
Secure Evaluation of Private Linear Branching

Programs with Medical Applications

Mauro Barni1, Pierluigi Failla1, Vladimir Kolesnikov2, Riccardo Lazzeretti1,
Ahmad-Reza Sadeghi3, and Thomas Schneider3

1 Department of Information Engineering, University of Siena, Italy
barni@dii.unisi.it, {pierluigi.failla,lazzaro79}@gmail.com�

2 Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

3 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de��

Abstract. Diagnostic and classification algorithms play an important
role in data analysis, with applications in areas such as health care, fault
diagnostics, or benchmarking. Branching programs (BP) is a popular rep-
resentation model for describing the underlying classification/diagnostics
algorithms. Typical application scenarios involve a client who provides
data and a service provider (server) whose diagnostic program is run on
client’s data. Both parties need to keep their inputs private.

We present new, more efficient privacy-protecting protocols for remote
evaluation of such classification/diagnostic programs. In addition to ef-
ficiency improvements, we generalize previous solutions – we securely
evaluate private linear branching programs (LBP), a useful generaliza-
tion of BP that we introduce. We show practicality of our solutions: we
apply our protocols to the privacy-preserving classification of medical
ElectroCardioGram (ECG) signals and present implementation results.
Finally, we discover and fix a subtle security weakness of the most re-
cent remote diagnostic proposal, which allowed malicious clients to learn
partial information about the program.

1 Introduction

Classification and diagnostic programs are very useful tools for automatic data
analysis with respect to specific properties. They are deployed for various appli-
cations, from spam filters [8], remote software fault diagnostics [12] to medical
diagnostic expert systems [29]. The health-care industry is moving faster than
ever toward technologies that offer personalized online self-service, medical error
reduction, consumer data mining and more (e.g., [11]). Such technologies have
the potential of revolutionizing the way medical data is stored, processed, deliv-
ered, and made available in an ubiquitous and seamless way to millions of users
all over the world.
� Supported by EU FP6 project SPEED and MIUR project 2007JXH7ET.

�� Supported by EU FP6 project SPEED and EU FP7 project CACE.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 424–439, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Secure Evaluation of Private LBP with Medical Applications 425

Typical application scenarios in this context concern two (remote) parties, a
user or data provider (client) and a service provider (server) who usually owns
the diagnostic software that will run on the client’s data and output classifica-
tion/diagnostic results.

In this framework, however, a central problem is the protection of privacy of
both parties. On the one hand, the user’s data might be sensitive and security-
critical (e.g., electronic patient records in health care, passwords and other secret
credentials in remote software diagnostics, trade- and work-flow information in
benchmarking of enterprises). On the other hand, the service provider, who owns
the diagnostic software, may not be willing to disclose the underlying algorithms
and the corresponding optimized parameters (e.g., because they represent intel-
lectual property).

Secure function evaluation with private functions [31,27,18,30] is one way to
realize the above scenarios, when the underlying private algorithms are repre-
sented as circuits. However, as we elaborate in the discussion on related work,
in some applications, such as diagnostics, it is most natural and efficient to rep-
resent the function as a decision graph or a Branching Program (BP). At a high
level, BPs consist of different types of nodes — decision nodes and classification
nodes. Based on the inputs and certain decision parameters such as thresholds
(that are often the result of learning processes), the algorithm branches among
the decision nodes until it reaches the corresponding classification node (which
represents a leaf node in the decision tree).

In this work, we consider applications that benefit from the BP representation,
such as our motivating application, classification of medical ElectroCardioGram
(ECG) signals. In the remainder of the paper, we concentrate on the BP approach
(including discussion of related work).

Related Work. There is a number of fundamental works, e.g. Kilian [16],
that rely on Branching Programs (BP) “under the hood”. These are general
feasibility results that do not attempt to achieve high efficiency for concrete
problems. The goals and results of these works and ours are different. We do not
directly compare their performance to ours; instead, we compare our work with
previously-best approaches that are applicable to our setting (see below).

Recently, very interesting BP-based crypto-computing protocols were pro-
posed by Ishai and Paskin [14] (and later slightly improved by Lipmaa [22] who
also presented a variety of applications). In their setting, the server evaluates his
program on client’s encrypted data. The novelty of the approach of [14] is that
the communication and client’s computation depend on the length (or depth) of
BP, and are independent of the size of BP. This allows for significant savings in
cases of “wide” BP. However, the protocol requires computationally expensive
operations on homomorphically encrypted ciphertexts for each node of the BP.
Further, the server’s computation still depends on the size of BP. The savings
achieved by these protocols are not significant in our setting (in applications
we are considering, BPs are not wide), and the cost of employed homomorphic
encryption operation outweighs the benefit.

426 M. Barni et al.

Most relevant for this work is the sequence of works [19,4,32], where the
authors consider problems similar to ours, and are specifically concerned with
concrete performance of the resulting protocols. Kruger et al. [19] observed that
some functions are more succinctly represented by Ordered Binary Decision Dia-
grams (OBDD), and proposed a natural extension of the garbled circuit method
which allows secure evaluation of (publicly known) OBDDs. As in the garbled
circuit approach, the client receives garblings of his inputs, and is blindly evalu-
ating a garbled OBDD to receive a garbling of the output, which is then opened.
Brickell et al. [4] further extended this approach and considered evaluation of
private BPs. They also consider a more complex decision procedure at the nodes
of BP (based on the result of integer comparison). The solution of [4] is especially
suited for remote diagnostics, their motivating application.

