
Secure Device Pairing based on a Visual Channel ∗

Nitesh Saxena†

University of California, Irvine, USA

nitesh@ics.uci.edu

Jan-Erik Ekberg, Kari Kostiainen, N. Asokan

Nokia Research Center, Helsinki, Finland

{jan-erik.ekberg, kari.ti.kostiainen, n.asokan}@nokia.com

Abstract

Recently several researchers and practitioners have begun to address the problem of secure
device pairing or how to set up secure communication between two devices without the assistance
of a trusted third party. McCune, et al. [12] proposed Seeing-is-Believing (SiB), a system which
uses a visual channel. The SiB visual channel consists of one device displaying the hash of
its public key in the form of a two-dimensional barcode, and the other device reading this
information using a photo camera. Strong mutual authentication in SiB requires running two
separate unilateral authentication steps.

In this paper, we show how strong mutual authentication can be achieved even with a uni-
directional visual channel, where SiB could provide only a weaker property termed as presence.
This could help reduce the SiB execution time and improve usability. By adopting recently
proposed improved pairing protocols, we propose how visual channel authentication can be used
even on devices that have very limited displaying capabilities, all the way down to a device
whose display consists of a cheap single light-source, such as an LED. We also describe a new
video codec that may be used to improve execution time of pairing in limited display devices,
and can be used for other applications besides pairing.

1 Introduction

The popularity of short-range wireless technologies like Bluetooth and Wireless Local Area
Networking (WLAN) based on the IEEE 802.11 family of protocols is experiencing enormous
growth. Newer technologies like Wireless Universal Serial Bus1 are around the corner and
promise to be as popular. This rise in popularity implies that an ever increasing proportion of
the users of devices supporting short-range wireless communication are not technically savvy.
Such users need very simple and intuitive methods for setting up their devices. Since wireless
communication is easier to eavesdrop on and easier to manipulate, a common set up task is
to initialize secure communication. In this paper, we will use the term pairing to refer to this
operation.2

∗A shorter version of this paper appears in [16]
†Work done while visiting Nokia Research Center, Helsinki
1http://www.usb.org/developer/wusb
2The term pairing was introduced in the context of Bluetooth devices. Other roughly synonymous terms include

“bonding,” and “imprinting”.

1

http://www.usb.org/developer/wusb

Consequently, both security researchers and practitioners have been looking for intuitive
techniques for ordinary users to be able to securely pair their devices. Although the primary
impetus comes from the need to secure short-range wireless communication, the issue of intuitive
security initialization is more generally applicable whenever ordinary users need to set up secure
communication without the help of expert administrators or trusted third parties.

The pairing problem is to enable two devices, which share no prior context with each other, to
agree upon a security association that they can use to protect their subsequent communication.
Secure pairing must be resistant to a man-in-the-middle adversary who tries to impersonate one
or both of these devices in the process. The adversary is assumed to be capable of listening to
or modifying messages on the communication channel between the devices. One approach to
secure pairing is to use an additional physically authenticatable channel, called an out-of-band
(OOB) channel which is governed by humans, i.e., by the users operating these devices. The
adversary is assumed to be incapable of modifying messages on the OOB channel, although it
can listen to them.

There has been a significant amount of prior work on building secure pairing protocols
using OOB channels [17, 2, 5, 8]. They consider different types of OOB channels including
physical connections, infrared, etc. Recently, McCune, et al. proposed a scheme called “Seeing-
is-Believing” (SiB), where the OOB channel is implemented as a visual channel. The SiB
visual channel consists of a two-dimensional barcode of [15], displayed by (or affixed to) a
device A, that represents security-relevant information unique to A. A user can point another
camera-equipped device B at the barcode so that B can read the barcode visually, and use this
information to set up an authenticated channel to A. If both devices are camera-equipped, they
can mutually authenticate each other. “Authentication” in this case is based on demonstrative
identification [2] rather than with respect to a claimed name.

Our Contributions: In this paper, we propose several improvements and extensions to the
SiB system. Our contributions are as follows:

1. We show how strong mutual authentication can be achieved using just a unidirectional
visual channel. This results in two improvements:

(a) strong authentication becomes possible in situations where SiB could only achieve a
weaker property termed as “presence”.

(b) execution time for mutual authentication decreases significantly and usability im-
proves.

2. By adopting recently proposed improved protocols [10], we show how visual channel au-
thentication can be used even on devices that have very limited displaying capabilities, all
the way down to a device whose display consists of a cheap single flashing light-source,
such as a single light-emitting diode (LED).

3. We also propose a video-based codec which may help improve the speed of secure pairing
in devices with constrained displays, as well as may lead to applications other than secure
device pairing.

The rest of the paper is organized as follows. First, we start with a brief description of SiB in
Section 2. In Section 3 we describe an alternative protocol that improves the presence guarantee
provided by SiB to full-fledged mutual authentication. Then, in Section 4, we show how visual
channel authentication can be done even in highly constrained environments. We discuss the
applicability and relevance of our improvements and extensions in Section 5.

2 Seeing-is-Believing

Several researchers have proposed the idea of encoding service or device discovery information
in the form of barcodes so that they can be read using camera phones [15, 3, 19, 11]. The idea

2

of encoding cryptographic secret material into barcodes was first proposed by Hanna [8] as well
as Gehrmann, et al. [5], both of which also mention the use of asymmetric key cryptography in
this context. The SiB paper [12] by McCune et al. was the first research paper to propose that
the information encoded in the barcode could be a commitment to a public key.

