
Version date: 14/05/2009 10:52
Thesis Report v1.0.0.doc

Master Thesis

Secure Data Storage

Outsourcing with Conjunctive

Keyword Search

Author:

A.H.P. (Arjan) van Vliet

1286544
Exam committee

Prof. Dr. Ir. R.L. Lagendijk
Dr. Ir. J.C.A. van der Lubbe

Dr. P. Cimiano
Ir. P. Kornelisse RE CISA

...
Delft, University of Technology

Department of Mediamatics
Faculty of Electrical Engineering,

Mathematics and Computer Science (EEMCS)
Information and Communication Theory Group

Abstract

This thesis in the field of cryptography considers secure data outsourcing with keyword search
capabilities. To ensure data confidentiality the data is stored in encrypted format. An efficient solution
has been developed to enable conjunctive keyword search. Also, a protocol is applied to enable
efficient and secure sharing of encrypted data. It is possible to efficiently enrol and revoke users for
both the searching and the decryption part of the system. The newly developed search technique is
implemented as well to test its practical performance.

Faculty of Electrical Engineering, Mathematics and Computer Science

 - i -

Preface

This thesis is written to graduate as a Master of Science in Media and Knowledge Engineering at the
TU Delft. The thesis is written in the field of cryptography which is a topic of the Information and
Communication Technology group at the Electrical Engineering, Mathematics and Computer Science
faculty. All work has been done in the Information Security and Control business unit at KPMG IT
Advisory from July 2008 till March 2009.

Preceding this thesis a literature report was written about Data Leakage and its Prevention. It showed
the importance of data confidentiality. In this report a short introduction to relevant research topics
was given as well. It discussed some examples, found in literature, of private data storage to ensure
data confidentiality while offering the possibility to search on encrypted data. Other literature
described an approach for secure multi user data storage. By combining both research directions and
the fact that server management is an expensive task a thesis research topic was found. The topic of
this thesis is secure data storage outsourcing with the possibility to perform conjunctive keywords
searches.

Acknowledgements

First of all I would like to thank my parents, Henk and Ria, for their endless support and keeping me
on the track at times I lacked motivation. I would like to thank my girlfriend Maartje for always
having a listening ear at times things did not go the way I wanted and her useful comments on my
English language.

I would like to thank all people at the Information Security and Control (ISC) group at KPMG IT
Advisory. In the first place I would like to thank John and Bram, who where the first of the group I
had contact with, for providing me the opportunity to graduate in the ISC group. I would like to thank
all my supervisors at KPMG for making time in their busy schedules. Thanks to Hans for supervising
my literature research, finding my way within KPMG and pointing me to the available resources.
Many thanks go to Erwin who always had time for me, reread my work several times and gave many
useful tips to improve the structure which really pushed this thesis to the next level. I would also like
to thank Peter for being the second supervisor for both my literature research and my thesis, making
time for me in his very busy schedule and his tough questions that made me rethink. Finally, I would
like to thank all other employees at ISC for their nice discussions, friendliness and good atmosphere
to graduate.

I would also like to thank everyone at the TU Delft that contributed to this thesis. First of all, my
supervisor Jan for his critical questions making me look at things differently and providing me the
freedom to give research the direction I liked most. Secondly, I would like all members from the
crypto reading group for the many good and useful discussions we had. Thanks to Thijs for
supervising the reading groups. I would like to thank Zeki for his discussions on early versions of my
algorithm at the time I felt stuck. It is because of him that I decided to implement my solution which
gave me new energy. I would like to thank Ilyaz for reviewing an early version of this thesis and
giving my valuable feedback. Thanks to Michael for his clear explanations during the reading group
sessions and thanks to Katherina. Finally, I would like all members of the students meetings and
Emile for supervising these meetings.

 - iii -

Table of Contents

Preface __ i

Acknowledgements __ i

1. Introduction ___ 1
1.1. Motivation ___ 1
1.2. Research Goal __ 2
1.3. Research Methodology ___ 3
1.4. Report Outline__ 3

2. Existing Solutions and Related Work __________________________ 5
2.1. Keyword Searchable Encryption__ 5

2.1.1. Overview of Keyword Searchable Encryption Schemes__________________ 6
2.1.2. Range Queries and Other Secure Search Techniques ____________________ 7

2.2. Proxy Re-Encryption___ 8
2.3. Summary __ 9

3. Setting the Scene __ 11
3.1. Scene Description __ 11
3.2. Assumptions on Functionality and the Actors_________________________________ 13
3.3. Requirements__ 15
3.4. Summary ___ 16

4. High Level System Construction _____________________________ 17
4.1. Search Technique __ 17
4.2. Keyword Index Construction and Storage ___________________________________ 18

4.2.1. One Index for All Documents _____________________________________ 19
4.2.2. A Separate Index for Every Document ______________________________ 20

4.3. Query Construction and Matching ___ 20
4.4. Multi User Data Encryption __ 22
4.5. Authentication and Authorisation __ 23

4.5.1. Query and Index Authentication and Authorisation ____________________ 24
4.5.2. Decryption Authentication and Authorisation_________________________ 24

4.6. Putting Together ___ 25
4.6.1. DSSP Data and Key Storage Representation__________________________ 25
4.6.2. System Overview___ 26

4.7. Summary ___ 27

5. Preliminaries ___ 29
5.1. Cryptographic Preliminaries __ 29

5.1.1. Bilinear Map (Pairing)___ 29
5.1.2. Proxy Re-encryption __ 31

5.2. System Definition __ 32
5.3. Security Definitions___ 33

5.3.1. Security Definition__ 34
5.3.2. Revocability___ 35

5.4. Summary ___ 35

6. Constructing a Searchable Encryption Scheme _________________ 37
6.1. Attempt 1 – A Keyword Searchable Scheme _________________________________ 37

 - iv -

6.1.1. Evaluation __ 40
6.2. Attempt 2 – A Conjunctive Keyword Searchable Scheme _______________________ 41

6.2.1. Security Proof ___ 45
6.2.2. Evaluation __ 46

6.3. Extensions __ 46
6.3.1. Role Based Access to Subgroups of Documents _______________________ 47
6.3.2. Dynamic Dictionary___ 47

6.4. Threat Analysis and Measures __ 48
6.4.1. Threat Analysis __ 48
6.4.2. Additional Security Measures _____________________________________ 49

6.5. Summary ___ 50

7. Implementation ___ 51
7.1. Programming Details and Cryptographic Libraries_____________________________ 51
7.2. Pairing Parameters__ 52
7.3. Implementation Overview__ 52
7.4. Experimental Results__ 56
7.5. Pointers to Further Improvements and Optimisation ___________________________ 61
7.6. Summary ___ 61

8. Conclusion and Future Work ________________________________ 63
8.1. Scientific Contribution __ 63
8.2. Other Applications of Searchable Encryption_________________________________ 64
8.3. Conclusion__ 65
8.4. Future work ___ 66

Bibliography ___ 69

Appendix A – Terms, Symbols and Notations ______________________ 71

Table of Figures

Figure 1: Services, actions and actors overview ___ 12
Figure 2: Actor overview in an outsourced data storage setting_____________________________ 13
Figure 3: One index for all documents __ 19
Figure 4: A separate index for every document ___ 20
Figure 5: Documents with their lockboxes ___ 23
Figure 6: Query authorisation ___ 24
Figure 7: Decryption authorization___ 25
Figure 8: Data representation on the data server___ 26
Figure 9: From query submission to decryption (schematic overview) _______________________ 27
Figure 10: Miller's Algorithm ___ 30
Figure 11: System definition__ 33
Figure 12: Attempt 1 - A keyword searchable encryption scheme___________________________ 39
Figure 13: Attempt 1 - Query submission, searching and document decryption ________________ 40
Figure 14: Attempt 2 – A conjunctive keyword searchable encryption scheme_________________ 44
Figure 15: Attempt 2 - Query submission, searching and decryption_________________________ 44
Figure 16: Document group storage __ 47
Figure 17: Loading a parameter file and initialising a pairing ______________________________ 52
Figure 18: System initialisation ___ 53
Figure 19: Index computation function call __ 53
Figure 20: Index generation __ 54

 - v -

Figure 21: Authentication and authorisation and document storage__________________________ 54
Figure 22: Authentication and authorisation__ 55
Figure 23: Query execution function call __ 55
Figure 24: The search process___ 56
Figure 25: Query performance counter__ 57
Figure 26: Test program ___ 57
Figure 27: Search speed ___ 59
Figure 28: Output correctness test ___ 60

Table of Tables

Table 1: Comparison of searchable encryption schemes ___________________________________ 7
Table 2: Threat analysis ___ 49
Table 3: Index generation duration ___ 58
Table 4: Query generation duration __ 58
Table 5: Search speed with two pre-processed elements __________________________________ 59

 - 1 -

1.

Introduction

In this report a realistic scenario is defined in which a company outsources its data storage
management. An important aspect for data storage outsourcing to become successful is to ensure data
confidentiality. A preceding literature study showed a growing number of data leakage incidents [32]
and stated that consequences when private and other sensitive information becomes public can be
severe in terms of both corporate image and financial costs. Data leakage incidents are a result of the
increased amount of digitally stored information and people not constantly being aware about the
data’s value. This digital information is often more easy to find, access and exchange and inevitably
includes sensitive information like credit card numbers, financial information or technical designs.
Since the consequences of a data leakage incident can be enormous it is no wonder that companies are
taking measures and purchase Data Leakage Prevention (DLP) products to ensure confidentiality of
their data.

To ensure data confidentiality when data storage is outsourced, data should be stored in an encrypted
format since the storage provider can not be fully trusted. Like most security measures this has an
influence on the usability and functionality. When data is encrypted it is no longer possible to search
and selectively retrieve documents. Most encryption schemes have the scenario where information is
encrypted in such a way that only one intended recipient can recover the original content, unless they
share a common secret. In practical situations often many employees should have access to the data
and should be able to perform searches, preferably without sharing a common secret.

This report gives an analysis of existing solutions to enable search operations on encrypted data and to
share encrypted data among a group of existing users. A new, improved, system is proposed which
offers both keyword search capabilities and the ability to share encrypted data with all authorised
users at the cost of a reasonable overhead. This will help companies to save costs on data storage
management due to location and scale advantages of the data storage company. To test the practical
performance the newly developed search algorithm is actually implemented and several tests are
performed.

1.1. Motivation

There are several reasons to write this report related to IT and security. Both IT and security are of
personal interest. The increased amount of data leakage incidents including personal information, as
shown in the preceding literature study [32], which can have enormous impact are a motivation to a

Introduction

 - 2 -

subject related to data protection as well. Data leakage incidents often involve social security
numbers, credit card numbers and other personal identifiable information. This information can be
used to commit identity fraud where people try to gain personal advantage with somebody else his
credits or achievements.

Another reason is to reduce the high IT costs in organisations. Nowadays there are almost no
companies that do not rely on IT solutions for their day to day business activities. In a lot of those
companies every employee has a computer or laptop for their daily work activities. All those
employees are using many business applications and IT services like e-mail, intranet and network or
remote storage. An increased amount of digital data leads to more storage space and as a result more
data storage servers. These applications and services cannot run if the infrastructure and servers
running in the background are not functioning properly. The servers have to be kept in optimal
conditions, by protecting them against existing and newly rising computer security threats and by
regularly upgrading them with increased demands due to more users, or new more demanding
software. Other server management tasks are related to system and business continuity. In case of a
power failure additional power supplies have to be in place. Also, regularly creating system backups
is an important task related to server management. Outsourcing of server management operations can
help to reduce high IT costs.

1.2. Research Goal

As already mentioned at the beginning of the introduction and in the motivation, a practical and
secure system which makes it possible to securely outsource data storage management with search
capabilities has to be developed. On the one hand it will help to reduce the high IT costs and on the
other hand it will add to a higher level of data confidentiality.

Recent literature has already described several solutions to search on encrypted data. The problem
with most of these schemes is that they focus on a single user setting, the scenario where one user has
its private data storage. In this report a multi user scenario is considered, where multiple users can
access and search the same data storage. Some of these solutions, however, describe a multi user
extension to their scheme, but since they are not intended as a true multi user system they face
limitations in a multi user setting. Other literature describes a multi user encrypted file storage system
to securely outsource data storage, but has no search capabilities.

The main goal of this MSc thesis assignment is to develop an extension to the multi user secure data
storage system as described above that adds keyword search capabilities. Part of this goal is to
develop an improvement or optimisation of the current searchable encryption schemes. Improvement
can be additional functionality, a higher level of security or a more efficient implementation in terms
of storage space and computation.

To support the main goal a set of sub goals have been posed. Three sub goals have been defined
covering the system’s security and confidentiality, the system’s manageability, the outsourcing aspect
of the system and the system’s efficiency for practical applications. The sub goals are listed below:

1. Since confidentiality is important the data is stored in encrypted format and the amount of
information the server is able to learn has to be minimized.

2. It should be possible to enrol and revoke users from the system. All authorised users should
be able to search for keywords, add documents and be able to decrypt documents.

3. Since IT service management is an expensive operation as much tasks as securely and
conveniently possible have to be outsourced.

4. For a system to succeed in practical applications its efficiency is important and for this reason
the system has to be as efficient as possible.

Introduction

 - 3 -

1.3. Research Methodology

Research for this thesis has started with gathering relevant scientific literature. In order to find
relevant literature the references in interesting literature was used to find other relevant literature as
well. After reading scientific literature, the scene setting introduced in this introduction was defined
and elaborated on. Also, several assumptions were posed on the system as a whole and the different
parties involved. The assumptions were made to make it feasible to construct a satisfactory system.

From the insights gained while reading scientific literature a high level design of the system was
developed. During the design, different alternatives found in literature or thought of were analysed
and discussed based on the three sub goals.

After finishing the high level design the required preliminaries and definitions were introduced for the
detailed system and algorithm construction. At first a more basic system was developed not
completely satisfying the research goals. The second construction does satisfy the research goals and
its security is proven. Also, some extensions to the system were developed.

Finally, the keyword search part of the system was implemented to test its practical performance.
Search engines were used to find cryptographic libraries supporting the necessary mathematical
operations and algorithms. For the evaluation several tests were performed to evaluate its
computational speed.

1.4. Report Outline

At first some scientific literature is discussed about encryption methods that support keyword searches
and proxy re-encryption mechanisms to support multi user data encryption. An overview of the
scientific literature which is read to find out what is already done and to find useful insights for the
development of the system in this work is given in the next chapter. A comparison is made between
the existing schemes to get an idea in which areas the system developed in this work can improve and
to evaluate the final system. From chapter three and onwards most chapters cover own work
descriptions.

In chapter three the research goal is further elaborated upon and a scene description of a practical
situation is given. This section also describes the assumptions posed on the different parties involved
and on the system as a whole. Chapter four describes the high level design for the system that meets
the scene description as given in chapter three. In this chapter the different design options are
mentioned, analysed and explained.

Chapter five starts with a description of the required preliminaries from literature needed to
understand the system’s construction in chapter six. Hereafter a formal definition of the system
constructed for this thesis is given. Chapter five also gives a formal security definition based on the
ones found in literature. Once the preliminaries are described, detailed constructions of the developed
system are given in chapter six. The technical descriptions given in this chapter are analysed to see if
they fulfil the goals posed earlier in the report. Also some extensions to the system, including one to
support role based access to documents, are given.

The implementation of the search algorithm is discussed in chapter seven. It gives an overview of the
implementation details and discusses a number of results from the implementation tests. Also, it gives
some pointers to further improve the computational speed obtained from the tests. Finally, this thesis
ends with a conclusion which is given in chapter eight. It also mentions the scientific contribution,
some other applications of searchable encryption and future work.

Introduction

 - 4 -

In the descriptions throughout this thesis report a lot of terminology and symbols are used. For an
overview of the used terms, symbols and notations used in this thesis the reader is referred to
appendix A. The overview given in appendix A can be flipped out such that the reader can view the
appendix while reading the report.

 - 5 -

2.

Existing Solutions and Related Work

In this chapter an overview is given of the scientific literature that is studied to find existing solutions
that already solve parts of the goals defined in the introduction. The solution for the system consists of
two parts. First, a construction that offers keyword search capabilities to all authorised users and
secondly a construction that enables sharing of encrypted data between all authorised users.

The first section of this chapter gives an overview of the different searchable encryption schemes that
can be found in literature. Once the schemes are shortly described and analysed, a comparison is made
which enables comparing the scheme developed in this work with existing solutions. Also, some
papers related to keyword searchable encryption are described.

In section three an overview is given of different proxy re-encryption schemes. It describes which
properties are useful for the system constructed in this work and which properties are not. The best
solution is chosen.

2.1. Keyword Searchable Encryption

The term searchable encryption might be a bit confusing. One might expect that the actual ciphertexts
are searched, but this is not the case. Instead, separate indexes are encrypted in a special way to make
searching possible. Usually a standard encryption scheme is used in combination with special index
generation and query mechanisms. A system in which every file has one or more keywords assigned
to it which can be matched in a special encrypted way is called a searchable encryption scheme.

Searchable encryption has numerous applications and therefore different solutions exist. A distinction
can be made between simple or conjunctive keyword searchable encryption and range queries on
encrypted data. Keyword searchable encryption is mostly demonstrated in a secure file storage system
or in a secure database setting. Range queries on encrypted data are mostly used to test a certain
predicate. For example, if the data has a value in a specific range such as if the IP address falls within
a certain range in network audit logs.

First an overview of different keyword searchable encryption schemes is given. The most important
details are summarised in a table to compare the different solutions and to evaluate the scheme
constructed in this report. The final section gives an overview of some range query techniques studied

Existing Solutions and Related Work

 - 6 -

to get an idea of their approaches and to see if it can be valuable in keyword searchable encryption
schemes.

2.1.1. Overview of Keyword Searchable Encryption Schemes

Keyword searchable encryption schemes have been proposed in both the symmetric and asymmetric
setting. Most keyword searchable encryption schemes focus on the scenario where a single user has
private data storage and wants to perform keyword searches to selectively retrieve his or her data. A
single user approach has limited practical applications since these mostly require multi user solutions.
Some of the newer schemes describe multi user extensions, but are often faced with limited
functionality. A limitation is for example, that only one user can add documents. User management is
often problematic as well. Enrolling or revoking users often requires redistribution of keys.

The notion of searchable encryption was introduced by Song, Wagner and Perrig [30] who have
proposed a solution in the symmetric setting. Every document is seen as a stream of words and every
word is masked with a stream cipher. Only the user which knows the seed can reproduce the stream
cipher and perform search operations. Their solution is different from others since it is the only one
that encrypts all words instead of using separately constructed keyword indexes.

Most index construction schemes are in the symmetric setting [2, 3, 9, 11, 28]. Chang and
Mitzenmacher [9] proposed a scheme where only one keyword can be assigned to each document.
Besides this limitation their security definition is less stringent compared to others. It only guarantees
non adaptive security and thus does not guarantee security when previous query results are taken into
account constructing new queries. The security definition used by Ballard et al [2] does not require
secure trapdoors or queries. Curtmolla et al [11] have introduced the general adaptive security
definitions for searchable encryption. Their scheme is also the only one that has one global index for
all documents.

Asymmetric solutions have been proposed by Byun et al [7] and Hwang et al [18], but are less
efficient than symmetric solutions. Both schemes support conjunctive keyword search, but only
Hwang et al described a multi user extension. In order to support multiple users, additional
information for each individual user is attached to the indexes. This approach is not very practical
since all indexes have to be changed upon revocation or enrolment.

Only one true multi user keyword searchable encryption scheme is found in literature. In the system
constructed by F. Bao et al [3] all users can search, add and decrypt documents. Efficient enrolment
and revocation is possible without the need of redistributing keys or re-computing indexes. It is,
however, not possible to revoke decryption rights due to the use of one symmetric key to encrypt all
documents which is shared by all users. Also, only one keyword can be attached to every document.
This approach thus lacks functionality for practical applications.

The table below gives an overview and a comparison of the different symmetric and asymmetric
keyword searchable encryption schemes. Since the solution from Song, Wagner and Perrig does not
use indexes it is not included in the table.