In the above two approaches the communication complexity depends linearly
on the size of the BP, as the size of the garbled BP is linear in the size of the
BP. While the computational complexity for the client remains asymptotically
the same as in the crypto-computing protocols of [14] (linear in the length of
the evaluation path), the computational cost is substantially smaller (especially
for the server), as only symmetric crypto operations need to be applied to the
nodes of the BP. In [32] an extension of the protocol of [19] for secure evaluation
of private OBDDs based on efficient selection blocks [18] was proposed. In our
work, we generalize, unify, extend, and improve efficiency of the above three
protocols [19,4,32].

In addition to circuits and BPs, other (secure) classification methods have
been considered, such as those based on neural networks [6,25,28,30]. In our
work, we concentrate on the BP representation.

Our Contribution and Outline. Our main contribution is a new more efficient
modular protocol for secure evaluation of a class of diagnostics/classificationprob-
lems, which are naturally computed by (a generalization of) decision trees (§3). We
work in the semi-honest model, but explain how our protocols can be efficiently se-
cured againstmalicious adversaries (§3.6). We improve on the previously proposed
solutions in several ways. Firstly, we consider a more general problem. It turns
out, our motivating example — ECG classification — as well as a variety of other
applications, benefit from a natural generalization of Branching Programs (BP)
and decision trees, commonly considered before. We introduce and justify Linear
Branching Programs (LBP) (§3.1), and show how to evaluate them efficiently. Sec-
ondly, we fine-tune the performance. We propose several new tricks (for example,
we show how to avoid inclusion of classification nodes in the encrypted program).
We also employ performance-improving techniques which were used in a variety of
areas of secure computation. This results in significant performance improvements
over previous work, even for evaluation of previously considered BPs. A detailed
performance comparison is presented in §3.5. Further, in §4, we discover and fix
a subtle vulnerability in the recent and very efficient variant of the protocol for
secure BP evaluation [4] and secure classifier learning [5]. Finally, we apply our
protocols to the privacy-preserving classification of medical ElectroCardioGram
(ECG) signals (§5).

Secure Evaluation of Private LBP with Medical Applications 427

2 Preliminaries

In our protocols we combine several standard cryptographic tools (additively ho-
momorphic encryption, oblivious transfer, and garbled circuits) which we sum-
marize in §2.1. Readers familiar with these tools can safely skip §2.1 and continue
reading our notational conventions in §2.2.

We denote the symmetric (asymmetric) security parameter with t (T). Rec-
ommended sizes for short-term security are t = 80, T = 1248 [10].

2.1 Cryptographic Tools

Homomorphic Encryption (HE). We use a semantically secure additively
homomorphic public-key encryption scheme. In an additively homomorphic cryp-
tosystem, given encryptions �a� and �b�, an encryption �a+b� can be computed as
�a + b� = �a��b�, where all operations are performed in the corresponding plain-
text or ciphertext structure. From this property follows, that multiplication of
an encryption �a� with a constant c can be computed efficiently as �c · a� = �a�c

(e.g., with the square-and-multiply method). As instantiation we use the Paillier
cryptosystem [26,7] which has plaintext space ZN and ciphertext space Z

∗
N2 ,

where N is a T -bit RSA modulus. This scheme is semantically secure under the
decisional composite residuosity assumption (DCRA). For details on the encryp-
tion and decryption function we refer to [7].

Parallel Oblivious Transfer (OT). Parallel 1-out-of-2 Oblivious Transfer for
m bitstrings of bitlength �, denoted as OTm

� , is a two-party protocol. S inputs m
pairs of �-bit strings Si =

〈
s0

i , s
1
i

〉
for i = 1, .., m with s0

i , s
1
i ∈ {0, 1}�. C inputs

m choice bits bi ∈ {0, 1}. At the end of the protocol, C learns sbi

i , but nothing
about s1−bi

i whereas S learns nothing about bi. We use OTm
� as a black-box

primitive in our constructions. It can be instantiated efficiently with different
protocols [24,2,21,13]. Extensions of [13] can be used to reduce the number of
computationally expensive public-key operations to be independent of m. We
omit the parameters m or � if they are clear from the context.

Garbled Circuit (GC). Yao’s Garbled Circuit approach [33], excellently pre-
sented in [20], is the most efficient method for secure evaluation of a boolean
circuit C. We summarize its ideas in the following. First, the circuit constructor
(server S), creates a garbled circuit C̃ with algorithm CreateGC: for each wire Wi

of the circuit, he randomly chooses a complementary garbled value W̃i =
〈
w̃0

i , w̃1
i

〉

consisting of two secrets, w̃0
i and w̃1

i , where w̃j
i is the garbled value of Wi’s value

j. (Note: w̃j
i does not reveal j.) Further, for each gate Gi, S creates and sends to

the evaluator (client C) a garbled table T̃i with the following property: given a
set of garbled values of Gi’s inputs, T̃i allows to recover the garbled value of the
corresponding Gi’s output, and nothing else. Then garbled values correspond-
ing to C’s inputs xj are (obliviously) transferred to C with a parallel oblivious
transfer protocol OT: S inputs complementary garbled values W̃j into the pro-
tocol; C inputs xj and obtains w̃

xj

j as outputs. Now, C can evaluate the garbled

428 M. Barni et al.

circuit C̃ with algorithm EvalGC to obtain the garbled output simply by evalu-
ating the garbled circuit gate by gate, using the garbled tables T̃i. Correctness
of GC follows from method of construction of garbled tables T̃i. As in [4] we use
the GC protocol as a conditional oblivious transfer protocol where we do not
provide a translation from the garbled output values to their plain values to C,
i.e., C obtains one of two garbled values which can be used as key in subsequent
protocols but does not know to which value this key corresponds.

