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Abstract— In this paper, we consider a secure distributed
computing scenario in which a master wants to perform matrix
multiplication of confidential inputs with multiple workers in
parallel. In such a setting, a master does not want to reveal
information about the two input matrices to the workers in
an information-theoretic sense. We propose a secure distributed
computing scheme that can efficiently cope with straggling effects

by applying polynomial codes on sub-tasks assigned to workers.
The achievable recovery threshold, i.e., the number of workers
that a master needs to wait for to get the final product, of our
proposed scheme is revealed to be order-optimal to the number of
workers. Moreover, we derive the achievable recovery threshold
of the proposed scheme is within a constant multiplicative
factor from information-theoretic lower bound. As a byproduct,
we extend our strategy to secure distributed computing for
convolution tasks on confidential data.

Index Terms— Distributed computing, data security,
polynomial codes.

I. INTRODUCTION

R
ECENTLY, there has been much interest in machine

learning and big data analytics, along with their appli-

cations to image processing, collaborative filtering, and so

on. To cope with a large computation load and memory

requirement to process massive datasets, distributed computing

frameworks have been developed to complete whole tasks with

multiple servers (workers) in parallel, which can leverage a

large number of servers to speed up processing a big task.

However, in a distributed computing scenario, it has been

reported a major bottleneck to increase computation time is

waiting time for slowest or even unresponsive workers, which

is referred to as stragglers [1]. One simple solution to alleviate

the impact of stragglers, i.e., straggling effect, is to allow

redundancies when assigning tasks to the workers [2]. Fur-

thermore, coding techniques may be exploited to mitigate the

straggling effect for various distributed computing scenarios

such as distributed matrix multiplication [3]–[8], distributed

convolution [9], and distributed gradient descent [10], [11].
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In this work, we consider data security in distributed com-

puting frameworks. Preserving security of input data in a

distributed computing model could be a critical issue when

1) there could exist an eavesdropper with access to the link

between a master and workers, 2) a master needs to exploit

suspicious but useful workers, and 3) information of input data

to be computed must be protected from workers, e.g., personal

location information and medical data. There have been signif-

icant studies on data security in a distributed computing model.

Numerous papers have considered private multi-party compu-

tation model in which data security is guaranteed for workers

to privately own their local data, and not to reveal them

to other workers [12]–[14]. Recently, Mcmahan et al. [15],

Smith et al. [16] have studied the computing model of securely

outsourcing data in which each party has own confidential

data, and the master wants to perform computations on con-

fidential data without requesting for disclosing the data to

the parties. In this work, we consider a secure distributed

computing problem in which a master wants to perform

a matrix multiplication task on confidential data with non-

colluding workers in parallel, while not revealing information

about confidential data to workers in an information-theoretic

sense. In a secure distributed computing scenario, straggling

effects must be controlled to quickly finish entire tasks as in

a conventional distributed computing scenario.

In this paper, we raise fundamental questions on the secure

distributed computing problem regarding the minimum num-

ber of workers the master needs to wait for to obtain the final

product for the worst-case scenario (will be defined as recovery

threshold). We also discuss how to design a secure distributed

computing scheme that can achieve the optimum recovery

threshold. The contributions of this work are threefold.

• We first derive the upper bound on the recovery threshold

of the secure distributed computing problem, i.e., the

minimum number of arbitrary workers that can guarantee

decodability of the final output at the master.

• Secondly, we prove a lower bound on the recovery

threshold of the secure distributed computing.

• As a consequence, we claim that optimal recovery thresh-

old can be characterized within a factor of 2.

We reveal the upper bound on the recovery threshold by

proposing an achievable secure distributed computing scheme

for matrix multiplication using polynomial codes [17]. The

polynomial code in the proposed secure distributed computing

scheme is carefully designed to preserve security of input data

from workers, and to address straggling effects effectively as

well, by modifying existing polynomial code for (security-

free) distributed computing scheme that can achieve optimal
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recovery threshold [8]. Achievable recovery threshold of our

proposed scheme is order-optimal to the number of workers,

i.e., it does not scale with the number of workers, that is

believed to the first result on the secure distributed computing

problem in literature.

We extend our approach to the secure distributed computing

scenario for convolution tasks. Beyond extending polynomial

codes for distributed matrix multiplication, we decrease the

achievable recovery threshold of the secure distributed con-

volution by leveraging inherent property of convolution tasks,

where the sums of the convolutions of sub-vectors are needed

to get the overall convolution result. The proposed scheme

can achieve order-optimality to the number of workers on the

recovery threshold. With the proposed scheme we demonstrate

that optimal recovery threshold for convolution tasks can

be characterized within a factor of 3. To the best of our

knowledge, this is the first result to use coding techniques to

perform distributed convolution while preserving data security

from workers.

From results on achievable recovery threshold, we ana-

lyze overall runtime distribution of the proposed scheme,

by focusing on the waiting time of returning sub-products

from workers at the master. We estimate the mean waiting

time under the assumption that the computing time at workers

follows exponential distribution [25]. In particular, compared

with an uncoded scheme that allocates whole tasks to workers

as much as possible without considering straggling effects,

we demonstrate that our scheme can reduce the overall runtime

by efficiently mitigating straggling effects.

A. Related Work

There are a large body of work on the secure distributed

computing problem in the computer science and machine

learning literature. Several works have proposed securely out-

sourcing computation schemes with expensive homomorphic

encryption [18], [19] or secret key generation [20]. Secure

distributed computing schemes that address straggling effects

have been proposed using secret sharing [21], [22] or staircase

codes [7], [23] ensuring information-theoretic security on input

data. However, these schemes assume that only one input of

two matrices for multiplication is regarded as confidential data

that must be preserved from workers, while our scheme using

polynomial codes regards the two inputs as confidential data.