 Chang et

al [9]

Ballard et

al [2]*

Curtmola

et al [11]

Byun et al

[7]

Hwang et

al [18]

Ryu et al

[28]

Bao et al

[3]

Index Size O(w) O(n(w+1)) O(w) O(n(w+2)) O(n(wu+1)
)

O(n(w+2)) O(2n)

Query Size O(2) O(2) O(w) O(3) O(n +3) O(2) O(1)

Search

Complexity

O(n) O(n)
(2n) pr

O(w)
0 pr

O(n)
(2n + 1) pr

O(n)
(3n) pr

O(n) O(n)

Existing Solutions and Related Work

 - 7 -

 Chang et

al [9]

Ballard et

al [2]*

Curtmola

et al [11]

Byun et al

[7]

Hwang et

al [18]

Ryu et al

[28]

Bao et al

[3]

Single /

conjunctive

keyword

search

Single kws Conjunc-
tive kws

Single kws Conjunc-
tive kws

Conjunc-
tive kws

Conjunc-
tive kws

Single kws

Security Non-
adaptive

Adaptive*
*

Adaptive Adaptive Adaptive Adaptive Non-
adaptive

MU File

Submission

No No No No Yes No Yes

MU Search No No Yes No Yes No Yes

MU Key

Optimal

No No No No Yes, use u
public
keys

No Yes

Revocation - - Yes,
decrypt not
mentioned

- No - Partial***

Symmetric /

asymmetric

Symmetric Symmetric Symmetric Asymme-
tric

Asymme-
tric

Symmetric Symmetric

Table 1: Comparison of searchable encryption schemes
* Based on their second scheme, their first scheme uses a Shamir Secret Sharing mechanism.
** Adversary not allowed to search, incomplete security definition
*** Ability to revoke search rights, but not to revoke decryption rights.

In table 1 the letters n, w and u are used to denote the number of documents, the number of keywords
and the number of users respectively. The abbreviation pr is used to denote the computationally
expensive pairing operation. In the left column MU is used several times to abbreviate Multi User.

The solution for Curtmola et al [11] seems most efficient since the index and search complexity is
only dependent on the number of keywords. In order to guarantee security dummy entries are added to
the indexes which cause the index size and search complexity to grow to almost O(w�n).

2.1.2. Range Queries and Other Secure Search Techniques

In contrast to the equality queries in keyword searchable encryption schemes, range queries on
numeric data mostly reveal the content upon a match. There is, however, a distinction in the amount
of information revealed upon a match. Two different security models have been defined [29]; Match
Concealing (MC) and Match Revealing (MR). Upon successful decryption the attribute values remain
secret in MC secure schemes while those are revealed in MR secure schemes.

Range queries can be particularly useful in selectively releasing parts of a network audit log file.
When some network problems occur, a virus outbreak for example, only the relevant parts of the
network audit log can be released by only releasing the key(s) or trapdoor(s) for that certain
timeframe. Another application is the ability to decrypt a message or transaction when it is classified
as urgent or when the transaction value is above a certain amount.

Boneh and Waters [5] are the fist to describe a scheme which besides equality queries also supports
range and subset queries on encrypted data. The underling technique is a generalization of
Anonymous Identity Based Encryption (AIBE). The scheme uses a predefined vector of search terms
which can be used for single value or conjunction equality, comparison or subset queries. Drawback is
the efficiency of the scheme. The trapdoor size is linear to the amount of conjunctive searched
keywords and their ciphertexts are larger as well. Another point is that their scheme uses a setting in
which the owner of the secret key gives rights for certain index terms to specific users which can
conditionally decrypt. For this reason it is not really useful in a multi-user file storage system.

Existing Solutions and Related Work

 - 8 -

Shi et al [29] described a system that supports multidimensional range queries which is illustrated
with a network audit log example. Source and destination IP address, port number and time are,
among others, different dimensions which all have their own specific range. In case of a problem a
special range and domain dependent key can be released to an external party to investigate the
problem. The system is thus able to selectively reveal data that matches the ranges where the token
key is defined for. In contrast with the scheme by Boneh and Waters [5] the attributes are revealed
upon a match, match revealing. The construction is based on binary search trees of height L and range
T. Every dimension has its own tree and every node has its own unique ID. Plaintexts are encrypted
under all IDs from the leaf to the root.

Although the above described techniques can be used for keyword searchable encryption it is not
recommended since the previously described keyword search schemes are more applicable for our
scenario. The just described techniques are more applicable in the case where a data owner needs to
offer selective decryption rights. In multi user data storage application there are generally multiple
data owners. It might be worthwhile to use both techniques in conjunction for example when besides
keywords, date is important as well.

2.2. Proxy Re-Encryption

Besides the capability to search for all authorised users they should also be able to decrypt the
information. In the introduction it was mentioned that a multi user secure file storage system exist
without keyword search capabilities. This system makes use of a technique called proxy re-
encryption. The concept of proxy re-cryptography has been introduced by Blaze, Bleumer and Straus
[4]. Proxy re-encryption makes it possible to re-encrypt (transform) a message that was encrypted
under the public key of Alice so that it can be decrypted by Bob. This is done without the need for
Alice to release her secret key. Re-encryption is done with a special re-encryption key rkA�B which
can be computed by Alice. To compute the re-encryption key Alice uses her secret key and public key
information of Bob. The message does not become available in plaintext during re-encryption. In this
way neither the server nor any other person performing the re-encryption is able learn anything about
the plaintext. Of course, the re-encryption key rkA�B should only make it possible to re-encrypt
messages from Alice to Bob and not from Bob to Alice. Schemes that have this property are called
unidirectional. If re-encryption from Alice to Bob and from Bob to Alice is possible, the scheme is
called bidirectional.

Most proxy re-encryption schemes offer both a first and a second level encryption of the plaintext.
First level encryptions can only be decrypted by the intended recipient. Second level encryptions can
be decrypted by the intended recipient and can be re-encrypted such that it can be decrypted by any of
its delegates.

The first semantically secure unidirectional proxy re-encryption scheme is described by Ateniese et al
[1]. Their scheme is illustrated in a secure multi user file storage system. They have also managed to
implement their solution and show that calculations are performed within reasonable time. Also, they
have constructed a list of useful properties for proxy re-encryption. The following list shortly
describes these properties:

• Unidirectional: Delegation from Alice to Bob does not allow delegation from Bob to Alice.

• Non-interactive: Re-encryption keys from Alice to Bob can be generated by Alice with
Bob’s public key without interaction with a trusted party or Bob.

• Proxy invisibility: Alice and Bob are both aware of the proxy re-encryption protocol, but do
not know whether the proxy has re-encrypted the message.

Existing Solutions and Related Work

 - 9 -

• Original access: Messages originally encrypted for Alice can still be opened by Alice after
re-encryption.

• Key optimal: The amount of keys Bob has to store is independent of the amount of
delegations he accepts.

• Collusion safe: Collusion of Bob and the Proxy should not make it possible to recover the
secret key of Alice.

• Temporary: Bob is only able to decrypt re-encrypted messages which were originally
intended for Alice during a certain time period.

• Non-transitive: The proxy cannot on itself generate delegation rights. For example, it is not
possible to compute rkA�C from rkA�B and rkB�C.

• Non-transferable: Colluding delegates and the proxy cannot re-delegate decryption rights.

Not all of the properties listed above are required for the construction in this work. The security of the
system is not harmed when users can determine if a message is re-encrypted. In fact all users should
know this since they have to encrypt all messages under the master public key since al re-encryption
keys are computed from the master secret key and the user public keys. Proxy invisibility is therefore
not required. Original access is required, but not in the sense as stated above. The user and data
manager should always be able to access the content stored at the Data Storage Service Provider
(DSSP). It does, however, not need access to the content after re-encryption since the original
ciphertext is still stored unchanged at the DSSP. Temporary is also not required in this setting since
this will be covered by an authorisation and authentication mechanism. Access rights are revoked by
simply deleting the re-encryption key of the respective user.

Canetti and Honenberger [8] and Libert and Vergnaud [20] have both described an improvement to
the scheme to make it secure against Chosen Ciphertext Attacks (CCA). This improvement is at the
cost of more complicated and less efficient constructions. The scheme by Canetti and Honenberger is
bidirectional and can therefore not guarantee security if the proxy collude with any user [8]. Libert
and Vergnaud have solved this issue. Their system is capable of detecting alterations to the ciphertext
as well.

In this work the proxy re-encryption scheme by Atenesie et al [1] is used in the algorithm description.
The other schemes could be used as well, but are not chosen since it will result in longer and more
complicated algorithm descriptions.

2.3. Summary

In this chapter an overview is given of solutions found in scientific literature related to searchable
encryption or proxy re-encryption. Literature describes both symmetric as asymmetric solution of
which most support conjunctive keyword queries. Some schemes offer a multi user extension, but
only one paper describes a true multi user system. Also, a comparison is given between the different
schemes to evaluate the system constructed in this work.

Most proxy re-encryption schemes are based on the work of Atenesie et al [1], but are improved to be
secure against chosen ciphertext attacks at the cost of more overhead. The solution by Atenesie et al
[1] is chosen for its efficiency and simplicity. Other solutions are possible as well, but will further
complicate the system’s description.

In the next chapter the scenario that is shortly introduced in the introduction is further elaborated
upon. It identifies the different actions and services and gives an overview of the different parties
involved. The responsibilities of the parties are given and finally some assumptions are posed on the
different parties and the system as a whole.

 - 11 -

3.

Setting the Scene

Before moving on to the system construction, at first the scene which is already shortly introduced in
the introduction is further elaborated on in this chapter. In the first section a distinction is made
between the different actions and services within the scene and a description of these actions and
services is given. After summarising the different actions and services the different parties involved,
the actors, are defined. This includes a description of their tasks and responsibilities. Both the actions
and services and the actors with their tasks are graphically illustrated.

Like in any system that uses cryptography several assumptions are made on the different actors and
the system as a whole. The assumptions are given in the second section and describe the trust model
and other assumptions posed on the different actors and the system. In the final section the
requirements for the final system are posed based on the research goals given in the introduction.

3.1. Scene Description

In the introduction the problem of IT service outsourcing was raised. This report considers the
scenario where data storage including its management is outsourced. In order for data storage
outsourcing to be successful and to meet the research goals data confidentiality and manageability
must be ensured.

When data confidentiality is not ensured, data leakage incidents might occur. Data leakage is a major
problem for companies since the consequences can have enormous impact. Some of the consequences
are a decreased corporate brand image or reputation, lost business opportunity and financial costs
[32]. Data confidentiality is important and required by the research goals, but there will always be a
trade-off between security and functionality. The confidentiality trade off can not be at any price and
an optimal balance is needed. A highly secure system lacking functionality is doomed to fail. Of
course employees still need to access their, encrypted, information. Employees do not only need to
access their information internally or only with their laptops; the data has to be available from both
within as outside the company and from both laptops as handheld devices. Besides availability and
accessibility some search functionality needs to be in place.

Manageability of the system is important as well and also defined in the research goals. When new
users can not efficiently be enrolled and revoked, the system can not work in practical environments
where flexible systems are required. In most companies new employees are starting to work while

Setting the Scene

 - 12 -

others are leaving. Authentication and authorisation mechanisms thus need to be updated frequently.
Besides user management data management needs to be supported as well, for example to remove old
documents.

A system that meets the scenario description given above can be decomposed in several actions and
services. The different actions and services that can be distinguished are graphically illustrated below.

���������	��
� ����
���	��
�

����	����	�	

�	�	������

��	������

�	�	�������

��������	����	���	���

�	�	������

����

Figure 1: Services, actions and actors overview

The arrows in the picture above indicate the different stages in a user’s search action. The different
services and actions illustrated in the picture above are shortly described below.

• Authentication: Verification of the employee’s identity that is connecting to the system. A simple
form of authentication is checking the validity of a password supplied with the login name.

• Authorisation: Verification of the authenticated employee’s credentials for the requested action
or operation.

• Service and hardware management: Maintenance operations of both hardware and software to
ensure an optimal server performance in encrypted data storage and search operations. Besides
hardware management continuity and availability tasks such as creating backups ensuring enough
additional power supplies belong to service and hardware management. Purchasing of new
hardware as demands increase is included as well.

• User and data management: User management consists of all operations related to or involving
users such as the enrolment of new users and revocation of existing users. Data management
consists of all maintenance operations on the data residing on the data server such as cleaning up
and removing old documents. Since security is an important aspect in this scenario, operations to
ensure confidentiality of the stored data are considered data management as well.

• Searching: Finding the documents that contain the specified keyword(s) and returning the
documents that match the criteria to the authorised employee.

The services and actions described above are divided over different actors or groups of actors. One of
the system’s goals is to outsource as much as possible. As a consequence as much tasks as securely
and conveniently possible are delegated to the Data Storage Service Provider (DSSP). Some tasks
such as user management can for security reasons not be outsourced and has to be managed by a
trusted local employee. An overview of the different actors in this scenario are listed and described
below.

• Data Storage Service Provider (DSSP): It is obvious that the DSSP will store the encrypted
documents; otherwise no system has to be developed. The management and maintenance of the
hardware and software is clearly a task of the DSSP as well as this is one of the main reasons to
outsource data storage. Authentication and authorisation can be done at the customers company as

Setting the Scene

 - 13 -

well, but a cost of less convenience since the local company has to be contacted. This inefficiency
is especially true for mobile and other handheld devices with limited capabilities. Outsourcing
authentication and authorisation delegates another task to the DSSP which is in line with the
defined goals. Searching for data is a task for the data storage service provider as well, it makes
no sense to search for data on another location as where it is residing.

• User and data manager: User management is a critical task regarding data confidentiality since
it enrols and revokes users from the system. In the enrolment process credentials are created.
When the DSSP is able to perform this operation it has access to all data which poses a high
security risk which is an undesirable situation. Data management operations like cleaning up can
only be performed by the user and data manager since the DSSP has no access to the content. It is
obvious that confidentiality related data management operations are performed by the user and
data manager as well.

• Users: Should be able to use the complete functionality of the system according to their
credentials. The system’s functionality consists of document submission including encryption and
specification of keywords to generate index elements, keyword searching and document
decryption.

A graphical representation of the actor descriptions with their responsibilities and their place in the
system given above is illustrated in the picture below.

����	����	�	

�	�	������

����

�	�	���
�	��
����������
�����

���������	��
� ����
���	��
�

��	������

�	�	�������

��������	����	���	��

�	�	������

�	�	���
�	�������������
�����

Figure 2: Actor overview in an outsourced data storage setting

In the rectangular box the responsibilities of the DSSP are illustrated. The next section describes the
assumptions posed on the system as a whole and on the different actors.

3.2. Assumptions on Functionality and the Actors

This section gives a description of the assumptions posed on the different actors and the functionality
of the system as a whole since choices have to be made. Assumptions related to the functionality of
the system describe limitations on the capabilities or exclude some techniques from integration or
implementation. Actor related assumptions describe limitations on the computational, storage or
communicational complexity. Also, the honesty or intentions of the actors and their capabilities are
described in this section.

One of the most common assumptions is that of a completely honest or trusted actor or third party.
Trust assumptions are needed to guarantee correct functioning or security of the system. In this thesis
assumptions are posed to make a solution feasible.

Setting the Scene

 - 14 -

Assumptions on the system’s functionality
Searchable encryption may sound as something that should be impossible since an encrypted message
should reveal nothing about its underlying plaintext. For this reason it is not the actual encryption that
is searched but a separately generated keyword index. Chapter two shows that this approach is taken
in other searchable encryption schemes as well. In this work search capabilities will be limited to
keyword search, including conjunctions, as well. The technique is comparable to tagging as what is
often done to label blog entries.

Another technique to enhance the privacy of search operations is called Private Information Retrieval
(PIR). This technique tries to hide which information is requested or retrieved and by who. PIR is a
research topic on its own and is therefore not included.

Finally, this report only deals with the technical aspects of the system’s core functionality. Issues such
as integration with existing business applications, specifications of server hardware and software or
specifications of communication channels or protocols are outside the scope of this assignment.

Assumptions on the data storage service provider
The data storage service provider is assumed to be honest but curious. This means that it will execute
its tasks properly, but at the same time tries to uncover the secret information it stores. Uncovering the
secret information can be done by trying to break the encryption or by trying to learn from
observations. The honest but curious assumption seems realistic since correctly executing its tasks is
of personal interest as well. When tasks are not correctly executed no customers will use the service.

Since correct operation is of personal interest for the DSSP the amount of computational power, the
storage space and the bandwidth is assumed to be considerable. To keep being attractive as a service
provider the provider is wiling to invest in new and dedicated hardware.

Assumptions on the user and data manager
The user and data manager is considered to be honest. This is a reasonable assumption since this
internal person is chosen by the client company itself. Correct execution and confidentiality is
considered to be at his personal interest as well since it will be one of his or her evaluation criteria. If
the user and data manager is corrupt, the security of the entire system is compromised. To increase the
confidentiality insurance of the user and data manager a construction where every action always needs
an approver could be used, but this is outside the scope of this assignment. Also, for the sake of
simplicity only one user and data manger is considered.

The computational power of the user and data manager is assumed to be reasonable. Computational
power of the user and data manager is not very important since its actions are not executed very often
and have no influence on the system speed.

Users

Users are assumed to be honest since they are already authorised and thus there is no need to break
into the system. The only way grant authorisation on the system to other persons is to reveal their
personal secret information since this is considered something no user will do. Also, it is assumed that
the user will not collude with the data storage service provider. A user can, however, share
information with others after decryption, but no encryption mechanism can protect against this.

Computational power of users depends on their access medium which can be a computer such as a
desktop or laptop or a handheld device such as a blackberry. On computers the computational power
is assumed to be reasonable while the computational power on handheld devices will be limited.
Document submission will be computationally more expensive than searching since query
computation involves only a small set of keywords. Fortunately, most documents will be submitted
from computers where they are created and handheld devices are mostly used to view documents.

Setting the Scene

 - 15 -

3.3. Requirements

In this section the requirements to the system are formalised. The requirements are based on the
research goal and its sub goals mentioned in the introduction covering the security, the manageability,
the outsourcing aspects of the system and the system’s efficiency. Also, some requirements
concerning the system’s functionality are posed.

Security
For the system’s security and the data confidentiality the following requirements are posed.

• The data that is stored at the DSSP will contain sensitive information, for this reason data
confidentiality must be ensured.

• The system will include keyword search functionality which means that queries are submitted to
the system. These queries must have a construction in which the DSSP is unable to derive the
queried keyword(s). Only the query itself and its result should be revealed.

• If the search technique uses indexes, as most techniques which are described in chapter 2 does, the
confidentiality of these indexes must be ensured.

• It is desirable that the security of the final construction will be proven since the security and
privacy an important aspect of the system.

Manageability
With manageability the tasks for the user and data manager are concerned. The following
requirements are posed on the system’s manageability.

• The user and data manager should be able to enrol new users and to revoke existing users from the
system without the need to redistribute keys to existing users.

• The user and data manger should be able to access the contents stored at the DSSP to enable data
management operations.

Outsourcing
This thesis deals with data storage outsourcing. Data storage outsourcing can be divided in several
components as one could have seen in this chapter. The system should meet the following outsourcing
requirements.

• All data storage and the search operations on the data need to be at the side of the DSSP.

• It is desirable that authentication and authorisation can be performed by the DSSP.

Efficiency and Functionality
Important for the system’s success is the amount of available functionality and the system’s
efficiency. The following requirements are posed on the system’s efficiency and functionality.

• Not only keyword search, but also conjunctive keyword search should be possible.

• All authorised users should be able to submit new documents, query the database and decrypt the
matching documents.

• The system should have an at least comparable efficiency and performance (index size, data
storage, query size and search complexity) as existing schemes. The efficiency and performance is
evaluated based on the results given in table 1.

• The system’s efficiency, search speed, should allow for practical applications. A search operation
should be finished within a reasonable amount of time.

• It is desirable that a distinction can be made between users to make certain data only available for
certain groups of users.

• It is desirable that the construction is implemented to verify the constructed system and to make
speed measurements to test its practical performance.

Setting the Scene

 - 16 -

3.4. Summary

In this chapter the system as described in the introduction was further elaborated on into a complete
scene description. Within this scene different actions and services that should be available such as
authentication and authorisation and search functionality were identified and illustrated. Hereafter, the
different actors namely the DSSP, the user and data manager and the users were introduced. Also,
their responsibilities were illustrated and described. In the next section various assumptions were
posed on the systems functionality, such as that only keyword search is available, and on the actors.
Actor assumptions are related to their intention and the amount of trust that can be placed in them.
Also, assumptions are made on their computational complexity. In the final section requirements were
posed on the system. The requirements are related to the research goals covering the security
(confidentiality), manageability, outsourcing, efficiency and functionality aspects of the system.