Implementation Details. A point-and-permute technique can be used to speed
up the implementation of the GC protocol [23]: The garbled values w̃i = 〈ki, πi〉
consist of a symmetric key ki ∈ {0, 1}t and πi ∈ {0, 1} is a random permutation
bit. The permutation bit πi is used to select the right table entry for decryption
with the key ki. Extensions of [17] to “free XOR” gates can be used to further
improve performance of GC.

2.2 Notation

Number Representation. In the following, a (signed) �-bit integer x� is repre-
sented as one bit for the sign, sign(x�), and �−1 bits for the magnitude, abs(x�),
i.e., −2�−1 < x� < +2�−1. This allows sign-magnitude representation of numbers
in a circuit, i.e., one bit for the sign and �− 1 bits for the magnitude. For homo-
morphic encryptions we use ring representation, i.e., x� with 2� ≤ N is mapped

into an element of the plaintext group ZN using m(x�) =
{

x�, if x� ≥ 0
N + x�, if x� < 0 .

Homomophic Encryption. Gen(1T) denotes the key generation algorithm of
the Paillier cryptosystem [26,7] which, on input the asymmetric security param-
eter T , outputs secret key skC and public key pkC = N to C, where N is a T -bit
RSA modulus. �x�� denotes the encryption of an �-bit message x� ∈ ZN (we
assume � < T) with public key pkC .

Garbled Objects. Objects overlined with a tilde symbol denote garbled ob-
jects: Intuitively, C cannot infer the real value i from a garbled value w̃i, but can
use garbled values to evaluate a garbled circuit C̃ or a garbled LBP L̃. Capital
letters W̃ denote complementary garbled values consisting of two garbled values〈
w̃0, w̃1

〉
for which we use the corresponding small letters. We group together

multiple garbled values to a garbled �-bit value w̃� (small, bold letter) which
consists of � garbled values w̃1, . . . , w̃�. Analogously, a complementary garbled
�-bit value W̃� (capital, bold letter) consists of � complementary garbled values
W̃1, . . . , W̃�.

3 Evaluation of Private Linear Branching Programs

After formally defining Linear Branching Programs (LBP) in §3.1, we present
two protocols for secure evaluation of private LBPs. We decompose our protocols

Secure Evaluation of Private LBP with Medical Applications 429

into different building blocks similar to the protocol of [4] and show how to
instantiate them more efficiently than in [4].

The protocols for secure evaluation of private LBPs are executed between a
server S in possession of a private LBP, and a client C in possession of data,
called attribute vector. Let z be the number of nodes in the LBP, and n be
the number of attributes in the attribute vector.

As in most practical scenarios n is significantly larger than z, the protocol of
[4] is optimized for this case. In particular, the size of our securely transformed
LBP depends linearly on z but is independent of n.

In contrast to [4], our solutions do not reveal the total number z of nodes of
the LBP, but only its number of decision nodes d for efficiency improvements.
In particular, the size of our securely transformed LBP depends linearly on d
which is smaller than z by up to a factor of two.

3.1 Linear Branching Programs (LBP)

First, we formally define the notion of linear branching programs. We do so by
generalizing the BP definition used in [4]. We note that BPs – and hence also
LBPs – generalize binary classification or decision trees and Ordered Binary
Decision Diagrams (OBDDs) used in [19,32].

Definition 1 (Linear Branching Program). Let x� = x�
1, .., x

�
n be the at-

tribute vector of signed �-bit integer values. A binary Linear Branching
Program (LBP) L is a triple 〈{P1, .., Pz},Left ,Right〉. The first element is a
set of z nodes consisting of d decision nodes P1, .., Pd followed by z − d clas-
sification nodes Pd+1, .., Pz.
Decision nodes Pi, 1 ≤ i ≤ d are the internal nodes of the LBP. Each Pi :=〈
a�
i , t

�′
i

〉
is a pair, where a�

i =
〈
a�

i,1, .., a
�
i,n

〉
is the linear combination vec-

tor consisting of n signed �-bit integer values and t�
′

i is the signed �′-bit integer
threshold value with which a�

i ◦ x� =
∑n

j=1 a�
i,jx

�
j is compared in this node.

Left(i) is the index of the next node if a�
i ◦ x� ≤ t�

′
i ; Right(i) is the index of the

next node if a�
i ◦x� > t�

′
i . Functions Left() and Right() are such that the resulting

directed graph is acyclic.
Classification nodes Pj := 〈cj〉, d < j ≤ z are the leaf nodes of the LBP consist-
ing of a single classification label cj each.

To evaluate the LBP L on attribute vector x�, start with the first decision node
P1. If a�

1 ◦ x� ≤ t�
′

1 , move to node Left(1), else to Right(1). Repeat this process
recursively (with corresponding a�

i and t�
′

i), until reaching one of the classification
nodes and obtaining the classification c = L(x�).

