
Secure Deletion of Data from Magnetic and
Solid-State Memory

Peter Gutmann

Department of Computer Science
University of Auckland

pgut001@cs.auckland.ac.nz

This paper was first published in the Sixth USENIX Security Symposium Proceedings, San
Jose, California, July 22-25, 1996

Abstract
With the use of increasingly sophisticated encryption systems, an attacker wishing to gain
access to sensitive data is forced to look elsewhere for information. One avenue of attack is
the recovery of supposedly erased data from magnetic media or random-access memory. This
paper covers some of the methods available to recover erased data and presents schemes to
make this recovery significantly more difficult.

1. Introduction
Much research has gone into the design of highly secure encryption systems intended to
protect sensitive information. However work on methods of securing (or at least safely
deleting) the original plaintext form of the encrypted data against sophisticated new analysis
techniques seems difficult to find. In the 1980's some work was done on the recovery of
erased data from magnetic media [1] [2] [3], but to date the main source of information is
government standards covering the destruction of data. There are two main problems with
these official guidelines for sanitizing media. The first is that they are often somewhat old and
may predate newer techniques for both recording data on the media and for recovering the
recorded data. For example most of the current guidelines on sanitizing magnetic media
predate the early-90's jump in recording densities, the adoption of sophisticated channel
coding techniques such as PRML, the use of magnetic force microscopy for the analysis of
magnetic media, and recent studies of certain properties of magnetic media recording such as
the behaviour of erase bands. The second problem with official data destruction standards is
that the information in them may be partially inaccurate in an attempt to fool opposing
intelligence agencies (which is probably why a great many guidelines on sanitizing media are
classified). By deliberately under-stating the requirements for media sanitization in publicly-
available guides, intelligence agencies can preserve their information-gathering capabilities
while at the same time protecting their own data using classified techniques.

This paper represents an attempt to analyse the problems inherent in trying to erase data from
magnetic disk media and random-access memory without access to specialised equipment,
and suggests methods for ensuring that the recovery of data from these media can be made as
difficult as possible for an attacker.

mailto:pgut001@cs.auckland.ac.nz

2. Methods of Recovery for Data stored on Magnetic
Media
Magnetic force microscopy (MFM) is a recent technique for imaging magnetization patterns
with high resolution and minimal sample preparation. The technique is derived from scanning
probe microscopy (SPM) and uses a sharp magnetic tip attached to a flexible cantilever placed
close to the surface to be analysed, where it interacts with the stray field emanating from the
sample. An image of the field at the surface is formed by moving the tip across the surface
and measuring the force (or force gradient) as a function of position. The strength of the
interaction is measured by monitoring the position of the cantilever using an optical
interferometer or tunnelling sensor.

Magnetic force scanning tunneling microscopy (STM) is a more recent variant of this
technique which uses a probe tip typically made by plating pure nickel onto a prepatterned
surface, peeling the resulting thin film from the substrate it was plated onto and plating it with
a thin layer of gold to minimise corrosion, and mounting it in a probe where it is placed at
some small bias potential (typically a few tenths of a nanoamp at a few volts DC) so that
electrons from the surface under test can tunnel across the gap to the probe tip (or vice versa).
The probe is scanned across the surface to be analysed as a feedback system continuously
adjusts the vertical position to maintain a constant current. The image is then generated in the
same way as for MFM [4] [5]. Other techniques which have been used in the past to analyse
magnetic media are the use of ferrofluid in combination with optical microscopes (which,
with gigabit/square inch recording density is no longer feasible as the magnetic features are
smaller than the wavelength of visible light) and a number of exotic techniques which require
significant sample preparation and expensive equipment. In comparison, MFM can be
performed through the protective overcoat applied to magnetic media, requires little or no
sample preparation, and can produce results in a very short time.

Even for a relatively inexperienced user the time to start getting images of the data on a drive
platter is about 5 minutes. To start getting useful images of a particular track requires more
than a passing knowledge of disk formats, but these are well-documented, and once the
correct location on the platter is found a single image would take approximately 2-10 minutes
depending on the skill of the operator and the resolution required. With one of the more
expensive MFM's it is possible to automate a collection sequence and theoretically possible to
collect an image of the entire disk by changing the MFM controller software.

There are, from manufacturers sales figures, several thousand SPM's in use in the field today,
some of which have special features for analysing disk drive platters, such as the vacuum
chucks for standard disk drive platters along with specialised modes of operation for magnetic
media analysis. These SPM's can be used with sophisticated programmable controllers and
analysis software to allow automation of the data recovery process. If commercially-available
SPM's are considered too expensive, it is possible to build a reasonably capable SPM for
about US$1400, using a PC as a controller [6].

Faced with techniques such as MFM, truly deleting data from magnetic media is very
difficult. The problem lies in the fact that when data is written to the medium, the write head
sets the polarity of most, but not all, of the magnetic domains. This is partially due to the
inability of the writing device to write in exactly the same location each time, and partially
due to the variations in media sensitivity and field strength over time and among devices.

In conventional terms, when a one is written to disk the media records a one, and when a zero
is written the media records a zero. However the actual effect is closer to obtaining a 0.95
when a zero is overwritten with a one, and a 1.05 when a one is overwritten with a one.
Normal disk circuitry is set up so that both these values are read as ones, but using specialised
circuitry it is possible to work out what previous "layers" contained. The recovery of at least
one or two layers of overwritten data isn't too hard to perform by reading the signal from the
analog head electronics with a high-quality digital sampling oscilloscope, downloading the
sampled waveform to a PC, and analysing it in software to recover the previously recorded
signal. What the software does is generate an "ideal" read signal and subtract it from what was
actually read, leaving as the difference the remnant of the previous signal. Since the analog
circuitry in a commercial hard drive is nowhere near the quality of the circuitry in the
oscilloscope used to sample the signal, the ability exists to recover a lot of extra information
which isn't exploited by the hard drive electronics (although with newer channel coding
techniques such as PRML (explained further on) which require extensive amounts of signal
processing, the use of simple tools such as an oscilloscope to directly recover the data is no
longer possible).