In the next chapter a high level system construction and design is given that meets the scenario as it is
introduced in this chapter. It makes use of the different actions and services building blocks as defined
in this chapter.

 - 17 -

4.

High Level System Construction

Now the scene is described and the assumptions on the actors are defined a high level design of the
system can be constructed. This chapter describes the different possibilities came across during the
system’s design. Each option is evaluated and its advantages and disadvantages are discussed.
Possible problems are identified and solutions proposed. Decisions for techniques to solve the
problems that might arise are not yet made and will be given in the system’s detailed description.

The first section describes the techniques that can be used for keyword search. Once the search
technique is clear, index and query construction are described. Keyword index solutions can be
constructed by using one index for the complete document collection or by using a separate keyword
list (index) for every document. The section about query construction also describes the technique
used to match the query with the indexes. Once the search part is clear, the possibilities to efficiently
encrypt the data for all authorised users are described. Of course, only authorised users are allowed to
search and thus an authentication and authorisation mechanism must be in place. The authentication
and authorisation mechanism is described in section five. To get an idea of the complete system an
illustration of how all parts are put together is given in the final section.

4.1. Search Technique

In this thesis security and data confidentiality is an important sub goal. Since the purpose of
encrypting data is to hide all information about the underlying plaintext, searching in encrypted data
may sound a bit unnatural. With a standard encryption scheme searching in ciphertexts is therefore
not possible. Current research is focusing mainly on keyword search by constructing separate indexes.
Approaches were individual words are encrypted are less secure than approaches where indexes are
constructed.

An approach to support individual word search is to encrypt each word individually by using either
block or stream ciphers. The use of block ciphers will result in a large overhead since word bit strings
have to be padded to the minimum block length of the encryption algorithm. The average word length
is approximately five characters [33] and takes thus 40 bits to represent in standard ASCII. In standard
DES the block length is 64 bits, for an average word of length five it results in a data expansion by
60%. The now recommended AES standard has a minimum block length of 128 bits resulting in a
data expansion even worse. Another concern with this approach is the vulnerability to statistical and
dictionary attacks. One might say that this can be circumvented by using different initialisation

High Level System Construction

 - 18 -

vectors, but then the search algorithm does no longer work. Different initialisation vectors cause
different ciphertexts for the same word. Stream ciphers do not suffer from data expansion but have
similar statistical and dictionary attack possibilities as the same input key stream is used multiple
times.

Index solutions offer less flexibility, but a higher level of security. The indexes can be constructed
independent of the encryption mechanism used. A standard encryption scheme is used to encrypt the
data and another to construct the indexes. Every document is associated with one or more keywords in
order to make keyword search possible. With index construction care has to be taken that indexes are
constructed in a secure way. Although suffering less from data expansion and having less security
concerns, it is at the cost of more limited search capabilities for text based documents. On the contrary
this approach is independent of the content format and can thus also be used for other formats such as
audio, video, compressed data, technical designs and so on.

The approach using indexes is more secure, since even if the indexes are constructed in an insecure
way only a limited amount of information is revealed; it is thus more secure than the approach where
every keyword is encrypted individually. An index based approach is thus chosen for security reasons.

4.2. Keyword Index Construction and Storage

The keyword searchable encryption scheme which is constructed in this thesis requires relevant
keywords to be manually selected for every document. In order to circumvent ambiguity problems a
predefined set of possible keywords, called the dictionary, has to be specified. Instead of manual
keyword selection a software tool to automatically select relevant keywords can be used, but this does
not influence operation of the developed system. When users or employees can choose any keyword
they like it has the advantage that it is very flexible in the sense that a suitable keyword can always be
found. This flexible solution looks very attractive at first sight, but it is not always an advantage while
searching for documents. For example, some keywords have synonyms or on the contrary a keyword
can have two different meanings depending on the context.

Data confidentiality is one of the system’s sub goals and specified in the requirements. Therefore it is
obvious that the selected keywords can not be stored in plaintext since it reveals secret information.
To hide the keywords, they need to be encrypted or a one way function such as a hash function needs
to be applied. Applying a one way hash function on every keyword is the most optimal choice and
makes searching an easy operation. By using the same hash function on the queried keywords,
searching is possible with an easy equality check. A property of hash functions is that they map any
(length) input of to a fixed length output. Hash functions successfully hide the length of keywords, but
due to the relatively small amount of keywords an attacker can easily compute the hash values of
every keyword. Encrypting the keywords under the same symmetric key makes it possible to perform
equality searches as well. Drawback of this approach is that key management can be complicated and
that it is vulnerable to statistical attacks. In order to overcome the vulnerability problems with hash
functions and encryptions a probabilistic approach has to be used since this makes it infeasible to
compute all possibilities. Randomness can for example be introduced by blinding, a mathematical
operation with a random number.

The way in which keywords are stored will not have much influence on the manageability of the
system and is therefore not discussed in this section. The outsourcing aspect is not discussed since the
indexes will be stored together with the data at the DSSP.

There are two different approaches to index construction. The first is to have one global index for all
documents and in the second approach every document has its own index of matching keywords. The

High Level System Construction

 - 19 -

next paragraphs give a description and an illustration of both approaches to decide which construction
is most applicable in our scenario.

4.2.1. One Index for All Documents

Whether documents are stored in a database or in a repository it seems like a good idea to have only
one index to search in. This means that there is one central place to search and that the keywords are
not attached to the documents themselves. The construction is straightforward and as follows. Every
keyword in the dictionary has a list with a number of as little as zero or as many as n id’s of
documents associated with the keyword. A drawback of this construction it is that possible to see how
many documents are associated with a particular keyword. In the figure 3 a graphically illustration of
this index construction is given.

Figure 3: One index for all documents

In the top of figure 3 the collection of n encrypted documents E(d) is shown. Below the index I is
shown with on the left side m hashed keywords h(w) and on the right side the identifiers Id(d) of
documents that are associated with the particular keywords. Another observation that can be made is
that this solution is both computationally and space efficient since only one index has to be matched
and stored instead of one for every document. This is especially true for a large document collection
with a small dictionary.

The security goal states that the amount of information that can be deduced from the information
stored at the DSSP and thus from the index has to be minimized. Strong points are that amount of
keywords per document and the amount of documents per keyword can be hidden. On the contrary it
is not possible to securely and efficiently perform conjunctive keyword searches. When the document
identifiers are stored in a probabilistic manner the amount keywords per document is automatically
hidden. The number of documents per keyword can easily be hidden by adding dummy items to the
index, but this adds some overhead to the system. Due to the construction it is impossible to search for
documents containing multiple keywords without revealing which documents only partially match. It
is possible to store separate conjunctive keyword index terms, but then the index size grows
exponentially. This is especially a problem with large dictionaries.

Updating the index when documents are added or removed is more complicated as well. Instead of
removing or adding a new index, the global index has to be changed in a secure way. In this
construction some information is revealed to the server.

High Level System Construction

 - 20 -

4.2.2. A Separate Index for Every Document

Instead of one index for the complete document collection a separate index containing the relevant
keywords can be constructed for every document. A separate index for every document is an easy
approach since no measures have to be taken to securely update an existing global index. The user
submitting the document is responsible for both document encryption and index construction. To
automatically hide the number of keywords per document a fixed length index is used. An index with
length equal to the number of keywords in the dictionary is most convenient. The index construction
is straight forward; every document is appended with several relevant keyword hashes. In figure 4 a
graphical illustration of this index construction is given.

��
�

Figure 4: A separate index for every document

On the left side of the picture the complete document collection containing n encrypted documents
E(d) is shown. The indexes I for every document are shown on the right side and consists of m index
terms h(w) with keywords w.

For both security and convenience reasons fixed length indexes of length equal to the dictionary size
will be used. Variable length indexes have the advantage that less storage space is needed, but on the
contrary it reveals the amount of keywords that are added to the document. In order to reveal the least
amount of information to the server the number of keywords per document has to be hidden. Indexes
of a fixed length do not have this problem and are for this reason preferred. Fixed length indexes can
be constructed in two ways. Either by choosing a reasonable size maximum number of keywords or
by constructing indexes of length equal to the number of keywords in the dictionary. By using
dictionary length indexes it is a good idea to always place the same keyword on the same location in
the index. Keyword fields at the location of irrelevant keywords can use a random number instead of
the keyword as input to the hash function. This solution has it advantages with query matching as will
become clearer in the next section when query construction and matching is described. A drawback is
that, depending on the matching technique, it might enable to server to learn more information. Also,
more storage space is needed with dictionary length indexes. When the popular SHA-1 hash function
is used, only 160 bits or 20 bytes are needed to store a hash value. Considering the size of an empty
Word 2003 document, which is 19.968 bytes, the amount of space needed to store an index is
reasonable.

4.3. Query Construction and Matching

When sending a query to the server at least some information is revealed, e.g. the fact that a user
executes a query and its result. The challenge is to minimise the amount of information the server is
able to learn while at the same time keeping the computational and storage complexity at a reasonable
level.

High Level System Construction

 - 21 -

For the construction of queries there are two possibilities either having a separate value for every
keyword in the query or having one value covering all keywords in the query. Below the construction
of both possibilities for query q in case where two keywords are queried is given.

• Multiple values: q(w1, w2) = (h(w1), h(w2))

• One value: q(w1, w2) = (h(w1) × h(w2))

As one can see queries are constructed in a similar way as indexes except that no hash values are
computed for irrelevant keywords. This construction makes matching with simple equality checks
possible.

The second construction where one value for all queried keywords is submitted is chosen since it is
both more efficient and more secure although it can decrease the search quality. It is more efficient
since less information has to be transmitted to the DSSP. When separate values for every queried
word are submitted it becomes similar to executing a query for every individual keyword and
returning the intersection. The server is thus able to determine which documents partially match. With
only one value submitted for all queried keywords the server is no longer able to deduce this
information. Drawback of the second approach using only one value for all queried keywords is that
multiplication of the hashed keywords can be equal to a multiplication of two different hashed
keywords resulting in a false match, e.g. h(w1) × h(w2) = h(w3) × h(w4). Despite the chance for false
positives it is chosen since the impact of a few false positives is relatively low and the system’s
security and efficiency are considered more important.

Dependent on the index construction there are several different constructions possible to match
documents. The list below gives an overview of some scenarios for successful matching including a
short analysis. For the descriptions below it is assumed that every document has its own index. Some
of the descriptions might be applicable in case one global index was used as well.

• Compute or store all combinations: In case of a query with multiple keywords all keyword
combinations can be computed beforehand and stored in the index or all index combinations
can be computed at query execution. Both naive solutions are not optimal, either the storage
complexity or the computational complexity is very high.

• Remember keyword locations for every file: If there are no fixed keyword locations the
keywords locations for every file have to be remembered. This makes no sense since
keywords itself can be remembered instead, or a special way in which index locations can
secretly be found has to be thought of.

• Fixed keyword locations: When all documents have an index size equal to the size of the
dictionary and if every keyword appears always at the same position in the index efficient
matching is possible if the keyword locations are specified to the server.

The most applicable solution is the use of fixed keyword locations. In case where a relatively small
dictionary is used the computation of all combinations might be doable, but with large dictionaries
and queries containing multiple keywords this becomes infeasible. At the cost of giving more
information to the server (keyword locations) and thus being slightly less secure the server is able to
match far more efficiently.

For searching the most important property is called query correctness. This property states that for
every valid query submitted, the correct result should always be returned from the system. When this
is not the case it makes no sense to offer search capabilities.

High Level System Construction

 - 22 -

4.4. Multi User Data Encryption

All documents that are stored at the DSSP should be accessible to all authorised users and thus all
authorised users should be able to decrypt them. For this reason a multi user data encryption
mechanism is needed. Although multi user data encryption is not a standard cryptographic term, in
this thesis it means a public key encryption scheme in which the data is encrypted in such a way that
all authorised users can decrypt it without revealing their secret key or other secret information.

A naive approach is to store a different encryption for every user. This approach fulfils the security
requirements, but is not easily manageable and suffers from a large storage overhead. Revoking users
from the system is easily possible by deleting all encryptions for the respective user. Enrolling new
users is a more complicated process. To make all content available for a new user all documents have
to be decrypted first and then encrypted with the symmetric key of the new user. Especially in
systems with large document collection, this is a very inefficient process. Since for every document a
different copy is stored for every user the amount of storage overhead on the server is enormous. It is
obvious that a more efficient data encryption mechanism should be found than this naive approach.

The system will be far more efficient if all data is encrypted under the same symmetric key. In this
approach all users share a same common secret, the symmetric key, and is thus potentially less secure.
Also, it is not possible to efficiently revoke existing users. If a user is revoked from the system the
user still has its symmetric key and is thus still able to decrypt the information. In order to revoke
decryption rights all data has to be decrypted, then encrypted with a new symmetric key and the new
symmetric key has to be distributed to all authorised users. Revocation is a frequent process in a multi
user system. Repeated key distribution is not ideal and therefore a solution with a minimum amount of
key redistribution is preferred.

Broadcast encryption tries to solve the problem of efficient sharing encrypted data between a
constantly chancing group of users, but assumes only one data owner. Current broadcast encryption
schemes are more efficient and better manageable than the naïve approach. In order to make
decryption possible for all authorised users some overhead in the form of an additional header is
attached to the message and all authorised users need to store several keys. The problem broadcast
encryptions tries to solve is, however, slightly different than the one in this thesis. In this thesis every
user can be a data owner and it is not required that every user receives the same message, only that
they are able to decrypt. Another difference is that not all users have to receive all messages, but only
the user who requested the message. Therefore it poses no burden on the communications if every
user receives a different encryption of the same message upon request.

Proxy re-encryption and proxy encryption are asymmetric encryption schemes which have a similar
scenario as in this thesis. Although asymmetric encryption algorithms are not known for their
efficiency, they can efficiently be applied when combined with a symmetric encryption scheme. Since
proxy re-encryption is more secure than proxy encryption it is selected. The difference between proxy
re-encryption and proxy encryption is that in proxy encryption the plaintext will become visible which
is not the case in proxy re-encryption. With proxy re-encryption a lesser amount of trust in the proxy
is required. In order to make the proxy re-encryption scheme more efficient every document is
encrypted under a different symmetric key. This symmetric key is, on its turn, encrypted with the
proxy re-encryption algorithm under an asymmetric key.

In a proxy re-encryption scheme decryption rights can be delegated. For example, Alice is going on a
holiday and wants Bob to take over her work. To successfully take over Alice’s work Bob need access
to her private information. Alice does, however, not want to reveal her secret key material to Bob so
she computes a special re-encryption key which enables Bob to decrypt the messages originally
intended for Alice. The proxy re-encryption scheme works in the following way. The symmetric keys
used for document encryption are encrypted under a master public key. From this master public key a
different re-encryption key is computed for every authorised user. In this way the DSSP is able to re-

High Level System Construction

 - 23 -

encrypt the documents such that all authorised users are able to decrypt. Revocation is easily possible
by deleting a user’s re-encryption key from the data sever. This construction allows to securely
outsource multi-user data encryption and is efficiently manageable, it thus satisfies the outsourcing
and manageability requirements. The construction is graphically illustrated in the picture below.

�������

�������

�������

������ 	
��������

������ 	
��������

������ 	
��������

�

Figure 5: Documents with their lockboxes

On the left side of the picture one can see the encrypted document collection of n encrypted
documents EK(d). The documents are encrypted with a symmetric encryption algorithm E(�) under key
K. The right side of the picture shows the lockboxes Lmpk. Lockboxes are the symmetric keys K
encrypted with the proxy re-encryption algorithm E(�) under the master public key mpk.

4.5. Authentication and Authorisation

Security and data confidentiality is defined as one of the research goals and therefore an access
control mechanism performing authentication and authorisation should be in place such that only
authorised users are able to use the system’s functionality. Traditionally access control mechanisms
are placed in a trusted environment such as within the company or at a trusted third party. Control of
these access control servers means access to all functionality and the ability to generate new
credentials.

In this thesis authentication and authorisation is outsourced as well which is in line with the research
goals and requirements. For this reason a different authentication and authorisation mechanism should
be applied. This construction should no longer require a high amount of trust on the server performing
authentication and authorisation. The idea to make sure that only authorised users can use the
system’s functionality is that information from both the DSSP and information from the authorised
user is needed in order to perform an action. In this way authentication and authorisation is one
operation. If an unauthorised user requests an action while claiming to be an authorised user the action
will be performed, but it will result in failure even is the submitted information is in the correct
format.

The following paragraphs first explain the authentication and authorisation procedure for query and
index authorisation where after the authentication and authorisation procedure for decryption is
described.

High Level System Construction

 - 24 -

4.5.1. Query and Index Authentication and Authorisation

The authentication and authorisation mechanism for queries and indexes is similar and therefore
described in the same paragraph. As already mentioned actions can only be performed if both parties,
namely the DSSP and the user, cooperate. To meet the system’s security requirements authentication
and authorisation should be possible for users without the need to reveal his secret key material or
share a common secret.

Authentication and authorisation is based on two keys for every user from which one is stored at the
DSSP (the complementary search key) and one at the user (the secret search key). The authentication
and authorisation procedure now works in the following way. First, the user computes a query or an
index as described earlier in the chapter and processes this under his secret search key. The query or
index together with the user’s identity is now sent to the DSSP. At the DSSP the user’s identity is
used to find the corresponding complementary search key. The complementary search key of the user
is now used to perform the authentication and authorisation step. This step removes the user specific
term from the query or index such that the submitted queries or indexes are respectively executed or
stored in a format independent of the submitter. The transformation to user independent indexes and
queries make it possible to search for all authorised users without having to share a common secret.
This is the same approach as taken in [3]. In the figure below a graphical illustration of the query
submission process is given.

Figure 6: Query authorisation

In the figure 6 one can see the process of query authorisation. The process is initiated by the user who
submits a user dependent query qu. This user dependent query is send to the DSSP together with the
user identity u. At the DSSP the authentication and authorisation step is performed with the
complementary search key for user u and the result is a user independent query q.

An unauthorised user submitting a correctly constructed query does not negatively effect the system’s
operation other than some computational time and a query without any results. Wrongly selected
queries will fail immediately and are thus not considered as a problem. Unauthorised users submitting
a document with a correctly constructed index result in a never matching document on the server. The
user and data manager should be able to remove those documents.

4.5.2. Decryption Authentication and Authorisation

The authentication and authorisation mechanism for decryption is different than that of indexes and
queries as described in the beginning of this section. With indexes or queries the authentication and
authorisation procedure transforms the content to a user independent format. Decryption
authentication and authorisation is exactly the opposite way. Here the content which is encrypted on
under the master public key is transformed to as if was encrypted under the user’s public key. Similar
to index and query authentication and authorisation decryption is only possible if both parties, namely
the DSSP and the user, cooperate.

High Level System Construction

 - 25 -

Decryption authentication and authorisation is based on two keys for every user from which one is
stored at the DSSP (the re-encryption key) and one at the user (the secret key of his or her public key
pair). This is exactly the same idea as with index and query authorisation. The re-encryption key is
computed from the master secret key and the user’s public key. Since the user and data manger holds
the master secret key it is an interesting attack target for malicious parties and therefore the master
secret key should be stored offline. When a user wants to decrypt a message the authentication and
authorisation procedure now works to following way. First, the user sends a decryption request for a
particular document together with its user identity to the DSSP. The DSSP finds both the requested
document and the re-encryption key for the respective user. Only if both parts are found the DSSP can
continue and re-encrypts the lockbox of the requested document. The result is send back to the user
who uses his secret key to decrypt the symmetric key in lockbox. This symmetric key is now used to
decrypt the requested document. In the figure below a graphical illustration of this process is given.

Figure 7: Decryption authorization

In figure 7 above one can see that the user initiates the document decryption process by sending an
identifier of the requested document id(d) and the user identity u to the DSSP. The DSSP starts
verifying the user identity by finding the re-encryption key rku of user u. When this key is available
the requested document EK(d), encrypted under symmetric key K, together with its lockbox Lmpk(K),
encrypted under the master public key mpk, is found and the lockbox is re-encrypted to as if it was
encrypted under the users public key pku. The encrypted document together with the re-encrypted
lockbox Lpku(K) is now returned to the user who uses his secret key sku to decrypt document d.