In SiB, a device A can authenticate to a device B, if B is equipped with a camera. A’s
commitment to its public key (such as a hash) is encoded in the form of a two-dimensional bar-
code of [15]. A typical barcode has dimensions approximately 2.5x2.5 cm2 to allow recognition
from a reasonable distance, and consists of a total of 83-bits of information (68-bits of data and
15-bits for forward error correction). If A has a display, the public key can be ephemeral, and
the barcode is shown on the display. Otherwise, A’s public key needs to be permanent and the
barcode is put on a printed label affixed to the housing of A. Authentication is done by the user
pointing B’s camera at A’s barcode. The basic unidirectional authentication process is depicted
in Figure 1.

1. A calculates hA as h(KA)

A −→ B (visual channel): hA

2. A −→ B (insecure channel): KA

B calculates h′ as h(KA) using the KA received. If h′ does not match

the hA received in Step 1, B aborts.

Figure 1: SiB unidirectional authentication protocol (B authenticates A)

KA is A’s public key. h() is a cryptographic hash function, which is resistant to second
pre-image finding. KA can be long-lived, in which case the output of h() must be sufficiently
large, e.g., at least 80-bits. If KA is ephemeral, the output of h() can be smaller, e.g. 48 bits [6].
SiB could accommodate 68 bits of hash into a single two-dimensional barcode, but requires a
good quality display due to the typical size of the barcode3. Mutual authentication requires the
protocol of Figure 1 being run in each direction. This has two implications for SiB.

• First, mutual authentication is possible only if both devices are equipped with cameras.
McCune, et al. state (Section 7 of [12])

A display-only device . . . is unable to strongly authenticate other devices using
SiB . . . [because it] cannot “see” them.

If a device A is not equipped with a camera, it can only achieve a weaker property known
as “presence,” by including a secret key K in the barcode. The camera-equipped device
B that reads the barcode can use K to compute message authentication code (MAC) over
the message it sends to A. If the MAC is correct, A can conclude that it was sent by some
device that was able to “see” its barcode, and thus was “present”. Presence is a weaker
security notion than authentication because A has no means of knowing if B is really the
device that the user of A intended to communicate with.

We summarize the types of authentication achievable using SiB for given combinations of
device types in Table 1.

• Second, in order to run the protocol in each direction, the roles of the devices have to
be switched so that first A’s camera can scan B’s display and then B’s camera can scan
A’s display. Such switching of devices by users not only increases the execution time of
the SiB process but also decreases usability. McCune, et al. report that the average SiB

3SiB can encode the data into several barcodes displayed in sequence.

3

execution time in their user trials was 8 seconds, even though time required to recognize
a barcode is just about one second [15].

Y has → Camera Camera only Display only None
and display

X has ↓

Camera and X ↔ Y X ↔ Ys X ← Y X ← Ys

Display X
p

→ Y

Camera only Xs ↔ Y Xs ↔ Ys X ← Y X ← Ys

X
p

→ Y

Display only X → Y X → Y none none

X
p

← Y X
p

← Y

None Xs → Y Xs → Y none none

Notation:

Ps: “Device P needs a static barcode label affixed to it.”
P → Q: “Device P can strongly authenticate to device Q.”

P
p

→ Q: “Device P can demonstrate its presence to device Q.”

Table 1: Types of authentication achievable using SiB for given device type combinations

These implications limit the applicability of SiB in various practical settings. Many devices
cannot have either cameras or high quality displays for different reasons. Commoditized devices
like WLAN access points are extremely cost-sensitive and the likelihood of adding new hardware
for the purpose of authentication is very small. Devices like Bluetooth headsets are typically
too small to have displays or even to affix static barcode stickers.

To summarize, we identify the following drawbacks with the basic SiB scheme:

1. Mutual authentication is not possible unless both devices are equipped with cameras.

2. The overall execution time for mutual authentication is high, which impacts usability.

3. Applicability of SiB is limited in situations where one device has limited capabilities (e.g.,
small size, no camera, limited or no display at all).

In the rest of this paper, we describe how we can address each of these drawbacks.

3 Seeing Better: Upgrading Presence to Authentication

In this section, we address the issue of mutual authentication. Recall that we identified two
shortcomings of SiB in this respect. First, SiB can provide mutual authentication only if both
devices are camera-equipped. Second, the processing time for mutual authentication is high.

We observe that both of these drawbacks stem from the fact that mutual authentication
is done as two separate unidirectional authentication steps. Therefore, we propose to solve
both problems by performing mutual authentication in a single step by having each of A and
B compute a common checksum on public data, and compare their results via a unidirectional
transfer using the visual channel. Let us call this protocol VIC, for “Visual authentication based
on Integrity Checking.” (See Figure 2.)

The security of the authentication of A to B in VIC depends on the attacker not being able
to find two numbers X1 and X2 such that h(KA, X1) = h(X2,KB). This implies that if the
attacker can learn KB ahead of time, h() needs to be collision-resistant. If KB is transient (or

4

1. A −→ B (insecure channel): KA

2. A←− B (insecure channel): KB

A calculates hA as h(KA|KB) and B calculates hB as h(KA|KB)

3. A −→ B (visual channel): hA

B compares hA and hB . If they match, B accepts and continues. Oth-
erwise B rejects and aborts. In either case, B indicates accept/reject to
the user.

4. A prompts user as to whether B accepted or rejected. A continues if the

user answers affirmatively. Otherwise A rejects.

Figure 2: VIC mutual authentication protocol

a nonce picked by B is appended to KB in message 2 and in the calculation of hA and hB), it
is sufficient for h() to be resistant against second pre-image finding, since the attacker can no
longer use any pre-computed collisions. The security of the authentication of B to A depends,
in addition, on the user correctly reporting the comparison result reported by B back to A.
(Note that the entities taking part in the protocol are always assumed to be honest.)