Using MFM, we can go even further than this. During normal readback, a conventional head
averages the signal over the track, and any remnant magnetization at the track edges simply
contributes a small percentage of noise to the total signal. The sampling region is too broad to
distinctly detect the remnant magnetization at the track edges, so that the overwritten data
which is still present beside the new data cannot be recovered without the use of specialised
techniques such as MFM or STM (in fact one of the "official" uses of MFM or STM is to
evaluate the effectiveness of disk drive servo-positioning mechanisms) [7]. Most drives are
capable of microstepping the heads for internal diagnostic and error recovery purposes
(typical error recovery strategies consist of rereading tracks with slightly changed data
threshold and window offsets and varying the head positioning by a few percent to either side
of the track), but writing to the media while the head is off-track in order to erase the remnant
signal carries too much risk of making neighbouring tracks unreadable to be useful (for this
reason the microstepping capability is made very difficult to access by external means).

These specialised techniques also allow data to be recovered from magnetic media long after
the read/write head of the drive is incapable of reading anything useful. For example one
experiment in AC erasure involved driving the write head with a 40 MHz square wave with
an initial current of 12 mA which was dropped in 2 mA steps to a final level of 2 mA in
successive passes, an order of magnitude more than the usual write current which ranges from
high microamps to low milliamps. Any remnant bit patterns left by this erasing process were
far too faint to be detected by the read head, but could still be observed using MFM [8].

Even with a DC erasure process, traces of the previously recorded signal may persist until the
applied DC field is several times the media coercivity [9].

Deviations in the position of the drive head from the original track may leave significant
portions of the previous data along the track edge relatively untouched. Newly written data,
present as wide alternating light and dark bands in MFM and STM images, are often
superimposed over previously recorded data which persists at the track edges. Regions where
the old and new data coincide create continuous magnetization between the two. However, if
the new transition is out of phase with the previous one, a few microns of erase band with no
definite magnetization are created at the juncture of the old and new tracks. The write field in
the erase band is above the coercivity of the media and would change the magnetization in
these areas, but its magnitude is not high enough to create new well- defined transitions. One

experiment involved writing a fixed pattern of all 1's with a bit interval of 2.5 µm, moving the
write head off-track by approximately half a track width, and then writing the pattern again
with a frequency slightly higher than that of the previously recorded track for a bit interval of
2.45 µm to create all possible phase differences between the transitions in the old and new
tracks. Using a 4.2 µm wide head produced an erase band of approximately 1 µm in width
when the old and new tracks were 180° out of phase, dropping to almost nothing when the
two tracks were in-phase. Writing data at a higher frequency with the original tracks bit
interval at 0.5 µm and the new tracks bit interval at 0.49 µm allows a single MFM image to
contain all possible phase differences, showing a dramatic increase in the width of the erase
band as the two tracks move from in-phase to 180° out of phase [10].

In addition, the new track width can exhibit modulation which depends on the phase
relationship between the old and new patterns, allowing the previous data to be recovered
even if the old data patterns themselves are no longer distinct. The overwrite performance also
depends on the position of the write head relative to the originally written track. If the head is
directly aligned with the track, overwrite performance is relatively good; as the head moves
offtrack, the performance drops markedly as the remnant components of the original data are
read back along with the newly-written signal. This effect is less noticeable as the write
frequency increases due to the greater attenuation of the field with distance [11].

When all the above factors are combined it turns out that each track contains an image of
everything ever written to it, but that the contribution from each "layer" gets progressively
smaller the further back it was made. Intelligence organisations have a lot of expertise in
recovering these palimpsestuous images.

3. Erasure of Data stored on Magnetic Media
The general concept behind an overwriting scheme is to flip each magnetic domain on the
disk back and forth as much as possible (this is the basic idea behind degaussing) without
writing the same pattern twice in a row. If the data was encoded directly, we could simply
choose the desired overwrite pattern of ones and zeroes and write it repeatedly. However,
disks generally use some form of run-length limited (RLL) encoding, so that the adjacent ones
won't be written. This encoding is used to ensure that transitions aren't placed too closely
together, or too far apart, which would mean the drive would lose track of where it was in the
data.

To erase magnetic media, we need to overwrite it many times with alternating patterns in
order to expose it to a magnetic field oscillating fast enough that it does the desired flipping of
the magnetic domains in a reasonable amount of time. Unfortunately, there is a complication
in that we need to saturate the disk surface to the greatest depth possible, and very high
frequency signals only "scratch the surface" of the magnetic medium. Disk drive
manufacturers, in trying to achieve ever-higher densities, use the highest possible frequencies,
whereas we really require the lowest frequency a disk drive can produce. Even this is still
rather high. The best we can do is to use the lowest frequency possible for overwrites, to
penetrate as deeply as possible into the recording medium.

The write frequency also determines how effectively previous data can be overwritten due to
the dependence of the field needed to cause magnetic switching on the length of time the field
is applied. Tests on a number of typical disk drive heads have shown a difference of up to 20
dB in overwrite performance when data recorded at 40 kFCI (flux changes per inch), typical
of recent disk drives, is overwritten with a signal varying from 0 to 100 kFCI. The best

average performance for the various heads appears to be with an overwrite signal of around
10 kFCI, with the worst performance being at 100 kFCI [12]. The track write width is also
affected by the write frequency - as the frequency increases, the write width decreases for
both MR and TFI heads. In [13] there was a decrease in write width of around 20% as the
write frequency was increased from 1 to 40 kFCI, with the decrease being most marked at the
high end of the frequency range. However, the decrease in write width is balanced by a
corresponding increase in the two side- erase bands so that the sum of the two remains nearly
constant with frequency and equal to the DC erase width for the head. The media coercivity
also affects the width of the write and erase bands, with their width dropping as the coercivity
increases (this is one of the explanations for the ever-increasing coercivity of newer, higher-
density drives).

To try to write the lowest possible frequency we must determine what decoded data to write
to produce a low-frequency encoded signal.