4.6. Putting Together

In the previous sections the designs of the different parts of the system have been described as
individual pieces. Most parts need input in a specific format and can work individually of other parts
as long as the input is in the correct format. The input of the different parts is mostly based on
information submitted by the user at the time of an action and on information stored at the DSSP.

The next section describes and gives an overview of how the data and keys are stored at the DSSP. It
includes a graphical representation of the data storage. In the final section a system overview is given
which is graphically illustrated as well.

4.6.1. DSSP Data and Key Storage Representation

Both the encryption mechanism and the keyword index add overhead to the document as became clear
from the descriptions in previous sections. The amount of overhead added due to encryption will be
reasonable. Symmetric encryption schemes do not suffer much from data expansion and a public key
encryption of a symmetric key does only take a relatively small amount of space. Indexes will lead to

High Level System Construction

 - 26 -

a larger amount of overhead. The exact amount depends on the number of distinct keywords in the
dictionary. Below a graphical illustration of the data representation at the DSSP is given.

Figure 8: Data representation on the data server

In the figure 8 n denotes the number of documents stored at the DSSP and m denotes the number of
keywords in the dictionary. For clarity reasons lockboxes and indexes are denoted by L and I

respectively and are constructed as described in their sections.

Besides the actual content and the overhead for decryption and search functionality the DSSP stores
key material for authentication and authorisation purposes. This authentication and authorisation key
material can easily be stored in a database table. The first field then contains the user’s unique identity
and the second column stores the user’s complementary search key needed to remove the user
dependent factor from indexes and queries. In the final and third column the re-encryption key is
stored which enables re-encryption of documents to a format the users can decrypt.

4.6.2. System Overview

In figure 9 one can see a complete overview of the system. The picture illustrates three of the system’s
most important operations, query submission and searching followed by decryption.

In the figure the management functions such as user and data management and service management
such as hardware and software management are omitted. A figure which includes their place in the
system can be found in chapter 3.

A step by step overview from query generation by the user until decryption of the results is given in
figure 9. The process starts with the user choosing relevant keywords, in this case ‘sales’ and ‘secret’.
From these keywords a query is computed with the user’s secret search key. The resulting query is,
together with the location of the keywords in the index and the user identity, send to the DSSP. At the
DSSP the complementary search key for the specified user is found for query authentication and
authorisation. After successful authentication and authorisation a user independent query is obtained
which is, together with the keyword locations, send the data server. The data server now checks the
keywords at the specified locations with the submitted keywords for every document. All matching
documents are now returned for decryption authentication and authorisation (proxy re-encryption).
Once the matching documents are authenticated and authorised for decryption the resulting set of
documents is returned to the user. The user now uses his secret key to decrypt the lockboxes to obtain
the symmetric keys which are used to decrypt the matching documents.

High Level System Construction

 - 27 -

Figure 9: From query submission to decryption (schematic overview)

4.7. Summary

In this chapter a description of the system’s high level design is given. During the design several
different options came across and the best options are selected.

First, the search technique was described and a solution using keyword indexes is chosen. The
relevant keywords are hashed and associated with the document. In order to overcome ambiguity
problems a fixed set of keywords, called the dictionary, is defined. Keyword indexes can be
constructed for the system as a whole or for each document individually. A separate index for every
document offers more flexibility and a higher level of security compared to a global index and is for
this reason chosen. Due to the relatively small amount of keywords plain hash values are insecure and
for this reason some randomness has to be introduced.

Queries that are submitted to the system can have a value for every queried keyword or one value
covering all queried keywords. One value covering all queried keywords is chosen since this reveals
less information to the DSSP. In order to efficiently match, in the sense that less computational power
is needed, the locations of the queried keywords are specified.

The most efficient and most applicable multi user data encryption scheme for this scene is proxy re-
encryption. Proxy re-encryption offers delegation of decryption rights, it can enable decryption of
documents to specific users, in this case all authorised users.

High Level System Construction

 - 28 -

Authentication and authorisation is based on a combination of information from which one part is
stored by the user and the other part is stored at the DSSP. Only if both parties cooperate the system’s
functionality can be used.

In the next chapter some mathematical concepts and preliminaries are introduced needed to
understand the system’s description. Also, the system is formally defined and security definitions for
the system are posed.

 - 29 -

5.

Preliminaries

Before giving a detailed description of the system, some mathematical preliminaries and a formal
definition of the system are given. The system’s detailed description is based on mathematics and,
similar to most keyword searchable encryption schemes, frequently uses the bilinear pairing
operation. A clear mathematical definition of a bilinear map including a description of the underlying
mathematics illustrated with an example is given in the first section. Hereafter proxy re-encryption is
formally defined.

After defining the mathematical preliminaries the system is formally defined. In the last part of this
chapter the security definition of the system is given. This security definition makes it possible to
prove the system’s theoretical security.

5.1. Cryptographic Preliminaries

The solutions proposed in this work use an already existing proxy re-encryption scheme combined
with newly developed searchable encryption techniques. The focus is thus on searchable encryption.
Existing techniques are used as a basis and will further be improved. Since the proposed scheme will
use bilinear maps a short definition is given to understand the proposed techniques. A definition of
proxy re-encryption is given for the same reason.

5.1.1. Bilinear Map (Pairing)

Most proposed keyword searchable encryption schemes use a bilinear map (also called pairing) and
the scheme developed in this work is no exception. The proxy re-encryption techniques used in this
work uses bilinear maps as well. A bilinear map is defined in the following way [3].

Definition 5.1 (Bilinear Map)
Let G1, G2 and GT be multiplicative groups of prime order q. A bilinear map is a
function e : G1 × G2 � GT, satisfying the following properties:

1. Bilinear: For all g ∈ G1, h ∈G2 and all x1, x2
*

q∈� , 1 2 1 2(,) (,)x x x x
e g h e g h= .

Preliminaries

 - 30 -

2. Non-degenerate: If g is a generator of G1 and h is a generator of G2, then e(g, h)
is a generator of GT.

3. Computable: e(g, h) can efficiently be computed for any g ∈ G1 and h ∈ G2.

In the above definition of a bilinear map two different groups G1 and G2 are used to construct GT, but
using G1 twice is possible as well. When the same group is used twice this is called a symmetric
bilinear map.

While the properties described above can be used without understanding the mathematics of the
pairing function a short description of the pairing function will be given following the descriptions
given in [22]. Pairing functions operate over groups of points on elliptic curves. An elliptic curve E

over the field �q has the following form: E : Y2 = X2 + aX + b. In literature there are different pairing

functions described, but the two most popular pairing functions are the Weil and the Tate pairing. In
this section the pairing function is illustrated with the Tate pairing. Both pairing functions use Miller’s
algorithm for their computations. Miller’s algorithm makes use of tangents, vertical and lines between
two points. The tangent, verticals and lines for a point P(x, y) can be computed in the following way.

• Tangents TP : −(3x
2 + a)X + (2y)Y + (−2y

2 + x(3x
2 + a))

• Verticals VP : X + (−x)

• Lines LZ,P : (y1 − y2)X + (x2 − x1)Y + (x1y2 − x2y1) with Z(x1, y1) and P(x2, y2)

Miller’s algorithm for the Tate pairing, denoted by fP(Q), takes points P (of order r) and Q and a

binary representation of the group size r = {rt, …,r0} with t = 2log r� �� � as input and is as follows.

Miller’s Algorithm

f � 1
Z � P
for i � t – 1, …, 0 do

 f � f2 � TZ(Q) / V2Z(Q)
 Z � 2Z
 if ri = 1 then
 f � f � LZ,P(Q) / VZ + P(Q)
 Z � Z + P
 end if

end for
Figure 10: Miller's Algorithm

To illustrate the Tate pairing consider the elliptic curve E : Y

2 = X
3 + X (a = 1 and b = 0) over

23� which contains 23 points, all operations are thus modulo 23. Let group G1 be a subgroup of points

in 23� of size r = 6 and P = (11,10) be a generator of G1. Group G1 than contains the points P =

(11,10), 2P = (13,18), 3P = (15,20), 4P = (9,18), 5P = (19,22) and 6P = (1,5). For super singular
curves the points in G2 can be found by using a distortion map (a projection) from the points in G1.
The distortion map is defined as �(x, y) = (-x, iy) (with i2 = -1) and G2 then contains the points Q = (-
11,10i), 2Q = (-13,18i), 3Q = (-15,20i), 4Q = (-9,18i), 5Q = (-19,22i) and 6Q = (-1,5i). The
embedding degree k is 2 since this is the first k that satisfies 6 | 23k – 1 and the binary representation

of the group size r = {1,1,0} with t = 2log 6� �� � = 2. By using Miller’s algorithm the Tate pairing for

points P = (11,10) and Q = (-11,10i) is now computed in the following way:

1. f1 = 1
2. Z = (11,10)
3. For i = 1:

Compute tangent for Z = (11,10)and the vertical for 2Z = (13,18)

Preliminaries

 - 31 -

TP : 4X + 20Y + 9 = 14X + Y + 20
V2P : X + 10

TP(Q) = TP(12,10i) = 14 � 12 + 10i + 20 = 4 + 10i,
V2P(Q) = V2P(12,10i) = 12 + 10 = 22.
f2 = f1

2 � TP(Q) / V2P(Q) = 12 � (4 + 10i) / 22 = 19 + 13i.
Z = 2Z = (13,18)

Since m1 = 1 compute the line between Z,P and vertical for Z + P = 3P = (15,20)
L2P : 8X + 21Y + 1 = 19X + Y +11
V3P : X + 8

L2P(Q) = L2P(12,10i) = 19 � 12 + 10i + 11 = 9 + 10i,
V3P(Q) = V3P(12,10i) = 12 + 8 = 20.
f3 = f2 � L2P(Q) / V3P(Q) = (19 + 13i) � (9 + 10i) / 20 = 17 + 5i.
Z = Z + P = (15,20)

For i = 0:

Compute tangent for Z = (15,20) and the vertical for 2Z = (1,5)
T3P : 14X + 17Y + 2 = 13X + Y + 15
V6P : X + 22

T3P(Q) = T3P(12,10i) = 13 � 12 + 10i + 15 = 10 + 10i,
V6P(Q) = V6P(12,10i) = 12 + 22 = 11.
f4 = f3

2 � T3P(Q) / V6P(Q)
 = (17 + 5i)2 � (10 + 10i) / 11
 = (11 + 9i) � (10 + 10i) � 21
 = 6 + 14i.

4. In the final step the output of Miller’s algorithm is standardised to get an unique value:

2(1) / (23 1) / 6() (6 14) 11 15
kq r

Pf Q i i
− −

= + = + .

As a final check the answer it is raised to the power of r which should give 1. For our example this is
(11 + 15i)6 = 1, which is as expected.

5.1.2. Proxy Re-encryption

The proxy re-encryption algorithm used in the proposed schemes is described in [1] and consists of
six Probabilistic Polynomial Time (PPT) algorithms, it is defined as follows.

Definition 5.2 (Proxy Re-encryption) A proxy re-encryption scheme consists of the

following PPT algorithms.

Setup and Key Generation: It takes a security parameter k as input and generates
(public) system parameters and a public key pair for every user u (pku, sku).
Re-encryption Key Generation: Takes as input (skA, pkB), A’s secret key and B’s
public key to generate the re-encryption key rkA�B from user A to user B.
First Level Encryption: On input pkA and message m it outputs a ciphertext CA,1. A
first level encryption can only be decrypted by the intended recipient and can not be
re-encrypted.

Preliminaries

 - 32 -

Second Level Encryption: On input pkA and message m it outputs a ciphertext CA,2.
A second level encryption can be decrypted by the intended recipient and can be re-
encrypted so it can be decrypted by any of its delegates.
Re-encryption: On the input of re-encryption key rkA�B and ciphertext CA,2 it outputs
the re-encrypted ciphertext CB,1. It re-encrypts a second level encryption for user A
into a first level encryption for user B.
Decryption: On the input of skA and a first or second level ciphertext CA,1 or CA,2 it
outputs message m.

In the definition of most proxy re-encryption schemes a distinction is made between first and second
level encryptions. Since in this work only the second level encryptions are used, encryption with a
proxy re-encryption scheme always means a second level encryption. A detailed description of proxy
re-encryption can be found in [1].

5.2. System Definition

In this section the multi user encrypted file storage system with keyword search capabilities
developed in this thesis is defined. This system consists of the following PPT algorithms:

Setup(ks, kp): A probabilistic algorithm executed by the user and data manager to set up the system
and to initialise the system parameters. Input argument ks and kp are the security parameters. The
algorithm will output the dictionary W, the secret key for the user and data manager x and the master
public key pair for the re-encryption scheme (mpk, msk).

Enroll(x, msk, u): This algorithm is executed by the user and data manager to add a new user u to the
system. It outputs a secret search key and a complementary search key pair (xu, CSKu), a public key
pair (pku, sku) and a re-encryption key rku.

AddDocument(xu, w1,…, wi, l1, …, li, d, |W|, mpk; CSKu, u): The first part of this algorithm is run by
the user u and the second part by the DSSP to encrypt the document and to generate the index. The
user generates the index using the keywords w1,…, wi and encrypts the document d under a randomly
generated symmetric key K. The symmetric key K is encrypted with the proxy re-encryption scheme
under the master public key mpk and the result together with the user identity is send to the DSSP.
The DSSP performs the access control computations based on the input and the CSKu and adds the
document d’ to the document collection D.

SubmitQuery(xu, w1,…wi, l1,…, li; CSKu, u): This first part of this algorithm is run by the user u and
the second part by the DSSP to generate a valid query for the specified keywords w1,…, wi selected
from dictionary. The query qu including the keyword locations in the index l1,…, li together with the
user’s identity u are sent the DSSP which performs the authentication and authorisation computations
based on CSKu and outputs q.

Search(q, D, l1,…, li): This algorithm is run by the DSSP. It takes as input a query q, the document
collection D and a set of keyword locations l1,…, li and searches for the matching keywords on the
specified locations. It outputs the set of matching documents D’.

Decrypt(D’, rku, u; sku): The first part of this algorithm is run by the DSSP and the second part by the
user u to decrypt a (set of) document(s). It re-encrypts the lockboxes of document set D’ with the re-
encryption key rku and sends the result Du’ to user u. The user decrypts the re-encrypted lockboxes
with his or her secret key sku to obtain the symmetric keys K which are used to decrypt the
documents.

Preliminaries

 - 33 -

Revoke(u): This algorithm is run by the user and data manager to revoke a user from the system. It
removes the complementary search key CSKu and the re-encryption key rku for user u from the DSSP
and thus the user is no longer able to search and decrypt documents.

Figure 11: System definition

5.3. Security Definitions

Every searchable encryption scheme will reveal at least some information to the server, but this
information has to be minimised. Data, index and query confidentiality are covered in the security and
confidentiality sub goal and for this reason a proof of the system’s security is required. First, a
distinction is made between different security and confidentiality categories. The different security
aspects / categories of the system are listed below.

• Data Confidentiality: The DSSP or any other unauthorised party is unable to determine the
content stored at the DSSP. This is a requirement for the proxy re-encryption scheme that will
be used, which is independent of the index construction.

• Index Confidentiality: The DSSP or any other unauthorised party with access to the
document collection and indexes is unable to determine the keyword(s) associated with a
document.

• Query Confidentiality: The amount of information the DSSP learns from a search operation
should be limited to the search outcome and information derived thereof, e.g. the database
access pattern.

• Query Uniqueness: Besides that a query for a keyword w should be unique for every user,
every generation of a query for keyword w by the same user should be different as well. Also,
neither a user nor the DSSP should be able create a query on behalf of another user. This is a
stronger notion of security then defined by F. Bao et al [3] where only different queries for
different users are required.

• Revocation: Ability to revoke search and decryption rights for users which are no longer
legitimate. Ideally, this should be done without the need to redistribute keys.

As mentioned before every searchable encryption scheme will inevitably reveal some information
unless Private Information Retrieval (PIR) techniques are used. It is, however, important to minimise
the amount of information leaked from a search outcome and information derived thereof (e.g. the
access pattern). No information about the documents itself (data confidentiality), the keywords
searched for (query confidentiality) or the keywords associated with the document (index
confidentiality) should be revealed.

For data encryption a proxy re-encryption scheme is chosen and used without alterations to the
algorithms. The chosen scheme should of course guarantee data security. For this reason defining or
proving the security of such a scheme makes no sense and will thus not be included in this work.

Neither the server nor any other party should be able to determine the keywords in the indexes and
queries and the security and privacy of both has to be proven. It has been proven that secure indexes
and secure queries does not guarantee complete security if they are proven secure separately [11]. It is
therefore important to incorporate the secure indexes and secure queries in one definition. The general
security definition will be given in the next section.

Query uniqueness is part of the authentication and authorisation mechanism, but contributes to query
privacy and the general security of the system as well. Every user that generates a query for a
keyword w should have a different query in order to perform authentication and authorisation. This
requirement is typical for a multi-user setting. In addition to this requirement a user generating a

Preliminaries

 - 34 -

query for the same keyword w twice should end up with two different queries as well. The main
reason is for security so that an eavesdropper cannot perform statistical attacks.

Finally, in the last section a definition of revocability is defined. It requires that revoked users are no
longer able to construct valid queries and indexes and use the system’s functionality.

5.3.1. Security Definition

Different security definitions exist, some offer only non-adaptive security while others offer adaptive
security as well. In non-adaptive security definitions the system only guarantees security when all
queries are executed at once. A stronger notion of security is adaptive security where query
information of previous rounds is taken into account while constructing new queries. This is a more
realistic definition since in practice searching is often a process of fine tuning the query terms. Both
adaptive and non adaptive definitions exist in two kinds; indistinguishability and semantic security
definitions. An intuitive notion of an indistinguishability problem is the following; given two
plaintexts and an encryption of one of them the adversary is unable to distinguish to which plaintext
the encryption belongs. Semantic security definitions say that it is computationally infeasible for any
Probabilistic Polynomial Time (PPT) adversary A to derive any significant information from a
ciphertext. It has been proved that those definitions are equivalent for a keyword searchable
encryption scheme [11].

To be able to compare the security of the system’s searchable part with other schemes, general notions
of security are used. The first notion of adaptive security for keyword searchable encryption was
introduced by Curtmola et al [11][10]. These definitions did also form the basis of the definitions by
F. Bao et al [3], which also describe a multi-user searchable encryption scheme. Their scene setting is
closely related to the scene used in this report and their definitions are therefore used as a basis.

During operation there necessarily is interaction between users and the DSSP. This access pattern can
be observed by an adversary or the DSSP. The access pattern consists of instances �(q, loc) = {uq, aq}
where q is the query, loc the encrypted location information, uq the issuer of the query and aq the set
of matching documents. A sequence of t submitted queries is denoted by Qt = (q1, q2, …, qt) and the
corresponding keyword locations are denoted by Loct = (loc1, loc2, …, loct). The corresponding
keywords and replies are denoted by Wt = (w1, w2, …, wt) and At = (a1, a2, …, at) respectively. All
information that is left behind from the access pattern is called the trace denoted by Tt = (|D|, �(q1,

loc1), …, �(qt, loct), |UA|) where |UA| denotes the number of users in the system. This is all
information the adversary is allowed to know. The DSSP has access to more information, besides the
trace it has access to the all information stored on its servers as well. All information the DSSP is able
to learn over t queries is called the view and denoted by Vt = (d1

’ = (EK(d1), I1), …, dn
’ = (EK(dn), In),

CSK-list, Qt, Loct, At). In order to guarantee adaptive security the simulator should be able to simulate
a partial view Vt

p = (d1
’ = (EK(d1), I1), …, dn

’ = (EK(dn), In), CSK-list, Qp, Locp, Ap) given only a partial
trace Tt

p = (|D|, �(q1, loc1), …, �(qp, locp), |UA|), where 0 < p < t. For every p between 0 and t the
simulator should simulate partial view Vt

p given only the partial trace Tt
p. The following simulation

based definition defines the security of a searchable encryption scheme.

Definition 5.3 (Adaptive semantic security for searchable encryption). A multi-

user encrypted database system is semantically secure if for the document collection

D, for all t∈� , for a PPT algorithm A, there exists a PPT algorithm (the simulator)

S, such that for all Vt, Tt, all 0 < p < t for any function f:

| Pr[A(Vt
p) = f(D, Wp)] − Pr[S(Tt

p) = f(D, Wp)] | < 1 / p(k)

Preliminaries

 - 35 -

where the probability is taken over the internal coins of A and S.