In the general case of LBPs, the bit-length �′ has to be chosen according to
the maximum value of linear combinations as �′ = 2� + �log2 n	 − 1.
As noted above, LBPs can be seen as a generalization of previous representations:

– Branching Programs (BP) as used in [4] are a special case of LBPs. In
a BP, in each decision node Pi the αi-th input x�

αi
is compared with the

430 M. Barni et al.

threshold value t�
′

i , where αi ∈ {0, .., n} is a private index. In this case,
the linear combination vector a�

i of the LBP decision node degrades to a
selection vector ai = 〈ai,1, .., ai,n〉, with exactly one entry ai,αi = 1 and
all other entries ai,j �=αi = 0. The bit-length of the threshold values t�

′
i is set

to �′ = �.
– Ordered Binary Decision Diagrams (OBDD) as used in [19,32] are a

special case of BPs with bit inputs (� = 1) and exactly two classification
nodes (Pz−1 = 〈0〉 and Pz = 〈1〉).

3.2 Protocol Overview

We start with a high-level overview of our protocol for secure evaluation of pri-
vate linear branching programs. We then fill in the technical details and outline
the differences and improvements of our protocol over previous work in the fol-
lowing sections.

Our protocol SecureEvalPrivateLBP, its main building blocks, and the data
and communication flows are shown in Fig. 1. The client C receives an attribute
vector x� = {x�

1, . . . , x
�
n} as input, and the server S receives a linear branching

program L. Upon completion of the protocol, C outputs the classification label
c = L(x�), and S learns nothing. Of course, both C and S wish to keep their
inputs private. Protocol SecureEvalPrivateLBP is naturally decomposed into the
following three phases (cf. Fig. 1).

CreateGarbledLBP. In this phase, S creates a garbled version of the LBP L. This
is done similarly to the garbled-circuit-based previous approaches [4,19]. The
idea is to randomly permute the LBP, encrypt the pointers on the left and right
successor, and garble the nodes, so that the evaluator is unable to deviate from
the evaluation path defined by his input.

x� = x�
1, .., x

�
n

w̃1, .., w̃d

SecureEvalPrivateLBP

EvalGarbledLBP

Client C

c = L(x�)

CreateGarbledLBP

L
Server S

i = 1, .., d : â�
i , t̂

�′
i , W̃i L̃

ObliviousLinearSelect

Fig. 1. Secure Evaluation of Private Linear Branching Programs - Structural Overview

Secure Evaluation of Private LBP with Medical Applications 431

The novelty of our solution is that each node transition is based on the obliv-
ious comparison of a linear combination of inputs with a node-specific threshold.
Thus, CreateGarbledLBP additionally processes (and modifies) these values and
passes them to the next phase. CreateGarbledLBP can be entirely precomputed
by S.

ObliviousLinearSelect. In this phase, C obliviously obtains the garbled values
w̃1, .., w̃d which correspond to the outcome of the comparisons of the linear
combination of the attribute vector with the threshold for each garbled node.
These garbled values will then be used to evaluate the garbled LBP in the next
phase. Making analogy to Yao’s garbled circuit (GC), this phase is the equivalent
of the GC evaluator receiving the wire secrets corresponding to his inputs. In
our protocol, this stage is more complicated, since the secrets are transferred
based on secret conditions.

EvalGarbledLBP. This phase is equivalent to Yao’s GC evaluation. Here, C re-
ceives the garbled LBP L̃ from S, and evaluates it. EvalGarbledLBP additionally
gets the garbled values w̃1, .., w̃d output by ObliviousLinearSelect as inputs and
outputs the classification label c = L(x�).

3.3 Our Building Blocks

Phase I (offline): CreateGarbledLBP. In this pre-computation phase, S gen-
erates a garbled version L̃ of the private branching program L. CreateGarbledLBP
is presented in Algorithm 1.

Algorithm CreateGarbledLBP converts the nodes Pi of L into garbled nodes
P̃î in L̃, as follows. First, we associate a randomly chosen key Δi with each
node Pi. We use Δi (with other keys, see below) for encryption of Pi’s data.
Each decision node Pi contains a pointer to its left successor node Pi0 and
one to its right successor node Pi1 . Garbled P̃i contains encryptions of these
pointers and of successors’ respective keys Δi0 , Δi1 . Further, since we want to
prevent the LBP evaluator from following both successor nodes, we additionally
separately encrypt the data needed to decrypt Pi0 and Pi1 with random keys
k0

i and k1
i respectively. Evaluator later will receive (one of) kj

i , depending on
his input (see block ObliviousLinearSelect), which will enable him to decrypt
and follow only the corresponding successor node. The used semantically secure
symmetric encryption scheme can be instantiated as Encs

k(m) = m ⊕ H(k||s) =
Decs

k(m), where s is a unique identifier used once, and H(k||s) is a pseudo-
random function (PRF) evaluated on s and keyed with k, e.g., a cryptographic
hash function from the SHA-2 family. In CreateGarbledLBP, we use the following
technical improvement from [19]: Instead of encrypting twice (sequentially, with
Δi and kj

i), we encrypt successor Pij ’s data with Δi ⊕ kj
i . Each classification

node is garbled simply by including its label directly into the parent’s node
(instead of the decryption key Δi). This eliminates the need for inclusion of
classification nodes in the garbled LBP and increases the size of each garbled
decision node by only two bits denoting the type of its successor nodes. This

432 M. Barni et al.

Algorithm 1. CreateGarbledLBP

Input S: LBP L = 〈{P1, .., Pz},Left ,Right〉. For i ≤ d, Pi is a decision node
〈
a�
i , t

�′
i

〉
.

