
Secure digital communication using discrete-time
chaos synchronization

Moez Feki *, Bruno Robert, Guillaume Gelle, Maxime Colas

Universit�ee de Reims Champagne Ardenne, Moulin de la Housse BP 1039, 51687 Reims cedex 2, France

Accepted 21 February 2003

Abstract

In this paper we propose some secure digital communication schemes using discrete chaotic systems. In our ap-

proach a message is encrypted at the transmitter using chaotic modulation. Next, the driving signal synchronizes the

receiver using discrete observer design or drive-response concept. Finally, by reverting the coding procedure the

transmitted message is reconstructed. To demonstrate the efficiency of our communication schemes a modified H�eenon�s
map is considered as an illustrative example.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Chaotic synchronization of continuous-time as well as discrete-time chaotic systems has been the focus of a growing

literature since the last decade [1–6]. This research is motivated in part by its potential application in secure commu-

nication [7–11]. Due to the sensitive dependence on initial conditions and the random-like behaviour of chaotic signals

in addition to their broadband spectrum, it was believed that information could be hidden efficiently in chaos.

Actually, three main message encoding schemes were developed: chaotic masking [7], chaos shift keying [12] and

chaos modulation [13]. In chaotic masking the message to be transmitted is added to a much stronger chaotic signal in

order to hide the information, the overall signal is then transmitted to the receiver. In chaos shift keying the transmitted

signal is obtained by switching between N chaotic generators according to the information level of an N -ary message

(usually binary messages are used with two chaotic generators). In chaotic modulation the message modifies the state or

the parameters of the chaotic generator through an invertible procedure, thus the generated chaotic signal inherently

contains the information on the transmitted message.

Irrespective of which of the foregoing encoding schemes is used for message encryption, a duplicate of the trans-

mitter�s chaotic signal should be available at the receiver side in order to reconstruct the message. Or better yet, the

receiver should synchronize with the transmitter. Attempts on chaos communication using analog systems [14,15],

especially those which use masking scheme [16], revealed serious weakness since the message reconstruction over-

whelmingly depends on the synchronization error, whence it can be easily corrupted by channel noise. Therefore,

research towards using discrete chaotic systems was favoured. In [17], Parlitz and Ergezinger proposed a robust

communication method using modulation by digital message, however, to synchronize the transmitter and the receiver

both systems are supposed to start at the same time and from the same initial conditions which are unpractical con-

ditions. In addition, the message is transmitted at low rate due to redundancy, in fact N chaotic samples are required to

transmit one information sample. In [11] Liao and Huang suggested a modulation scheme by adding a discrete message

to the chaotic output then the resulting signal is fed back into the transmitter system and at the same time it is sent to
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drive the receiver system. This scheme uses observer-based synchronization and avoids redundancy. However, though it

is successful in some cases, it suffers from several drawbacks: First, only low power messages can be transmitted which

makes the scheme very vulnerable to distorting channel noise. Second, the message feedback applied to certain chaotic

systems such as H�eenon�s map may lead to divergence of the originally chaotic states.

Herein, we present two different schemes of message encoding based on chaotic modulation. In the first scheme, the

binary message ðmðkÞ ¼ �1Þ is multiplied by the output chaotic signal of the transmitter and then sent to drive the

receiver system. To ensure the synchronization of the transmitter and the receiver systems, some hypotheses need to be

satisfied. In the second scheme, the binary message is modulated by multiplication with the chaotic output signal then it

is fed back to the transmitter system and simultaneously sent to the receiver system. In order to synchronize with the

transmitter, a Luenberger-like discrete observer is used as a receiver. We show that under mild conditions dead-beat

synchronization is achieved. Therefore, message reconstruction can simply be obtained by reverting the encoding

procedure. Furthermore, no constraints on the message power is required, besides a simple modification of H�eenon�s
map is suggested to remedy the problem of divergence due to feedback.

This paper is outlined as follows. In Section 2, chaotic synchronization using discrete observer is shown. Section 3 is

devoted to present the communication schemes. In Section 4, we consider H�eenon�s map as an illustrative example, we

show the influence of the modulated signal feedback on the transmitter system and we suggest a system modification as

a remedy. In Section 5, results from numerical simulations are presented. Finally, in Section 6, we outline some con-

cluding remarks and perspectives.