Atallah and Frikken [24] considered secure distributed matrix

multiplication on confidential inputs, yet did not consider

straggling effects. To the best of our knowledge, our paper is

the first in proposing a secure distributed computing scheme

for matrix multiplication and convolution tasks preserving

data security of two inputs from the workers and efficiently

mitigating the straggler effects as well.

B. Organization

The remainder of this paper is organized as follows.

In Section II, we introduce the system model and formulate a

secure distributed computing problem on recovery threshold.

In Section III, we state our main results and implications.

In Section IV, we propose a new secure distributed computing

scheme using polynomial codes. In Section V, we extend the

Fig. 1. System model of secure distributed computing for matrix multipli-
cation of two confidential data A and B with N workers.

proposed scheme to a secure distributed computing problem

for convolution. In Section VI, we estimate and analyze

overall runtime distribution of the proposed scheme. Finally,

in Section VII, we conclude this paper.

C. Notation

For a, b ∈ Z, [a : b] denotes {a, a + 1, . . . , b}.

II. SYSTEM MODEL & PROBLEM FORMULATION

We consider a secure distributed computing scenario in

which a master wants to perform a matrix multiplication task

C = AT B on confidential data A ∈ F
s×r
q and B ∈ F

s×t
q for

a sufficiently large finite field Fq . We assume that either of

the two inputs A and B is a tall matrix, i.e., s ≥ r or s ≥ t ,

to ensure that the final product C is a full-rank matrix. The

master divides this multiplication task into smaller computa-

tion tasks and assigns to N non-colluding workers {Wi }N
i=1,

each of which can store 1
m

times the size of A and 1
n

times

the size of B . A master encodes A and B into N sub-matrices

{ Ãi}N
i=1 and {B̃i}N

i=1, where Ãi ∈ F
s× r

m
q and B̃i ∈ F

s× t
n

q ,

respectively, and sends Ãi and B̃i to Wi for all i ∈ [1 : N].
Workers obtain no information about A and B from their

assigned sub-matrices in an information-theoretic sense [29],

i.e.,

I ( Ãi ; A) = 0,

I (B̃i ; B) = 0, ∀i ∈ [1 : N]. (1)

Each worker Wi computes a sub-product C̃i = ÃT
i B̃i

and returns it to the master. A master waits only for sub-

products from a subset of workers to cope with the straggling

effect, and recovers the final product C given these sub-

products. We illustrate the system model of a secure distributed

computing for matrix multiplication with N workers in Fig. 1.

We formally define the secure distributed computing prob-

lem of matrix multiplication. First, we denote the sets of

encoded sub-matrices of A and B as

Ã � { Ã1, Ã2, . . . , ÃN },
B̃ � {B̃1, B̃2, . . . , B̃N }. (2)

We say matrices A and B are securely encoded for distributed

computing using N workers if each of the elements in Ã and B̃

has zero information about A and B , respectively (1). Each of
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the sub-matrices Ãi and B̃i for all i ∈ [1 : N] should satisfy

the storage constraint at the workers, i.e., Ãi ∈ F
s× r

m
q and

B̃i ∈ F
s× t

n
q for all i ∈ [1 : N]. Using this terminology, as in [8]

we define the recovery threshold k(Ã, B̃) of securely encoded

sets as the minimum number of workers k where the master

can recover C given the sub-products C̃i = ÃT
i B̃i from any k

workers. The goal of the secure distributed computing problem

of matrix multiplication is to find the optimum recovery

threshold K ∗, that can be denoted by

K ∗ � min
Ã,B̃

k(Ã, B̃), (3)

and to find securely encoded sets Ã and B̃ that can achieve

optimum recovery threshold.

III. MAIN RESULTS

In this section, we introduce our main results on the

recovery threshold of secure distributed computing problem.

We also reveal notable implications of our work.

The first theorem presents a recovery threshold that can

be achieved by the proposed distributed computing scheme

using polynomial codes, yielding an upper bound on optimal

recovery threshold.

Theorem 1: For secure distributed computing of matrix

multiplication task C = AT B using N workers, where each

worker can store 1
m

fraction of A and 1
n

fraction of B without

information about A and B, optimum recovery threshold K ∗

is upper bounded by

K ∗ ≤ mn + m + n. (4)

Proof: The achievable scheme will be given in Section IV.

Remark 1: Without security constraint, the optimum recov-

ery threshold K ∗ for a distributed matrix multiplication task

C = AT B , where each worker can store 1
m

fraction of A and
1
n

fraction of B , is given by

K ∗ = mn. (5)

Optimum recovery threshold can be achieved by distributed

computing strategy using polynomial codes [8]. In a secure

distributed computing scenario, we reveal that the recovery

threshold mn+m +n can be achieved in Theorem 1, implying

that the master should wait for extra m+n workers to preserve

information about two confidential data from workers with our

scheme. Additional m + n workers for the master to wait for

can be regarded as the price of security in our scheme for a

secure distributed computing scenario.

We also provide an information-theoretic lower bound on

optimal achievable recovery.

Theorem 2: For secure distributed computing of matrix

multiplication task C = AT B using N workers, where each

worker can store 1
m

fraction of A and 1
n

fraction of B without

information about A and B, optimum recovery threshold K ∗

is lower bounded by

K ∗ ≥ mn + 1. (6)

Proof: See Appendix.

The proof of Theorem 2 is that the master cannot obtain

any information about the final product from each of the sub-

products, i.e.,

I
(

C; C̃i

)

= 0, ∀i ∈ [1 : N], (7)

since each of the sub-matrices assigned to the workers has

zero information about two inputs A and B (1). Theorem 2

reveals that the master should wait for at least one more worker

for a secure distributed computing compared to a non-secure

distributed computing scenario. However, this lower bound

does not match with the derived upper bound, thus we state

that optimal recovery threshold can be characterized within a

constant factor by comparing two bounds.