For i > d, Pi is a classification node 〈ci〉.
Output S: (i) Garbled LBP L̃ =

〈
{P̃1, .., P̃d}

〉
; (ii) Compl. garbled inputs W̃1, .., W̃d;

(iii) Perm. lin. comb. vectors â�
1, .., â�

d; (iv) Perm. thresholds t̂�′
1 , .., t̂�′

d

1: choose a random permutation Π of the set 1, .., d with Π [1] = 1.
2: choose key Δ1 := 0t, rand. keys Δi ∈R {0, 1}t, 1 < i ≤ d for enc. decision nodes

3: for i = 1 to d do {Pi =
〈
a�
i , t

�′
i

〉
is a decision node}

4: let permuted index î := Π [i]

5: set perm. linear combination vector â�
î
:= a�

i ; perm. threshold value t̂�′
î

:= t�′
i

6: choose rand. compl. garbled value W̃î =
〈
w̃0

î
=

〈
k0

î
, πî

〉
, w̃1

î
=

〈
k1

î
, 1 − πî

〉〉

7: let left successor i0 := Left [i], î0 := Π [i0] (permuted)
8: if i0 ≤ d then {Pi0 is a decision node}
9: let mî,0 :=

〈
"decision", î0, Δî0

〉

10: else {Pi0 = 〈ci0〉 is a classification node}
11: let mî,0 := 〈"classification", ci0〉
12: end if
13: let right successor i1 := Right [i], î1 := Π [i1] (permuted)
14: if i1 ≤ d then {Pi1 is a decision node}
15: let mî,1 :=

〈
"decision", î1, Δî1

〉

16: else {Pi1 = 〈ci1〉 is a classification node}
17: let mî,1 := 〈"classification", ci1〉
18: end if

19: let garbled decision node P̃î :=

〈

Encî,0

k
π

î
î

⊕Δ
î

(mî,π
î), Encî,1

k
1−π

î
î

⊕Δ
î

(mî,1−π
î)

〉

20: end for
21: return L̃ :=

〈
{P̃1, .., P̃d}

〉
; W̃1, .., W̃d; â

�
1, .., â�

d; t̂�′
1 , .., t̂�′

d

technical improvement allows to reduce the size of the garbled LBP by up to
a factor of 2, depending on the number of classification nodes. Finally, the two
successors’ encryptions are randomly permuted.

We note that sometimes the order of nodes in a LBP may leak some infor-
mation. To avoid this, in the garbling process we randomly permute the nodes
of the LBP (which results in the corresponding substitutions in the encrypted
pointers). The start node P1 remains the first node in L̃. Additionally, garbled
nodes are padded s.t. they all have the same size.

The output of CreateGarbledLBP is L̃ (to be sent to C), and the randomness
used in its construction (to be used by S in the next phase).

Complexity (cf. Table 2). L̃ contains d garbled nodes P̃i consisting of two ci-
phertexts of size �log d	 + t + 1 bits each (assuming classification labels cj have
less bits than this). The asymptotic size of L̃ is 2d(log d + t) bits.

Secure Evaluation of Private LBP with Medical Applications 433

Tiny LBPs. In case of tiny LBPs with a small number of decision nodes d we
describe an alternative construction method for garbled LBPs with asymptotic
size 2d log(z − d) in the full version of this paper [3].

Phase II: ObliviousLinearSelect. In this phase, C obliviously obtains the gar-
bled values w̃1, .., w̃d which correspond to the outcome of the comparison of the
linear combination of the attribute vector with the threshold for each garbled
node. These garbled values will then be used to evaluate the garbled LBP L̃ in
the next phase.

In ObliviousLinearSelect, the input of C is the private attribute vector x�

and S inputs the private outputs of CreateGarbledLBP: complementary garbled
values W̃1 =

〈
w̃0

1 , w̃
1
1

〉
, .., W̃d =

〈
w̃0

d, w̃1
d

〉
, permuted linear combination vec-

tors â�
1, .., â�

d, and permuted threshold values t̂�
′

1 , .., t̂�
′

d . Upon completion of the
ObliviousLinearSelect protocol, C obtains the garbled values w̃1, .., w̃d, as follows:
if â�

i ◦ x� > t̂�
′

i , then w̃i = w̃1
i ; else w̃i = w̃0

i . S learns nothing about C’s inputs.
We give two efficient instantiations for ObliviousLinearSelect in §3.4.

Phase III: EvalGarbledLBP. In the last phase, C receives the garbled LBP
L̃ from S, and evaluates it locally with algorithm EvalGarbledLBP as shown in
Algorithm 2. This algorithm additionally gets the garbled values w̃1, .., w̃d output
by ObliviousLinearSelect as inputs and outputs the classification label c = L(x�).