In order to understand the theory behind the choice of data patterns to write, it is necessary to
take a brief look at the recording methods used in disk drives. The main limit on recording
density is that as the bit density is increased, the peaks in the analog signal recorded on the
media are read at a rate which may cause them to appear to overlap, creating intersymbol
interference which leads to data errors. Traditional peak detector read channels try to reduce
the possibility of intersymbol interference by coding data in such a way that the analog signal
peaks are separated as far as possible. The read circuitry can then accurately detect the peaks
(actually the head itself only detects transitions in magnetisation, so the simplest recording
code uses a transition to encode a 1 and the absence of a transition to encode a 0. The
transition causes a positive/negative peak in the head output voltage (thus the name "peak
detector read channel"). To recover the data, we differentiate the output and look for the zero
crossings). Since a long string of 0's will make clocking difficult, we need to set a limit on the
maximum consecutive number of 0's. The separation of peaks is implemented as some form
of run-length-limited, or RLL, coding.

The RLL encoding used in most current drives is described by pairs of run-length limits (d, k),
where d is the minimum number of 0 symbols which must occur between each 1 symbol in
the encoded data, and k is the maximum. The parameters (d, k) are chosen to place adjacent
1's far enough apart to avoid problems with intersymbol interference, but not so far apart that
we lose synchronisation.

The grandfather of all RLL codes was FM, which wrote one user data bit followed by one
clock bit, so that a 1 bit was encoded as two transitions (1 wavelength) while a 0 bit was
encoded as one transition (« wavelength). A different approach was taken in modified FM
(MFM), which suppresses the clock bit except between adjacent 0's (the ambiguity in the use
of the term MFM is unfortunate. From here on it will be used to refer to modified FM rather
than magnetic force microscopy). Taking three example sequences 0000, 1111, and 1010,
these will be encoded as 0(1)0(1)0(1)0, 1(0)1(0)1(0)1, and 1(0)0(0)1(0)0 (where the ()s are
the clock bits inserted by the encoding process). The maximum time between 1 bits is now
three 0 bits (so that the peaks are no more than four encoded time periods apart), and there is
always at least one 0 bit (so that the peaks in the analog signal are at least two encoded time
periods apart), resulting in a (1,3) RLL code. (1,3) RLL/MFM is the oldest code still in
general use today, but is only really used in floppy drives which need to remain backwards-
compatible.

These constraints help avoid intersymbol interference, but the need to separate the peaks
reduces the recording density and therefore the amount of data which can be stored on a disk.
To increase the recording density, MFM was gradually replaced by (2,7) RLL (the original
"RLL" format), and that in turn by (1,7) RLL, each of which placed less constraints on the
recorded signal.

Using our knowledge of how the data is encoded, we can now choose which decoded data
patterns to write in order to obtain the desired encoded signal. The three encoding methods
described above cover the vast majority of magnetic disk drives. However, each of these has
several possible variants. With MFM, only one is used with any frequency, but the newest
(1,7) RLL code has at least half a dozen variants in use. For MFM with at most four bit times
between transitions, the lowest write frequency possible is attained by writing the repeating
decoded data patterns 1010 and 0101. These have a 1 bit every other "data" bit, and the
intervening "clock" bits are all 0. We would also like patterns with every other clock bit set to
1 and all others set to 0, but these are not possible in the MFM encoding (such "violations" are
used to generate special marks on the disk to identify sector boundaries). The best we can do
here is three bit times between transitions, which is generated by repeating the decoded
patterns 100100, 010010 and 001001. We should use several passes with these patterns, as
MFM drives are the oldest, lowest-density drives around (this is especially true for the very-
low-density floppy drives). As such, they are the easiest to recover data from with modern
equipment and we need to take the most care with them.

From MFM we jump to the next simplest case, which is (1,7) RLL. Although there can be as
many as 8 bit times between transitions, the lowest sustained frequency we can have in
practice is 6 bit times between transitions. This is a desirable property from the point of view
of the clock-recovery circuitry, and all (1,7) RLL codes seem to have this property. We now
need to find a way to write the desired pattern without knowing the particular (1,7) RLL code
used. We can do this by looking at the way the drives error-correction system works. The
error- correction is applied to the decoded data, even though errors generally occur in the
encoded data. In order to make this work well, the data encoding should have limited error
amplification, so that an erroneous encoded bit should affect only a small, finite number of
decoded bits.

Decoded bits therefore depend only on nearby encoded bits, so that a repeating pattern of
encoded bits will correspond to a repeating pattern of decoded bits. The repeating pattern of
encoded bits is 6 bits long. Since the rate of the code is 2/3, this corresponds to a repeating
pattern of 4 decoded bits. There are only 16 possibilities for this pattern, making it feasible to
write all of them during the erase process. So to achieve good overwriting of (1,7) RLL disks,
we write the patterns 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010,
1011, 1100, 1101, 1110, and 1111. These patterns also conveniently cover two of the ones
needed for MFM overwrites, although we should add a few more iterations of the MFM-
specific patterns for the reasons given above.

Finally, we have (2,7) RLL drives. These are similar to MFM in that an eight-bit-time signal
can be written in some phases, but not all. A six-bit-time signal will fill in the remaining
cracks. Using a « encoding rate, an eight-bit-time signal corresponds to a repeating pattern of
4 data bits. The most common (2,7) RLL code is shown below:

The most common (2,7) RLL Code

Decoded Data (2,7) RLL Encoded Data

00 1000

01 0100

100 001000

101 100100

111 000100

1100 00001000

1101 00100100

The second most common (2,7) RLL code is the same but with the "decoded data"
complemented, which doesn't alter these patterns. Writing the required encoded data can be
achieved for every other phase using patterns of 0x33, 0x66, 0xCC and 0x99, which are
already written for (1,7) RLL drives.

Six-bit-time patterns can be written using 3-bit repeating patterns. The all-zero and all-one
patterns overlap with the (1,7) RLL patterns, leaving six others:

 001001001001001001001001
 2 4 9 2 4 9

in binary or 0x24 0x92 0x49, 0x92 0x49 0x24 and 0x49 0x24 0x92 in hex, and
 011011011011011011011011
 6 D B 6 D B

in binary or 0x6D 0xB6 0xDB, 0xB6 0xDB 0x6D and 0xDB 0x6D 0xB6 in hex. The first
three are the same as the MFM patterns, so we need only three extra patterns to cover (2,7)
RLL drives.