In words the definition above states the following; everything that can be computed from the partial
view of the DSSP Vt

p (the contents stored at the server and the access pattern) can also be computed
from observations, the partial access pattern Tt

p. The access pattern is all the adversary is allowed to
know. User-server collusion is not included in this security definition. This is in line with the
assumptions made earlier in this report. Also in literature there are no definitions found that includes
user-server collusion.

5.3.2. Revocability

Important in a multi user system is the possibility to revoke search and decryption rights for users
which are no longer authorised. Complementary search key material stored on the access control
server is needed to perform the search operation. Without this material it is impossible to distinguish
between matching and mismatching indexes. Search revocability is thus satisfied by deleting the
user’s complementary search key. For a user to decrypt a document a re-encryption key has to be
available. Without this key it is impossible to decrypt a document. Decryption revocability is thus
satisfied by deleting the user’s re-encryption key.

A practical property of the efficiency of revocation is called key optimal. A system that is key optimal
has efficient revocation and enrolment of users without the need of redistributing keys. The number of
secret keys users have to hold is independent of the number of documents and users the system holds.

5.4. Summary

In this chapter the mathematical definitions were given of a bilinear map and proxy re-encryption.
The pairing of these bilinear maps is an important operation in the system’s construction. For multi
user data encryption an already existing proxy re-encryption scheme is used which is defined in the
beginning of this chapter as well.

Besides the mathematical preliminaries some formal definitions are given. First, the system developed
in this work is formally defined. To prove the system’s security a formal security definitions was
given as well.

In the next chapter a detailed description of the system is given according to the formal definition
given in this chapter. The preliminaries and definitions introduced in this chapter are used in the
detailed descriptions.

 - 37 -

6.

Constructing a Searchable Encryption Scheme

This chapter gives a detailed description of the constructed systems. Two attempts are made to come
to the final system which satisfies the research goal and it sub goals. The first solution is very
efficient, but offers only single keyword search. In the second scheme conjunctive keyword search is
enabled and some other improvements have been made. Both attempts are analysed and there
capabilities and limitations discussed.

Since security is defined as one of the system’s goals, the final solution is proven secure according the
definition given in chapter 5.

After the detailed description an extension to the system is given to support Role Based Access
Control (RBAC) where groups of users have different document access rights depending on their
function or role. The final section gives a more high level security analysis and describes possible
prevention measures. Finally, some additional security measures and functionality which might
contribute to the system’s security and functionality are described.

6.1. Attempt 1 – A Keyword Searchable Scheme

In this section a description of the first attempt made to construct a keyword searchable encryption
scheme satisfying the research goal and its sub goals is given. The construction builds on the high
level design as given in chapter 4.

In chapter 4 a decision was made for keyword searchable encryption using indexes. Every document
has its own index with the associated keyword taken from the dictionary. In chapter 4 the problem of
using a hash value of keywords taken from a dictionary was already identified. This issue can be
resolved by introducing randomness to the hashed values. An easy and often used technique to gain
probabilistic output is called blinding. With blinding a mathematical operation with a random number
is performed. The challenge is to retrieve or discard this random number, called the blinding factor. In
order to still be able to search some additional information containing the blinding factor has to be
specified with the indexes and queries.

As already mentioned in chapter 4 the actual data is encrypted by using the proxy re-encryption
mechanism by Ateniese et al [1]. There are no alterations made to the proxy re-encryption algorithms
and are for this reason not further discussed.

Constructing a Searchable Encryption Scheme

 - 38 -

Chapter 4 also discussed the authentication and authorisation step which needed the cooperation of
both the user and the DSSP. This attempt uses a version based on the construction by Bao et al [3]
which is as follows. The user and data manager generates a random number x which is his secret
search key (the master secret search key) and chooses generator g. For every user a distinct key pair is
generated. The user’s secret search key xu is determined by generating a random number and the

user’s complementary search key CSKu is computed as / ux x
g . Authentication and authorisation is now

performed by calculating /() ()u u ux x x x x

uCSK g g= = . One can see that this step removes the user

dependent factor xu. Only if a corresponding complementary search key is used, a valid value of gx is
obtained.

In this attempt the authentication and authorisation approach described above is used and a new
search algorithm is developed. It is obvious that the user can not send his secret search key xu to the
DSSP in plaintext. Also the DSSP must not be able to determine the user’s secret search key. Similar
to the hashed keywords this can easily be resolved by blinding. The same blinding factor is used to
blind the user’s secret search key and the hashed keyword, but the blinding factor is different for
every index or query. Indexes and queries are constructed the same way and to be able to match the
blinding factor has to be removed. Removal of the blinding factor is done in the authentication and
authorisation step. An index or query is constructed in the following form: (xur, h(w)1/r), where r is the
blinding factor. The DSSP performs a pairing operation using CSKu to remove the blinding factor and

the user’s secret search key, / 1/(, ()) (, ())u ux x rxr x
e g h w e g h w= . One can easily see that this results in a

user independent encryption of the hashed keyword which can not be computed by either the user or
the DSSP alone.

A complete description of the first attempt is given below. Both the search part and the proxy re-
encryption part use bilinear maps. The bilinear maps and the corresponding pairing operations are,
however, different. For this reason the subscript p is used to denote the symbols belonging to the
proxy re-encryption algorithms and the subscript s is used to denote the symbols belonging to the
search algorithms. An explanation of the used symbols is given in appendix A.

Function Explanation

Setup(ks, kp): User and data manager:

Given security parameter ks choose groups Gs,1 , Gs,2 and Gs,T of prime order q > 2 sk

with bilinear map es : Gs,1 × Gs,2 � Gs,T and a generator gs R∈ Gs,1 for the search and

index algorithms.

Given security parameter kp choose groups Gp,1 and Gp,T of prime order q > 2 pk
 with

bilinear map ep : Gp,1 × Gp,1 � Gp,T and a generator gp R∈ Gp,1 for the proxy re-

encryption algorithm.

Select the user and data manager secret search key x *

R q∈ � and store it offline.

Generate the master public key pair in the form mpk = 1 2(,)udm udm

pZ g , msk = (udm1,

udm2), where Z = ep(gp, gp) and with udm1, udm2
*

R q∈ � .

Define the dictionary W and a hash function h : {0,1}* � Gs,2.

Enroll(x, msk,
u):

User and data manager:

Select a user u’s secret search key xu
*

R q∈ � .

Compute a user u’s complementary search key CSKu = / ux x

sg .

Generate a user u’s public key pair pku = 1 2(,)u u

pZ g , sku = (u1, u2) with u1, u2
*

R q∈ � .

Compute a user u’s re-encryption key rku = 1 2udm u

pg .

Send (u, CSKu, rku) securely to the DSSP who adds it to the authorised users list UA.
Send (xu, (pku, sku), W, gp) securely to user u.

Constructing a Searchable Encryption Scheme

 - 39 -

AddDocument
(xu, w, d, mpk,

CSKu, u):

User:

Select blinding elements r, v *

R q∈ � .

Compute the user dependent index Iu = (xur, h(w) 1/r)
Encrypt the document using a standard symmetric encryption algorithm EK(d), e.g.
AES with a randomly chosen symmetric key K.
Construct the lockbox by using the proxy re-encryption encryption algorithm

1(,)udm vv

mpk pL g KZ= .

Send du’ = (EK(d), Lmpk, Iu) and the user identity u to the DSSP.

DSSP:
Let Iu = (Iu,0, Iu,1) = (xur, h(w) 1/r).
The DSSP finds CSKu for user u and returns ‘invalid’ if CSKu is not available,

otherwise compute ,0() / 1/

,1(, ()) (, ()) (, ())u u u
I w x x rxr x

s u u s s s sI e CSK I w e g h w e g h w= = = .

Add d’ = (EK(d), Lmpk, I) to the document collection D.

SubmitQuery(
xu, w, CSKu,

u):

User:

Select blinding element s *

R q∈ � .

Construct a user dependent query qu = (xus, h(w)1/s).
Send qu and the user identity u to the DSSP.

DSSP:
Let qu = (qu,0, qu,1) = (xus, h(w) 1/s).
The DSSP finds CSKu for user u and returns ‘invalid’ if CSKu is not available,

otherwise compute ,0 / 1/

,1(,) (, ()) (, ())u u u
q x x sxs x

s u u s s s sq e CSK q e g h w e g h w= = = .

Send q to the data server.

Search(q, D): DSSP:
For every document di’∈D test if the query matches the index q / Ii = 1, add
matching documents di’ to D’ and return the results.

Decrypt(D’,
rku, u; sku):

DSSP:

Let 1

,0 ,1(,) (,)udm vv

mpk mpk mpk pL L L g KZ= = .

For every document di ∈D’ compute 1 2 1 2

,0(,) (,)udm u udm u vv

p mpk u p p pe L rk e g g Z= = and re-

encrypt all lockboxes 1 2 1 2 ' '

, (,) (,)udm u v udm v u v v

i pkuL Z KZ Z KZ= = , with udm1v = v’, and

send Du’, the documents and the re-encrypted lockboxes, to user u.

User:

Let 2 ' '

,0 ,1(,) (,)
u u u

u v v

pk pk pkL L L Z KZ= = .

For every document du,i ∈Du’ the user decrypts the symmetric keys using the secret

key sku = (u1, u2) of his public key pair,
2 2 2

' '
,1

1/ ' 1/ '

,0 ()
u

u

v v
pk

u u v u v

pk

L KZ KZ
K

L Z Z
= = = and

decrypts the documents di = DK(EK(d)).
Revoke(u): User and data manager:

The user and data manager deletes the re-encryption key rku and the complementary
search key CSKu (u, rku, CSKu) from the user table stored at the DSSP.

Figure 12: Attempt 1 - A keyword searchable encryption scheme

Searching will be the most frequent operation in the system. Before a search operation can be
performed a valid query has to be submitted by a user. After the actual search operation the set of
matching documents Du’ has to be returned to query submitter who decrypts the documents. During
this action authentication and authorisation is performed as well. The complete process from the

Constructing a Searchable Encryption Scheme

 - 40 -

submission of a query to the decryption of the matching information covers three algorithms from the
description above: SubmitQuery, Search and Decrypt.

Below a picture is given to illustrate the process from query submission to the decryption of the
results. In the picture the different steps, the communication and the input are shown. The first step,
denoted by 1, is the construction and submission of a query by the user to the DSSP. On the left side
of the user the input for this action is illustrated. The input consists of the user’s secret search key xu
and the keyword w which is “sales”. Query qu and the user identity u are sent to the DSSP for the
second step, authentication and authorisation. As one can see in the picture the complementary search
key CSKu is needed for this operation. The result q is sent to the data server who executes the query
and sends back the results, the third step. Before the result is returned to the user, decryption
authentication and authorisation is performed with the user’s re-encryption key rku. The set of
matching documents and their re-encrypted lockboxes is then returned to the user, step four. In the
fifth step the user’s secret key is used to decrypt the lockboxes. The keys inside the lockboxes are
used to decrypt the documents such that the user ends up with the documents in plaintext.

Figure 13: Attempt 1 - Query submission, searching and document decryption

6.1.1. Evaluation

The first attempt to construct a keyword searchable encryption scheme has a very efficient search
operation, but is only able perform single keyword search. An evaluation of the system based on the
system’s goals is given below.

Constructing a Searchable Encryption Scheme

 - 41 -

Although no formal security proof is given the system is considered secure in the sense that only
authorised users can use the system’s functionality. As described in chapter 4 the authentication and
authorisation mechanism is based on cooperation of both the user and the DSSP. All information the
users send to the DSSP, including the secret search key xu and the hashed keywords, is blinded and
thus multiple submissions of the same information will result in different values. For this reason no
secure communication channels are needed to ensure data confidentiality. Another advantage of the
blinding operation is that the DSSP is not able to determine the user’s secret search key xu and is
therefore not able to perform actions on its own. The pairing operation in the authentication and
authorisation step removes the blinding factor and the user’s secret search key from both the
additional information and the hashed keyword. This enables the system to match queries and
indexes. A consequence is that the indexes, although they are stored encrypted, are no longer
probabilistic and can thus be vulnerable to statistical attacks.

The first attempt is easily manageable. Every user is able to perform actions based on key information
in his personal storage and key information stored at the DSSP. This key material is independent of
other users, the number of users in the system or the number of documents in the system. The user and
data manager is thus able to efficiently revoke users from the system and to enrol users to the system
without redistributing keys to existing users.

This attempt satisfies the outsourcing sub goal since as much tasks as securely possible are outsourced
to the DSSP. It is clear that storage of the data and the search operations on the indexes of this data
have to be outsourced. Authentication and authorisation which is usually performed locally or at a
trusted client is outsourced to the DSSP as well even though it is not considered trusted. Due to the
used mechanism where the DSSP is not able to generate rights this is not a security threat. Actions
which can only be performed by the users and user management, which is a trust function, are not
outsourced.

The construction of attempt one is very efficient since searching takes only one equality check per
document and is independent of the number of users. A bilinear pairing is an expensive operation
compared to a multiplication or an exponentiation. Attempt one needs only one pairing operation for
authentication and authorisation. The execution of a query needs thus only one pairing and a number
of equality checks based on the number of documents. This construction is thus more efficient than he
solution by Bao et al [3]. The difference is that the indexes in their solution are stored in probabilistic
format. In this system the number of secret keys a user has to store is very efficient, only one key for
the search part and only one key for the decryption is needed. The system is key optimal since no
redistribution of keys is required when enrolling or revoking users.

6.2. Attempt 2 – A Conjunctive Keyword Searchable Scheme

In this section the second attempt to construct a conjunctive keyword searchable encryption scheme
that satisfies the research goal and its sub goals is described. The construction given in this section is
based on the high level design description in chapter 4 and the construction of attempt one, but has
several improvements.

The two most important improvements are the ability to perform conjunctive keyword searches and
probabilistic index storage. As described in chapter 4 every document has its own index of length
equal to the number of keywords in the dictionary. In addition an extra term with additional
information is added for authentication and authorisation purposes. Similar to attempt one the user’s
secret search key xu and the index terms h(w) or queried keywords are blinded. Although the key
construction remains unchanged the blinding factor is not removed during the authentication and
authorisation procedure. The user’s secret search key is blinded in the same way as in attempt one, xur
where r is the blinding factor. Index terms or the queried keywords are blinded by an exponentiation

Constructing a Searchable Encryption Scheme

 - 42 -

with r, h(w)r. In order to still be able to match the blinding factor is compensated for during the search
process.

Authentication and authorisation is performed by calculating ,0 /u u u
I rxx x rx

uCSK g g= = . This

computation removes the user specific information, the user’s secret search key, from the additional
information. Queries and indexes are constructed in a similar way and matching is made possible by
two bilinear pairings where on both sides of the equation the blinding factor of the index (r) and the
blinding factor of the query (s) is included, e(gsx, h(w)r) = e(g, h(w))rsx. On the other side of the
equation the locations of r and s swapped. In this way the blinding factor is compensated for and
matching is made possible. In case of multiple keywords the hash values are multiplied before pairing.

In comparison with attempt one only the Setup, AddDocument, SubmitQuery and Search actions have
changed. For completeness reasons a complete description of the second attempt is given. The
changes are printed in bold, except the authentication and authorisation formulas for document and
query submission and the search formula. A more high level system definition can be found in section
5.2 and an explanation of the used symbols is given in appendix A.

Function Algorithm

Setup(ks, kp): User and data manager:

Given security parameter ks choose groups Gs,1 , Gs,2 and Gs,T of prime order q > 2 sk

with bilinear map es : Gs,1 × Gs,2 � Gs,T and a generator gs R∈ Gs,1 for the search and

index algorithms.

Given security parameter kp choose groups Gp,1 and Gp,T of prime order q > 2 pk
 with

bilinear map ep : Gp,1 × Gp,1 � Gp,T and a generator gp R∈ Gp,1 for the proxy re-

encryption algorithm.

Select the user and data manager secret search key x *

R q∈ � and store it offline.

Generate the master public key pair in the form mpk = 1 2(,)udm udm

pZ g , msk = (udm1,

udm2), where Z = ep(gp, gp) and with udm1, udm2
*

R q∈ � .

Generate a public key pair for the DSSP from a standard public key algorithm

e.g. ElGamal, (pkDSSP, skDSSP).
Define the dictionary W and a hash function h : {0,1}* � Gs,2.

Enroll(x, msk,
u):

User and data manager:

Select a user u’s secret search key xu
*

R q∈ � .

Compute a user u’s complementary search key CSKu = / ux x

sg .

Generate a user u’s public key pair pku = 1 2(,)u u

pZ g , sku = (u1, u2) with u1, u2
*

R q∈ � .

Compute a user u’s re-encryption key rku = 1 2udm u

pg .

Send (u, CSKu, rku) securely to the DSSP who adds it to the user list UA.
Send (xu, (pku, sku), W, gp) securely to user u.

Constructing a Searchable Encryption Scheme

 - 43 -

AddDocument
(xu, w1,…, wi,

l1, …, li, d,
|W|, mpk;
CSKu, u):

User:

Select blinding elements r, v *

R q∈ � .

For all specified locations l1, …, li hash the keyword specified at the same

location in w1, …, wi. For all other locations 1, …, |W| hash a random number.

Compute the user dependent index Iu = (rxu, h(w1)
 r
, …, h(w|W|)

 r
), where w can

also be a random number as described above.
Encrypt the document using a standard symmetric encryption algorithm EK(d), e.g.
AES with a randomly chosen symmetric key K.
Construct the lockbox by using the proxy re-encryption encryption algorithm

1(,)udm vv

mpk pL g KZ= .

Send du’ = (EK(d), Lmpk, Iu) and the user identity u to the DSSP.

DSSP:

Let Iu = (Iu,0, Iu,1, …, Iu,|W|) = (rxu, h(w1)
 r
, …, h(w|W|)

 r
)

The DSSP finds CSKu for user u and returns ‘invalid’ if CSKu is not available,
otherwise compute

,0 /

,1 ,| | 1 | | 1 | |(, ,...,) (, () ,..., ()) (, () ,..., ())u u u
I rxx x r r rx r r

u u u W s W s WI CSK I I g h w h w g h w h w= = = .

Add d’ = (EK(d), Lmpk, I) to the document collection D.

SubmitQuery(
xu, w1,…wi,

l1,…, li,
pkDSSP; CSKu,

u):

User:

Select blinding element s *

R q∈ � .

Construct a user dependent query qu = (sxu, h(w1)
s × … × h(wi)

s).

Encrypt the corresponding keyword locations 1(,...,)
DSSPpk iloc E l l= .

Send qu, the encrypted keyword locations loc and the user identity u to the DSSP.

DSSP:

Let qu = (qu,0, qu,1) = (sxu, h(w1)
s
 × … × h(wi)

s
).

The DSSP finds CSKu for user u and returns ‘invalid’ if CSKu is not available,

otherwise decrypt the encrypted keyword locations ()
DSSPskD loc and compute

,0 /

,1 1 1(,) (, () ... ()) (, () ... ())u u u
q sxx x s s sx s s

u u s i s iq CSK q g h w h w g h w h w= = × × = × × .

Send q and the keyword locations l1, …, li to the data server.

Search(q, D,
l1,…, li):

DSSP:
For every document di’∈D test if the index matches

10 1

0 1 1

(,) (, () ... ())
1

(,) (, () ... ())

n i

n i sx r r

s l s l ln

rx s s

s s i

e q I e g h w h w

e I q e g h w h w

=

=
× ×

= =
× ×

∏
, add matching documents di’ to D’

and return the results.
Decrypt(D’,
rku, u; sku):

DSSP:

Let 1

,0 ,1(,) (,)udm vv

mpk mpk mpk pL L L g KZ= = .

For every document di ∈D’ compute 1 2 1 2

,0(,) (,)udm u udm u vv

p mpk u p p pe L rk e g g Z= = and re-

encrypt all lockboxes 1 2 1 2 ' '

, (,) (,)udm u v udm v u v v

i pkuL Z KZ Z KZ= = , with udm1v = v’, and

send Du’, the documents and the re-encrypted lockboxes, to user u.

User:

Let 2 ' '

,0 ,1(,) (,)
u u u

u v v

pk pk pkL L L Z KZ= = .

For every document du,i ∈Du’ the user decrypts the symmetric keys using the secret

key sku = (u1, u2) of his public key pair,
2 2 2

,1

1/ 1/

,0 ()
u

u

v v
pk

u u v u v

pk

L KZ KZ
K

L Z Z
= = = and

decrypts the documents di = DK(EK(d)).

