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ABSTRACT Homomorphic authenticated encryption allows implicit computation on plaintexts using

corresponding ciphertexts without losing privacy, and provides authenticity of the computation and the

resultant plaintext of the computation when performing a decryption. However, due to its special func-

tionality, the security notions of the homomorphic authenticated encryption is somewhat complicated and

the construction of fully homomorphic authenticated encryption has never been given. In this work, we

propose a new security notion and the first construction of fully homomorphic authenticated encryption. Our

new security notion is a unified definition for data privacy and authenticity of homomorphic authenticated

encryption. Moreover, our security notion is simpler and stronger than the previous ones. To realize our

new security notion, we also suggest a construction of fully homomorphic authenticated encryption via

generic construction. We combine a fully homomorphic encryption and two homomorphic authenticators,

one fully homomorphic and one OR-homomorphic, to construct a fully homomorphic authenticated

encryption that satisfies our security notion. Our construction requires its fully homomorphic encryption to

be indistinguishable under chosen plaintext attacks and its homomorphic authenticators to be unforgeable

under selectively chosen plaintext queries. Our construction also supports multiple datasets and amortized

efficiency. For efficiency, we also construct a multi-dataset fully homomorphic authenticator scheme,

which is a variant of the first fully homomorphic signature scheme. Our multi-dataset fully homomorphic

authenticator scheme satisfies the security requirement of our generic construction above and supports

amortized efficiency.

INDEX TERMS authentication, cryptography, data security, encryption, fully homomorphic authenticated

encryption, homomorphic authenticator, homomorphic encryption, security notion

I. INTRODUCTION

While the idea of homomorphic cryptography itself is quite

old [1], it was Gentry’s first fully homomorphic encryption

(FHE) scheme [2] which has strongly motivated the whole

homomorphic cryptography area. Since then, there has been

many works (for example, [3]–[6]) on cryptographic primi-

tives that have homomorphic property such as homomorphic

authenticators (HA), homomorphic authenticated encryption

(HAE) and homomorphic encryption (HE) itself. These prim-

itives play an important role in cloud computing since they

preserve security while allowing homomorphic evaluations

on ciphertexts or authentication tags. In this work, we focus

on HAE.

HAE provides privacy and authenticity of the plaintext and

assures that the ciphertext is honestly generated with respect

to a given circuit. Similar to HE, we may use ciphertexts of

HAE to homomorphically evaluate a given circuit to produce

the ciphertext which decrypts to the value of the circuit, with-

out losing privacy. Moreover, using the decryption algorithm

of HAE, we can verify whether the ciphertext of HAE is valid

or not.

The first formal definition and construction of HAE was

given by Joo and Yun [5]. In their work, the security notion

of HAE was given in two parts; privacy and authenticity. As

an encryption scheme, a secure HAE scheme is required to be

indistinguishable against chosen plaintext attack (IND-CPA),

or even chosen ciphertext attack (IND-CCA) formalized in

the usual find-then-guess games. Also, as an authentication

scheme, a secure HAE scheme must be strongly unforgeable

against chosen plaintext attack (SUF-CPA) or chosen cipher-
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text attack (SUF-CCA). The authors showed that an HAE

scheme which satisfies IND-CPA and SUF-CPA, relatively

weaker security notions, necessarily satisfies the strongest

security notions, IND-CCA and SUF-CCA. Using this, the

authors showed that their construction of a somewhat homo-

morphic authenticated encryption scheme satisfies IND-CCA

and SUF-CCA.

However, there are some shortcomings of Joo and Yun’s

work [5]. First, the definition of IND-CCA security has

complicated restriction on the decryption queries that adver-

saries are allowed to make. This restriction comes from the

homomorphic functionality of HAE and the find-then-guess

formalism that was used for defining IND-CCA security.

Specifically, after the challenge phase, the adversary can

easily produce a ciphertext that allows winning the challenge,

using homomorphic evaluation on the challenge ciphertext.

Therefore, rather complicated restrictions on the decryption

queries after the challenge phase were unavoidable to define

IND-CCA security in the find-then-guess formalism. Second,

the first construction of HAE is only somewhat homomorphic

and not compatible with multiple datasets. For broader usage,

multi-dataset fully homomorphic authenticated encryption

(MDFHAE) is more desirable.

A. OUR CONTRIBUTIONS

In this work, we mainly propose some improvements of

aforementioned shortcomings of the original HAE work [5].