Algorithm 2. EvalGarbledLBP

Input C: (i) Garbled LBP L̃ =
〈
{P̃1, .., P̃d}

〉
; (ii) Garbled input values w̃1, .., w̃d

Output C: Classification label c such that c = L(x�)

1: let î := 1; Δî := 0t (start at root)
2: while true do

3: let 〈kî, πî〉 := w̃î;
〈
c0
î
, c1

î

〉
:= P̃î; 〈typêi, dataî〉 := Dec

î,π
î

k
î
⊕Δ

î
(cπ

î
)

4: if typêi = "decision" then

5: let
〈
î, Δî

〉
:= dataî

6: else
7: let 〈c〉 := dataî

8: return c
9: end if

10: end while

C traverses the garbled LBP L̃ by decrypting garbled decision nodes along the
evaluation path starting at P̃1. At each node P̃î,

1 C takes the garbled attribute
value w̃î = 〈kî, πî〉 together with the node-specific key Δî to decrypt the infor-
mation needed to continue evaluation of the garbled successor node until the
correct classification label c is obtained.
1 We use the permuted index î here to stress that C does not obtain any information

from the order of garbled nodes.

434 M. Barni et al.

It is easy to see that some information about L is leaked to C, namely: (i)
the total number d of decision nodes in the program L̃, and (ii) the length of
the evaluation path, i.e., the number of decision nodes that have been evaluated
before reaching the classification node. We note that in many cases this is ac-
ceptable. If not, this information can be hidden using appropriate padding of
L. We further note that L̃ cannot be reused. Each secure evaluation requires
construction of a new garbled LBP.

3.4 Oblivious Linear Selection Protocol

We show how to instantiate the ObliviousLinearSelect protocol next.
A straight-forward instantiation can be obtained by evaluating a garbled cir-

cuit whose size depends on the number of attributes n. This construction is
described in the full version of this paper [3].

In the following, we concentrate on an alternative instantiation based on a hy-
brid combination of homomorphic encryption and garbled circuits which results
in a better communication complexity.

Hybrid Instantiation. In this instantiation of ObliviousLinearSelect (see Fig. 2
for an overview), C generates a key-pair for the additively homomorphic encryp-
tion scheme and sends the public key pkC together with the homomorphically
encrypted attributes �x�

1�, .., �x
�
n� to S. Using the additively homomorphic prop-

erty, S can compute the linear combination of these ciphertexts with the private
coefficients â�

i as �y�′
i � := �

∑n
j=1 â�

i,jx
�
j� =

∏n
j=1�x

�
j�

â�
i,j , 1 ≤ i ≤ d. Afterwards,

the encrypted values �y�′
i � are obliviously compared with the threshold values

t̂�
′

i in the ObliviousParallelCmp protocol. This protocol allows C to obliviously
obtain the garbled values corresponding to the comparison of y�′

i and t̂�
′

i , i.e.,
w̃0

i if y�′
i ≤ t̂�

′
i and w̃1

i otherwise. ObliviousParallelCmp ensures that neither C
nor S learns anything about the plaintexts y�′

i from which they could deduce
information about the other party’s private function or inputs.

ObliviousParallelCmp protocol (cf. Fig. 3). The basic idea underlying this protocol
is that S blinds the encrypted value �y�′

i � in order to hide the encrypted plaintext
from C. To achieve this, S adds a randomly chosen value R ∈R ZN

2 under
encryption before sending them to C who can decrypt but does not learn the
plain value. Afterwards, a garbled circuit C is evaluated which obliviously takes
off the blinding value R and compares the result (which corresponds to y�′

i) with
the threshold value t�

′
i . We improve the communication complexity of this basic

protocol which essentially corresponds to the protocol of [4] by packing together
multiple ciphertexts and minimizing the size of the garbled circuit as detailed
in the full version of this paper [3]. The complexity of our improved protocol is
given in Table 1.

2 In contrast to [4], we choose R from the full plaintext space in order to protect
against malicious behavior of C as explained in §4.

Secure Evaluation of Private LBP with Medical Applications 435

Server SClient C
i = 1, .., d : â�

i , t̂
�′
i , W̃ix�

1, .., x
�
n

W̃1, .., W̃d

t̂�
′

1 , .., t̂�
′

dObliviousParallelCmp

w̃1, .., w̃d

pkC , �x�
1�, .., �x

�
n�

Encrypt �x�
1�, .., �x

�
n�

�y�′
i � :=

n∏
j=1

�x�
j�

â�
i,j

ObliviousLinearSelect

skC pkC

(skC , pkC) := Gen(1T)

For i = 1, .., d:

Fig. 2. ObliviousLinearSelect - Hybrid

w̃1, .., w̃d′

W̃1, .., W̃d′

t̂�
′

1 , .., t̂�
′

d′

EvalGC

OTL′

�γ� := �R��y�

�y� :=
∏d′

i=1(�2
�′−1��y�′

i �)2
�′(i−1)

R ∈R ZN

CreateGC

C̃

CreateC

C

γ̃1, .., γ̃L′

Γ̃1, .., Γ̃L′

�y�′
1 �, .., �y�′

d′�pkC
Server SClient C

skC

γ := DecskC (�γ�)
γ1, .., γL′ := γ mod 2L′

ObliviousParallelCmp

Fig. 3. ObliviousParallelCmp

We note that further performance improvements can be achieved when the
client only computes those values he will actually use in the LBP evaluation
phase (“lazy evaluation”). All server-visible messages of OT must be performed
to hide the evaluation path taken based on client’s inputs.