Although (1,7) is more popular in recent (post-1990) drives, some older hard drives do still
use (2,7) RLL, and with the ever-increasing reliability of newer drives it is likely that they
will remain in use for some time to come, often being passed down from one machine to
another. The above three patterns also cover any problems with endianness issues, which
weren't a concern in the previous two cases, but would be in this case (actually, thanks to the
strong influence of IBM mainframe drives, everything seems to be uniformly big-endian
within bytes, with the most significant bit being written to the disk first).

The latest high-density drives use methods like Partial-Response Maximum-Likelihood
(PRML) encoding, which may be roughly equated to the trellis encoding done by V.32
modems in that it is effective but computationally expensive. PRML codes are still RLL
codes, but with somewhat different constraints. A typical code might have (0,4,4) constraints
in which the 0 means that 1's in a data stream can occur right next to 0's (so that peaks in the
analog readback signal are not separated), the first 4 means that there can be no more than
four 0's between 1's in a data stream, and the second 4 specifies the maximum number of 0's
between 1's in certain symbol subsequences. PRML codes avoid intersymbol influence errors
by using digital filtering techniques to shape the read signal to exhibit desired frequency and
timing characteristics (this is the "partial response" part of PRML) followed by maximum-
likelihood digital data detection to determine the most likely sequence of data bits that was
written to the disk (this is the "maximum likelihood" part of PRML). PRML channels achieve
the same low bit error rate as standard peak-detection methods, but with much higher
recording densities, while using the same heads and media. Several manufacturers are

currently engaged in moving their peak-detection-based product lines across to PRML, giving
a 30-40% density increase over standard RLL channels [14].

Since PRML codes don't try to separate peaks in the same way that non-PRML RLL codes
do, all we can do is to write a variety of random patterns because the processing inside the
drive is too complex to second- guess. Fortunately, these drives push the limits of the
magnetic media much more than older drives ever did by encoding data with much smaller
magnetic domains, closer to the physical capacity of the magnetic media (the current state of
the art in PRML drives has a track density of around 6700 TPI (tracks per inch) and a data
recording density of 170 kFCI, nearly double that of the nearest (1,7) RLL equivalent. A
convenient side-effect of these very high recording densities is that a written transition may
experience the write field cycles for successive transitions, especially at the track edges where
the field distribution is much broader [15]. Since this is also where remnant data is most likely
to be found, this can only help in reducing the recoverability of the data). If these drives
require sophisticated signal processing just to read the most recently written data, reading
overwritten layers is also correspondingly more difficult. A good scrubbing with random data
will do about as well as can be expected.

We now have a set of 22 overwrite patterns which should erase everything, regardless of the
raw encoding. The basic disk eraser can be improved slightly by adding random passes before
and after the erase process, and by performing the deterministic passes in random order to
make it more difficult to guess which of the known data passes were made at which point. To
deal with all this in the overwrite process, we use the sequence of 35 consecutive writes
shown below:

Overwrite Data

Pass No. Data Written Encoding Scheme Targeted

1 Random

2 Random

3 Random

4 Random

5 01010101 01010101 01010101 0x55 (1,7) RLL MFM

6 10101010 10101010 10101010 0xAA (1,7) RLL MFM

7 10010010 01001001 00100100 0x92 0x49 0x24 (2,7) RLL MFM

8 01001001 00100100 10010010 0x49 0x24 0x92 (2,7) RLL MFM

9 00100100 10010010 01001001 0x24 0x92 0x49 (2,7) RLL MFM

10 00000000 00000000 00000000 0x00 (1,7) RLL (2,7) RLL

11 00010001 00010001 00010001 0x11 (1,7) RLL

12 00100010 00100010 00100010 0x22 (1,7) RLL

13 00110011 00110011 00110011 0x33 (1,7) RLL (2,7) RLL

14 01000100 01000100 01000100 0x44 (1,7) RLL

15 01010101 01010101 01010101 0x55 (1,7) RLL MFM

16 01100110 01100110 01100110 0x66 (1,7) RLL (2,7) RLL

17 01110111 01110111 01110111 0x77 (1,7) RLL

18 10001000 10001000 10001000 0x88 (1,7) RLL

19 10011001 10011001 10011001 0x99 (1,7) RLL (2,7) RLL

20 10101010 10101010 10101010 0xAA (1,7) RLL MFM

21 10111011 10111011 10111011 0xBB (1,7) RLL

22 11001100 11001100 11001100 0xCC (1,7) RLL (2,7) RLL

23 11011101 11011101 11011101 0xDD (1,7) RLL

24 11101110 11101110 11101110 0xEE (1,7) RLL

25 11111111 11111111 11111111 0xFF (1,7) RLL (2,7) RLL

26 10010010 01001001 00100100 0x92 0x49 0x24 (2,7) RLL MFM

27 01001001 00100100 10010010 0x49 0x24 0x92 (2,7) RLL MFM

28 00100100 10010010 01001001 0x24 0x92 0x49 (2,7) RLL MFM

29 01101101 10110110 11011011 0x6D 0xB6 0xDB (2,7) RLL

30 10110110 11011011 01101101 0xB6 0xDB 0x6D (2,7) RLL

31 11011011 01101101 10110110 0xDB 0x6D 0xB6 (2,7) RLL

32 Random

33 Random

34 Random

35 Random

The MFM-specific patterns are repeated twice because MFM drives have the lowest density
and are thus particularly easy to examine. The deterministic patterns between the random
writes are permuted before the write is performed, to make it more difficult for an opponent to
use knowledge of the erasure data written to attempt to recover overwritten data (in fact we
need to use a cryptographically strong random number generator to perform the permutations
to avoid the problem of an opponent who can read the last overwrite pass being able to predict
the previous passes and "echo cancel" passes by subtracting the known overwrite data).