Because VIC needs only a unidirectional visual channel, it is now possible to achieve mutual
authentication in the cases where SiB could only achieve presence. In addition, the execution
time for mutual authentication and the user effort will be less since no device role switching is
required anymore. Thus, VIC addresses the first two drawbacks of SiB identified in Section 2.

In Table 2, we summarize the types of authentication achievable using VIC for given com-
binations of device types. Notice that since the checksum is different for each instance of VIC,
at least one device must have a display and that the static barcode labels cannot be used with
VIC.

Y has → Camera Camera only Display only None
and display

X has ↓

Camera and X ↔ Y X ↔ Y X ↔ Y none
Display

Camera only X ↔ Y none X ↔ Y none

Display only X ↔ Y X ↔ Y none none

None none none none none

Notation:

P ↔ Q: “Devices P and Q can strongly authenticate each other.”

Table 2: Types of authentication achievable using VIC for given device type combinations.

5

4 Seeing With Less: Visual Channel in Constrained De-

vices

Now we turn our attention to the third drawback of SiB. In this section, we show how to enable
visual channel authentication on devices with very limited (or tiny) displays and in the minimal
case, with extremely constrained displays consisting of only single light source (or LED). These
extensions are made possible by using key agreement protocols that require short authenticated
integrity checksums. We begin by describing such protocols.

4.1 Authentication Using Short Integrity Checksums

The reason why SiB needs good displays is the high visual channel bandwidth required for the
SiB protocol. Assuming that the attackers have access to today’s state-of-the-art computing
resources, the bandwidth needed is at least 48 bits in the case of ephemeral keys [6], rising to
80 bits in the case of long-lived keys. These numbers can only increase over time.

Fortunately, there is a family of authentication protocols that has very low bandwidth re-
quirements. The first protocols in this family, proposed by Gehrmann et al. in [5, 6], were aimed
at using the human user as the authentication channel; hence the name “Manual authentication
(MANA)”. Several subsequent variations on the same theme have been reported [9, 18, 10]. We
apply the variation called “MA-3” [10] to get VICsh (VIC with short checksum) as shown in
Figure 34:

1. A chooses a long random bit string RA and calculates hA as h(RA).

A −→ B (insecure channel): hA,KA

2. B chooses its own long random bit string RB

A←− B (insecure channel): RB ,KB

3. A −→ B (insecure channel): RA

B now computes h′

A
as h(RA) and compares it with the hA received in

message 1. If they do not match, B aborts. Otherwise B continues.

4. A calculates hsA as hs(RA, RB ,KA,KB) and B calculates hsB as
hs(RA, RB ,KA,KB)

A −→ B (visual channel): hsA

B compares hsA and hsB . If they match, B accepts and continues.
Otherwise B rejects and aborts. In either case, B indicates accept/reject
to the user.

5. A prompts user as to whether B accepted or rejected. A continues if the

user answers affirmatively. Otherwise A rejects.

Figure 3: VICsh mutual authentication protocol based on short integrity checksum

KA,KB are as in the case of SiB. h() represents a commitment scheme and hs() is a mixing
function with a short n-bit output (e.g., n = 15 . . . 20) such that a change in any input bit will,
with high probability, result in a change in the output. In practice, hs() can be the output of
a cryptographic hash function truncated to n bits. Refer to [10] for formal description of the

4We chose MA-3 over the protocol in [18] for reasons of efficiency because MA-3 requires fewer rounds of com-
munication over the insecure channel.

6

requirements on h() and hs(), and their instantiations, as well as for the proofs of security of
the protocol. Informally, the security of the protocol depends on the following:

• neither party reveals the value of its random bit string (RA or RB respectively) until the
other party commits to its own random bit string, and

• each party knows that the public data (KA and KB) used in the computation of the
check-value (hsA or hsB) is known to it before it reveals its random bit string.

Suppose the man-in-the-middle attacker has a public key KM . To fool device A into accepting
KM as B’s public key, the attacker needs to ensure that hsA = hs(RA, X,KA,KM) and hsB =
hs(Y, RB , Z,KB) are equal. The attacker can choose KM , X, Y and Z, but he must make his
choices before knowing RA or RB . Therefore, whatever his strategy for choosing the values, the
chance of success is x = 2−n. Similarly, the probability of the attacker fooling device B into
accepting KM as A’s public key is also x. More importantly, this probability does not depend
on the computational capabilities of the attacker, as long as h() is secure.

4.2 Trimming Down the Display

Armed with the variation of VIC described above, we are now ready to investigate visual channel
authentication on devices with very limited displays. Recall that our motivation is to support
visual channel authentication on various commercial devices, such as wireless access points,
Bluetooth headsets, etc. These devices typically have only the most limited form of a dis-
play consisting of a single bi-state light source, such as a single light-emitting diode (LED).
In this section, we describe each aspect of the realization of single LED based visual channel
authentication.

Transmission. We use frequency modulation to encode the data being transmitted (see
Figure 4). The sender turns the light-source on and off repeatedly. The data is encoded in the
time interval between each successive “on” or “off” event: a long gap represents a ’1’ and a short
gap represents a ’0’. Since the channel is unidirectional, the transmitter cannot know when the
receiver starts reception. Therefore, the transmitter keeps repeating the sequence until either
the user approves the key agreement, or a timeout occurs.

The camera phones of today are limited to a frame rate of about 10 video frames/second,
and as we are receiving the bits with frequency modulation without synchronization, we are
bound by the Nyquist-Shannon sampling theorem (sampling rate = 2 × bandwidth for no loss
of information) [13]. This limits the transfer speed with this algorithm to around 5 bits/second.