Extension of [4] to LBPs. Our hybrid instantiation of the ObliviousLinearSelect
protocol is a generalization of the ObliviousAttributeSelection protocol proposed in
[4]. The protocol for secure evaluation of private BPs of [4] can easily be extended
to a protocol for secure evaluation of private LBPs by computing a linear combi-
nation of the ciphertexts instead of obliviously selecting one ciphertext. We call
this protocol “ext. [4]”. However, our hybrid protocol is more efficient than ext.
[4] as shown in the following.

436 M. Barni et al.

3.5 Performance Improvements over Existing Solutions

On the one hand, our protocols for secure evaluation of private LBPs extend the
functionality that can be evaluated securely from OBDDs [19], private OBDDs
[32], and private BPs [4] to the larger class of private LBPs. On the other hand,
our protocols can be seen as general protocols which simply become improved
(more efficient) versions of the protocols of [19,32,4] when instantiated for the
respective special case functionality.

The employed techniques and the resulting performance improvements of our
protocols over previous solutions (see Table 1 and Table 2) are summarized in
the full version of this paper [3].

Table 1. Protocols for Secure Evaluation of Private BPs/LBPs with parameters z:
#nodes, d: #decision nodes, n: #attributes, �: bitlength of attributes, �′: bitlength
of thresholds (for LBPs), t: symmetric security parameter, T : asymmetric security
parameter, κ: statistical correctness parameter

Oblivious Selection Private Moves Asymptotic Communication Complexity
Protocol Function GC OT HE

[4] BP
OT + 2

12z�(t + κ) OTz�
t (n + z)2T

ext. [4] (§3.4) LBP 12z�′(t + κ) OTz�′
t

our Hybrid (§3.4)
BP

OT + 2
12d�t OTd�

t (n + �
T−κ

d)2T

LBP 12d�′t OTd�′
t (n + �′

T−κ
d)2T

our Circuit [3]
BP

OT
4(n log d + 3d log d)�t

OTn�
tLBP 16nd(�2 + �′)t

Table 2. Algorithms to Create/Evaluate Garbled LBPs. Parameters as in Table 1.

Algorithm to Size of Examples from [4] with t = 80, κ = 80
Create/Evaluate Garbled LBP iptables mpg321 nfs

Garbled LBP in bit d = 4, z = 9 d = 5, z = 9 d = 12, z = 17

[19,4] 2z(�log z� + t + κ) 2, 952 bit 2, 952 bit 5, 610 bit
Alg. 1 & 2 (§3.3) 2d(�log d� + t + 1) 664 bit 840 bit 2, 040 bit

Tiny GLBP [3] 2d�log(z − d)� 48 bit 64 bit 12, 288 bit

3.6 Correctness and Security Properties

As previously mentioned, protocol SecureEvalPrivateLBP securely and correctly
evaluates private LBP in the semi-honest model. We formally state and prove
the corresponding theorems in the full version of this paper [3].

Extensions to Malicious Players. We note that our protocols, although
proven secure against semi-honest players, tolerate many malicious client be-
haviors. For example, many efficient OT protocols are secure against malicious
chooser, and a malicious client is unable to tamper with the GC evaluation pro-
cedure. Further, our protocols can be modified to achieve full security in the

Secure Evaluation of Private LBP with Medical Applications 437

malicious model. One classical way is to prove in zero-knowledge the validity of
every step a party takes. However, this approach is far inefficient. We achieve ma-
licious security simply by employing efficient sub-protocols proven secure against
malicious players. (This is the transformation approach suggested in [4].) More
specifically, we use committed OT, secure two-party computation on commit-
ted inputs, and verifiable homomorphic encryption schemes (see [15] for more
detailed description).

4 A Technical Omission in [4] w.r.t. Malicious Client

In this section, we briefly present and fix a small technical omission, which led to
an incorrect claim of security in the setting with semi-honest server and malicious
client in [4, Section 4.4] (and indirectly propagated to [5]). Recall, the protocol
of [4] is similar in the structure to our protocol. The problem appears in the
ObliviousAttributeSelection subroutine, which is similar to (actually is a special
case of) our ObliviousLinearSelect subroutine. The issue is that, for efficiency,
[4] mask the C-encrypted attribute values with relatively short random strings,
before returning them back to C. In the semi-honest model this guarantees that
C is not able to match the returned strings to the attribute values he earlier
sent, and the security of the entire protocol holds. However, the security breaks
in case of a malicious C. Indeed, such a C can send S very large values xi, wait
for the blinded responses and match these with the original xi, allowing C to
determine which of the attributes are used for the computation. (Indeed, whereas
the lower bits are blinded correctly, the upper bits of the maliciously chosen large
xi remain the same.) We further note that malicious C will not even be caught
since he will recover the blinding values and will be able to continue execution
with his real inputs, if he wishes.

This attack can be prevented by choosing R randomly from the full plaintext
domain ZN instead (as done in our ObliviousParallelCmp protocol). With this
modification, the blinded value is entirely random in ZN and a malicious C
cannot infer any information from it.

