheme’s time cost in the Data Sharing phase.

For example, when an authorized user requests 50 MB of

shared data, the time for the user to decrypt secret keys is

approximately 570 ms, the total time for the nearby edge

server to decrypt data and verify the data integrity is approxi-

mately 916 ms, and the total time of the Data Sharing phase

is approximately 13,648 ms. Therefore, when the data size

expands, the time cost for the user to obtain shared data also

increases, but the time cost for the user to decrypt secret keys

is much less than the total time cost.

C. EVALUATING THE DATA SEARCH PHASE

To test the performance of our CECS scheme in the Data

Search phase, we authorize the cloud to search keywords

over different numbers of ciphertexts. The data sets are as

follows: 1 MB of data containing 21 files, 5 MB of data

containing 105 files, 10 MB of data containing 205 files,
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FIGURE 9. Time cost of our CECS scheme in the Data Search phase.

FIGURE 10. Time costs to generate keyword search trapdoors.

and 50 MB of data containing 1,024 files. Figure 9 shows

our CECS scheme’s time cost in the Data Search phase. For

example, when the data size requested by the user is 50 MB,

the time cost of the cloud to search over PEKS ciphertexts

is approximately 7,435 ms, and the total time of the Data

Search phase is approximately 21,798 ms.

D. PERFORMANCE IN GENERATING TRAPDOORS

To compare the performance of trapdoor generation between

our CECS scheme and MA’17, we deploy ten edge servers.

Figure 10 shows the time costs of trapdoor generation of

our CECS scheme and MA’17. As shown in Figure 10,

MA’17 requires approximately 1,053 ms for an edge server

to obtain data-search secret keys from the other edge servers

and generate ten trapdoors. However, in our CECS scheme,

the authorized user only needs to create one trapdoor with the

time cost of approximately 72 ms. Moreover, as the number

of edge servers increases, the time cost of trapdoor generation

of MA’17 also increases.

In terms of communication cost of trapdoor generation,

the requirement for communication trips in MA’17 is linear

with respect to the number of edge servers. However, in our

CECS scheme, no communication trip is taken to generate

a keyword search trapdoor. Therefore, our CECS scheme

can significantly reduce the computing and communication

overhead for creating a keyword search trapdoor.

VI. CONCLUSION

In this paper, we propose a new secure data search and

sharing scheme for CECS. Compared with the previous work,

our scheme is advantageous with respect to maintaining the

privacy of IoT devices and users’ private keys and achieving

more secure or efficient data sharing and data searching.

In terms of security, our scheme ensures the confidentiality

of data on the cloud, secure data sharing between IoT devices

and users and secure data searching between the cloud and

users and enables the weak trust assumption on edge servers.

In terms of performance, the experimental results show that

our scheme also effectively reduces the computing burden of

IoT devices and users by delegating computation-intensive

encryption and decryption algorithms to edge servers. Com-

pared withMA’17, our scheme significantly reduces the com-

puting and communication overhead for generating keyword

search trapdoors.
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