Reception. The receiver processing is analogous: simplified, each received video frame is
compressed into one value per frame (the sum of all the pixel values)5, and the first-order dif-
ference between consecutive values (i.e., the derivative) is compared against a relative threshold
based on maximum observed variation in the pixel sum. If the derivative is steep enough and
in the right direction (alternating between positive and negative) a transition in lighting is reg-
istered. The time between two consecutive changes indicates the transfer of either a ’1’ or a ’0’
bit as depicted in Figure 4.

Trading Efficiency with Security. We designed two mechanisms that allow the possi-
bility of a parameterizable trade-off between execution time and the level of security.

First, the data being transmitted via the visual channel, i.e., the integrity checksum, is
known to the receiver in advance. We use this simple observation to reduce execution time.
Recall that the sender repeats the n-bit string a number of times. The receiver proceeds in the

5 The fact that the video frame is collapsed into one value per frame also shows the feasibility of using a sensitive
light sensor combined with an analog-to-digital converter as a cheaper form of receiving device – with no change to
the algorithms described in the paper. We have left the implementation of such a receiver as future work.

7

3847925 4536213 3376152 4627128 ... = pixel sum over whole picture

(long) (long) (long)

 1 0 1 1

time

Figure 4: Data transmission via a single light-source visual channel

following way: reception may start at any bit position, and the receiver records until the n-bit
tail of the received bit-string matches against any of the rotated versions of the expected n-bit
string. Therefore, the receiver accepts at most n possible matches for the transmitted value. For
example, if the transmitted string is ’1011’, the receiver accepts if it receives any of the strings
’1011’, ’0111’, ’1110’, ’1101’.

Second, rather than doing error correction, we tolerate (or simply accept) a certain number
of errors in the n-bit transmission. With k accepted errors, the number of possible matches,
based on a binomial distribution of errors, is

∑

i=0...k

(

n

i

)

.
Using these mechanisms the probability that the receiver will accept a random string as

valid will increase from the original value of p = 1

2n . Accounting for both modifications we can
estimate an upper bound to

p = n

∑k

i=0

(

n

i

)

2n

The given bound allows us to get an idea of the degree of loss of security. If e.g. k = 3 bits
are allowed to be wrong in an n = 24 bit sequence, p is 0.0064, whereas if only 1 bit error is
allowed, p is 0.00004.6

For personal use, e.g., when a user wants to pair his workstation with his own wireless access
point, an attack success probability of 0.00004 is acceptable. In other situations where, say,
every day thousands of pairings are done with a device located in a public space, the attack
success probability needs to be lower.

There are several ways to trade off security and execution time. The attack success proba-
bility p can be decreased by:

• increasing the length of the checksum n,

6In the pairing protocol case, the attack scenario is limited by the fact the the visual channel is authenticated,
and the attacker is assumed to only operate in-band. In a more general case, where somebody might be feeding
random visual data, the receiver also needs to check the signal history if the match is done later than after the first n

received bits (with k errors). The history should give an indication that there is a repetition of the intended sequence
(with possible errors) – if this is not the case the receiver is subject to a “visual attack” and accidentally found a
match in a big sample of random input.

8

• reducing the number of acceptable errors k,

• reducing the number of possible rotations that are acceptable as matches (say only every
fourth)

• adding an external end marker to the protocol (e.g., the light-source staying “on” for 0.5
seconds) to indicate when it starts to repeat the checksum string, bringing the attack

success probability down to

∑

k

i=0
(n

i)
2n .

Applying one or several of these measures will result in changed lower and upper “bounds”
for the execution time.

Implementation and Timings. We have developed a proof-of-concept implementation
where a single blinking LED (connected to the parallel port of a PC) sends a signal that is
received by a camera phone. Figures 5(a) and 5(b) illustrate our two demonstrator implemen-
tations. In 5(a), a Bluetooth pairing is established between a Symbian 8.0 camera phone and a
Linux laptop with an LED (illustrating, e.g., a wireless access point). In 5(b), two phones are
paired using the display of one phone as the bi-state light.

(a) Pairing phone and laptop (b) Pairing two phones

Figure 5: Scenarios for the proof-of-concept implementation

Our algorithm makes bit reception quite tolerant. The data can be received at a distance
of several tens of centimeters, the implementation is agnostic to camera focus problems and
tolerates a fair bit of camera shaking, turning, etc. The real-time progress of the matching is
indicated at runtime on the handset screen by displaying two parameters: percentage of the
string successfully received so far and a related confidence level.

Figure 6 gives a more detailed description of the user interface of our Symbian implementation
during pairing with the laptop. In Figure 6(a), the user starts the pairing from a menu.7 In
Figure 6(b), the phone scans the Bluetooth neighborhood and finds the laptop. In Figures 6(c)
and 6(d), the phone starts recording with its camera and the user positions the phone so that
the blinking of the LED is shown in the viewfinder. The recording status is updated in the
viewfinder in real-time. In 6(e), the pairing is complete for the phone once the correct checksum
has been received and accepted. The success is reported to the user, who is instructed to accept
the pairing at the access point to achieve mutual authentication.

With our setup, a 24-bit checksum signaled (1 error accepted) with the laptop is received and
matched by the camera phone. The execution times for a positive indication (match) is typically
in the range of 5 to 8 seconds. The increased execution time is the price we pay for achieving

7The pairing must be initiated also from the laptop side. The rationale for this is explained in Section 5.2.

9

(a) Start pairing (b) Connecting

(c) Recording data (d) Recording data (e) Pairing ready

Figure 6: Screen-shots from the Symbian implementation

visual channel authentication with devices that can not afford a full display. As mentioned,
we consider these parameters acceptable for ordinary home use. A more secure version (32-bit
checksum with 1 error) ranges from 8 to about 15 seconds.