If the device being written to supports caching or buffering of data, this should be disabled to
ensure that physical disk writes are performed for each pass instead of everything but the last
pass being lost in the buffering. For example physical disk access can be forced during SCSI-
2 Group 1 write commands by setting the Force Unit Access bit in the SCSI command block
(although at least one popular drive has a bug which causes all writes to be ignored when this
bit is set - remember to test your overwrite scheme before you deploy it). Another
consideration which needs to be taken into account when trying to erase data through software
is that drives conforming to some of the higher-level protocols such as the various SCSI
standards are relatively free to interpret commands sent to them in whichever way they
choose (as long as they still conform to the SCSI specification). Thus some drives, if sent a
FORMAT UNIT command may return immediately without performing any action, may

simply perform a read test on the entire disk (the most common option), or may actually write
data to the disk (the SCSI- 2 standard includes an initialization pattern (IP) option for the
FORMAT UNIT command, however this is not necessarily supported by existing drives).

If the data is very sensitive and is stored on floppy disk, it can best be destroyed by removing
the media from the disk liner and burning it, or by burning the entire disk, liner and all (most
floppy disks burn remarkably well - albeit with quantities of oily smoke - and leave very little
residue).

4. Other Methods of Erasing Magnetic Media
The previous section has concentrated on erasure methods which require no specialised
equipment to perform the erasure. Alternative means of erasing media which do require
specialised equipment are degaussing (a process in which the recording media is returned to
its initial state) and physical destruction. Degaussing is a reasonably effective means of
purging data from magnetic disk media, and will even work through most drive cases
(research has shown that the aluminium housings of most disk drives attenuate the degaussing
field by only about 2 dB [16]).

The switching of a single-domain magnetic particle from one magnetization direction to
another requires the overcoming of an energy barrier, with an external magnetic field helping
to lower this barrier. The switching depends not only on the magnitude of the external field,
but also on the length of time for which it is applied. For typical disk drive media, the short-
term field needed to flip enough of the magnetic domains to be useful in recording a signal is
about 1/3 higher than the coercivity of the media (the exact figure varies with different media
types) [17].

However, to effectively erase a medium to the extent that recovery of data from it becomes
uneconomical requires a magnetic force of about five times the coercivity of the medium [18],
although even small external magnetic fields are sufficient to upset the normal operation of a
hard disk (typically a few gauss at DC, dropping to a few milligauss at 1 MHz). Coercivity
(measured in Oersteds, Oe) is a property of magnetic material and is defined as the amount of
magnetic field necessary to reduce the magnetic induction in the material to zero - the higher
the coercivity, the harder it is to erase data from a medium. Typical figures for various types
of magnetic media are given below:

Typical Media Coercivity Figures

Medium Coercivity

5.25" 360K floppy disk 300 Oe

5.25" 1.2M floppy disk 675 Oe

3.5" 720K floppy disk 300 Oe

3.5" 1.44M floppy disk 700 Oe

3.5" 2.88M floppy disk 750 Oe

3.5" 21M floptical disk 750 Oe

Older (1980's) hard disks 900-1400 Oe

Newer (1990's) hard disks 1400-2200 Oe

1/2" magnetic tape 300 Oe

1/4" QIC tape 550 Oe

8 mm metallic particle tape 1500 Oe

DAT metallic particle tape 1500 Oe

US Government guidelines class tapes of 350 Oe coercivity or less as low-energy or Class I
tapes and tapes of 350-750 Oe coercivity as high-energy or Class II tapes. Degaussers are
available for both types of tapes. Tapes of over 750 Oe coercivity are referred to as Class III,
with no known degaussers capable of fully erasing them being known [19], since even the
most powerful commercial AC degausser cannot generate the recommended 7,500 Oe needed
for full erasure of a typical DAT tape currently used for data backups.

Degaussing of disk media is somewhat more difficult - even older hard disks generally have a
coercivity equivalent to Class III tapes, making them fairly difficult to erase at the outset.
Since manufacturers rate their degaussers in peak gauss and measure the field at a certain
orientation which may not be correct for the type of medium being erased, and since
degaussers tend to be rated by whether they erase sufficiently for clean rerecording rather than
whether they make the information impossible to recover, it may be necessary to resort to
physical destruction of the media to completely sanitise it (in fact since degaussing destroys
the sync bytes, ID fields, error correction information, and other paraphernalia needed to
identify sectors on the media, thus rendering the drive unusable, it makes the degaussing
process mostly equivalent to physical destruction). In addition, like physical destruction, it
requires highly specialised equipment which is expensive and difficult to obtain (one example
of an adequate degausser was the 2.5 MW Navy research magnet used by a former Pentagon
site manager to degauss a 14" hard drive for 1« minutes. It bent the platters on the drive and
probably succeeded in erasing it beyond the capabilities of any data recovery attempts [20]).

5. Further Problems with Magnetic Media
A major issue which cannot be easily addressed using any standard software-based overwrite
technique is the problem of defective sector handling. When the drive is manufactured, the
surface is scanned for defects which are added to a defect list or flaw map. If further defects,
called grown defects, occur during the life of the drive, they are added to the defect list by the
drive or by drive management software. There are several techniques which are used to mask
the defects in the defect list. The first, alternate tracks, moves data from tracks with defects to
known good tracks. This scheme is the simplest, but carries a high access cost, as each read
from a track with defects requires seeking to the alternate track and a rotational latency delay
while waiting for the data location to appear under the head, performing the read or write,
and, if the transfer is to continue onto a neighbouring track, seeking back to the original
position. Alternate tracks may be interspersed among data tracks to minimise the seek time to
access them.

A second technique, alternate sectors, allocates alternate sectors at the end of the track to
minimise seeks caused by defective sectors. This eliminates the seek delay, but still carries
some overhead due to rotational latency. In addition it reduces the usable storage capacity by
1-3%.

A third technique, inline sector sparing, again allocates a spare sector at the end of each track,
but resequences the sector ID's to skip the defective sector and include the spare sector at the
end of the track, in effect pushing the sectors past the defective one towards the end of the
track. The associated cost is the lowest of the three, being one sector time to skip the defective
sector [21].