2. Observer-based discrete synchronization

Discrete-time chaotic systems are generally described by a set of nonlinear difference equations. It is very common,

however, to be able to separate the dynamics into linear and nonlinear parts. If we furthermore consider that the chaotic

system is a Lur�e type system then it can be described by the following equations:

xðk þ 1Þ ¼ AxðkÞ þ f ðyðkÞÞ ð1aÞ

yðkÞ ¼ CxðkÞ ð1bÞ
where k is the discrete time, x 2 Rn and y 2 R are respectively the state vector and the output of the drive system. A and

C are two constant matrices of appropriate dimensions and f : R ! Rn is a real vector field.

We notice that H�eenon�s map and Lozi�s piecewise linear model are two well known discrete-time chaotic systems that
can be written in the form of (1).

As a response system, we consider the Luenberger-like discrete observer with yðkÞ being the driving sequence

x̂xðk þ 1Þ ¼ Ax̂xðkÞ þ f ðyðkÞÞ þ LðyðkÞ � ŷyðkÞÞ ð2aÞ

ŷyðkÞ ¼ Cx̂xðkÞ ð2bÞ

where x̂x is the state vector of the response system and L 2 Rn is an observer gain chosen to satisfy drive-response

synchronization i.e., limk!1ðxðkÞ � x̂xðkÞÞ ¼ 0.

Let�s define a synchronization error eðkÞ ¼ xðkÞ � x̂xðkÞ, consequently the error dynamics are

eðk þ 1Þ ¼ ðA� LCÞeðkÞ ¼ AceðkÞ ð3Þ

and the solution of (3) given an initial condition eð0Þ ¼ xð0Þ � x̂xð0Þ is

eðkÞ ¼ Ak
ceð0Þ ð4Þ

Clearly if the pair ðA;CÞ is observable then L can be chosen such that the spectral radius of Ac is less than 1. Therefore,

(3) is stable and limk!1 eðkÞ ¼ 0. Moreover, if L is chosen such that Ac is a nilpotent matrix of order p i.e., Ap
c ¼ 0 then

the error will fade to zero after p steps thereby a finite time synchronization, denoted by dead-beat synchronization [18],
is obtained regardless of the initial conditions.

3. Modulating chaos with digital message

In this section chaotic communication systems are suggested using the drive-response synchronization and observer-

based synchronization. The drive system is used as a transmitter and the response system is the receiver. The driving

chaotic sequence used for synchronization is modulated by a binary message, hence slight modification of the trans-

mitter–receiver system is required to achieve synchronization.
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3.1. Modulation by multiplication

In this scheme Lur�e type chaotic systems are used. The chaotic output sequence yðkÞ is multiplied by the message

sequence mðkÞ which is binary coded and satisfy the following hypothesis:

ðH1Þ The transmitted message is binary coded with ()1,+1) are the only admitted values.

The resultant modulated sequence sðkÞ ¼ yðkÞ 
 mðkÞ is then sent to the receiver. Since yðkÞ is not available at the
receiver side, the feedback term LðyðkÞ � ŷyðkÞÞ in (2a) cannot be implemented. Nevertheless, synchronization can be

achieve if the following hypothesis is satisfied:

ðH2Þ A is stable and the nonlinearity of the chaotic system is even.

Finally, we have the following communication system

transmitter

xðk þ 1Þ ¼ AxðkÞ þ f ðyðkÞÞ
yðkÞ ¼ CxðkÞ
sðkÞ ¼ yðkÞ 
 mðkÞ

8<
: ð5Þ

receiver
x̂xðk þ 1Þ ¼ Ax̂xðkÞ þ f ðsðkÞÞ
ŷyðkÞ ¼ Cx̂xðkÞ

�
ð6Þ

Using hypothesis ðH2Þ, the subsequent synchronization error dynamics are described as follows

eðk þ 1Þ ¼ AeðkÞ þ f ðyðkÞÞ � f ðyðkÞ 
 mðkÞÞ ¼ AeðkÞ;

thereby the synchronization error fades to zero exponentially fast. Hence, the message can be reconstructed in the

following manner

m̂mðkÞ ¼ sðkÞ
ŷyðkÞ ¼

CxðkÞ
Cx̂xðkÞ 
 mðkÞ ð7Þ

It is obvious that if x̂xðkÞ ¼ xðkÞ then m̂mðkÞ ¼ mðkÞ.