Theorem 3: For secure distributed computing of matrix

multiplication task C = AT B using N workers, where each

worker can store 1
m

fraction of A and 1
n

fraction of B without

information about A and B, optimum recovery threshold K ∗

is characterized within a factor of 2, i.e.,

1

2
Kpolynomial < K ∗ ≤ Kpolynomial, (8)

where Kpolynomial = mn + m + n is the upper bound on the

recovery threshold K ∗, that can be achieved by polynomial

codes.

Proof: See Appendix.

Remark 2: From results on the recovery threshold in Theo-

rems 1 and 2, we provide a fundamental trade-off between

recovery threshold and computation load at each worker,

by assuming that there is no storage constraint at the workers,

and A and B can be divided into 1
m

fraction and 1
n

fraction,

respectively, i.e., r � m and t � n. We define the computation

load L at each worker as computational complexity of C̃i =
ÃT

i B̃i , normalized by computational complexity of C = AT B ,

i.e., L � 1
mn

. Recovery threshold of a distributed computing

with the computation load L at each worker is denoted as

K (L). By considering the assumption of m, n ∈ N, achievable

recovery threshold in Theorem 1 is converted to the upper

bound on K (L) as

K (L) ≤

⎧

⎨

⎩

min mn + m + n

s.t.
1

L
≤ mn ≤ N, m, n ∈ N

(9)

Meanwhile, the proof of Theorem 2 can be easily extended to

the case of 1
L

= mn ∈ R, thus the lower bound on K (L) is

given by

K (L) ≥ 1

L
+ 1. (10)

For example, Fig. 2 shows a tradeoff between computation

load and recovery threshold for a secure distributed computing

using N = 20 workers.

To validate the novelty of our proposed scheme using

polynomial codes for matrix multiplication of two confidential

inputs, we introduce a comparable secure distributed comput-

ing scheme using secret sharing.

We can generalize a secure distributed computing scheme

using secret sharing scheme for matrix multiplication of two

confidential inputs. By using (1, m + 1,
√

N) and (1, n + 1,
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Fig. 2. Tradeoff between computation load and recovery threshold for a
secure distributed computing scenario using N = 20 workers.

√
N ) secret sharing schemes in [22], respectively, a master

encodes A and B into
√

N secret shares {S A
i }

√
N

i=1 and {SB
j }

√
N

j=1,

each of which has 1
m

times the size of A and 1
n

times the

size of B to meet the information-theoretic bound on the

size of the secret shares. To extend the secret sharing scheme

from a single confidential input to two confidential inputs for

multiplication, we assume that workers are divided into
√

N

groups, each of which consists of
√

N workers. The workers

in the j th group are assigned to compute (S A
i )T SB

j for all

i ∈ [1 :
√

N ]. The master can recover the sub-product AT SB
j

if m + 1 workers in the j th group finish their tasks, and it can

recover the final product C = AT B from the sub-products

of n + 1 groups. In this case, we can demonstrate that secret

sharing achieves a recovery threshold of

Ksecret-sharing =
√

Nn + m(
√

N − n) + 1 = �(
√

N ). (11)

Remark 3: According to Theorem 1, achievable recovery

threshold of secure distributed matrix multiplication task using

polynomial codes is order-optimal to the number of workers,

i.e., it does not scale with the number of workers N .

Kpolynomial = mn + m + n = �(1). (12)

Existing secure distributed computing schemes using secret

sharing scheme or staircase codes [7] regard only one of

the two input matrices as confidential data. Thus, simple

extensions of these schemes for the scenario wherein the two

inputs are confidential cannot achieve order-optimality of the

recovery threshold to the number of workers, due to the worst-

case scenario. To the contrary, secure distributed computing

scheme using polynomial codes can achieve order-optimality

by carefully encoding the two confidential inputs, which is not

influenced by the worst-case scenario.

IV. SECURE DISTRIBUTED COMPUTING

USING POLYNOMIAL CODES FOR

MATRIX MULTIPLICATION

We now prove Theorem 1 by presenting our secure distrib-

uted computing scheme using polynomial codes. In a proposed

scheme, a master assigns sub-tasks of matrix multiplication

to workers, but the master does not reveal information about

two input matrices to workers. Let us introduce a motivating

example to provide intuition, and reveal the general description

of our proposed scheme.

A. Motivating Example

We first provide a motivating example of m = n = 1 case

to reveal the main idea of our secure distributed computing

scheme using polynomial codes. Consider a secure distributed

matrix multiplication C = AT B on confidential data A and B

using N = 5 workers. Each worker Wi , ∀i ∈ [1 : 5] stores two

securely encoded sub-matrices Ãi and B̃i which are encoded

and sent by a master as

Ã1 = RA + 1 · A, B̃1 = RB + 1 · B,

Ã2 = RA + 2 · A, B̃2 = RB + 2 · B,

Ã3 = RA + 3 · A, B̃3 = RB + 3 · B,

Ã4 = RA + 4 · A, B̃4 = RB + 4 · B,

Ã5 = RA + 5 · A, B̃5 = RB + 5 · B,

where Ãi and B̃i have the same size as A and B , respectively.

The two random matrices RA and RB are generated inde-

pendently of A and B by the master, and the elements of RA

and RB are uniformly drawn from independent and identically

distributed (i.i.d.) random variables over Fq . Workers have

no information about A and B since the randomly generated

matrices RA and RB are not known to workers.

Each worker Wi computes C̃i = ÃT
i B̃i and returns the

following result to the master.