The handling of mapped-out sectors and tracks is an issue which can't be easily resolved
without the cooperation of hard drive manufacturers. Although some SCSI and IDE hard
drives may allow access to defect lists and even to mapped-out areas, this must be done in a
highly manufacturer- and drive-specific manner. For example the SCSI-2 READ DEFECT
DATA command can be used to obtain a list of all defective areas on the drive. Since SCSI
logical block numbers may be mapped to arbitrary locations on the disk, the defect list is
recorded in terms of heads, tracks, and sectors. As all SCSI device addressing is performed in
terms of logical block numbers, mapped-out sectors or tracks cannot be addressed. The only
reasonably portable possibility is to clear various automatic correction flags in the read-write
error recovery mode page to force the SCSI device to report read/write errors to the user
instead of transparently remapping the defective areas. The user can then use the READ
LONG and WRITE LONG commands (which allow access to sectors and extra data even in
the presence of read/write errors), to perform any necessary operations on the defective areas,
and then use the REASSIGN BLOCKS command to reassign the defective sections. However
this operation requires an in-depth knowledge of the operation of the SCSI device and
extensive changes to disk drivers, and more or less defeats the purpose of having an
intelligent peripheral.

The ANSI X3T-10 and X3T-13 subcommittees are currently looking at creating new
standards for a Universal Security Reformat command for IDE and SCSI hard disks which
will address these issues. This will involve a multiple-pass overwrite process which covers
mapped-out disk areas with deliberate off-track writing. Many drives available today can be
modified for secure erasure through a firmware upgrade, and once the new firmware is in
place the erase procedure is handled by the drive itself, making unnecessary any interaction
with the host system beyond the sending of the command which begins the erase process.

Long-term ageing can also have a marked effect on the erasability of magnetic media. For
example, some types of magnetic tape become increasingly difficult to erase after being
stored at an elevated temperature or having contained the same magnetization pattern for a
considerable period of time [22]. The same applies for magnetic disk media, with decreases in
erasability of several dB being recorded [23]. The erasability of the data depends on the
amount of time it has been stored on the media, not on the age of the media itself (so that, for
example, a five-year-old freshly-written disk is no less erasable than a new freshly-written
disk).

The dependence of media coercivity on temperature can affect overwrite capability if the data
was initially recorded at a temperature where the coercivity was low (so that the recorded
pattern penetrated deep into the media), but must be overwritten at a temperature where the
coercivity is relatively high. This is important in hard disk drives, where the temperature
varies depending on how long the unit has been used and, in the case of drives with power-
saving features enabled, how recently and frequently it has been used. However the overwrite
performance depends not only on temperature-dependent changes in the media, but also on
temperature-dependent changes in the read/write head. Thankfully the combination of the
most common media used in current drives with various common types of read/write heads
produce a change in overwrite performance of only a few hundredths of a decibel per degree

over the temperature range -40°C to + 40°C, as changes in the head compensate for changes
in the media [24].

Another issue which needs to be taken into account is the ability of most newer storage
devices to recover from having a remarkable amount of damage inflicted on them through the
use of various error-correction schemes. As increasing storage densities began to lead to
multiple-bit errors, manufacturers started using sophisticated error-correction codes (ECC's)
capable of correcting multiple error bursts. A typical drive might have 512 bytes of data, 4
bytes of CRC, and 11 bytes of ECC per sector. This ECC would be capable of correcting
single burst errors of up to 22 bits or double burst errors of up to 11 bits, and can detect a
single burst error of up to 51 bits or three burst errors of up to 11 bits in length [25]. Another
drive manufacturer quotes the ability to correct up to 120 bits, or up to 32 bits on the fly,
using 198-bit Reed-Solomon ECC [26]. Therefore even if some data is reliably erased, it may
be possible to recover it using the built-in error-correction capabilities of the drive.
Conversely, any erasure scheme which manages to destroy the ECC information (for example
through the use of the SCSI-2 WRITE LONG command which can be used to write to areas
of a disk sector outside the normal data areas) stands a greater chance of making the data
unrecoverable.

6. Sidestepping the Problem
The easiest way to solve the problem of erasing sensitive information from magnetic media is
to ensure that it never gets to the media in the first place. Although not practical for general
data, it is often worthwhile to take steps to keep particularly important information such as
encryption keys from ever being written to disk. This would typically happen when the
memory containing the keys is paged out to disk by the operating system, where they can then
be recovered at a later date, either manually or using software which is aware of the in-
memory data format and can locate it automatically in the swap file (for example there exists
software which will search the Windows swap file for keys from certain DOS encryption
programs). An even worse situation occurs when the data is paged over a network, allowing
anyone with a packet sniffer or similar tool on the same subnet to observe the information (for
example there exists software which will monitor and even alter NFS traffic on the fly which
could be modified to look for known in-memory data patterns moving to and from a
networked swap disk [27]).

To solve these problems the memory pages containing the information can be locked to
prevent them from being paged to disk or transmitted over a network. This approach is taken
by at least one encryption library, which allocates all keying information inside protected
memory blocks visible to the user only as opaque handles, and then optionally locks the
memory (provided the underlying OS allows it) to prevent it from being paged [28]. The exact
details of locking pages in memory depend on the operating system being used. Many Unix
systems now support the mlock()/munlock() calls or have some alternative mechanism
hidden among the mmap()-related functions which can be used to lock pages in memory.
Unfortunately these operations require superuser privileges because of their potential impact
on system performance if large ranges of memory are locked. Other systems such as
Microsoft Windows NT allow user processes to lock memory with the
VirtualLock()/VirtualUnlock() calls, but limit the total number of regions which can be
locked.

Most paging algorithms are relatively insensitive to having sections of memory locked, and
can even relocate the locked pages (since the logical to physical mapping is invisible to the

user), or can move the pages to a "safe" location when the memory is first locked. The main
effect of locking pages in memory is to increase the minimum working set size which, taken
in moderation, has little noticeable effect on performance. The overall effects depend on the
operating system and/or hardware implementations of virtual memory. Most Unix systems
have a global page replacement policy in which a page fault may be satisfied by any page
frame. A smaller number of operating systems use a local page replacement policy in which
pages are allocated from a fixed (or occasionally dynamically variable) number of page
frames allocated on a per- process basis. This makes them much more sensitive to the effects
of locking pages, since every locked page decreases the (finite) number of pages available to
the process. On the other hand it makes the system as a whole less sensitive to the effects of
one process locking a large number of pages. The main effective difference between the two
is that under a local replacement policy a process can only lock a small fixed number of pages
without affecting other processes, whereas under a global replacement policy the number of
pages a process can lock is determined on a system-wide basis and may be affected by other
processes.