3.2. Modulation by multiplication and feedback

In this scheme the chaotic output is multiplied by the message sequence and the obtained sequence is simultaneously

sent to the receiver and fed back to the transmitter. In fact, this new scheme constitutes a new solution to synchronize

the transmitter and the receiver without putting forward hypotheses ðH1Þ and ðH2Þ. The communication system is

described by the following equations, where sðkÞ is the information bearing signal which drives the receiver

transmitter

xðk þ 1Þ ¼ AxðkÞ þ f ðsðkÞÞ þ LðsðkÞ � yðkÞÞ
yðkÞ ¼ CxðkÞ
sðkÞ ¼ yðkÞ 
 mðkÞ

8<
: ð8Þ

receiver
x̂xðk þ 1Þ ¼ Ax̂xðkÞ þ f ðsðkÞÞ þ LðsðkÞ � ŷyðkÞÞ
ŷyðkÞ ¼ Cx̂xðkÞ

�
ð9Þ

The ensuing synchronization error dynamics are described as follows

eðk þ 1Þ ¼ AeðkÞ þ LðsðkÞ � yðkÞÞ � LðsðkÞ � ŷyðkÞÞ ¼ AceðkÞ

thus if the pair ðA;CÞ is observable then we can choose L such that Ac is nilpotent, thus dead-beat synchronization is

achieved. However, if ðA;CÞ is only detectable then we can choose L such that Ac is at least stable and the synchro-

nization error fade to zero exponentially fast.

Eventually, message reconstruction is obtained by inverting the encoding procedure, that is

m̂mðkÞ ¼ sðkÞ
ŷyðkÞ ¼

CxðkÞ
Cx̂xðkÞ 
 mðkÞ ð10Þ

It is obvious that if x̂xðkÞ ¼ xðkÞ then m̂mðkÞ ¼ mðkÞ.
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Remark 1. We note that if A is nilpotent or at least stable then the communication scheme is valid with the choice of

L ¼ 0. Let for example the following chaotic transmitter

x1ðk þ 1Þ ¼
ffiffiffi
2

p
x2ðkÞ; x2ðk þ 1Þ ¼

ffiffiffi
2

p
x3ðkÞ; x3ðk þ 1Þ ¼ 1� 0:5x1ðkÞ2:

with

A ¼
0

ffiffiffi
2

p
0

0 0
ffiffiffi
2

p

0 0 0

2
4

3
5 f ðxÞ ¼

0

0

1� 0:5x1ðkÞ2

0
@

1
A

It is easy to verify that A3 ¼ 0 and f is even.

4. Modifying Hénon’s map for communication

In the foregoing section two communication schemes were presented. The first scheme concerns a restricted class of

chaotic systems. However, the second scheme seems to concern a larger class of systems. Nevertheless, further analysis

needs to be carried to investigate the effect of sðkÞ feedback on the chaotic behaviour of the transmitter. To ease the

analysis, the chaotic system considered in this paper is the well known H�eenon�s map.

x1ðk þ 1Þ ¼ 1� 1:4x1ðkÞ2 þ x2ðkÞ ð11aÞ

x2ðk þ 1Þ ¼ 0:3x1ðkÞ ð11bÞ

By choosing yðkÞ ¼ x1ðkÞ, it can be seen that (11) is in the form of (1) with

A ¼ 0 1

0:3 0

� �
and f ðxÞ ¼ 1� 1:4x2

0

� �

Obviously A is stable and f is an even function and the first scheme of the previous section can be applied to H�eenon�s
map.