4.3 Extending the Bandwidth on Better Displays

As we saw in Section 4.2, using VICsh with a single light source, and limiting the attack success
probability to 2−20, the execution time cannot be smaller than about 5 seconds.

A natural question is whether any speedup in the execution time is possible if there were
multiple light sources or in other words, a better display. In this section, we describe the design
and analysis of a new video codec that can be used to set up a visual channel between a device
with a small display and a device with a video camera. Our motivation was to investigate
two different questions: whether the video codec can significantly improve the transfer time of
a short checksum (15-20 bits), so that it can be used to reduce the execution time of secure
pairing, and whether the video codec can enable applications other than secure pairing. In the
remaining section, we discuss that even with straight-forward and naive techniques, such a video
codec can be designed and that it performs reasonably efficiently.

Encoding Process. The idea of the encoding process is to represent the bits of data to be
transmitted after encoding it for error correction into slots (rectangles) of black and white colors
(say, ’black’ to encode bit ’0’ and ’white’ to encode bit ’1’) displayed in the form of animated
frames at a certain rate. The number of slots that can be displayed in one frame depends upon
the size of the display on the device and the video capturing ability of the decoding device, and
the number of such frames depends upon the amount of data to be transmitted (e.g., 20 bits
plus some error correcting bits in case of the pairing application) and the display rate. Following
are the three main constituents of the encoding procedure:

1. Beacon Slot: To allow the decoding device to be able to capture all the frames, the display
rate Rd at the encoder should always be smaller than the capture rate Rc at the decoding
device. However, since Rc > Rd, the decoding device captures more frames than displayed by

10

the encoding device, some of which get repeated a number of times. In order for the decoder to be
able to identify and discard these repeated frames, we devote one slot in each frame (say, at the
top left corner) for a beacon frame, which always blinks, i.e, its color always changes from black
to white, white to black, and so on. If the decoding device detects that the color of the beacon
slot in the current frame is the same as the color of the beacon slot in the previous frame, it can
safely discard the current frame. We observe through experiments that Rd = 10 frames/second
is a reasonable display rate for most camera phones for which Rc = 15 frames/second.

2. Blinking Corners: Moreover, to facilitate the decoding device in detecting the screen of the
encoding device in the captured frames, we use a small number of always-blinking pixels at the
corners of the displayed frames at the encoding device. This simple technique allows the decoder
to efficiently identify the exact location of the screen, as we illustrate in the decoding process
part below.

3. Marker Frames: In Section 4.2, we exploited the fact that in the case of secure device pairing,
the receiving device knows what string to expect via the visual channel. But since we want this
video codec to be potentially usable in other applications, we cannot make this assumption.
Therefore, since the decoding device may start recording at any bit position in the data string,
we need to transmit the data frames at least twice, separated by a small number of marker
frames.

Decoding Process. The decoding process involves capturing the video frames displayed by
the transmitter, and using these frames to first detect the location of the screen, and then to
read the data bits. We describe each of these procedures separately as follows:

1. Locating the Screen: We use the blinking corners (as described previously) in the display to
locate the screen. The algorithm is very simple: on input of a certain number t of consecutive
frames, denoted by F1, · · · , Ft, compute a ”Sum-of-Differences” frame SD, such that SD =
∑n

i=2
|Fi − Fi−1|, and scale SD to pixel values 0 to 255, to obtain an image F . Note that the

|Fi −Fi−1| denotes the image corresponding to the absolute difference between the pixel values
of Fi and Fi−1, and adding two images means adding their corresponding pixel values. Notice
that the image F brightens the always changing or blinking pixels values (such as the ones
corresponding to the corner pixels and the beacon slot) and at the same time darkens the ones
which hardly change. See Figure 7(b) for an example F image. Now, to further brighten the
smaller regions corresponding to the corner pixels and to darken the other bigger bright regions
(such as the one corresponding to the beacon slot), we use a standard tool in image processing
called convolution product.

Figure 7(c) shows the convoluted image that has only the corner pixels bright. Once the
convoluted image is obtained, it is easy to retrieve the corner pixels by using thresholding
technique (e.g., in Figure 7(c), all pixels with values greater than 210 correspond to the corner
pixels) and thus to locate the screen of the encoding device. Through experiments, we notice
that the above algorithm performs quite robustly to detect the screen location if t = 10, i.e., if
it is given 10 frames as input. The algorithm is also robust to rotation of the screen.

2. Reading the Data: Whenever two corresponding data slots in two consecutive frames have
the same color, i.e., both black or both white, we obtain a black or white slots, respectively.
However, when they have different colors, we obtain grey slots. The decoder first determines
the color of each slot by looking at the distribution of pixel values in the slot and using simple
thresholding technique. For example, if maximum number of pixels have values in range (0, 85),
the color is black, if they have values in range (190, 255), the color is white, otherwise the color
is grey.

Now, if the color of the beacon slot Bi in current frame is the same as the color of the
beacon slot Bi−1 in the previous frame, the current frame can be safely discarded. If the color
of (non-beacon) slot Si is black, output data bit as 0; if it is white, output 1; otherwise if the
color is grey, output the complement of the output of Si−1.