C̃1 = ÃT
1 B̃1 = RT

A RB + 1 · AT RB + 1 · RT
A B + 12 · AT B,

C̃2 = ÃT
2 B̃2 = RT

A RB + 2 · AT RB + 2 · RT
A B + 22 · AT B,

C̃3 = ÃT
3 B̃3 = RT

A RB + 3 · AT RB + 3 · RT
A B + 32 · AT B,

C̃4 = ÃT
4 B̃4 = RT

A RB + 4 · AT RB + 4 · RT
A B + 42 · AT B,

C̃5 = ÃT
5 B̃5 = RT

A RB + 5 · AT RB + 5 · RT
A B + 52 · AT B.

These sub-products can be represented as

⎡

⎢

⎢

⎢

⎢

⎣

C̃1

C̃2

C̃3

C̃4

C̃5

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

10 11 12

20 21 22

30 31 32

40 41 42

50 51 52

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎣

RT
A RB

AT RB + RT
A B

AT B

⎤

⎦. (13)

Since workers store the sub-matrices that have the same

size as A and B , i.e., m = 1 and n = 1, achievable recovery

threshold K of our scheme is K = 1 · 1 + 1 + 1 = 3.

This means that the master can recover the final product C

with any possible set of 3 sub-products C̃i from the fastest

three workers. The coefficient matrix of the sub-products from

workers (13) is a Vandermonde matrix. A square Vandermonde

matrix is invertible if all parameters are distinct, thus a sub-

matrix of the coefficient matrix of the sub-products with

any three rows is always invertible for a sufficiently large

finite field Fq . Consequently, the master can recover RT
A RB ,

AT RB + RT
A B , and AT B from any three sub-products from

the workers by matrix inversion. Let us assume that the master

receives sub-products from the fastest three workers W1, W2,

and W3. The master has

⎡

⎣

C̃1

C̃2

C̃3

⎤

⎦ =

⎡

⎣

10 11 12

20 21 22

30 31 32

⎤

⎦

⎡

⎣

RT
A RB

AT RB + RT
A B

AT B

⎤

⎦

⇒

⎡

⎣

RT
A RB

AT RB + RT
A B

AT B

⎤

⎦ =

⎡

⎣

10 11 12

20 21 22

30 31 32

⎤

⎦

−1 ⎡

⎣

C̃1

C̃2

C̃3

⎤

⎦ (14)
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Hence, the master can recover C = AT B by inverting the

equation (14).

On the other hand, the master can also recover the final

product by solving a polynomial interpolation problem, requir-

ing more efficient decoding process. Sub-products from work-

ers are the value of the 2nd-degree polynomial h(x) at point

x = i , where h(x) is given by

h(x) = RT
A RB + x(AT RB + RT

A B) + x2 AT B. (15)

Thus, the master can recover coefficients of h(x), RT
A RB ,

AT RB + RT
A B , and AT B , using any possible set of three sub-

products by interpolating h(x) given its values at 3 points.

Consequently, the master recovers the final product C = AT B .

B. General Description (Proof of Theorem 1)

We generalize the secure distributed computing scheme

using polynomial codes that achieves the upper bound on

optimum recovery threshold K ∗ in Theorem 1. We divide the

whole procedure of the secure distributed computing into three

steps: encoding at the master, computing at workers, and last,

decoding at the master.

1) Encoding: If we divide two input matrices A and B into

m and n fractions, respectively, A and B can be represented

as

A = [A1 A2 · · · Am], B = [B1 B2 · · · Bn].

The master securely encodes two inputs with the fractions

of them and randomly generated matrix RA ∈ F
s× r

m
q and

RB ∈ F
s× t

n
q consisting of the elements drawn from i.i.d.

random variables, each of which is generated independently

of A and B with the same size of the fractions of A and

B , respectively. Specifically, the master assigns the variables

xi , ∀i ∈ [1 : N] to each worker such that all xi ’s are

distinct in Fq (in the motivating example, xi = i is assigned

to worker Wi ), and generates the securely encoded sets Ã

and B̃ using polynomial codes on {RA, A1, . . . , Am} and

{RB, B1, . . . , Bn}, respectively. The securely encoded sub-

matrices Ãi and B̃i assigned to worker Wi are represented

as

Ãi = RAx0
i +

m
∑

j=1

A j x
j

i ,

B̃i = RB x0
i +

n
∑

k=1

Bkx
k(m+1)−1
i , ∀i ∈ [1 : N]. (16)

The degrees of the polynomial code for two securely encoded

sets are carefully chosen to ensure that all the terms with

AT
j Bk,∀ j ∈ [1 : m],∀k ∈ [1 : n] in the sub-product

C̃i = ÃT
i B̃i have different exponents of xi . We can claim

that data security can be preserved from the workers when the

workers receive the encoded sub-matrices in (16).

Lemma 1: Workers obtain no information about input data

from the sub-matrices in (16), i.e., the data security constraint

in (1) is satisfied.

Proof: See Appendix.

2) Computing: After workers store securely encoded inputs

sent by the master, each worker Wi computes the sub-product

C̃i = ÃT
i B̃i = RT

A RB x0
i +

m
∑

j=1

AT
j RB x

j
i +

n
∑

k=1

RT
A Bkx

k(m+1)−1
i

+
m

∑

j=1

n
∑

k=1

AT
j Bkx

j+k(m+1)−1
i , ∀i ∈ [1 : N], (17)

and returns it to the master. It should be noted that these

sub-products are the value of the (mn + m + n − 1)th-degree

polynomial h(x) at point x = xi , where h(x) is given by

h(x) = RT
A RB x0 +

m−1
∑

j=1

AT
j RB x j + (AT

m RB + RT
A B1)xm

+
n

∑

k=2

RT
A Bk xk(m+1)−1 +

m
∑

j=1

n
∑

k=1

AT
j Bk x j+k(m+1)−1.

(18)

3) Decoding: The master decodes the final product after

receiving the sub-products from the fastest mn+m+n workers.