On the other hand, if the second scheme is applied, with L ¼ ð0; 0:05ÞT chosen such that Ac is stable, the transmitter

is described as follows

x1ðk þ 1Þ ¼ 1� 1:4sðkÞ2 þ x2ðkÞ ð12aÞ

x2ðk þ 1Þ ¼ 0:3x1ðkÞ þ 0:05x1ðkÞðmðkÞ � 1Þ ð12bÞ

sðkÞ ¼ x1ðkÞ 
 mðkÞ ð12cÞ

Since f is even the f ðsðkÞÞ ¼ f ðxðkÞÞ and (12) can be rewritten in compact form

xðk þ 1Þ ¼ Að�1Þxþ f ðxÞ if mðkÞ ¼ �1
Aðþ1Þxþ f ðxÞ if mðkÞ ¼ þ1

�
ð13Þ

where

Að�1Þ ¼
0 1
0:2 0

� �
Aðþ1Þ ¼

0 1
0:3 0

� �

Note that we have obtained parameter modulation which is very close to chaos shift keying. Besides the two Henon�s
maps described in (13), henceforth denoted by Hð�1Þ and Hðþ1Þ, have different attractors and different basins of attraction

that we denote Bð�1Þ and Bðþ1Þ. Let k0 be the discrete time at which the state xðk0Þ 2 Bðþ1Þ and xðk0Þ 62 Bð�1Þ. Suppose that

mðkÞ ¼ �1, k ¼ k0 þ 1; . . . ; k0 þ i; i > 0 then xðkÞ will diverge. If the state gets out of Bðþ1Þ then xðk0 þ iÞ 62
fBð�1Þ [ Bðþ1Þg. Therefore, the behaviour of the transmitter becomes divergent and not chaotic.

Should the intersection of the basins of attraction contain both attractors then the transmitter keeps having a chaotic

behaviour if the state is initiated inside the intersection xð0Þ 2 fBð�1Þ \ Bðþ1Þg. Therefore, our goal is to modify Henon�s
map to extend the basin of attraction to R2, thereby the intersection condition is satisfied. From (11), the dynamics of

Henon�s map can be separated into linear and nonlinear parts. Since the map is chaotic then it is locally expanding.

Let�s suppose that f ðxðkÞÞ is a feedback control to a linear system and let it be denoted by f ðxðkÞÞ ¼ BuðkÞ. Hence we
can write
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xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ

Let x1ðkÞ be the output and HðkÞ be the impulse response of the linear system, then we have

x1ðkÞ ¼
Xk

j¼0
uðk � jÞHðjÞ

Now since A is stable it follows that HðkÞ is a decaying function, thus there exists positive constants M > 0 and

1 > r > 0 such that

jHðkÞj < M jrjk

Note that uðkÞ ¼ f1ðx1ðkÞÞ ¼ 1� 1:4x1ðkÞ2, so if x1ðkÞ 2 ½�1:2746; 1:2746� then uðkÞ 2 ½�1:2746; 1:2746� and

x1ðkÞ < 1:275
Xk

j¼0
jHðjÞj < 1:275

M
1� jrj

However, if x1ðkÞ 62 ½�1:2746; 1:2746� then juðkÞj > jx1ðkÞj, therefore we intuitively expect that each future iteration is

excited by a larger input and hence x1ðkÞ may diverge. For more rigorous analysis on the behaviour of Henon�s map we
refer the reader to [19].

To avoid divergence, it is sufficient to make uðkÞ bounded for all values of x1ðkÞ. Let ~ff1ðxðkÞÞ be periodic of period 2P
and defined by

~ff1ðx1ðkÞÞ ¼ 1� 1:4 x1ðkÞ
�

� floor
x1ðkÞ þ P

2P

� �
2P

�2

where floorðaÞ rounds a to the nearest integer towards minus infinity. It is clear that for x1ðkÞ 2 ½�P ; P � we have
~ff1ðx1ðkÞÞ ¼ f1ðx1ðkÞÞ. Now since ~ff1ðx1ðkÞÞ is periodic then for a suitable choice of P ¼ 1:2746 we have

uðkÞ 2 ½�1:2746; 1:2746� for all values of x1ðkÞ whence

x1ðkÞ < 1:275
M

1� jrj

Eventually, the modified Henon�s map becomes locally expanding and globally bounded.

5. Simulation results and analysis

5.1. Modulation by multiplication

Using Henon�s map presented in (11), we have simulated the communication scheme using modulation by multi-

plication. It is clear that A is stable with eigenvalues k ¼ �0:5477, therefore the synchronization is achieved expo-

nentially fast. Fig. 1 shows the simulation results. The output chaotic signal x1ðkÞ and the message mðkÞ are superposed
in Fig. 1a and their multiplication yields sðkÞ shown in Fig. 1b. The recovered message and the error

emðkÞ ¼ mðkÞ � m̂mðkÞ are presented in Fig. 1c and d. It is clear that the reconstruction is correct except for the first

sample where the synchronization error is still significant. To improve the performance of this communication scheme,

the choice of the chaotic transmitter is crucial. Indeed, if the chaotic system has a linear part with a nilpotent matrix

then the synchronization is achieved in finite time.