Constructing a Searchable Encryption Scheme

 - 44 -

Revoke(u): User and data manager:
The user and data manager deletes the re-encryption key rku and the complementary
search key CSKu (u, rku, CSKu) from the user table stored at the DSSP.

Figure 14: Attempt 2 – A conjunctive keyword searchable encryption scheme

In the previous section where attempt one was described a picture was given of the process from
query construction to decryption. Below an illustration is given of the same process in attempt two. In
comparison to attempt one, only the first two steps have changed. See below for a graphical
representation from query construction to decryption in attempt two.

Figure 15: Attempt 2 - Query submission, searching and decryption

The first difference one might notice from the picture above when comparing with figure 12 is that in
the figure above two keywords are queried instead of one. Another difference is that more
information, the locations of the queried keywords, is submitted to the DSSP. In order to hide the
keyword locations for eavesdroppers the location information is send encrypted. Blinding of the
user’s secret search key xu has not changed. The queried keywords, in this example “sales” and
“secret”, are hashed, multiplied and blinded by an exponentiation with r instead of 1/r as in attempt
one. The most important change regarding the system’s security is that all index terms are stored in
probabilistic format and are thus no longer vulnerable to statistical attacks. During the query
authentication and authorisation procedure only the user’s secret search key is removed. Step three
and four, which involves decryption authorisation and decryption, have not changed in attempt two
and are thus not described again. A description of these steps can be found in section 6.1.

Constructing a Searchable Encryption Scheme

 - 45 -

6.2.1. Security Proof

In this section a formal security proof of the system constructed in attempt two is given. The system is
proven secure under definition 5.3 given in chapter 5. The proofs given by Curtomla et al [11][10] and
Bao et al [3] form the basis and are altered where necessary to match the system constructed in this
thesis.

Proof. The idea of the proof is to describe a simulator S that given the partial trace Tt

p can simulate
the partial view of the adversary A(Vt

p). For all t∈� , all PPT adversaries A, all functions f and all 0 <
p < t, PPT simulator S should be able to simulate A(Vt

p) given Tt
p with probability negligible close to

one. It is shown that for all 0 < p < t, S(Tt
p) can generate a view Vt

p* which is computationally
indistinguishable from Vt

p the actual view of the adversary A.

In the construction of the second attempt every document has its own index consisting of one field
additional information and a number of keyword fields with hash values equal to the dictionary size.
For sake of simplicity the encryption of a document and its lockbox is denoted by EK. Recall the
following notations given in section 5.3:

• Vt = (d1
’ = (EK(d1), I1), …, dn

’ = (EK(dn), In), 1, …, n, CSK-list, Qt, Loct, At)

• Vt
p = (d1

’ = (EK(d1), I1), …, dn
’ = (EK(dn), In), 1, …, n, CSK-list, Qp, Locp, Ap), where 0 < p < t

• Tt = (|D| = n, 1, …, n, �(q1), …, �(qt, loct), |UA|)

• Tt
p = (|D| = n, 1, …, n, �(q1), …, �(qp, locp), |UA|), where 0 < p < t

At time p = 0 before any queries are submitted (Qp = Ø, Locp = Ø, Ap = Ø) the simulator S must
simulate the partial view Vt

0* from the partial trace Tt
0*. Simulator S builds the view Vt

0* as follows.

For 1 < i < n, it selects | ()|*() {0,1} K iE d

K i RE d ∈ and for * *

,0
izrx

i s sI g g= = , where *

R qz ∈ � . The remaining

index terms Ii,1, …, I i,m, where m denotes the number of keywords in the dictionary are constructed as

follows. For 1 < i < n and 1 < j < m compute *

, ,() iz

i j i jI h p= , where *

R qp ∈ � is random number, random

keywords could be used as well. The CSK-list
* is constructed by selecting random elements from Gs,1

for every authorised user u enrolled to the system. One can see that the indistinguishability of the
simulated view Vt

0* is guaranteed if the encryption function E is pseudorandom. It is easy to see that
also the index terms and the CSK-list

* are indistinguishable since they are blinded with a random zi or
randomly selected.

For 1 < p < t, the simulator S includes the partial view Vt

0* and builds Vt
p* = (d1

’* = (EK(d1)
*, I1

*), …,
dn

’* = (EK(dn)
*, In

*), CSK-list
*, 1, …, n, Qt

*, Loct
*, At

*). Recall that the trace Tt
p includes the search

pattern over p queries. It remains to show the construction of queries (q1
*, …, qp

*), their corresponding
location information (loc1

*, …, locp
*) and their replies (a1

*, …, ap
*) included in (Vt

p)*. For every

authorised user 1 < j < |UA| S selects xj
* *

R q∈ � , the secret search keys. The simulator S reuses the

queries (q1
*, …, qp-1

*) and location information (loc1
*, …, locp-1

*) included in (Vt
p-1)*, where it is

assumed that S remembers the queries, locations and their replies. Simulator S starts checking the
trace Tt

p-1 (�(q1, loc1), …, �(qp-1, locp-1)) if it contains the queried value wt. If there does not exist a
�(qj, locj) = �(qp, locp) (query for the same keyword value) select a element from x1,… , x|UA| and

compute qt = (rxi, h(wt)
r) and encrypt random keyword locations ()

DSSPt pkloc E l= . Otherwise it reuses

the qj and loct associated to wt and assigns it to qp.
 The simulated queries q1

*, …, qp
* and locations

loc1
*, …, locp

* in (Vt
p)* are indistinguishable from the queries q1, …, qp and locations loc1, …, locp,

otherwise one could distinguish between the blinded values and random values of the same size. The

partial simulated partial view (Vt
p)* (Pr[S(Tt

p) = f(D, Wp)) is thus indistinguishable form the actual

view Vt
p (Pr[A(Vt

p) = f(D, Wp)), for all 0 < p < t and thus satisfies the security definition | Pr[A(Vt
p) =

f(D, Wp)] − Pr[S(Tt
p) = f(D, Wp)] | < 1 / p(k).

Constructing a Searchable Encryption Scheme

 - 46 -

6.2.2. Evaluation

In this section an evaluation is given of the second attempt based on the research goals and the
scheme constructed during the first attempt. The security and functionality of the scheme has
improved in several areas at the cost of a computationally more expensive search operation. In the last
part of this section the scheme is compared with existing schemes based on the overview in table one.

From the security proof in the previous section one could already see that the system is secure. In
comparison with the first scheme the indexes are stored in probabilistic format, it becomes infeasible
to deduced any information from the indexes. Due to the random blinding factor the indexes are no
longer vulnerable to statistical attacks. This construction thus satisfies the security goal.

Enrolment of new users and revocation of existing users has not changed in the second construction.
The user management of the system remains thus efficiently manageable without the need for
redistribution of keys and the manageability goal is thus satisfied.

The first attempt already satisfies the outsourcing aspects of the system and the second construction
does as well. All tasks except those that can only be done by the users (e.g. query construction) and
user and data management are outsourced to the DSSP.

The most notable functional improvement is that the second construction supports conjunctive
keyword search. In order to support efficient conjunctive keyword matching the locations of the
keywords in the index is specified. The conjunctive keyword search functionality is at the cost of a
less efficient search operation. Authentication and authorisation is more efficient since only one
exponentiation is performed instead of a pairing operation. In the first attempt only one equality check
was needed to test a document for the queried keyword. The second attempt needs two pairing
operations per document.

When comparing the complexity of the second attempt with the most efficient existing conjunctive
keyword searchable scheme one can see that this construction is more efficient. In table 1, one can see
that the solution by Hwang et al [18] is most efficient multi user conjunctive searchable encryption
scheme. Their index size is large compared to other solutions since it stores an additional factor for
every user. The index and query size in this construction is comparable with single user conjunctive
searchable encryption schemes. Searching takes three pairing operations in the solution by Hwang et
al [18] while the second attempt needs only two pairing operations per document. The second
construction has thus more functionality than all other evaluated solutions while the system is more
efficient than the scheme which has most similar functionality.

6.3. Extensions

The system as described in the previous section will work fine, but additional functionality will
further enhance the system. In practical situations there can often be distinguished between different
groups of users based on their function (role) or department. The first part of this section describes a
construction to support different data access rights for groups of users.

Another feature that will further enhance the system’s functionality is a dynamic dictionary. Over
time the relevance of keywords in the dictionary may change. It is than useful if obsolete keywords
can be removed and new keywords be added.

Constructing a Searchable Encryption Scheme

 - 47 -

6.3.1. Role Based Access to Subgroups of Documents

Most business or even business units have groups of users with different roles and thus different
rights. Support employees do for example not have as many access rights as the senior management
does. Creating different databases which are only accessible for certain groups of users is very
inefficient since a lot of documents need to be stored multiple times. To tackle this problem efficient
constructions have to be found for both index construction and data encryption.

In the second attempt one could see that additional information containing the blinding factor is stored
for every document. This additional information is stored in an encrypted format with the system’s
secret key. To create subgroups of documents a new key have to be created for every subgroup of
documents. Matching is then made possible by computing and storing additional information with the
group key for every group the document belongs to. The system’s secret key and the group keys are
stored at and managed by the user and data manager. Users store an additional key for every group
they are member of. The DSSP stores the counterparts of these keys since the same authentication and
authorisation mechanism is used as for indexes accessible for all users.

Encryption rights to subgroups of documents can efficiently be solved as well. Instead of creating a
lockbox under the system master public key, lockboxes can be constructed under the master public
key(s) of the group(s) the document belongs to. Of course, corresponding re-encryption keys for the
authorised users have to be computed and stored at the DSSP as well. See the figure for a graphical
overview of the data storage.

Figure 16: Document group storage

In the picture one can see that there are three different subgroups defined g1, g2 and g3. Note that g1, g2
and g3 does not mean that the same key is used for indexes as for the lockboxes. This notation is
chosen to clarify the picture. Not all documents need to belong to a subgroup. Documents not
belonging to a subgroup, such as the second document in the picture, are stored unchanged. The first
and last document in the picture both belong to two subgroups. They both contain the lockboxes and
the additional information of the groups they belong to instead of the general lockbox and additional
information.

6.3.2. Dynamic Dictionary

As stated in the introduction of this section over time some keywords may become obsolete and new
keywords become relevant and have to be added. Removing old keywords or adding new keywords is
a task of the user and data manager.

Constructing a Searchable Encryption Scheme

 - 48 -

Removal of an existing keyword is simple since from every index only the keyword value at the
location of the given keyword has to be removed. Of course, the keyword has to be removed from the
dictionaries as well.

Adding a new keyword is slightly more complicated, but possible as well. First, the user and data
manager has to find the blinding factor. Only the user and data manager should be able to find the
blinding factor. When the blinding factor is recovered the new keyword can be hashed, blinded and
added to the index. The user and data manager needs to perform this operation for every document.
Similar as with keyword removal the dictionary has to be updated as well.

6.4. Threat Analysis and Measures

The system as described in this chapter will work well, but since security is an important requirement
a threat analysis has to be performed. During the system’s design several security measures to exclude
different attack possibilities have already been taken. In the next section an overview of some threats
to the system and pointers to possible solutions are given. Hereafter, in the next section some
additional functionality is described which might contribute to the system’s security on the long term.

6.4.1. Threat Analysis

In this section an overview is given of different attacks that could be targeted at the system. During
the design, some measures have already been taken to prevent against certain attacks. The table below
gives an overview of different attack possibilities and security measures that that could be taken to
prevent from that particular attack.

Attack Explanation and resolution

Statistical or dictionary attack on
keywords

These attacks can be performed on both queries and indexes. By
blinding the keywords in both queries and indexes this is
resolved. This technique is already included in the system’s
design.

Dictionary including keyword
locations becomes public

Since keyword locations are specified in the query the server is
able to determine which keywords are queried. This is thus a
serious leakage of information. To resolve this issue the user and
data manger can reposition the keywords in both the dictionary as
in the indexes. The user and data manager needs to re-blind the
index terms so that the server cannot recognise the keywords as
they were stored before.

User server collusion This is a very serious security issue, the system is confiscated. No
searchable encryption scheme is known that can prevent against
this attack. The DSSP will be a reputable company that do not
want to collude with users since they fear bad publicity which
leads to leaving customers. The only solution is to re-encrypt all
documents and reconstruct all indexes which can be done by the
user and data manager and revoke the user from the system.

Constructing a Searchable Encryption Scheme

 - 49 -

Attack Explanation and resolution

Denial of service Denial of service is trying to use a service which you are not
authorised for and thereby harming the system. Due to the
systems authentication and authorisation mechanism it is not
capable of stopping all invalid requests. If the request has an
invalid format the system will halt, but when it has the correct
format it will continue its computations. Query submission by an
unauthorised user will only lead to additional computation, the
query will not match. An encrypted document with its indexes
will be stored, but will never match due to the use of invalid keys.
To prevent this, a traditional access control mechanism could be
added.

Replay attack With replay attacks previously eavesdropped information is
submitted again. It can thus have the same consequences as a
denial of service attack except that it tries to deduce information
from the system instead of harming the systems operation. These
kinds of attacks can be prevented by using secure communication
channels.

Communication modification Changed communications can have the same results as a denial of
service attack except that this is usually executed to deduce
information from the system instead of harming the system’s
operation. This attack can be prevented by using secure
communication channels or by using a standard signing
mechanism.

Table 2: Threat analysis

In table 2 one can see that for most threats an applicable measure can be found at the cost of
additional overhead to the system. This overhead can be in terms of additional hardware, additional
storage, additional computation or additional data management actions. In this thesis one of the goals
is to outsource as much as securely possible and to use a cryptographic authentication and
authorisation mechanism which can be used in an environment not fully trusted and not to use
standard access control mechanisms. The use of secure communication channels is outside the scope
of this assignment as well, but various alternatives are available e.g. SSL and TLS.

6.4.2. Additional Security Measures

In the previous section some of the additional measures to enhance or to contribute to the system’s
functionality were already introduced. Most of these measures are outside the scope of this
assignment. Relocation of keywords, however, is one of the measures mentioned in the previous
section and should be possible within the system.

To reduce the likelihood that the DSSP can deduce information from the system it is a good practice
that the user and data manager shuffles the keyword locations once in a while. An approach is to send
all users an updated dictionary with the new keyword locations and to make the same update on the
server since they have the same order. Just changing keyword locations in the indexes will not make
sense since all index terms will look exactly similar which enables the DSSP to obtain the old
keyword locations. To make the index terms no longer recognisable they have to be re-randomised.
Due to the blinding system used an exponentiation of all index terms with a new random number
including the additional information will succeed.

Another approach is the user of a permutation function based on a secret key. A permutation function
maps a keyword location to another location based on the key. By sending the authorised user a new

Constructing a Searchable Encryption Scheme

 - 50 -

key for the permutation function the keyword locations are shuffled. Of course the keyword locations
in the indexes have to be changed as well. This can be done by the same approach as described above.

6.5. Summary

In this chapter two different attempts to construct a conjunctive keyword searchable encryption
scheme satisfying the research goals are described. The first attempt describes a scheme in which only
one keyword can be attached to every document, but which has a very efficient search operation.
Searching requires only one pairing operation to remove the user dependent factor and the blinding
factor. Individual documents are than matched by a simple equality check. Although the keywords are
encrypted they are not stored in probabilistic format.

The second construction improves the security and functionality of the first scheme at the cost of a
computationally more expensive search operation. Conjunctive keywords search is now possible and
every document can be associated with many keywords. The keywords in the indexes are now blinded
and thus no longer vulnerable to statistical attacks. To prove the system’s security a proof is given.

To further improve the system some additional functionality is described. The first additional feature
makes it possible to define groups of users with certain access rights. A set of documents can only be
made accessible for a certain group of employees, e.g. based on function profile. A second additional
feature makes it possible to remove obsolete keywords from the dictionary and to add new ones.

The final section describes a more high level threat analysis. All threats can be resolved at the cost of
additional overhead, most of which are outside the scope of this assignment. A feature that is within
the scope is the ability to reshuffle keyword locations in order to minimise the amount of information
the DSSP is able to learn.

Security and correctness is important, but practical performance is at least as important. For this
reason the search construction of the second scheme is implemented and some speed measurements
are performed to test its practical performance. The implementation and its results are described in the
next chapter.

 - 51 -

7.

Implementation

The previous chapter gave a detailed description of the system’s construction and proved its
theoretical security. This chapter evaluates the practical performance of the keyword search
mechanism. First, some implementation details are given such as the programming language and the
used cryptographic libraries. Hereafter, mathematical details about the curve parameters are given and
their advantages and disadvantages evaluated.

When the details are clear a high level overview of the code to implement the keyword search part of
the system is given. It shows the structure of the program and gives code snippets of both the most
important function calls and selected parts of the functions itself.

Once all details are clear tests are performed regarding its practical performance in operations such as
query construction, index generation and searching. These tests are performed to see if the system can
be applied in practical applications. Also, it shows which parts are computational most expensive and
where additional improvements are necessary. Finally, in the next section some pointers are given to
further improve the system’s speed and performance.

7.1. Programming Details and Cryptographic Libraries

In this section details about the code development such as programming language and used
(cryptographic) libraries are discussed.

The code is written in C++ since it is known for its high performance which is important for the time
measurements and its support for object oriented programming. To write code the free Integrated
Development Environment (IDE) Netbeans [27] is used. The GNU GCC compiler [14] is used for
compilation. Since the code is developed under Windows and the GNU GCC compiler requires a
UNIX environment, MinGW with the command line interface MSYS [25] is installed.

The pairing operation is very complicated and computationally expensive and therefore the Pairing
Based Crypto (PBC) library [23] is used. This library is programmed in C and needs the GNU Multi
Precision (GMP) library [16] which is installed as well. For the hash algorithm the Crypto++ library
[10], which contains various cryptographic algorithms, is used.

Implementation

 - 52 -

7.2. Pairing Parameters

The PBC library supports different types of pairings. Each type of pairings operates over a different
elliptic curve. The different pairing types are labelled by alphabetic characters in order of discovery.
In the library manual [24] one can see that type A pairings are the fastest and that type D pairings
have the shortest element size. Both pairing types are suitable for cryptographic usage [24]. In this
data storage outsourcing scene efficiency and thus search speed is an important aspect. Efficient data
storage is important as well, but speed is considered more important and therefore type A pairings are
chosen.

The PBC library includes pairing parameter files for every supported pairing type which are suitable
for cryptographic use. Type A pairings operate over a super singular curve y2 = x3 + x. The
parameters for type A pairings, which are used in this implementation, have the following properties.

• Bit group order: 160 bits. The group order r is a Solinas prime + 1. Solinas primes are chosen for
their efficiency, they make the pairing computations faster.

• Base field size: 512 bits.

• Embedding degree: 2.

• Dlog security: 1024 bits.

Besides the above mentioned properties type A pairings have another unique property. With most
pairing types one cannot mix elements from groups G1 and G2, but this is possible for type A pairings
since these groups are the same for type A pairings, type A pairings are symmetric.

Pairings are initialised by first opening a parameter file and than initialising the pairing with the
initialised file pointer. Since the PBC library is written in C both the file opening and the pairing
initialisation have a C syntax instead of C++ syntax. The above mentioned initialisation is illustrated
in the figure below. Note that checks are omitted in the code snippet.

// open pairing parameters file

FILE *fp;

fp = fopen("a.param", "r");

// declare and initialise pairing

pairing_t pairing;

pairing_init_inp_str(pairing, fp);

Figure 17: Loading a parameter file and initialising a pairing

7.3. Implementation Overview

In this section an overview is given of the code design. The most important parts of the
implementation are given and discussed.

The system deals with different actors who all have their own tasks. In chapter 3 the different actions
and services have already been defined. These actors and the actions and services have been taken as
a basis for the code development. There are separate classes defined for the user and data manager
and for the users. The DSSP has been split in two classes, one for authentication and authorisation
purposes and one for the data server which stores the documents and performs the search operations.
As already mentioned only the search part of the algorithm is implemented and for this reason only
the indexes without the documents itself are stored on the data server.