It can recover all coefficients of h(x) in (18) using any possible

set of mn + m + n sub-products from the fastest mn + m + n

workers finishing their tasks by interpolating h(x) given its

values at mn + m + n points. It is worth mentioning that the

problem of polynomial interpolation for decoding polynomial

codes at the master can be solved efficiently by using existing

decoding algorithms for Reed-Solomon codes [26], [27]. From

the coefficients of h(x), the master gets the final output

C = AT B as

C = AT B =

⎡

⎢

⎢

⎢

⎣

AT
1 B1 AT

1 B2 · · · AT
1 Bn

AT
2 B1 AT

2 B2 · · · AT
2 Bn

...
...

. . .
...

AT
m B1 AT

m B2 · · · AT
m Bn

⎤

⎥

⎥

⎥

⎦

. (19)

Note that the degrees of the sub-matrices assigned to workers

are carefully chosen to ensure that all terms with AT
j Bk,

∀ j ∈ [1 : m],∀k ∈ [1 : n] in the sub-product have different

exponents of xi , thus all the elements of the final product

matrix in (19) can be recovered at the master. The overall

procedure of the secure distributed computation using polyno-

mial codes for matrix multiplication is described in Fig. 3.

V. EXTENSION TO SECURE DISTRIBUTED

COMPUTING FOR CONVOLUTION

We dedicate this section to propose an extension of secure

distributed computation using polynomial codes for a con-

volution task. We consider a secure distributed convolution

scenario in which a master wants to perform a convolution

task c = a ∗ b using N workers on two confidential data

a ∈ F
tm
q and b ∈ F

tn
q . If we divide two input vectors into m

and n fractions, respectively, they can be represented as

a = [a1a2 · · · am], b = [b1b2 · · · bn],

where a j ∈ F
t
q , bk ∈ F

t
q for all i ∈ [1 : m] and k ∈ [1 : n].

To exploit inherent property of the convolution task in our

scheme, sub-vectors of a and b assigned to workers should
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Fig. 3. The overall procedure of secure distributed computation using
polynomial codes for matrix multiplication C = AT B: 1) Encoding at the
master, 2) Computing at workers, and 3) Decoding at the master. Worker
W2 represents one of the straggler nodes which is not included in the fastest
mn + m + n workers computing the assigned sub-tasks.

have the same size. We provide an achievable recovery thresh-

old on the secure distributed convolution scenario as follows.

Theorem 4: For secure distributed computing of convolu-

tion task c = a ∗ b using N workers, where each worker can

store 1
m

fraction of a and 1
n

fraction of b without information

about a and b, the optimal recovery threshold K ∗
conv is upper

bounded by

K ∗
conv ≤ max{m, n} + m + n. (20)

To achieve recovery threshold of max{m, n} + m + n for

a secure distributed convolution task, we modify distributed

computing strategy using polynomial codes for matrix multi-

plication in Section IV.

A. Encoding

The master randomly generates two vectors ra ∈ F
t
q and

rb ∈ F
t
q , that have the same size of the fractions of a and b.

With two random vectors ra and rb, and fractions of a and

b, the master generates securely encoded sets of a and b, and

assigns them to workers. Securely encoded sub-vectors ãi and

b̃i assigned to worker Wi are represented as

ãi =
m

∑

j=1

a j x
j−1
i + ra xm+n−1

i ,

b̃i =
n

∑

k=1

bk xk−1
i + rbxm+n−1

i , ∀i ∈ [1 : N]. (21)

Contrary to the secure distributed computing strategy for

matrix multiplication, degrees of the polynomial code for

fractions of a and b are carefully chosen for the convolution

terms a j−k ∗ bk to have the same exponent of xi (x
j−2
i ),

to improve the recovery threshold by leveraging inherent

property of a convolution task. In addition, degrees of the

polynomial code m +n−1 for the randomly generated vectors

ra and rb are chosen to ensure the decodability of c = a∗b at

the master, provided that all the terms for the convolution of

the fractions of a and b in c̃i = ãi ∗ b̃i do not have the same

exponent of xi with the convolution terms including ra or rb.

B. Computing

Each worker Wi computes the sub-task c̃i = ãi ∗ b̃i from

the assigned vectors ãi and b̃i in (21) as

c̃i = ãi ∗ b̃i =
m

∑

j=1

n
∑

k=1

a j ∗ bk x
j+k−2
i +

m
∑

j=1

a j ∗ rbx
j−1+m+n−1
i

+
n

∑

k=1

ra ∗ bk xm+n−1+k−1
i + ra ∗ rbx

2(m+n−1)
i . (22)

If the worker finishes its convolution task, it returns c̃i to the

master. Note that all the terms of xi in
m
∑

j=1

n
∑

k=1

a j ∗ bk x
j+k−2
i

have different exponents of xi from the other terms including

ra or rb. These sub-vectors from workers are the value of the

(2m+2n−2)th-degree polynomial h(x) at point x = xi , where

h(x) is given by

h(x) =
m

∑

j=1

n
∑

k=1

a j ∗ bk x j+k−2 +
m

∑

j=1

a j ∗ rbx j+m+n−2

+
n

∑

k=1

ra ∗ bk xk+m+n−2 + ra ∗ rbx2(m+n−1). (23)

We note that the coefficients of xmax{m,n}+m+n−1, . . . ,

x2m+2n−3 are zero, thus all the coefficients of h(x) can be

recovered from the max{m, n} + m + n values of h(x).

C. Decoding

The master can recover all the coefficients of h(x) using

any possible set of max{m, n} + m + n sub-products from

the fastest max{m, n} + m + n workers finishing their tasks

by interpolating h(x) given its values at max{m, n} + m + n

points. The convolution terms of the fractions of a and b can

be represented as

m
∑

j=1

n
∑

k=1

a j ∗ bk x j+k−2 =
m+n
∑

j=2

min{ j−1,n}
∑

k=max{1, j−m}
a j−k ∗ bk x j−2.