11

(a) A Few Captured Frames (b) Sum-of-

Differences Image

(c) Final Convoluted

Image

Figure 7: An example of various images in the decoding process (with 4 slots per frame)

Error Correction. Since we aim for applications besides pairing, we also need to use a
robust error correction scheme for the video channel. Currently we use Reed-Solomon (RS)
forward error correcting codes [14]. Reed-Solomon is one of the strongest error correcting codes
known today, and applies very neatly in our scenario. Firstly, we have observed through ex-
periments that we get errors in bursts (for example, errors in all the slots of one whole frame).
Since, the RS codes operate on and corrects errors in symbols of a certain number of bits, they
are well-suited to our codec. Secondly, RS codes are capable of correcting errors both in cases of
erasures (such errors occur when it is known which symbols are corrupted) and non-erasures. In
our codec, we get errors of both types. Erasures occur when it is very difficult to determine the
exact color of a particular slot using the method of thresholding as described in the previously
(for example, when the maximum number of pixel values are distributed around the boundaries
of the thresholds for black and grey or grey and white). Non-erasures occur when we get errors,
but we can’t predict their locations.

With the (k, n) RS error correction with m-bit symbols, where n = 2m − 1, if there are e

erasures and s non-erasure symbols in the received data, the RS code is capable of correcting
them as long as e+2s ≤ n−k. For example, to send out 20-bits of data in the pairing application,
we can use (8, 4) RS codes (which is shortened from RS code (31, 27)), which corrects e erasures
and s non-erasures in 5-bit symbols if e + 2s ≤ 4.

Implementation and Timings. We have implemented our preliminary video codec pro-
totype using Python Imaging Library8 on Linux. In the current implementation, our decoding
algorithm is given as input the video frames captured from a camera phone. Here, we report on
some timing results based on the initial testing that we have done with this Python codec.

To send out 20-bits of original data (or 40-bits of encoded data) with (8, 4) Reed-Solomon
codes, as described in before, with 10 frames/second display rate, it takes around 3 seconds,
when the display size is capable of displaying only 4 slots a frame, and almost 1 second when
the display consists of 8 slots per frame. The screen location detection algorithm takes 2 − 3
seconds with 10 frames on input, and the decoding and correcting of the data takes almost a
second. Overall, it takes approximately 5− 7 seconds for the whole process.

These timing results are only preliminary. We anticipate the performance to improve when
the python implementation is ported to a native C++ implementation on the Symbian platform.

8http://www.pythonware.com/products/pil/

12

Yet, it is not clear if the execution time for transferring a short integrity checksum can be
significantly reduced.

5 Discussion

In this section we discuss the applicability of our results, examine practical use cases, discuss
related issues like performance, device discovery, and usability and briefly mention other related
work.

5.1 Comparison of Different Protocols

Table 3 summarizes our recommendations on how mutual authentication can be achieved with
different device type combinations. If both devices have camera and display, mutual authentica-
tion can be achieved either using SiB or VIC. SiB can be used with camera-only devices which
can have static barcodes affixed to them. The case of two display-only devices is out of scope
for this paper, and the basic MANA techniques which require the user to visually compare two
short strings [5, 6] can be used. In all the other cases, VIC could be the best choice since it
provides mutual authentication and potentially better usability.

Y has → Camera Camera only Display only
and display

X has ↓

Camera SiB/VIC VIC VIC
and Display

Camera only VIC SiBa VIC

Display only VIC VIC MANA

aBoth devices need static barcode labels affixed to them.

Table 3: Recommended protocol to achieve mutual authentication for given device type combina-
tions

Table 4 summarizes when to use the two different flavours of VIC: If either one of the devices
has a full display, then plain VIC as described in Section 3 can be used. Otherwise VIC combined
with MA-3 (which we called VICsh) can be used. Table 4 also summarizes the execution time
measurements for the two cases. The execution times for the constrained display case or for
the limited display is substantially longer than in full display case. Despite this, we stress that
this case is extremely relevant, since not all devices have full displays to support the display of
barcodes. Commodity devices like access points are very cost sensitive and it is highly unlikely
that full displays are added to such devices. In addition, devices like headsets are so small that
adding full displays is not possible. Also, note that the timings for constrained display case are
geared for home usage scenarios.

Since the bandwidth requirement for VICsh protocol is low, this protocol could be used in
scenarios where it is not possible to reach the bandwidth required by the VIC protocol. One
example of such a scenario is a WLAN access point that is mounted high up on the wall or
ceiling. It is not possible to read the barcode affixed to such an access point with the current
camera phones, but it might be possible to read the “blinking” of the access point if the light
source is powerful enough.

The preliminary timing results for transferring short strings using the video codec described
in Section 4.3 are more or less comparable to the timing results for the single light-source

13

Display type Recorder type Protocol Execution time

Full display Still camera VIC 1 seconda

Limited display Video camera VICsh 5-7 secondsb

Constrained display Video camerac VICsh 5-8 secondsd

aSymbian OS implementation on Nokia 6600 [12]
bPython implementation on PC
cCan also be a light sensor
dSymbian OS implementation on Nokia 6630

Table 4: Applicability of different flavors of VIC

approach described in Section 4.2. The former approach is more robust because of the forward
error correction. The latter approach is somewhat cheaper. For ordinary uses of secure pairing,
the single light-source approach may be more suitable even when the available display is slightly
better than a single light-source. However, the video codec is a useful service for device discovery
applications (as we discuss next) where several hundred bits of information need to be transferred
via the visual channel, and there is no other communication channel between the two devices.
For example, a small section of the television display may be used to transmit the address of a
web page relating to the television program in progress. Note that using a sequence of barcodes
to encode this information is not a viable option since it would require the user to capture the
barcode, notice when the barcode changes and ensure that each barcode is recorded.