In practice neither of these allocation strategies seem to cause any real problems. Although
any practical measurements are very difficult to perform since they vary wildly depending on
the amount of physical memory present, paging strategy, operating system, and system load,
in practice locking a dozen 1K regions of memory (which might be typical of a system on
which a number of users are running programs such as mail encryption software) produced no
noticeable performance degradation observable by system- monitoring tools. On machines
such as network servers handling large numbers of secure connections (for example an HTTP
server using SSL), the effects of locking large numbers of pages may be more noticeable.

7. Methods of Recovery for Data stored in Random-Access
Memory
Contrary to conventional wisdom, "volatile" semiconductor memory does not entirely lose its
contents when power is removed. Both static (SRAM) and dynamic (DRAM) memory retains
some information on the data stored in it while power was still applied. SRAM is particularly
susceptible to this problem, as storing the same data in it over a long period of time has the
effect of altering the preferred power-up state to the state which was stored when power was
removed. Older SRAM chips could often "remember" the previously held state for several
days. In fact, it is possible to manufacture SRAM's which always have a certain state on
power-up, but which can be overwritten later on - a kind of "writeable ROM".

DRAM can also "remember" the last stored state, but in a slightly different way. It isn't so
much that the charge (in the sense of a voltage appearing across a capacitance) is retained by
the RAM cells, but that the thin oxide which forms the storage capacitor dielectric is highly
stressed by the applied field, or is not stressed by the field, so that the properties of the oxide
change slightly depending on the state of the data. One thing that can cause a threshold shift
in the RAM cells is ionic contamination of the cell(s) of interest, although such contamination
is rarer now than it used to be because of robotic handling of the materials and because the
purity of the chemicals used is greatly improved. However, even a perfect oxide is subject to
having its properties changed by an applied field. When it comes to contaminants, sodium is
the most common offender - it is found virtually everywhere, and is a fairly small (and
therefore mobile) atom with a positive charge. In the presence of an electric field, it migrates
towards the negative pole with a velocity which depends on temperature, the concentration of
the sodium, the oxide quality, and the other impurities in the oxide such as dopants from the

processing. If the electric field is zero and given enough time, this stress tends to dissipate
eventually.

The stress on the cell is a cumulative effect, much like charging an RC circuit. If the data is
applied for only a few milliseconds then there is very little "learning" of the cell, but if it is
applied for hours then the cell will acquire a strong (relatively speaking) change in its
threshold. The effects of the stress on the RAM cells can be measured using the built-in self
test capabilities of the cells, which provide the ability to impress a weak voltage on a storage
cell in order to measure its margin. Cells will show different margins depending on how much
oxide stress has been present. Many DRAM's have undocumented test modes which allow
some normal I/O pin to become the power supply for the RAM core when the special mode is
active. These test modes are typically activated by running the RAM in a nonstandard
configuration, so that a certain set of states which would not occur in a normally-functioning
system has to be traversed to activate the mode. Manufacturers won't admit to such
capabilities in their products because they don't want their customers using them and
potentially rejecting devices which comply with their spec sheets, but have little margin
beyond that.

A simple but somewhat destructive method to speed up the annihilation of stored bits in
semiconductor memory is to heat it. Both DRAM's and SRAM's will lose their contents a lot
more quickly at Tjunction = 140°C than they will at room temperature. Several hours at this
temperature with no power applied will clear their contents sufficiently to make recovery
difficult. Conversely, to extend the life of stored bits with the power removed, the temperature
should be dropped below -60°C. Such cooling should lead to weeks, instead of hours or days,
of data retention.

8. Erasure of Data stored in Random-Access Memory
Simply repeatedly overwriting the data held in DRAM with new data isn't nearly as effective
as it is for magnetic media. The new data will begin stressing or relaxing the oxide as soon as
it is written, and the oxide will immediately begin to take a "set" which will either reinforce
the previous "set" or will weaken it. The greater the amount of time that new data has existed
in the cell, the more the old stress is "diluted", and the less reliable the information extraction
will be. Generally, the rates of change due to stress and relaxation are in the same order of
magnitude. Thus, a few microseconds of storing the opposite data to the currently stored value
will have little effect on the oxide. Ideally, the oxide should be exposed to as much stress at
the highest feasible temperature and for as long as possible to get the greatest "erasure" of the
data. Unfortunately if carried too far this has a rather detrimental effect on the life expectancy
of the RAM.

Therefore the goal to aim for when sanitising memory is to store the data for as long as
possible rather than trying to change it as often as possible. Conversely, storing the data for as
short a time as possible will reduce the chances of it being "remembered" by the cell. Based
on tests on DRAM cells, a storage time of one second causes such a small change in threshold
that it probably isn't detectable. On the other hand, one minute is probably detectable, and 10
minutes is certainly detectable.

The most practical solution to the problem of DRAM data retention is therefore to constantly
flip the bits in memory to ensure that a memory cell never holds a charge long enough for it to
be "remembered". While not practical for general use, it is possible to do this for small
amounts of very sensitive data such as encryption keys. This is particularly advisable where

keys are stored in the same memory location for long periods of time and control access to
large amounts of information, such as keys used for transparent encryption of files on disk
drives. The bit-flipping also has the convenient side-effect of keeping the page containing the
encryption keys at the top of the queue maintained by the system's paging mechanism, greatly
reducing the chances of it being paged to disk at some point.

9. Conclusion
Data overwritten once or twice may be recovered by subtracting what is expected to be read
from a storage location from what is actually read. Data which is overwritten an arbitrarily
large number of times can still be recovered provided that the new data isn't written to the
same location as the original data (for magnetic media), or that the recovery attempt is carried
out fairly soon after the new data was written (for RAM). For this reason it is effectively
impossible to sanitise storage locations by simple overwriting them, no matter how many
overwrite passes are made or what data patterns are written. However by using the relatively
simple methods presented in this paper the task of an attacker can be made significantly more
difficult, if not prohibitively expensive.