First, we propose a new security notion that is simpler and

stronger than the original ones and implies privacy and au-

thenticity simultaneously. Second, we propose the first fully

homomorphic authenticated encryption (FHAE) scheme that

is compatible with multiple datasets and has amortized ef-

ficiency. Lastly, we propose an efficient multi-dataset fully

homomorphic authenticator (MDFHA) scheme that can be

used as a part of the generic construction of FHAE.

Our security notion follows real-or-random-like formalism

instead of find-then-guess. The challenger first flips a coin b
and defines oracle E and D according to the value of b. If

b = 0, then the challenger lets E = Enc and D = Dec
where Enc and Dec are encryption and decryption algo-

rithms, respectively, of an HAE scheme. On the other hand,

if b = 1, then the challenger lets E = $ and D = ⊥ where

$(·) is an algorithm that samples a ciphertext independent

of the message input and ⊥(·) is the trivial algorithm that

always outputs ⊥. Afterwards, the challenger gives oracle

access of E and D to the adversary. To win the security

game, the adversary must guess b correctly. To prevent trivial

distinguishing attacks, the adversary is not allowed to make

decryption queries, the queries to the oracle D, that he or she

already knows the answer of; a ciphertext that is generated by

homomorphic evaluation on the previous encryption queries,

the queries to the oracle E. One may say that the purpose of

the security game is to distinguish the real world, b = 0, and

the ideal world, b = 1.

Our new security notion has two advantages over the

original definition. First, it is simpler. Unlike the definition of

IND-CCA security, our security notion’s restriction on adver-

saries is straightforward. Later on, the restricted decryption

queries will be called redundant queries since it is a homo-

morphic version of classical redundant queries. Second, it is

stronger. It can be proved that our new security notion implies

IND-CCA and SUF-CCA security, the strongest notions prior

to ours, at the same time.

For realization, we also propose the first FHAE scheme

that satisfies our new security notion. Overall, our FHAE

scheme can be considered as following the encrypt-then-

authenticate generic composition paradigm, using one FHE

scheme and one fully homomorphic authenticator. In order to

achieve the security definition we propose, our construction

uses one additional OR-homomorphic HA. The ciphertext c
of our scheme consists of three parts: a ciphertext c̊ of the

FHE scheme that encrypts a plaintext m, an authentication

tag σ̄ of the FHA scheme that authenticates c̊, and another

authentication tag σ̌ of the OR-homomorphic authenticator.

For broader usage, our FHAE scheme maintains the multi-

dataset compatibility and amortized efficiency if the two HAs

used also have the same property.

Our MDFHAE construction can also be seen as an

MDFHA with amortized efficiency. To our knowledge, our

MDFHAE construction is the second method to achieve an

adaptively secure MDFHA with amortized efficiency. The

first such scheme is the fully homomorphic signature scheme

of Gorbunov, Vaikuntanathan and Wichs [4], which is con-

structed using their selective-secure basic scheme. Compared

with theirs, our construction satisfies stronger authenticity

guarantee, have essentially the same efficiency, and provides

privacy as well.

For efficiency of our FHAE scheme, we also propose an

efficient MDFHA that satisfies the security requirement of

our generic construction of FHAE. Namely, our MDFHA

scheme is strongly unforgeable against selectively chosen

message attacks. Our MDFHA scheme is a variant of the first

fully homomorphic signature scheme [4], but our construc-

tion supports multiple datasets more efficiently.

B. RELATED WORKS

1) Adaptively secure fully homomorphic authenticators

Since the first construction of fully homomorphic authenti-

cator (FHA) scheme [3], there have been some studies about

adaptively secure FHA. The most notable one is the work

with the first fully homomorphic signature scheme presented

by Gorbunov, Vaikuntanathan and Wichs [4]. The authors

proposed a selectively secure fully homomorphic signature

scheme using lattice trapdoors, and constructed methods to

strengthen security and functionality. Based on their meth-

ods, one can construct an adaptively secure MDFHA scheme

with amortized efficiency. Other works proposed adaptively

secure fully homomorphic authenticators as well, but failed

to preserve amortized efficiency [7]–[9].
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2) Stronger notion of fully homomorphic authenticators

Catalano, Fiore, and Nizzardo have proposed a simpler and

stronger security notion for homomorphic signatures [10].

Their new notion is more intuitive than previous ones. The

authors also have proposed a generic transform using OR-

homomorphic signatures that can make existing homomor-

phic signatures to satisfy their new security notion. Our con-

struction adapts their use of OR-homomorphic authentication

for our purposes.