5.2 Device Discovery Strategies

Previous proposals on security initialization using out-of-band methods [17, 2] have argued that
one of the main benefits of using an out-of-band channel for security initialization is the fact that
device discovery is part of the OOB message exchange. For example in the approach proposed
by Balfanz et al. [2] the devices exchange complete addresses over infrared, and thus no in-band
device discovery is needed. In SiB approach, the device discovery is done manually (because
current phones can not display big enough bar codes to contain both the address and the hash
of a public key), but the authors state that the optimal solution would be to encode both the
address and the public key hash to the bar code.

We argue that in many scenarios an in-band device discovery is actually needed before the
OOB message exchange. The increasing number of different OOB channels (such as infrared,
camera and full display, camera and single LED etc.) results in situations where the user might
not always know which OOB to use with the two particular devices at hand. For example a user
wanting to pair a camera phone (camera, display, no infrared) with a laptop (infared, display,
no camera) might be confused about the different OOB possibilities. It should not be the user’s
burden to figure out which OOB to use (and how), but instead an in-band device discovery
should take place and the best mutually supported OOB channel should be negotiated in-band
and the user should be guided to use this OOB. Negotiations must be protected against bidding-
down attacks in the usual manner, by having the parties exchange authenticated confirmations
of the negotiation messages once key establishment is completed (as is done with the “Finished”
message in TLS[4]). As long as the chosen authentication mechanism can not be broken in
real-time, attempts to bid-down will be detected by this check.

In order to conveniently discover the desired device in-band, the user must put one of the
devices into a temporary special discoverable mode so that the user does not have to select the
correct device from a long list of (probably meaningless) device names. We call this action user
conditioning. From the user’s point of view this action can be performed, e.g., by pressing a

14

button on the device or by selecting a menu option.
Not all bearers support in-band discovery without manual device selection. Likewise, pure

out-of-band discovery is not always feasible with constrained OOB channels. In these cases,
the constrained OOB can be used to improve the usability of the in-band discovery process. A
device can, e.g., send the last 10 bits of its address over OOB. At the same time the other device
can scan and automatically discard devices whose address does not match these 10 bits. With
high probability the correct device can be selected automatically and the user does not have to
be presented a list of device names.

5.3 Usability Considerations

The security of VIC and VICsh relies on the user answering affirmatively in the last step (in
Figures 2 and 3). If device B rejects the key agreement and indicates failure to the user, but
the user inadvertently answers affirmatively in the last step, device A would conclude that the
key agreement was authenticated even though B does not. One way to mitigate the impact
of this failure is as follows. A picks a secret k and sends it via the visual channel, along with
the checksum. If B accepts the key agreement, it can use the resulting secure channel to prove
knowledge of k. A will accept the key agreement only if the user accepts in the last step, as well
as a proof of knowledge k is received via the secure channel. On the downside, the additional
check increases the amount of data transferred over the visual channel, thereby increasing the
execution time. Moreover, the additional check is effective only if the attacker can not snoop
on the visual channel.

Another way to reduce the likelihood of accidental (or out of habit) confirmation is to use a
specific confirmation button only for the purpose of secure device pairing. The downside is the
cost of adding such a button.

Whether this accidental confirmation is a real concern can only be determined by extensive
usability testing. To date, none of the research papers dealing with the problem of secure device
pairing have reported substantial comparative usability testing. The only exception is [1], which
presents some usability analysis of their approach of using infrared as an OOB channel. Given
the level of recent interest in this area which has resulted in several pairing approaches, a
comprehensive comparative usability testing will be a very valuable research contribution. We
are addressing this in our current work.

5.4 Denial-of-Service

Another concern is the possibility of a denial-of-service attack. An attacker can disrupt a pairing
attempt between two devices by simultaneously initiating pairing with one or both of the same
devices. Accidental simultaneous pairing is likely to be very rare because of the user conditioning
described in Section 5.2. Thus, if a device detects multiple pairing attempts, the best strategy
may be to ask the user to try again later, rather than ask the user to choose the correct device.
Moreover, sending part of the device identifier via the visual channel, as described in Section 5.2,
will help in picking the correct device in case of multiple parallel device pairing attempts. Note
that in wireless networks, elaborate attempts to protect the pairing protocol against malicious
attempts of denial-of-service are not cost effective because an attacker can always mount denial-
of-service by simply disrupting the radio channel.

5.5 Other Related Work

Recently Goodrich, et al. [7], proposed a pairing mechanism making use of audio as the
OOB channel. Their idea is to encode the public key hash value into an auditorially-robust,
grammatically-correct sentence, which is displayed on one device and read out on the other
using a voice synthesizer. The user then manually compares the two versions of the sentence in

15

order to authenticate the public key. However, this scheme also suffers from the same problems
as does SiB: namely, mutual authentication is either not possible (i.e, when one of the devices
does not have an audio output and a display), or could be quite inefficient and taxing on the
users. Fortunately, they can also use the MANA family of authentication protocols similar to
our proposal in Section 4.1.

6 Conclusions

In this paper, we proposed several improvements and extensions to the recently proposed ap-
proach of using a visual channel to implement secure pairing. We showed how strong mutual
authentication can be achieved using just a unidirectional visual channel, which could also im-
prove the usability of the pairing process.

We then showed how visual channel authentication can be used even on devices that have
very limited displaying capabilities, such as a single LED. Commoditized devices like wireless
access points, and devices with form factor limitations like headsets, cannot afford to have full
displays capable of displaying barcodes. Our contribution makes it possible to use visual channel
authentication even on such devices.

It would be feasible to trim down the camera to a simple light sensor. Although at first
glance this might seem to be the same as a one-way infrared communication channel, there are
important differences in terms of user perception and cost: first, a user can easily see a light
source, and can detect the presence of a false source; second, adding an infrared interface for
the purpose of secure device pairing is not an economically viable option for commodity devices
like wireless access points or Bluetooth headsets; but typically they tend to have one or more
LEDs which can be used to implement the technique we propose. By integrating a flashing
light-source on one device and a light sensor on another, two wireless sensor devices can thus
be efficiently paired.