Implementation

 - 53 -

When the program is started the different actors are initialised at first. The user and data manager
takes the pairing parameters and the generator g as input and sets up the system. Hereafter the access
control server at the DSSP performing authentication and authorisation is initialised. Then the data
server is initialised and the users are created. New users are created by the user and data manager by
passing the user id as a string and a reference of the access control server to store the complementary
search key. Every user is added to the user collection. A user is retrieved by a request with the user
identity (user name) to the user collection. Individual users are needed to perform the user actions
such as index and query generation since they store the user specific secret search key. The discussed
system initialisation procedure with the creation of two users is shown below in figure 17.

// initializing the user and data manager

UserManager udm(pairing, g);

// initializing access control server

AccessControlServer acs(pairing);

// initializing data server

DataServer ds;

// create users

Users usrs(pairing);

udm.AddUser(pairing, string("user1"), usrs, acs);

udm.AddUser(pairing, string("user2"), usrs, acs);

User u1 = usrs.GetUser(string("user1"));

User u2 = usrs.GetUser(string("user2"));

Figure 18: System initialisation

After retrieving the individual users, the indexes or queries can be constructed. To create an index the
matching keywords have to be specified. Relevant keywords are specified by their location in the
dictionary and passed as an integer array. The number of keywords is specified as well. To compute a
query the function ComputeQuery is called instead of ComputeIndex. The query computation
function takes the same input arguments. In figure 18 the function call to compute an index is shown.

// specify the keywords in the dictionary

int kws[3] = {0, 1, 2};

// user1 computes an index

vector<basic_string<unsigned char> > index =u1.ComputeIndex(pairing,kws,3);

Figure 19: Index computation function call

The actual computations to construct an index are shown in figure 19. At first the required elements
are initialised. There are four different element groups defined: the groups of elements which will be
paired G1 and G2, the group of paired elements GT and the group of random numbers of order r Zr.
Initialisation only sets the structure for the elements and does not assign a value to it.

Computation of the additional information is simply done by generating a random number s (the
blinding factor) and by multiplying this with the user’s secret search key. The remaining index terms
are generated by first checking if the keyword at the ith position is specified as a relevant keyword. If
this is the case a hash value is calculated from the keyword, otherwise a random number is generated
and hashed. To calculate the hash values the SHA1 algorithm, which is implemented in the Crypto++
library, is chosen. The resulting hash values are first mapped to an element of G2, in a deterministic
manner, and than blinded by an exponentiation with s. Finally, the elements are converted to bytes
and added to the index. The conversions from and to bytes are omitted in the code snipped in figure
19.

Implementation

 - 54 -

// initialise elements

element_init_Zr(s, pairing); // the blinding factor

element_init_Zr(usk, pairing); // x_u

element_init_Zr(index_0, pairing); // the additional information

element_init_G2(index_n, pairing); // the index terms

// generate a random blinding factor

element_random(s);

// blind the user's key by multiplying it with the blinding factor

element_mul(index_0, s, usk);

// construct the remaining index terms

for(int i = 0; i < dictionary.size(); i++) {

 if (Search(keywords, size, i)) { // matching keyword

 output = new unsigned char[CryptoPP::SHA1::DIGESTSIZE];

 ComputeHash(output, dictionary.at(i));

 } else { // irrelevant keyword, hash a random nr

 char num[33];

 itoa(rand(), num, 10);

 output = new unsigned char[CryptoPP::SHA1::DIGESTSIZE];

 ComputeHash(output, num);

 }

 // map hash value into an element of G2

 element_from_hash(index_n, output, CryptoPP::SHA1::DIGESTSIZE);

 element_pow_zn(index_n, index_n, s);

 // after conversion to bytes (omitted) add the value to the index

 index.push_back(byte_element);

}

Figure 20: Index generation

Computations of queries are very similar; the additional information is calculated in the exact same
way. The second query term is computed by first calculating the hash values of the specified
keywords. These hash values are then multiplied and blinded by an exponentiation with the blinding
factor.

The hashes produced with SHA1 have a length of 160 bits or 20 bytes. A representation of the hash
value in G2 converted to bytes has a length of 128 bytes. In chapter 4 it was mentioned that an empty
word 2003 document is 19.968 bytes large which means that 155 keywords can be stored in the space
required for an empty word 2003 document. The PBC library provides compression functions to
reduce the required storage space. Before the data is actually compressed the length of the compressed
representation can be requested. The size of a compressed element is 65 bytes, which is almost half its
size. Unfortunately, the compression function has not yet been implemented for type A pairings.

Once the queries and indexes are computed they can be submitted to the DSSP who first performs the
authentication and authorisation computations. After authentication and authorisation the document or
in this case only the index can be stored on the data server. The authentication and authorisation
mechanism for indexes and queries is exactly the same. The function calls are given in figure 20.

// submit the document to the DSSP for authentication and authorisation

acs.Transform(index, "user1", pairing);

// store the document (index) on the data server

ds.StoreDocument(index);

Figure 21: Authentication and authorisation and document storage

Implementation

 - 55 -

The authentication and authorisation computations are simple. First, the required elements are
initialised where after the complementary search key belonging to the supplied user identity is found.
The actual authentication and authorisation computation is than only involved with one
exponentiation. Finally, the new additional information is converted back to bytes. A code snippet of
the authentication and authorisation procedure is given in figure 21.

// initialise the required elements

element_init_G1(comp_sk, pairing); // the complementary search key

element_init_G1(t_input_0, pairing); // new additional information

element_init_Zr(input_0, pairing); // reconstructed additional information

// find and reconstruct the user’s complementary search key

element_from_bytes(comp_sk, (unsigned char*)Credentials.find(user_id)-

>second.data());

// reconstruct the additional information

element_from_bytes(input_0, (unsigned char*)input.at(0).data());

// perform the authentication and authorisation computation

element_pow_zn(t_input_0, comp_sk, input_0);

Figure 22: Authentication and authorisation

Once a database of documents (in this case only indexes) is build up one can submit queries to search
for documents. The query execution function call takes a query after authentication and authorisation,
the pairing parameters, an integer array with the keyword positions in the index and the number of
keywords in the query. The function call for query execution is given in figure 22.

// execute an authenticated and authorised query on the data server

vector<int> result = ds.ExecuteQuery(query, pairing, mkws, size);

Figure 23: Query execution function call

When a query is received by the data server the query elements are reconstructed at first. With the
PBC library it is possible to pre-process elements from G1 since a lot of computations are repeated if
the same element is used multiple times. The additional information in the query is an element from
G1 which is used for every query. It makes thus sense to pre-process this information. The keyword(s)
value is an element from G2, but since type A pairings are used in the test program this can also be
treated as an element from G1 and thus be pre-processed as well to gain even faster query matching.
After pre-processing all documents (indexes) are iterated over. The additional information stored with
the indexes is reconstructed and the specified locations in the indexes are reconstructed and
multiplied. When all elements are in the correct format the pairing is applied. After the two pairing
operations it is checked if both results are equal to determine if a matching document is found. A code
snippet of the search operation, where only one element is pre-processed is given below in figure 23.

// reconstruct query elements

element_from_bytes(query0, (unsigned char*)query.at(0).data());

element_from_bytes(query1, (unsigned char*)query.at(1).data());

// pre-process the query0 element (additional information)

pairing_pp_init(pp_query0, query0, p);

// check all documents if it satisfies the query

vector<vector<basic_string<unsigned char> > >::iterator it;

int doc_nr(0);

for (it = Documents.begin(); it < Documents.end(); it++) {

 // reconstruct additional information

 element_from_bytes(index0, (unsigned char*)it->at(0).data());

Implementation

 - 56 -

 // retrieve and multiply the speciefied keyword locations

 for(int i = 0; i < kwsize; i++) {

 element_from_bytes(temp_i, (unsigned char*)it-

>at(keywords[i]+1).data());

 if (i == 0) element_set(index1, temp_i);

 else element_mul(index1, index1, temp_i);

 }

 // apply the pairings

 pairing_apply(temp1, index0, query1, p);

 pairing_pp_apply(temp2, index1, pp_query0);

 // check for a matchs and add matching documents to the results

 if(element_cmp(temp1, temp2) == 0) result.push_back(doc_nr);

 doc_nr++;

}

Figure 24: The search process

In the code snippet given in figure 23 the numbers of the documents (id’s) are added to the results
instead of the actual documents. This is done since only the search part of the system is implemented
and there are only indexes stored at the data server. For the same reason the results are immediately
returned to the user and no decryption authentication and authorisation (proxy re-encryption) is
performed.

Since the library was written in a UNIX environment it requires some system components which are
not available in MinGW. That random numbers that are generated, used for the keys and the blinding
factors, use the /dev/urandom system component. Because this component is not available in
MinGW a deterministic number generator is used instead. Since the implementation is only to test the
practical performance this is not considered a problem.

7.4. Experimental Results

In this section the test results of the system’s practical performance are described. The system has
been decomposed in different actions whose performance is tested individually. At first client side
computations are considered. Index generation is discussed for several different index lengths and
with different numbers of specified keywords. Query generation performance is tested for different
amounts of specified keywords as well. Hereafter, the server side computations are considered. At
first the authentication and authorisation computations are timed. The search operation is tested for
different database sizes (number of stored documents) and with different queries. For the search tests
the timings are given with and without pre-processing of the query elements. Finally, the correctness
of the search algorithm is tested.

As already mentioned in the beginning of this chapter the program is developed under Windows and
for this reason test will be performed under Windows as well. The used laptop has an Intel® Core™ 2
T5600 CPU which runs at 1.83 GHz and has 2 GB RAM.

The PBC comes with benchmark programs to test its performance for the different pairing parameters
on the user’s machine. After running several tests the average pairing time is about 9 ms without pre-
processing and about 4 ms after pre-processing. The used timing function is not very accurate and
results vary a lot. For the tests in this section the QueryPerformanceCounter, which has a
much higher timing resolution, is used. The actual resolution depends on the system’s hardware. In
the code snippet in figure 24 one can see how the query performance counter is used.

Implementation

 - 57 -

// initialise timing variables

LARGE_INTEGER lFreq;

LARGE_INTEGER lStart, lEnd;

double duration;

// get the high resolution counter's accuracy

QueryPerformanceFrequency(&lFreq);

// start and stop the counter before and after code execution

QueryPerformanceCounter(&lStart);

/*

 * the code which has to be timed

 */

QueryPerformanceCounter(&lEnd);

// calculate the duration in ms

duration = (double(lEnd.QuadPart - lStart.QuadPart) / lFreq.QuadPart)*1000;

Figure 25: Query performance counter

Since the resolution of the query performance counter is hardware depend the resolution on the
current system is asked first. Just before the code of interest is executed the counter reads the current
value of the system’s counter. Right after execution of the interesting code the value of the system’s
counter is read again. The duration is now determined by calculating the difference of the counter
values which is divided by the system’s resolution. Since the result is in microseconds it is multiplied
by 1000 to get the duration in milliseconds.

When the program is started one can choose one of the several tests from the menu. There are test
specified to test the duration of index generation, query generation, authentication and authorisation
and searching. Besides the duration tests there also is a test defined the test the correctness of search
algorithm. In figure 25 one can see the test program and the test cases.

Figure 26: Test program

Every test listed in the menu one can see in figure 25 starts with a short explanation about the tests
that will be performed and start after a key stroke. The first tests measure the index generation
duration for different dictionary sizes. In the first test the dictionary contains only five keywords,
where the second and the third test have fifty and hundred keyword dictionaries respectively. All three

Implementation

 - 58 -

cases measure the index generation duration with different amounts of specified keywords to see if
one can see a time difference in hashing a keyword or generating and hashing a random number.

Dictionary size Keywords specified Duration Duration per keyword

1 keyword 129.8 ms 26.0 ms 5 keywords
4 keywords 129.8 ms 26.0 ms

1 keyword 1301.2 ms 26.0 ms
10 keywords 1300.2 ms 26.0 ms

50 keywords

25 keywords 1300.8 ms 26.0 ms

1 keyword 2600.7 ms 26.0 ms
10 keywords 2602.2 ms 26.0 ms

100 keywords

25 keywords 2600.1 ms 26.0 ms
Table 3: Index generation duration

For all eight test cases shown in table 3, there are five distinct users each generating two different
indexes. Also, every test has been performed ten times which means that the test results in the table
are the average values over 100 executions. From the results one can see that the amount of specified
keywords does not influence index generation duration. Every index starts with additional
information, the user’s secret search key multiplied with a random number, followed by the blinded
hash values. Since the average time per keyword is 26 ms in all cases the duration to calculate the
additional information is considered negligible. When comparing the index generation duration for
different amounts of specified keywords one can see that this does not influence the duration.

Besides indexes users generate queries as well. For this test a dictionary with fifty keywords is used of
which one, ten or twenty-five keywords are specified for query generation. Similar as with the index
generation tests there are five different users each generating two queries for all three test cases. The
results shown in table 4 are the averages of 100 executions, ten tests where ten queries are generated.

Number of queried keywords Duration Duration per keyword

1 keyword 26.0 ms 26.0 ms
10 keywords 189.5 ms 19.0 ms
25 keywords 462.1 ms 18.5 ms
Table 4: Query generation duration

Since queries have the same structure as indexes with the difference that only hash values are
calculated from the keywords that are of interest. For this reason and that hashing random numbers
does not take more time similar results are expected as for index generation. From table 4 one can see
that query generation with one specified keyword has the duration as expected. When more keywords
are specified, query computation becomes more efficient as the duration per keyword decreases. This
is because the most expensive operation, blinding (an exponentiation), is performed only once. The
hashed keywords are first multiplied before the resulting value is blinded.

Once an index or query is generated it is submitted to the DSSP for authentication and authorisation.
The procedure for indexes and queries is exactly the same. In both cases the only the first element, the
additional information, is taken and thus authentication and authorisation is independent on the
dictionary size or the amount of specified keywords. Similarly as in previous tests, there are five
different users each generating two indexes and two queries. Also, the tests are performed ten times
which means that both hundred indexes and queries are submitted to the DSSP. The results show that
the duration for index and query authentication and authorisation does not differ, which is as
expected. Authentication and authorisation consists of one exponentiation and takes only 7.9 ms.

The most interesting measurement is probably the system’s search speed. Before the tests can be
performed a database has to be set up. In this test a dictionary which contains 50 keywords is used.
Constructing a database which contains 250 documents (indexes) takes more than five minutes. For

Implementation

 - 59 -

this reason the databases are constructed only once and stored in a file. In this way the database of
interest can be loaded from a file at the beginning of a test. The queries are generated again for every
test. Similar as in previous tests there are five users each generating two queries for every database
size test and for every amount of specified keywords. To test the search speed three different
databases have been defined containing twenty-five, 100 and 250 documents. Also, measurements are
taken so see if the amount of specified keywords influences the search duration. To show the gains of
pre-processing, all queries are executed without pre-processing, with one element pre-processed and
with two elements pre-processed. Figure 26 shows the results of different search duration
measurements.

Figure 27: Search speed

The fist things one might see when observing figure 26 is that the search duration linearly depends on
the number of documents and that the duration of the search operation can roughly be halved when
both query elements are pre-processed. Queries that contain multiple keywords are only slightly
slower than queries with only one keyword; this is due to multiplication of the index terms. To get an
even better impression of the system’s performance the duration per document and the number of
documents that can be matched per second for different database sizes and queries with two pre-
processed elements are given in table 5.

Database size Queried Keywords Duration per document Documents per second

25 documents 1 keyword 9.0 ms 111.6

 10 keywords 9.4 ms 106.3

 25 keywords 10.1 ms 98.8

100 documents 1 keyword 8.5 ms 117.6
 10 keywords 8.9 ms 111.9
 25 keywords 9.7 ms 103.3

250 documents 1 keyword 8.4 ms 119.2
 10 keywords 8.8 ms 113.2
 25 keywords 9.6 ms 104.6
Table 5: Search speed with two pre-processed elements

From table 5 one can see that more than hundred documents can be matched per second and that the
search speed slightly increases with larger database sizes. This slight performance increase is because
the time needed to pre-process the two elements can be divided over more documents. Since the
search speed is (almost) linear to the number of documents it is possible to determine the amount of
time needed for a huge database which contains 10,000 documents. Let’s use the time per document
in the case where ten keywords are queried. The duration to query a large database containing 10,000

Implementation

 - 60 -

documents takes than about 88 seconds. In practical applications it is expected that the amount
average amount of keywords will be less then ten such that the search duration will be slightly shorter.

In figure 26 and table 5 the actual search time is considered without query generation and
authentication and authorisation. To get the time from specifying the keywords till receiving the
results in an actual implementation, query generation, authentication and authorisation and network
trip time has to be included as well. Marshalling and un-marshalling (converting to bytes and
recovering) time do not have to be added since the elements are already stored in and reconstructed
from byte format.

In the paper by Ateniese et al [1] one can see that proxy re-encryption takes 22.0 ms on a machine
with an AMD Athlon 2100+ 1.8 GHz processor. They have used a different cryptographic library to
implement their pairing operation which means that the results might differ from a version
implemented with the PBC library. The proxy re-encryption time is not considered a big problem
since normally only a small subset of the documents stored at the DSSP will be returned and each
document can be returned when finished re-encryption. A user will need much more time to evaluate
a document than time is needed to re-encrypt another document.

An efficient and fast search algorithm is important, but correct results are even more important and for
this reason a correctness test is performed. In the correctness test a database of 100 documents
(indexes) is used. There are twenty distinct indexes specified and all five users generate and submit an
index from these index specifications to come to a total of 100 documents. Index specifications
defined the matching keywords from the dictionary. Every index has ten specified keywords. To test
the correctness a total of twenty query specifications have been defined, containing one, two, three,
four or five distinct keywords. Three different users generate queries from every query specification.
Every query is tested without pre-processing and with one and with two pre-processed elements. This
means that every query is executed three times for all three users. In figure 27 one can see a part of
the output of the correctness test.

Figure 28: Output correctness test

In figure 27 one can see that the expected result for every query is printed first. Hereafter the results
of the nine query executions are printed. From the twenty distinct queries that are tested all results are
as expected. Due multiplication one might come to a term which is already available in the index, but
this has not happened. The correctness test is thus successfully passed.

Implementation

 - 61 -

7.5. Pointers to Further Improvements and Optimisation

In the previous section when the system’s practical performance was discussed one could see that
querying a very large database containing 10,000 documents takes about 88 seconds. This duration is
at least very inconvenient for a user. This section discusses several alternatives to increase the
system’s performance.

Searching is an operation which can easily be executed parallel since every document is matched is
individually. By parallelising the search operation huge improvements on the search time can be
achieved. Taking advantage of parallelising can be achieved in several ways. The most intuitive way
is to divide the database and thus the search operation over several servers. Advantages in new
hardware such as multi-core processors which allow for parallel execution can also greatly improve
the search speed. The latest Intel CPUs have six cores, but more cores can be expected since modern
GPUs (Graphical Processing Unit) by NVIDIA and Radeon already have ten cores [26]. With a
combination of the above two techniques by dividing over different servers and by using new (faster)
hardware it should be possible to increase the search speed by a factor ten.

Besides parallelising and using newer hardware one could also design or buy dedicated hardware. The
pairing operations make use of elliptic curves for which dedicated hardware is available. Shi et al
stated in their paper [29] that the Elliptic Semiconductor CLP-17 could reduce the exponentiation
time from 6.4 ms (a pairing without pre-processing takes 5.5 ms on their machine) to 30 �s.

Research on elliptic curves and optimising pairing operations have already decreased the pairing time
from several minutes to several milliseconds [22]. Future research might be able to further reduce the
pairing time. Research in hardware acceleration of the pairing operation, which is subject to academic
research as well, will also contribute to a further speed improvement.

Besides performance increase in the search operation it is possible to increase the index generation
performance as well. The index consists of blinded hash values of the specified keywords and blinded
hash values of a random number when the keyword at the position does not match. When hashing a
random number which is deterministically mapped in to an element of G2 a new random number is
obtained, this random element in G2 is than randomised again by blinding. The result of this, timely,
sequence of operations only leads to a random element in G2. By immediately drawing a random
element from G2, which should be indistinguishable from elements obtained by the current approach,
the index generation performance can be greatly increased.

7.6. Summary

In this chapter the implementation of the search algorithm discussed in the previous chapter is
described. At first details about the Windows programming environment, the GCC compiler, MinGW
and the used libraries are discussed. For the pairing operations the Pairing Based Crypto (PBC) library
is used and the Crypto++ library is used for the hash functionality.