5 Application: Secure Classification of Medical Data

Our motivating example application for secure evaluation of private LBPs is
privacy-preserving classification of biomedical data. As a simple representa-
tive example we consider privacy-preserving classification of ElectroCardioGram
(ECG) signals. A patient (client C) owns an ECG signal and asks a service
provider (server S) to determine which class the ECG signal belongs to. C re-
quires S to gain no knowledge about the ECG signal (as this is sensitive personal
data of C), whereas S requires no disclosure of details of the classification algo-
rithm to C (as this represents valuable intellectual property of S). We show how
tho achieve this by mapping an established ECG classification algorithm [1,9] to
secure evaluation of a private LBP, and give implementation results in the full
version of this paper [3].

438 M. Barni et al.

Acknowledgments. We thank anonymous reviewers of ESORICS 2009 for
their helpful comments.

References

1. Acharya, U.R., Suri, J., Spaan, J.A.E., Krishnan, S.M.: Advances in Cardiac Signal
Processing, ch. 8. Springer, Heidelberg (2007)

2. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

3. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications
(Full Version). Cryptology ePrint Archive, Report 2009/195 (2009)

4. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: ACM CCS 2007, pp. 498–507. ACM Press, New York (2007)

5. Brickell, J., Shmatikov, V.: Privacy-preserving classifier learning. In: FC 2009.
LNCS. Springer, Heidelberg (2009)

6. Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural
learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384.
Springer, Heidelberg (2001)

7. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

8. Delany, S.J., Cunningham, P., Doyle, D., Zamolotskikh, A.: Generating estimates
of classification confidence for a case-based spam filter. In: Muñoz-Ávila, H., Ricci,
F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 177–190. Springer, Heidelberg
(2005)

9. Ge, D.F., Srinivasan, N., Krishnan, S.M.: Cardiac arrhythmia classification using
autoregressive modeling. BioMedical Engineering OnLine 1(1), 5 (2002)

10. Giry, D., Quisquater, J.-J.: Cryptographic key length recommendation (March
2009), http://keylength.com

11. Google Health (2009), https://www.google.com/health

12. Ha, J., Rossbach, C.J., Davis, J.V., Roy, I., Ramadan, H.E., Porter, D.E., Chen,
D.L., Witchel, E.: Improved error reporting for software that uses black-box com-
ponents. In: Programming Language Des. and Impl (PLDI 2007). ACM Press, New
York (2007)

13. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

14. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

15. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on commit-
ted inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer, Heidelberg (2007)

16. Kilian, J.: Founding cryptography on oblivious transfer. In: ACM Symposium on
Theory of Comp (STOC 1988), pp. 20–31. ACM Press, New York (1988)

http://keylength.com
https://www.google.com/health

Secure Evaluation of Private LBP with Medical Applications 439

17. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

18. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008)

19. Kruger, L., Jha, S., Goh, E.-J., Boneh, D.: Secure function evaluation with ordered
binary decision diagrams. In: ACM CCS 2006, pp. 410–420. ACM Press, New York
(2006)

20. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
ECCC Report TR04-063, Electronic Colloq. on Comp. Complexity (2004)

21. Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, Springer, Heidelberg
(2003)

22. Lipmaa, H.: Private branching programs: On communication-efficient cryptocom-
puting. Cryptology ePrint Archive, Report 2008/107 (2008),
http://eprint.iacr.org/

23. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: USENIX (2004),
http://www.cs.huji.ac.il/project/Fairplay

24. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: ACM-SIAM Sym-
posium On Discrete Algorithms (SODA 2001), pp. 448–457. Society for Industrial
and Applied Mathematics (2001)

25. Orlandi, C., Piva, A., Barni, M.: Oblivious neural network computing via homomor-
phic encryption. European Journal of Information Systems (EURASIP) 2007(1),
1–10 (2007)

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

27. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. SIGKDD
Explor. Newsl. 4(2), 12–19 (2002)

28. Piva, A., Caini, M., Bianchi, T., Orlandi, C., Barni, M.: Enhancing privacy in
remote data classification. In: New Approaches for Security, Privacy and Trust in
Complex Environments, SEC 2008 (2008)

29. Rodriguez, J., Goni, A., Illarramendi, A.: Real-time classification of ECGs on a
PDA. IEEE Transact. on Inform. Technology in Biomedicine 9(1), 23–34 (2005)

30. Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure evaluation
of private functions with application to data classification. In: ICISC 2008. LNCS,
vol. 5461, pp. 336–353. Springer, Heidelberg (2008)

31. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC1. In:
IEEE Symp. on Found. of Comp. Science (FOCS 1999), pp. 554–566. IEEE Com-
puter Society Press, Los Alamitos (1999)

32. Schneider, T.: Practical secure function evaluation. Master’s thesis, University of
Erlangen-Nuremberg, February 27 (2008)

33. Yao, A.C.: How to generate and exchange secrets. In: IEEE Symposium on Found.
of Comp. Science (FOCS 1986), pp. 162–167. IEEE, Los Alamitos (1986)

http://eprint.iacr.org/
http://www.cs.huji.ac.il/project/Fairplay

	Secure Evaluation of Private Linear Branching Programs with Medical Applications
	Introduction
	Preliminaries
	Cryptographic Tools
	Notation

	Evaluation of Private Linear Branching Programs
	Linear Branching Programs (LBP)
	Protocol Overview
	Our Building Blocks
	Oblivious Linear Selection Protocol
	Performance Improvements over Existing Solutions
	Correctness and Security Properties

	A Technical Omission in [4] w.r.t. Malicious Client
	Application: Secure Classification of Medical Data