Finally, we proposed a video-based codec which may help improve the speed of secure pairing
in devices with less constrained, but not full, displays, as well as may lead to applications other
than secure device pairing.

Acknowledgements

We are grateful to Adrian Perrig, who shepherded the conference version of this paper, Jonathan
McCune, Markku Kylänpää, and the anonymous reviewers for their thoughtful and constructive
feedback which helped us improve the paper. We thank Jonathan also for giving us the source
code for SiB. We also thank Marie Selenius, Dr. Niklas Ahlgren, and Dr. Valtteri Niemi for
insights into the counting argument, Kaisa Nyberg and Stanis law Jarecki for valuable feedback
on our protocols, and Aurélien Francillon for several discussions regarding our video codec.

References

[1] Dirk Balfanz, Glenn Durfee, Rebecca E. Grinter, Diana K. Smetters, and Paul Stewart.
Network-in-a-box: How to set up a secure wireless network in under a minute. In USENIX
Security Symposium, pages 207–222, 2004.

[2] Dirk Balfanz, Diana Smetters, Paul Stewart, and H. Chi Wong. Talking to strangers:
Authentication in ad-hoc wireless networks. In Network and Distributed System Security
Symposium. The Internet Society, 2002.

[3] RVSI Acuity CiMatrix. Data Matric Barcodes, 2005. Available at http://www.rvsi.net/.

16

[4] Tim Dierks and Christopher Allen. The TLS protocol version 1.9. Internet Engineering
Task Force, RFC 2246, January 1999.

[5] Christian Gehrmann et al. SHAMAN Deliverable: Detailed Technical Spec-
ification of Mobile Terminal System Security, May 2002. Available at
www.isrc.rhul.ac.uk/shaman/docs/d10v1.pdf.

[6] Christian Gehrmann, Chris J. Mitchell, and Kaisa Nyberg. Manual authentication for
wireless devices. RSA CryptoBytes, 7(1):29 – 37, Spring 2004.

[7] Michael T. Goodrich, Michael Sirivianos, John Solis, Gene Tsudik, and Ersin Uzun. Loud
and Clear: Human-Verifiable Authentication Based on Audio. In International Conference
on Distributed Computing Systems (ICDCS), July 2006. Available at http://www.ics.

uci.edu/ccsp/lac.

[8] Stephen R. Hanna. Configuring Security Parameters in Small Devices, July 2002. draft-
hanna-zeroconf-seccfg-00.

[9] Jaap-Henk Hoepman. The ephemeral pairing problem. In Proc. Int. Conf. Financial
Cryptography, number 3110 in Lecture Notes in Computer Science, pages 212–226. Springer,
2004.

[10] Sven Laur, N. Asokan, and Kaisa Nyberg. Efficient mutual data authentication based on
short authenticated strings. IACR Cryptology ePrint Archive: Report 2005/424 available
at http://eprint.iacr.org/2005/424, November 2005.

[11] Anil Madhavapeddy, David Scott, Richard Sharp, and Eben Upton. Using camera-phones
to enhance human-computer interaction. In Sixth International Conference on Ubiquitous
Computing (Adjunct Proceedings: Demos), 2004.

[12] Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter. Seeing-is-believing: Using
camera phones for human-verifiable authentication. In Proc. 2005 IEEE Symposium on
Security and Privacy, pages 110–124. IEEE, 2005.

[13] Harry Nyquist. Certain topics in telegraph transmission theory. Transasctions of the
American Institute of Electrical Engineers (AIEE), 47:617–644, 1928.

[14] Irving S. Reeed and Gustave Solomon. Polynomial codes over certain finite fields. In
Journal of Society for Industrial and Applied Mathematics, 1960.

[15] Michael Rohs and Beat Gfeller. Using camera-equipped mobile phones for interacting with
real-world objects. In Alois Ferscha, Horst Hoertner, and Gabriele Kotsis, editors, Advances
in Pervasive Computing, pages 265–271, Vienna, Austria, April 2004. Austrian Computer
Society (OCG).

[16] Nitesh Saxena, Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan. Secure device pairing
based on a visual channel. In IEEE Symposium on Security and Privacy (ISP’06), to appear
as short paper, May 2006.

[17] Frank Stajano and Ross J. Anderson. The resurrecting duckling: Security issues for ad-hoc
wireless networks. In Bruce Christianson, Bruno Crispo, James A. Malcolm, and Michael
Roe, editors, Security Protocols Workshop, volume 1796 of Lecture Notes in Computer
Science, pages 172–194. Springer, 1999.

[18] Serge Vaudenay. Secure communications over insecure channels based on short authenti-
cated strings. In Advances in Cryptology - CRYPTO 2005, number 3621 in Lecture Notes
in Computer Science, pages 309 – 326. Springer Verlag, 2005.

[19] Simon Woodside. Read real-world hyperlinks with a camera phone, February 2005. Avail-
able at http://semacode.org.

17

http://www.ics.uci.edu/ccsp/lac
http://www.ics.uci.edu/ccsp/lac
http://eprint.iacr.org/2005/424

	Introduction
	Seeing-is-Believing
	Seeing Better: Upgrading Presence to Authentication
	Seeing With Less: Visual Channel in Constrained Devices
	Authentication Using Short Integrity Checksums
	Trimming Down the Display
	Extending the Bandwidth on Better Displays

	Discussion
	Comparison of Different Protocols
	Device Discovery Strategies
	Usability Considerations
	Denial-of-Service
	Other Related Work

	Conclusions