3) Unified security notion for authenticated encryptions

Our security definition can be considered as a homomorphic

adaptation of the ‘all-in-one’ security definition for authen-

ticated encryptions first given by Rogaway and Shrimpton

in [11]. As ours, their security notion challenges the adver-

sary to distinguish the encryption/decryption oracles from

the random/rejection oracles. The authors also proved that

their security notion is equivalent to the original definitions

of privacy and authenticity.

II. PRELIMINARIES

A. NOTATIONS AND CONVENTIONS

(γ, ·) ∈ S and (γ, ·) 6∈ S are shorthand notations for

∃x, (γ, x) ∈ S and ∀x, (γ, x) 6∈ S, respectively. Similarly,

we will use notations like (γ, ·, ·, ·) ∈ S.

For a function f : X × Y → Z , we define a function

f(x, ·) : Y → Z as f(x, ·)(y) := f(x, y). Similarly, for

an algorithm Alg defined on input space X × Y , we define

Alg(x, ·) as the algorithm that takes y ∈ Y as an input

and outputs Alg(x, y). Similarly, we will use notations like

f ′(·, x, ·, ·) and Alg ′(x, ·, y, ·).
For any positive integer n, the set {1, . . . , n} is denoted by

[n]
Let X and Y be random variables on X and Y , respec-

tively. We say X and Y are statistically indistinguishable, or

X
stat≈ Y if the value 1

2

∑

z∈X∪Y |Pr[X = z]−Pr[Y = z]|
is negligible.

Let D be a distribution and X be a set. If x is sampled

according to the distribution D, then we write x ← D. If x
is sampled from uniform distribution of the set X , then we

write x
$← X .

We define advantages of indexed games AdvGame i
A (λ) :=

∣

∣

1
2 −Pr[Game i(λ) = 1]

∣

∣ and Adv
Game i,Game j
A (λ) :=

1
2 |Pr [Game i(λ) = 1]−Pr [Game j(λ) = 1]| for any in-

dices i and j,

For an integer q, we write the ring of integers modulo

q as Zq . We represent elements in Zq by the integers in

(−q/2, q/2]. For a matrix (or a vector) U ∈ Z
n×m
q , we write

‖U‖∞ ≤ β if the absolute values of every entry in U does

not exceed β.

For a function f , we write f(λ) = poly(λ) if there is a

constant C > 0 such that f(λ) = O(λC).
For a function f , we say that f is negligible with respect

to λ, or write f(λ) = negl(λ), if f(λ) = o(λ−C) for any

constant C. In this work, we often just say f is negligible if

f is negligible with respect to the security parameter λ that

can be inferred.

We will consider cryptographic schemes which can

be formalized as a tuple of algorithms. When H =
(alg1, alg2, . . . , alg l) is such a cryptographic scheme, we

will refer to its components using the dot notation: H.alg i
is alg i in the tuple H = (alg1, alg2, . . . , alg l).

1) Circuits

As in Joo and Yun [5], here a circuit is a directed acyclic

graph (DAG) where a gate is assigned to each vertex with

a positive indegree and a positive outdegree, and there is a

unique dedicated wire wout called the output wire. For conve-

nience, we assume that all gates in a circuit have indegree 1

or 2, but the construction can be generalized to more general

cases.

2) Binary encoding

We assume that any set S in this work has a certain integer

n such that any element e ∈ S is given by a binary encoding

〈e1, . . . , en〉 of e such that ei ∈ {0, 1} for i ∈ [n].

3) Bitwisely described circuits

Suppose every element of C is given by n-bit binary en-

coding. A bitwisely described circuit f̄ = (f1, . . . , fn) is a

function from Cl to C such that

f̄(c1, . . . , cl)

=
〈

f1
(

(ci′,j′)(i′,j′)∈[l]×[n]
)

, . . . , fn
(

(ci′,j′)(i′,j′)∈[l]×[n]
)〉

where fj : {0, 1}ln → {0, 1} are circuits for j ∈ [n] and

〈ci,1, . . . , ci,n〉 is the binary encoding of ci ∈ C for i ∈ [l].
We say fi is the ith encoding circuit of a bitwisely described

circuit f̄ = (f1, . . . , fn). The depth of a bitwisely described

circuit f̄ = (f1, . . . , fn) is defined by the maximum value

of the depths of the circuits f1, . . . , fn. Any deterministic

algorithm that takes an element in Cl and outputs an element

in C can be given as a bitwisely described circuit. We also

say π̄k is the bitwisely described kth projection from Cl to

C if π̄k = (πk,1, . . . , πk,n) for some n projection circuits

πk,1, . . . , πk,n such that πk,j((bi′,j′)(i′,j′)∈[l]×[n]) = bk,j for

any bits bi′,j′ for (i′, j′) ∈ [l]× [n]. We can see that

π̄k(c1, . . . , cl)