After discussing the programming environment and the cryptographic libraries the pairing parameters
are discussed. The PBC library has some predefined pairing parameters of which the type A pairing
parameters are used. Type A pairings have the fastest pairing operation and have the advantage that
elements from G1 and G2 are the same group which means that all elements can be pre-processed to
increase the search speed.

In the implementation overview code snippets of the most important operations are given and
discussed. Also, the Query Performance Counter function used to measure the duration of the

Implementation

 - 62 -

different operations is discussed. Since the indexes add overhead the amount of overhead is measured
as well. Every index terms takes 128 bytes which means that approximately 150 keywords can be
stored to equal the size of an empty word 2003 document.

The computation of indexes is dependent on the size of the dictionary, but independent on the amount
of specified keywords, it takes about 26 ms per keyword. Query generation is dependent on the
amount of specified keywords, but faster than 26 ms per keywords since blinding is done at the end
instead of for every document as in index generation. Authentication and authorisation does not take
much time and takes about 7.9 ms.

The speed of the search operation is the most interesting measurement. Search time is measured for
different database sizes, with different amounts of specified keywords and without and with pre-
processing. When both query elements are pre-processed the search duration is roughly halved and
about 9 ms per document. The number of queried keywords leads to a very little time overhead.
Querying twenty-five keywords instead of one takes only 1 ms additional time per document.

In a final implementation test the correctness of the search algorithm is tested for different amounts of
specified keywords and with and without pre-processing. The results were always as expected which
meant the system functions correct.

In the final section some pointers are given to further improve the system’s speed. Parallel execution
such as dividing the database over servers can greatly increase the search time. Recent developments
on the CPU market show that processors contain more cores and are thus able to execute operations
parallel as well. Also, specified hardware can be used to increase the search speed.

The next chapter gives the conclusion of this thesis. It mentions the contributions to literature and
evaluates the results of this thesis and gives some directions to future research.

 - 63 -

8.

Conclusion and Future Work

In this chapter the results of this thesis are evaluated and discussed. The first section describes the
scientific contribution. Hereafter, in the second section, examples of other applications for searchable
encryption are shortly mentioned such as encrypted e-mail forwarding. Other applications are given to
get an idea of the relevance and applicability of searchable encryption.

In the conclusion section the developed system is evaluated based on the research goals as described
in section 1.2 and the requirements defined in section 3.3. It summarises both the achieved theoretical
and practical results and describes that there are two new schemes are developed of which the second
satisfies all requirements. The implementation of the second scheme shows that it is applicable in
small scale databases or where high security requirements are needed.

The final section gives some directions for future research to further improve the system as it was
developed in this work.

8.1. Scientific Contribution

Several attempts to construct a searchable encryption scheme have already been made. However, none
of these did completely satisfy the research goals and requirement as posed for this thesis. In this
thesis several contributions have been made in order to satisfy the research goals and requirements
posed for this thesis.

Before developing the actual algorithms, first a high level scene overview (general framework) was
constructed to identify important actions and services needed for a successful data storage outsourcing
scene. Literature has described keyword searchable encryption solutions, but has failed to describe a
general framework for data storage outsourcing including data and service management operations
and multi-user data encryption mechanisms. In this thesis a clear overview of the different actions and
services building blocks is given. Each of the building blocks is described and has its different
alternatives evaluated and discussed.

In this thesis two different searchable encryption schemes have been developed. The first is a very
efficient single keyword searchable encryption scheme which is more efficient than comparable
schemes. Searching is only based on equality checks. Drawback of this scheme is that the DSSP can
observe which documents have the same keyword since these are stored in a probabilistic format.

Conclusion and Future Work

 - 64 -

The second scheme is the first true multi user conjunctive searchable encryption scheme described in
literature. Other multi user conjunctive searchable encryption schemes are not truly multi-user since
they face limitations such as that only one user is allowed to add documents and that users can not
efficiently be revoked without key redistribution. The only other scheme that allows for efficient
revocation supports only single keyword search.

Also, there are no existing multi-user searchable encryption schemes known that support multi-user
data encryption. In this thesis this is achieved by combining the developed conjunctive searchable
encryption scheme with an already existing proxy re-encryption scheme.

In practical applications it is often required that groups of documents can only be accessed by a
limited group of users. There is no known multi-user conjunctive searchable encryption scheme that
supports this feature. In this thesis an extension is described that supports Role Based Access Control
(RBAC) to subgroups of documents with a very limited amount of overhead. This RBAC is available
for both the search part and the decryption part of the system.

In literature there are implementations described of range queries search techniques, but the papers
about keyword searchable encryption schemes read for this thesis did not describe an implementation.
This work is thus on of the first that describe an implementation of a multi user conjunctive
searchable encryption scheme.

8.2. Other Applications of Searchable Encryption

In this thesis a solution was developed for a secure data outsourcing application. For this reason it is
not surprisingly that the developed solution fits best in a secure database or a secure data outsourcing
setting. There are, however, other applications of searchable encryption that can be thought of. Since
searchable encryption is enabled by adding indexes to the data or by encrypting the data in a special
format, it can only work if all involved parties agree on the structure and protocol. First, some
applications of keywords searchable encryption are discussed; where after applications of range query
techniques are discussed. Most of the applications given in this section can also be found in the
literature read for this thesis.

Keyword searchable encryption can be applied in an e-mail forwarding setting. Based on, for
example, the subject of an e-mail it can be forwarded to a certain person. This can be used in
combination with proxy re-encryption. All e-mails should be sent to a company in encrypted format
under the company’s master public key. When the e-mail server receives the message it first checks to
whom the e-mail should be forwarded, based on keyword searching, and then re-encrypts the message
such that only the intended recipient can decrypt the message. With this application a company can
ensure that message is delivered to the right person in a secure way without having to publish his or e-
mail addresses of individual employees. Encrypted e-mail forwarding can also be used on a temporary
basis when an employee is on holiday and another employee should only be able to read selected
messages for example those that are marked with high priority.

Range queries can be applied to filter financial transactions or to selectively reveal parts of network or
financial audit logs. In contrast to keyword searchable encryption schemes range queries (or
trapdoors) are constructed to reveal the data when the query matches. With this construction one can
reveal a specified amount of information. When applied to filter a stream of financial transactions it
can be enabled to decrypt all transactions with a value of $1000 or more for further inspection.
Another application is to selectively reveal parts of a network or financial audit log. For example, in
case of a virus outbreak one can create a trapdoor that gives access to only the relevant parts of the
network audit log.

Conclusion and Future Work

 - 65 -

8.3. Conclusion

In the introduction of this thesis, in section 1.2, the research goal to develop a secure and efficient data
storage system was introduced. To support this goal a set of sub goals covering the system’s security
and confidentiality, the system’s manageability and the outsourcing aspect of the system have been
defined in the same section. In section 3.3 these research goals were formalised and a set of
requirements including functionality and efficiency requirements was listed. This section gives a final
conclusion and evaluates the developed system based on the requirements.

In this thesis report one could have seen that it is possible to successfully and securely outsource data
storage with conjunctive keyword search capabilities. The system supports multiple users and has
efficient user management. Also, it is possible to efficiently extend the system to support practical
requirements such as RBAC. Although the search time can be the bottleneck on large systems it is
still applicable for relatively small databases or for databases where security is more important than
search time. Also, there are several possibilities to optimise the search time to increase its practical
application.

The security and data confidentiality related requirements require that data confidentiality must be
ensured. To ensure this the data is stored in encrypted format under the master public key owned by
the user and data manager. The encrypted data is only available to authorised users and only after re-
encryption by the DSSP. Since the plaintext does not become visible during re-encryption, data
confidentiality is still ensured. Submitting queries inevitably reveals some information to the server,
but this information has to be minimised to the query itself and its outcome. The DSSP should not be
able to determine which keywords are queried. In the system in this thesis all index and query terms
are randomised and therefore the DSSP is unable to determine the keywords. By performing some
calculations it is only able to determine which documents (indexes) satisfy the query terms. In chapter
6 the system is proven theoretically secure as well. The developed system thus satisfies the security
and confidentiality requirements.

Since the data storage outsourcing system deals with a constantly changing set of users and data it
must be able to efficiently manage both users and the stored data. The developed system allows for
efficient user management due to the construction that it needs input from both the user and the DSSP
for an action without having the users share common secret keys. A new user can be enrolled by
generating new key material for both the user and the DSSP. Revoking users is achieved by simply
deleting the user’s key material from the DSSP. The user and data manager is able to perform data
management operations as well since it holds the master secret key under which all documents are
encrypted. It is also able to add new keywords and to remove obsolete keywords from the dictionary.
The manageability requirements are thus met by the developed system.

Since this system deals with data storage outsourcing it is clear that it requires that the actual data
storage is outsourced. This requirement is of course satisfied. The other outsourcing requirement tells
that as much tasks as possible needs to be outsourced as long as this does not harm the system’s
security. In traditional authentication and authorisation mechanisms control of the server means
access the system’s complete functionality. Since the DSSP should not be able to use the system’s
functionality and gain access to the information it stores traditional authentication and authorisation
can not be outsourced. In this system a different authentication and authorisation mechanism has been
developed in which full control of the server concerned with this operation does not mean that it can
use all of the system’s functionality or access to the stored data. This construction can thus
successfully be outsourced without harming the system’s security. User specific operations such as
index and query generation and encryption are not outsourced. Also, user and data management is not
outsourced since this would mean that the server can use the system’s complete functionality. The
defined outsourcing requirements are thus successfully met.

Conclusion and Future Work

 - 66 -

One of the most important functional requirements is search functionality. Besides single keyword
search, which is already available in multi user searchable encryption schemes, conjunctive (multiple)
keyword search should be available as well. In the first scheme only single keyword search is
available, but it is more efficient the currently available schemes. Although its efficiency it might be
vulnerable to statistical attacks since the indexes are not probabilistic. In the second scheme both
deficiencies are addressed to come to a system which has both conjunctive keyword search support
and probabilistic index storage. The system with most comparable functionality by Hwang et al [18]
needs three pairing operations per document. In the second scheme developed in this thesis only two
pairing operations per document are required. When comparing the index storage complexity one can
see that most solutions need an amount of space equal to the amount of keywords and one or two
terms of additional information for every document. This is similar to the amount of space
requirement for the second construction where the amount of space per document is the number of
keywords and one term of additional information. The search functionality as well as the decryption
functionality is available for all users enrolled to the system. In the additional functionality an
extension is described to support efficient Role Based Access Control (RBAC) to subgroups of
documents. It is possible to define groups of documents which can only be searched and decrypted by
users with a certain function or belonging to a specific group with very little overhead. Finally, the
second construction of the system is implemented to verify the correctness of the system and to test its
practical performance. All functionality and efficiency requirements are thus met.

The implementation results show the duration of different actions; index generation, query generation,
authentication and authorisation and searching. One could see that index generation can consume
quite some time. An index with 100 keywords takes about 2.6 s to be computed. In the pointers to
further improvement one could see that it is possible to decrease this time such that it depends mainly
on the number of specified keywords. Since index generation is something that is done only once per
document, this is not considered to be a serious issue. Query generation on the other hand is much
quicker. It depends on the number of specified keywords and takes less than half a second with twenty
five specified keywords. Authentication and authorisation is the quickest action and takes only 7.9 ms
and is independent of whether indexes or queries are considered. Querying the database is most
important to be efficient and fast. Without pre-processing it takes almost five seconds to query a
database with 250 documents. Fortunately, pre-processing is able to more than halve the search time
to a little over two seconds. With a realistic amount of five specified keywords approximately 115
documents can be searched per second. While this might fulfil the requirements for small databases it
is not fast enough for very large databases although further improvements and optimisations might
make this possible as well. By serialising over multiple servers and by using modern multi core
processors a huge performance gain could be achieved.

8.4. Future work

The system develop in this work is fully functional and can be applied in practical situations. This
does, however, not mean that there are no interesting subjects for future research. In this section some
directions to interesting future work or research are given.

An intuitive and straight forward direction to future research is further optimisation of the current
scheme. Optimisation can be achieved by diving deep into mathematics to find additional
optimisations or new and faster curve types for the pairing operation. Developing dedicated pairing
hardware will decrease the required computational time as well. Also, one can try to find a different
index construction which enables more efficient matching. Another improvement would be to find an
efficient matching technique that does not require specification of index locations.

When searching for a document one is often only interested in the latest submitted documents. Also, it
might be possible that multiple versions of the same or more or less the same document are stored at

Conclusion and Future Work

 - 67 -

the file repository or in a database. In such cases it will be beneficial if the submission date can be
included in the search terms. For some applications it might be possible to take the date the document
is submitted to the DSSP while for others custom dates might be required. An extension which adds
the possibility to search on dates is thus a valuable extension.

The way in which the system is constructed in this thesis the full documents always have to be
decrypted to see the actual contents. It might save time when an overview of short abstracts is
returned first. From this overview the user can request only the relevant documents. An approach that
can be taken is to include a short abstract of every document encrypted with a homomorphic
encryption scheme. The abstracts can than be added to each other such that it looks as one piece. In
the ideal case the homomorphic encryption scheme should also support proxy re-encryption.

A more advanced direction for future research is to support semantic searching. It might be possible
that the keywords in the dictionary can be divided in groups. For example, the general keyword
‘finance’ might cover the more specific keywords ‘annual report’ and ‘revenue’. It will be an
interesting future research subject to see if hierarchical solutions can support for faster course grained
and slower fine grained search. Also it might be interesting to see whether this can contribute to more
efficient index storage.

 - 69 -

Bibliography

[1] G. Ateniese, K. Fu, M. Green, S. Honenberger. Improved Proxy Re-encryption Schemes with
Applications to Secure Distributed Storage. ACM Transactions on Information and System

Security, Vol. 9, No. 1, Pages 1-30. February 2006.
[2] L. Ballard, S. Kamara,, F. Monrose. Achieving Efficient Conjunctive Keyword Searches over

Encrypted Data. ICICS, LNCS 3783, pp 414-426, Springer-Verlag. 2005
[3] F. Bao, R. Deng, X. Ding, Y. Yang. Private Query on Encrypted Data in Multi-user Setting.

ISPEC 2008, LNCS Vol. 4991, p. 71-85, Springer-Verlag. 2008.
[4] M. Blaze, G. Bleumer, M. Strauss. Divertible Protocols and Atomic Proxy Cryptography.

Advances in Cryptology - Eurocrypt ’98 LNCS. 1998.
[5] D. Boneh, Waters, B. Conjunctive, Subset, and Range Queries on Encrypted Data. Theory of

Cryptography Conference (TCC) LNCS 4392 Springer Verlag. 2007
[6] R. Brinkman. Searching in Encrypted Data. CTIT Ph.D. Thesis Series No. 07-98. 2007.
[7] J. Byun, D. Lee, J. Lim. Efficient Conjunctive Keyword Search on Encrypted Data Storage

System. EuroPKI 2006, LNCS Vol. 4043, pp. 184-1965, Springer-Verlag. 2006.
[8] R. Canetti, S. Honenberger. Chosen-Ciphertext Secure Proxy Re-Encryption. Proceedings of

the 14th ACM Conference on Computer and Communications Security. 2007.
[9] Y. Chang, M. Mitzenmacher. Privacy Preserving Keyword Searches on Remote Encrypted

Data. In Proceedings of ACNS ’05 LNCS Vol. 3531, pp442-445, Springer-Verlag. 2005.
[10] Crypto ++ Library 5.5.2. www.cryptopp.com. 2008
[11] R. Curtmola, J. Garay. S. Kamara, R. Ostrovsky. Searchable Symmetric Encryption:

Improved Definitions and Efficient Constructions. 2006.
[12] G. Danezis, C. Diaz, S. Faust, E. Käspar, C. Troncoso, B. Preneel. Efficient Negative

Databases from Cryptographic Hash Functions. ISC 2007, LNCS 4779, pp. 423-436,

Springer-Verlag. 2007
[13] R. Dutta, R. Barua, P. Sarkar. Pairing-Based Cryptographic Protocols: A Survey.

http://eprint.iacr.org/2004/064.pdf. 2004.
[14] Free Software Foundation (FSF). GCC, The GNU compiler collection. gcc.gnu.org. 2008
[15] Google. Google Scholar. http://scholar.google.nl. 2008, 2009.
[16] GMP. The GNU Multi Precision (GMP) Bignum Library. http://gmplib.org/. 2008
[17] J. Horwitz. A Survey of Broadcast Encryption.

http://math.scu.edu/~jhorwitz/pubs/broadcast.pdf. 2003.
[18] Y. H. Hwang, P. J. Lee. Public Key Encryption with Conjunctive Keyword Search and Its

Extension to a Multi-user System. Pairing 2007, LNCS 4575, pp 2-22, Springer Verlag. 2007.
[19] D.H. Lee, Y. J. Song, S. M. Lee, T. Y. Nam, J. S. Jang. How to Construct a New Encryption

Scheme Supporting Range Queries on Encrypted Database. 2007 International Conference on

Convergence Information Technology, IEEE Computer Society. 2007.
[20] B. Libert, D. Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy Re-encryption.

PCKS 2008, LNCS 4939, pp. 360-379. 2008.
[21] J. C. A. van der Lubbe. Basismethoden cryptograpfie. Delftse Universitaire Pers. 1997.
[22] B. Lynn. On the Implementation of Pairing-Based Cryptosystems. Phd dissertation, Stanford

University. 2008.
[23] B. Lynn. Pairing Based Crypto (PBC) Library. crypto.stanford.edu/pbc. 2008
[24] B. Lynn. PBC Library Manual 0.4.18. crypto.stanford.edu/pbc/manual.pdf. 2008
[25] MinGW. Minimalist GNU for Windows. www.mingw.org. 2008
[26] Multi-core. http://en.wikipedia.org/wiki/Multi-core. 2008
[27] Netbeans. Netbeans 6.1 IDE. www.netbeans.org. 2008
[28] EK. Ryu, T. Takagi. Efficient Conjunctive Keyword-Searchable Encryption. 21st

International Conference on Advanced Information Networking and Applications Workshops

(AINAW'07). 2007.

Bibliography

 - 70 -

[29] E. Shi, J. Bethencourt, T-H. H. Chan, D. Song, A. Perrig. Multi-Dimensional Range Query
over Encrypted Data (full). http://www.ece.cmu.edu/~dawnsong/papers/rangequery-full.pdf.
2007.

[30] D. Song, D. Wagner, A. Perrig. Practical Techniques for Searches on Encrypted Data. IEEE.
2000.

[31] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati. A Data Outsourcing
Architecture Combining Cryptography and Access Control. Proceedings of the 2007 ACM

workshop on Computer security architecture (CSAW’07). 2007.
[32] A. van Vliet. Data Leakage and its Prevention. Literature report, TU Delft. 2008.
[33] Wikipedia: Size Comparisons, http://en.wikipedia.org/wiki/Wikipedia:Size_comparisons.

2008

 - 71 -

Appendix A – Terms, Symbols and Notations

In the table below the terms, symbols and notations used in this report are summarised.

Notation Explanation

|�| Length or size of group �, usually number of items in the group or list
�(q, loc) = {u, id(aq)} Query and keyword locations with its submitter and search outcome
At = (a1, a2, …, at) Sequence of t query replies
CSK Complementary search key

CSKu Complementary search key for user u
CSK-list List of CSK’s stored at the DSSP

D Complete document collection
D’ Part of the document collection, e.g. query result

Du’ Part of the document collection with re-encrypted lockboxes for user u
d Plaintext document
d’ Encrypted document

DSSP Data storage service provider
h(�) Hash function

Ii The index of i’th document
id(d’) Document identifier

K Symmetric encryption key
k Security parameter
Lmpk Lockbox, symmetric key K encrypted with mpk

Loct = (loc1, loc2, …, loct) Sequence of t keyword(s) locations in the index specification
mpk, msk Master public key pair, master public key and master secret key

pku, sku User public key pair, public key and secret key for user u
PPT Probabilistic Polynomial Time

q Query after authentication and authorisation
Qt = (q1, q2, …, qt) Sequence of t queries
qu Query before authentication and authorisation issued by user u

RBAC Role Based Access Control
rku Re-encryption key for user u

Tt Trace, all information that can be obtained from observing the access
pattern

u User identifier
UA List authorised of users

UDM User and data manager
uq Query issuer
Vt View of the DSSP, all information the DSSP has access to, the contents

it stores and the access pattern
W Dictionary
Wt = (w1, w2, …, wt) Sequence of t query words
x Secret key of the user and data manager

xu Secret search key for user u