Acknowledgments
The author would like to thank Nigel Bree, Peter Fenwick, Andy Hospodor, Kevin Martinez,
Colin Plumb, and Charles Preston for their advice and input during the preparation of this
paper.

References
[1] "Emergency Destruction of Information Storing Media", M.Slusarczuk et al, Institute for
Defense Analyses, December 1987.

[2] "A Guide to Understanding Data Remanence in Automated Information Systems",
National Computer Security Centre, September 1991.

[3] "Detection of Digital Information from Erased Magnetic Disks", Venugopal Veeravalli,
Masters thesis, Carnegie-Mellon University, 1987.

[4] "Magnetic force microscopy: General principles and application to longitudinal recording
media", D.Rugar, H.Mamin, P.Guenther, S.Lambert, J.Stern, I.McFadyen, and T.Yogi,
Journal of Applied Physics, Vol.68, No.3 (August 1990), p.1169.

[5] "Tunneling-stabilized Magnetic Force Microscopy of Bit Tracks on a Hard Disk", Paul
Rice and John Moreland, IEEE Trans.on Magnetics, Vol.27, No.3 (May 1991), p.3452.

[6] "NanoTools: The Homebrew STM Page", Jim Rice, NanoTools: The Homebrew STM
Page.

[7] "Magnetic Force Scanning Tunnelling Microscope Imaging of Overwritten Data", Romel
Gomez, Amr Adly, Isaak Mayergoyz, Edward Burke, IEEE Trans.on Magnetics, Vol.28,
No.5 (September 1992), p.3141.

http://www.skypoint.com/members/jrice/STMWebPage.html
http://www.skypoint.com/members/jrice/STMWebPage.html

[8] "Comparison of Magnetic Fields of Thin-Film Heads and Their Corresponding Patterns
Using Magnetic Force Microscopy", Paul Rice, Bill Hallett, and John Moreland, IEEE
Trans.on Magnetics, Vol.30, No.6 (November 1994), p.4248.

[9] "Computation of Magnetic Fields in Hysteretic Media", Amr Adly, Isaak Mayergoyz,
Edward Burke, IEEE Trans.on Magnetics, Vol.29, No.6 (November 1993), p.2380.

[10] "Magnetic Force Microscopy Study of Edge Overwrite Characteristics in Thin Film
Media", Jian- Gang Zhu, Yansheng Luo, and Juren Ding, IEEE Trans.on Magnetics, Vol.30,
No.6 (November 1994), p.4242.

[11] "Microscopic Investigations of Overwritten Data", Romel Gomez, Edward Burke, Amr
Adly, Isaak Mayergoyz, J.Gorczyca, Journal of Applied Physics, Vol.73, No.10 (May 1993),
p.6001.

[12] "Relationship between Overwrite and Transition Shift in Perpendicular Magnetic
Recording", Hiroaki Muraoka, Satoshi Ohki, and Yoshihisa Nakamura, IEEE Trans.on
Magnetics, Vol.30, No.6 (November 1994), p.4272.

[13] "Effects of Current and Frequency on Write, Read, and Erase Widths for Thin-Film
Inductive and Magnetoresistive Heads", Tsann Lin, Jodie Christner, Terry Mitchell, Jing-
Sheng Gau, and Peter George, IEEE Trans.on Magnetics, Vol.25, No.1 (January 1989), p.710.

[14] "PRML Read Channels: Bringing Higher Densities and Performance to New-Generation
Hard Drives", Quantum Corporation, 1995.

[15] "Density and Phase Dependence of Edge Erase Band in MR/Thin Film Head Recording",
Yansheng Luo, Terence Lam, Jian-Gang Zhu, IEEE Trans.on Magnetics, Vol.31, No.6
(November 1995), p.3105.

[16] "A Guide to Understanding Data Remanence in Automated Information Systems",
National Computer Security Centre, September 1991.

[17] "Time-dependant Magnetic Phenomena and Particle-size Effects in Recording Media",
IEEE Trans.on Magnetics, Vol.26, No.1 (January 1990), p.193.

[18] "The Data Dilemna", Charles Preston, Security Management Journal, February 1995.

[19] "Magnetic Tape Degausser", NSA/CSS Specification L14-4-A, 31 October 1985.

[20] "How many times erased does DoD want?", David Hayes, posting to comp.periphs.scsi
newsgroup, 24 July 1991, message-ID 1991Jul24.050701.16005@sulaco.lone star.org.

[21] "The Changing Nature of Disk Controllers", Andrew Hospodor and Albert Hoagland,
Proceedings of the IEEE, Vol.81, No.4 (April 1993), p.586.

[22] "Annealing Study of the Erasability of High Energy Tapes", L.Lekawat, G.Spratt, and
M.Kryder, IEEE Trans.on Magnetics, Vol.29, No.6 (November 1993), p.3628.

[23] "The Effect of Aging on Erasure in Particulate Disk Media", K.Mountfield and
M.Kryder, IEEE Trans.on Magnetics, Vol.25, No 5 (September 1989), p.3638.

[24] "Overwrite Temperature Dependence for Magnetic Recording", Takayuki Takeda,
Katsumichi Tagami, and Takaaki Watanabe, Journal of Applied Physics, Vol.63, No.8 (April
1988), p.3438.

[25] Conner 3.5" hard drive data sheets, 1994, 1995.

[26] "Technology and Time-to-Market: The Two Go Hand-in-Hand", Quantum Corporation,
1995.

[27] "Basic Flaws in Internet Security and Commerce", Paul Gauthier, posting to
comp.security.unix newsgroup, 9 October 1995, message-ID
gauthier.813274073@espresso.cs.ber keley.edu.

[28] "cryptlib Free Encryption Library", Peter Gutmann, cryptlib.

Secure Deletion of Data from Magnetic and Solid-State Memory / Peter Gutmann /
pgut001@cs.auckland.ac.nz

http://www.cs.auckland.ac.nz/%7Epgut001/cryptlib.html