=
〈

πk,1((ci′,j′)(i′,j′)∈[l]×[n]), . . . , πk,n((ci′,j′)(i′,j′)∈[l]×[n])
〉

= 〈ck,1, . . . , ck,n〉 = ck

where ci′,j′ are bits such that 〈ci,1, . . . , ci,n〉 is the binary

encoding of ci ∈ C for i = [l].

B. (MULTI-)LABELED PROGRAMS

1) Labeled programs

Since we consider situations where storage is outsourced to a

server and all the client has is only some metadata, we need to

be able to refer to the client’s data when evaluating a function.

This notion is formalized as the labeled program [3].
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An HAE encrypts a plaintext m ∈ M under a ‘label’

τ ∈ L, and a labeled program is a function together with

information telling which plaintexts should be used as inputs.
More formally, let M be a set which we consider as the

message space and L the ‘label space’. A label is simply an

arbitrary element τ ∈ L. A labeled program is a tuple P =
(f, τ1, . . . , τl), where f :Ml →M is a function with arity l,
and τ1, . . . , τl ∈ L are labels. The intuition is that a message

m ∈ M is associated with the label τ ∈ L, and the label τ
is used to refer to m. Then, evaluating the labeled program

P = (f, τ1, . . . , τl) means computing f(m1, . . . ,ml), where

mi is the message associated with the label τi. We also write

the resulting function value as P (m1, . . . ,ml).
Let P1, . . . , Pl be labeled programs such that Pi =

(fi, τi,1, . . . , τi,li). For P1, . . . , Pl and a circuit f : Ml →
M, the composed program denoted by f(P1, . . . , Pl) is a

labeled program that evaluates the circuit f on the out-

puts of P1, . . . , Pl. More specifically, f(P1, . . . , Pl) =
(f∗, τ, . . . , τl∗) where f∗ is a circuit that evaluates f on the

outputs of circuits f1, . . . , fl where the input wires with the

same labels are merged, and τ, . . . , τl∗ are all distinct labels

of P1, . . . , Pl.
If there is a set of admissible functions F for an HAE or

homomorphic authenticator defined below, then we say P =
(f, τ1, . . . , τl) is an admissible program if f ∈ F .

Let P = (f, τ1, . . . , τl) be a labeled program. We say

P is fully bound if there is a path from every internal wire

(including input wire) to the output wire in the circuit f . For

any labeled program P , using a graph traversal algorithm,

we can always find the labeled programs P0 and P ′ such that

P ′ = (f ′, τ ′1, . . . , τ
′
l′) is fully bound, P = π1(P

′, P0) and

every path that ends with output wire is included in P ′ where

π1 is the first projection function. We say such P ′ is the fully

bound sub-program of P .

2) Bitwisely described programs

Suppose every element of M is given by n-bit binary

encoding. A bitwisely described program is a tuple P̄ =
(

f̄ , τ1, . . . , τl
)

, where f̄ = (f1, . . . , fn) is a bitwisely de-

scribed circuit, which also is a function from Ml to M
for some integer l, and τ1, . . . , τl ∈ L are labels. We

assume that elements inM are given by their unique binary

encodings. The intuition is that, for i ∈ [n], the circuit

fi has ln input wires that are associated with elements of

{τ1, . . . , τl} × [n], and a bit mj,k of the jth input message

m̄j = 〈mj,1, . . . ,mj,n〉 ∈ M of f̄ associated with τj
is associated with the input wire of fi corresponding to

(τj , k) ∈ {τ1, . . . , τl} × [n]. Evaluating the bitwisely de-

scribed program P̄ for an input (m̄1, . . . , m̄l) ∈ Ml means

computing
〈

f1 (mj,k)(j,k)∈[l]×[n] , ..., fn (mj,k)(j,k)∈[l]×[n]

〉

where m̄j = 〈mj,1, . . . ,mj,n〉. We also write the resulting

function value as P̄ (m̄1, . . . , m̄l).
Let P̄1, . . . , P̄l be bitwisely described programs such that