5.2. Modulation by multiplication and feedback

We have seen in the foregoing section that this scheme yields to parameter modulation and hence two Henon�s maps
were obtained. Fig. 2 sketches the attractors of Hðþ1Þ and Hð�1Þ. Fig. 3 depicts an example of a message that yields to

divergence of this scheme if Henon�s map is used (note that sðkÞ � 10154). As it has been elucidated in Section 4, and

without loss of generality we considered in this example k0 ¼ 0, xð0Þ is sketched by an asterisk in Fig. 2 and it is in the

vicinity of the attractor of Hðþ1Þ. xð0Þ 2 Bðþ1Þ but xð0Þ 62 Bð�1Þ. Therefore, with mðkÞ ¼ �1, k ¼ 1; 2; 3, it is shown by

simulation that xðkÞ diverges and leave the chaotic orbits. Although, the message is numerically recovered, the com-

munication scheme is unsuccessful.
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The modification proposed, was to substitute f1ðx1ðkÞÞ by ~ff1ðx1ðkÞÞ, both functions are sketched in Fig. 4. Since
~ff1ðx1ðkÞÞ folds R into the interval [)1.2746,1.2746], the basin of attraction of the modified H�eenon�s map extends to R2
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Fig. 1. Transmission using modulation by multiplication.

Fig. 2. Attractors of Hðþ1Þ and Hð�1Þ.

886 M. Feki et al. / Chaos, Solitons and Fractals 18 (2003) 881–890



0 2 4 6 8 10 12 14 16 18 20

–2

0

2

x 1(k
) 

&
 m

(k
)

0 2 4 6 8 10 12 14 16 18 20
–10

–5

0

5
x 10

154

s(
k)

0 2 4 6 8 10 12 14 16 18 20

–2

0

2

m
(k

)

<

0 2 4 6 8 10 12 14 16 18 20

–2

0

2

k

e m
(k

)

(a)

(b)

(c)

(d)

Fig. 3. An example of modulation failure using H�eenon�s map.
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Fig. 4. Folding function proposed for H�eenon�s map modification.
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and chaotic behaviour is obtained for all initial conditions. Fig. 5 shows that the same message is now correctly

transmitted while chaotic behaviour is preserved.

For more concrete application on digital communication of the modulation scheme using multiplication and

feedback with the modified H�eenon�s map, Fig. 6 delineates an example of image transmission. The original image has

been coded into a binary sequence, then modulated with a chaotic sequence and sent through a noiseless communi-

cation channel. It is shown that an intruder that has no knowledge about the chaotic modulating sequence can not

extract the image, however it is shown that the image is correctly recovered at the appropriate receiver. The image has

been next transmitted through a 30 dB AWGN channel, the recovered image is depicted in Fig. 6.

6. Conclusion

In this paper we have presented two chaotic modulation schemes for digital message transmission. By using the

ability to synchronize discrete chaotic systems with the drive response concept, a digital binary message modulates the

chaotic discrete sequence by simple multiplication. This scheme concerns a specified class of chaotic systems. To widen

the class of chaotic systems concerned, the modulation procedure was altered by including a feedback loop to inject the

transmitted signal to the transmitter. To recover the message an observer-based demodulator is used to synchronize

with the transmitter system. This new scheme of chaotic communication can be applied to a large class of discrete

chaotic systems. Moreover, some systems that may diverge due to the feedback loop can be slightly modified to satisfy

the communication scheme requirements. A concrete example of message transmission is presented to illustrate the

efficiency of our communication schemes.

It is worth noting that herein we have presented a single user communication scheme. However, our method can be

extended to a multi-user scheme. In this case, the choice of the chaotic system that has adequate statistical properties is

crucial to obtain feasible communication scheme. Work along these lines is in progress and the preliminary results are

promising.
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Fig. 5. Transmission using modulation by multiplication and feedback.
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