(24)

From coefficients of these terms, the master can recover the

final output c = a ∗ b by adding them with proper shift by

zero-padding.

For example, let us consider a simple case of m = 2 and

n = 2, wherein workers are assigned 1
4 fractions of the whole

convolution task. In this case, workers return the value of h(x),

where h(x) is given by

h(x) =
2

∑

j=1

2
∑

k=1

a j ∗ bk x j+k−2 +
2

∑

j=1

a j ∗ rbx j+2

+
2

∑

k=1

ra ∗ bk xk+2 + ra ∗ rbx6

= a1 ∗ b1 x0 + (a2 ∗ b1 + a1 ∗ b2)x1 + a2 ∗ b2 x2

+ (a1 ∗ rb + ra ∗ b1)x3 + (a2 ∗ rb + ra ∗ b2)x4

+ ra ∗ rbx6.

By the six sub-products from the fastest six workers, the mas-

ter can recover the coefficients of h(x). Hence, the master gets

a1 ∗ b1, a2 ∗ b1 + a1 ∗ b2, and a2 ∗ b2. From these sub-results,

the master can recover the final product c = a ∗ b with proper

shift by zero-padding as illustrated in Fig. 4.

In addition, we reveal the order-optimality of the achievable

recovery threshold to the number of workers, and characterize

optimal recovery threshold K ∗
conv within a constant factor for

a secure distributed convolution task, as in a secure distributed

matrix multiplication task.
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Fig. 4. An illustration of the decoding process at the master in the distributed
convolution task for a simple case of m = 2 and n = 2.

Remark 4: According to Theorem 4, the achievable recov-

ery threshold of secure distributed convolution using polyno-

mial codes is also order-optimal to the number of workers,

as in the achievable recovery threshold of secure distributed

matrix multiplication in Remark 3.

Kconv, polynomial = max{m, n} + m + n = �(1). (25)

Theorem 5: For secure distributed computing of convolu-

tion task c = a ∗ b using N workers, where each worker

can store 1
m

fraction of a and 1
n

fraction of b without any

information about a and b, the optimum recovery threshold

K ∗
conv is characterized within a factor of 3, i.e.,

1

3
Kconv, polynomial < K ∗

conv ≤ Kconv, polynomial, (26)

where Kconv, polynomial = max{m, n}+m+n is the upper bound

on the recovery threshold K ∗
conv, which can be achieved by

polynomial codes.

Proof: See Appendix.

VI. DISCUSSION: OVERALL RUNTIME DISTRIBUTION

We dedicate this section to estimate overall runtime distrib-

ution to recover the final product at the master. We assume that

runtime for encoding and decoding process at the master are

deterministic, and we highlight the waiting time of returning

sub-products from workers at the master.

A. Encoding and Decoding Complexities

To estimate the encoding and decoding times at the master,

we compute the computational complexities for encoding and

decoding of our proposed scheme.

1) Encoding Complexity: To encode the sub-matrices Ãi for

each worker, the master adds m + 1 matrices of size s × r
m

.

In terms of the sub-matrices B̃i , the master adds n+1 matrices

of size s× t
n

. Thus, the computational complexity to encode the

sub-matrices for each worker is O
(

(m + 1) sr
m

+ (n + 1) st
n

)

=
O (s(r + t)). The overall encoding complexity for N workers

is O (Ns(r + t)).

2) Decoding Complexity: To decode the final product C ,

the master solves a polynomial interpolation problem on a

(2m + 2n − 2)th-degree polynomial for rt
mn

elements. Since

the polynomial interpolation algorithm has a complexity of

O
(

klog2k
)

for a kth-degree polynomial [28], the decoding

complexity at the master is O
(

rt
mn

(m + n)log2(m + n)
)

.

B. Waiting Time at Master

We compare waiting time distributions for three cases as

follows.

• Polynomial Codes: The master divides the sub-tasks

to workers by using polynomial codes proposed in

Section IV. Workers are assigned a size of 1
mn

fraction of

the whole task to compute C = AT B . Thus, the master

needs to wait for the fastest mn + m + n workers.

• Lower Bound: We consider the ideal case wherein work-

ers are assigned a size of 1
mn

fraction of the whole task,

and the master needs to wait for the fastest mn+1 workers

only, which is a lower bound.

• Minimum Load: We consider an ideal secure scheme in

terms of computation load at the workers, which is not

designed to mitigate the straggling effect. Assigned tasks

are encoded to preserve the security of the two inputs

from workers. In this case, the master should wait for all

the workers to recover the final product. According to the

information-theoretic lower bound given in Theorem 2,

the minimum computation load at each worker is 1
N−1

fraction of the whole task. Thus, each worker computes
1

N−1
fractions of the whole task in this scheme.

We denote the time spent to compute C = AT B as a random

variable TC . We assume that the computing time distribution

Pr(TC ≤ t) follows an exponential distribution [25], i.e.,

Pr(TC ≤ t) = 1 − e−µt , ∀t ≥ 0, (27)

where exponential rate µ is referred to as straggling para-

meter. If workers are assigned with L fraction of the whole

task, we denote the time spent at each worker as a random

variable TW . Computing time distribution at each worker is

Pr(TW ≤ t) = 1 − e− µ
L t , ∀t ≥ 0, (28)

We now calculate expected values of waiting time for three

cases. Note that expected value of the kth statistics of n

independent random variables with an exponential distribution

with rate
µ
L

is
L(Hn−Hn−k)

µ , where Hn =
∑n

i=1
1
i

' log n is the

nth harmonic sum [4]. In our scheme using polynomial codes,

the master needs to wait for the fastest mn + m + n workers

among N workers, each of which is assigned to compute
1

mn
fraction of the whole computation task C = AT B . The

expected waiting time E[Tpoly] of our scheme for the fastest

mn + m + n workers among N workers to compute the final

product at the master is given by

E[Tpoly] = HN − HN−(mn+m+n)

µmn

' 1

µmn
log

(

N

N − (mn + m + n)

)

. (29)

Using the same approach, we estimate expected waiting

time E[Tbound] for the ideal scheme that achieves the lower

bound as

E[Tbound] = HN − HN−(mn+1)

µmn

' 1

µmn
log

(

N

N − (mn + 1)

)

. (30)
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Fig. 5. CDF of the waiting times when m = 3 and n = 3 with
N = 30 workers.

Fig. 6. CDF of the waiting times with N = 30 workers.

In addition, we can easily derive expected waiting time

E[Tminload] for the secure scheme with minimum computation

load as

E[Tminload] = HN

µ(N − 1)

' 1

µ(N − 1)
logN. (31)

From the expected waiting times for the scheme using

polynomial codes and the secure scheme with minimum com-

putation load, it is not easy to reveal the effect of polynomial

codes to reduce waiting time by mitigating the straggling

effect (i.e., the coding gain is statistical). Thus, we compare

cumulative distribution functions (CDF) for specific problem

parameters. We consider that the master divides its task to

N = 30 workers. In the proposed scheme using polyno-

mial codes and the ideal scheme that achieves lower bound,

we assume that each worker is assigned with sub-matrices

which have 1
3 the size of A and B , respectively (m = 3, n = 3).

In the secure scheme with minimum computation load, each

worker is assigned with the sub-task which is a 1
30−1

= 1
29

fraction of the whole task. Fig. 5 shows the CDFs of waiting

times for three schemes. It is observed that the waiting time

at the master is reduced by using polynomial codes, that can

efficiently mitigate straggler effects than the secure scheme

with minimum computation load.

We compare waiting times of the proposed scheme with

different sub-task assignments. We consider the four cases

of the sizes of sub-tasks, the CDFs of which are given

in Fig. 6. If smaller sub-tasks are assigned to each worker,

workers can finish their sub-tasks faster, but the master should

wait for more workers to finish to recover the final product.

Conversely, if the larger sub-tasks are assigned, the master

waits for fewer workers to finish, but workers may finish

their sub-tasks at a slower pace. Waiting time at the master

depends on the straggling parameter µ and the number of

workers N according to the size of the sub-tasks. Thus, we can

optimize waiting time at the master by considering these

system parameters.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we investigated a secure distributed computing

problem wherein a master wants to hide information about

input data from workers. We proposed a secure distributed

computing scheme using polynomial codes for matrix mul-

tiplication and convolution tasks of two confidential inputs.

We demonstrated that our proposed scheme efficiently adresses

stragglers by using polynomial codes on the design of sub-

tasks assigned to workers. It was further derived that achiev-

able recovery threshold of our proposed scheme is order-

optimal to the number of workers. We derived lower bound

on the optimal recovery threshold, and by using results we

claimed that the optimal recovery threshold can be character-

ized within a constant multiplicative factor.

There are a few interesting future directions of this work.

1) Sharpening bounds: The upper and lower bounds on the

optimal recovery threshold are within a constant factor. Thus,

there is a room for further development of these bounds. For

example, in our scheme a master can also recover unnecessary

products of random matrices as well as products of input

matrices, thus better schemes with no redundancy could exist.

2) Weak data security: In the proposed scheme, data secu-

rity is preserved from workers to exploit suspicious but useful

workers for distributed computing. We referred to it as strong

data security. However, we can imagine a secure distributed

computing scheme from the network security perspective,

that preserves weak data security from an eavesdropper with

access to the link between the master and workers, under the

assumption that workers are trustworthy.

3) Practical issues on overall runtime: In section VI,

we estimate overall runtime distribution with emphasis on

waiting time of returning sub-products from workers at the

master. We need to further consider several issues to reduce

overall runtime to perform secure distributed computing. First,

encoding and decoding times at the master should be con-

sidered. By considering encoding and decoding complexities

of polynomial codes, we can reduce overall runtime with

modifications on the proposed scheme. Second, the commu-

nication load between the master and workers is a key metric

in distributed computing to determine overall runtime. In the

proposed scheme, the master allocates the sub-tasks to all

possible workers since the recovery threshold does not scale

with the number of workers. However, if the communication

load to allocate sub-tasks to workers is considered, there could

be another solution to reduce overall runtime.

4) Heterogeneous networks: We can also imagine several

heterogeneous networks. For example, workers could have dif-

ferent performance to compute sub-tasks or different memory

sizes to store assigned sub-matrices. In addition, the master

could require different level of data security to workers: data

security should be guarded against some workers, but it is not

required for the others.

APPENDIX

Proof of Theorem 2: We assume that the elements of the

two input matrices A and B are drawn from i.i.d. random vari-

ables. In addition, we would like to recall that either of the two
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inputs A and B is a tall matrix, i.e., s ≥ r or s ≥ t , to ensure

that C = AT B is a full-rank matrix. These two assumptions

are essentially needed for information-theoretic derivations on

the considered problem. Otherwise, the considered problem

could be degenerate.

Without loss of generality, let us consider that the master

can recover the final product C from sub-products of the K ∗

workers {Wi }K ∗
i=1. It can be represented as

H
(

C

∣

∣

∣
C̃1, . . . , C̃K ∗

)

= 0. (32)

In addition, the mutual information between the final product

and each of the sub-products is given by

I
(

C; C̃i

)

= I
(

AT B; ÃT
i B̃i

)

(33)

= H
(

AT B
)

− H
(

AT B

∣

∣

∣
ÃT

i B̃i

)

(34)

≤ H
(

AT B
)

− H
(

AT B

∣

∣

∣
ÃT

i B̃i , Ãi , B̃i

)

(35)

= H
(

AT B
)

− H
(

AT B

∣

∣

∣
Ãi , B̃i

)

(36)

= H
(

AT B
)

− I
(

AT B; A, B

∣

∣

∣
Ãi , B̃i

)

− H
(

AT B

∣

∣

∣
Ãi , B̃i , A, B

)

(37)

= H
(

AT B
)

− I
(

AT B; A, B

∣

∣

∣
Ãi , B̃i

)

(38)

= H
(

AT B
)

− H
(

A, B

∣

∣

∣
Ãi , B̃i

)

+ H
(

A, B

∣

∣

∣
Ãi , B̃i , AT B

)

(39)

= H
(

AT B
)

− H (A, B) + H
(

A, B|AT B
)

(40)

= H
(

AT B
)

− I
(

AT B; A, B
)

(41)

= H
(

AT B|A, B
)

(42)

= 0 (43)

where (35) is due to the fact that conditioning reduces entropy,

(36) is due to the fact that ÃT
i B̃i is a deterministic function

of Ãi and B̃i , (38) and (43) are due to the fact that AT B

is a deterministic function of A and B , and (40) follows

from (1). According to the definition of the mutual informa-

tion [29], I
(

C; C̃i

)

,∀i ∈ [1 : K ∗] is not a negative value.

Hence, from (39),

I
(

C; C̃i

)

= 0. (44)

Finally, we have

H (C) = I
(

C; C̃1, . . . , C̃K ∗
)

+ H
(

C

∣

∣

∣
C̃1, . . . , C̃K ∗

)

(45)

= I
(

C; C̃1, . . . , C̃K ∗
)

(46)

= H
(

C̃1, . . . , C̃K ∗
)

− H
(

C̃1, . . . , C̃K ∗

∣

∣

∣
C

)

(47)

≤ H
(

C̃1, . . . , C̃K ∗
)

− H
(

C̃i

∣

∣

∣
C

)

(48)

= H
(

C̃1, . . . , C̃K ∗
)

− H
(

C̃i

)

(49)

≤
(

1 − 1

K ∗

)

H
(

C̃1, . . . , C̃K ∗
)

(50)

≤
(

1 −
1

K ∗

) K ∗
∑

i=1

H
(

C̃i

)

(51)

≤
1

mn
(K ∗ − 1)H (C), (52)

for any i ∈ [1 : K ∗] where (46) follows from (32), (49)

follows from (44), (50) follows from Han’s inequality [29],

(51) is due to the fact that dropping conditioning does not

reduce entropy, and (52) follows from the fact that the size

of C̃i ,∀i ∈ [1 : K ∗] is 1
mn

times smaller than the size of the

final product C . From (52), we have

K ∗ ≥ mn + 1. (53)

This completes the proof. �

Proof of Theorem 3: We prove Theorem 3 by using the

upper and the lower bounds in Theorems 1 and 2.

K ∗ ≥ mn + 1 (54)

≥ mn + 1 + m + n

2
(55)

>
mn + m + n

2
(56)

= 1

2
Kpolynomial. (57)

where (54) follows from Theorem 2, (55) is due to the fact

that mn +1 ≥ m +n when m ≥ 1 and n ≥ 1, and (57) follows

from Theorem 1. From (57) and Theorem 1, we have

1

2
Kpolynomial < K ∗ ≤ Kpolynomial. (58)

This completes the proof. �

Proof of Lemma 1: Without loss of generality, we prove

Lemma 1 for Wi , i ∈ [1 : N] and for the input A. It can be

simply generalized to any worker and the input B . From (16),

I
(

Ãi ; A
)

= H
(

Ãi

)

− H
(

Ãi

∣

∣

∣
A
)

(59)

= H
(

Ãi

)

− H
(

Ãi

∣

∣

∣
A
)

+ H
(

Ãi

∣

∣

∣
A, RA

)

(60)

= H
(

Ãi

)

− I
(

RA; Ãi

∣

∣

∣
A
)

(61)

= H
(

Ãi

)

− H
(

RA

∣

∣

∣
A
)

+ H
(

RA

∣

∣

∣
Ãi , A

)

(62)

= H
(

Ãi

)

− H
(

RA

∣

∣

∣
A
)

(63)

= H
(

Ãi

)

− H
(

RA

)

, (64)

where (60) and (63) follow from the fact that Ãi is a

deterministic fuction of A and RA. From (64), we can see

that I
(

Ãi ; A
)

= 0 if H
(

Ãi

)

= H
(

RA

)

. This implies that if

RA has the same size of Ãi , i.e., the size of RA is the same

as the fraction of A (A j , j ∈ [1 : m]), and RA is generated

in a finite field Fq , then I
(

Ãi ; A
)

= 0. This completes the

proof. �

Proof of Theorem 5: For a distributed convolution task

where each worker can store 1
m

fraction of a and 1
n

fraction

of b without security constraints, lower bound on optimal

recovery threshold is max{m, n} [8]. This bound can be also

applied to a secure distributed convolution task since the
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security constraint to workers does not lower the bound.

Hence, we have

K ∗
conv ≥ max{m, n} (65)

= 1

3
max{m, n} + 2

3
max{m, n} (66)

≥ 1

3
max{m, n} + 2

3

m + n

2
(67)

= max{m, n} + m + n

3
(68)

= 1

3
Kconv, polynomial. (69)

where (67) is due to the fact that the maximum of the two

values is not less than the mean of them, and (69) follows

from Theorem 4. From (69) and Theorem 4, we have

1

3
Kconv, polynomial < K ∗

conv ≤ Kconv, polynomial. (70)

This completes the proof. �
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