P̄i =
(

f̄i, τi,1, . . . , τi,ri
)

for a bitwisely described cir-

cuit f̄i = (fi,1, . . . , fi,n) and an integer ri for i ∈ [l].
Also, let Pi,j :=

(

fi,j , (τi,s, t)(s,t)∈[ri]×[n]
)

for (i, j) ∈
[l] × [n]. For P̄1, . . . , P̄l and a bitwisely described circuit

ḡ = (g1, . . . , gn), from Ml to M, the composed bitwisely

described program denoted by ḡ(P̄1, . . . , P̄l) is a bitwisely

described program that evaluates the function ḡ on the

outputs of P̄1, . . . , P̄l. More specifically, ḡ(P̄1, . . . , P̄l) =
(ḡ∗, τ1, . . . , τl∗) where ḡ∗ = (g∗1 , . . . , g

∗
n) and g∗i is the

circuit of the composed program gi
(

(Ps,t)(s,t)∈[l]×[n]
)

for

i ∈ [n] and τ1, . . . , τl∗ are all distinct labels of P̄1, . . . , P̄l.

Let P̄ =
(

f̄ , τ1, . . . , τl
)

be a bitwisely described program

such that f̄ = (f1, . . . , fn). We say P̄ is fully bound if,

for each i ∈ [l], there is at least one path from the input

wire corresponding to (τi, j) to the output wire among all

the paths in the circuits f1, . . . , fn for any j ∈ [n]. For any

bitwisely described program, P̄ = (f̄ , τ1, . . . , τl), using a

graph traversal algorithm, we can always find l′ ∈ [l] such

that, without loss of generality, i > l′ if and only if each of

the input wire of (τi, j) in f1, . . . , fn does not have a path

that ends with its output wire for j ∈ [n]. For k ∈ [n], let f ′k
be the circuit fk without the wires that have a path from the

input wire corresponds to (τi, j) for i > l′ and j ∈ [n], and

let f̄ ′ = (f ′1, . . . , f
′
n). Then we say P̄ ′ = (f̄ ′, τ1, . . . , τl′) is

the fully bound bitwisely described sub-program of P̄ . Also,

P̄ = π1

(

P̄ ′, P̄0

)

for some P̄0.

3) Multi-labeled programs

A multi-label is a pair (∆, τ) ∈ D × T . Here, ∆ is referred

to as the dataset identifier and τ is referred to as the data

identifier. Sometimes they are also referred to as the dataset

label and the data label. In this paper, D is referred to as the

dataset identifier space and T is referred to as the data iden-

tifier space. A multi-labeled program is a pair P∆ = (∆, P ),
where ∆ ∈ D is a dataset identifier and P = (f, τ1, . . . , τl) is

a labeled program with data labels τ1, . . . , τl ∈ T as labels.

The idea is that we are considering multiple datasets,

and individual data items belong to one of the datasets.

For example, consider a class of students and imagine

we have data on their exam scores. Imagine you have

to compute the average of the exam scores. The no-

tion ‘average’ corresponds to a labeled program AVG =
(average, “student 1”, “student 2”, . . . , “student l”), where

average is the mathematical function average(m1, . . . ,ml) =
(m1 + · · · + ml)/l, and the data label “student i” refers to

the exam score of the ith student. Then, for example, the

multi-labeled program AVG“midterm” = (“midterm”,AVG)
is the average of the midterm scores, while AVG“final” is the

average of the final exam scores.

III. HOMOMORPHIC AUTHENTICATED ENCRYPTION

Here we describe the syntax of the homomorphic authenti-

cated encryption.

A. SYNTAX

4 VOLUME 4, 2016
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1) Homomorphic authenticated encryption

Definition 1 (MDHAE). A multi-dataset homomorphic au-

thenticated encryption (MDHAE) is a tuple of PPT algo-

rithms (KeyGen,Enc,Eval,Dec) which can be described as

follows:

• (ek , sk) ← KeyGen(1λ): outputs a public evaluation

key ek and a secret key sk for the given security param-

eter λ.

• c ← Enc(sk ,∆, τ,m): given sk , outputs a ciphertext

c ∈ C of the message m ∈M with respect to the dataset

identifier ∆ ∈ D and the data identifier τ ∈ T .

• c← Eval(ek , f, c1, . . . , cl): given ek , deterministically

outputs the homomorphically evaluated ciphertext c ∈
C with respect to an admissible function f ∈ F of arity

l and ciperhtexts c1, . . . , cl ∈ C.

• m or⊥ ← Dec(sk ,∆, P, c): given sk , deterministically

outputs the decrypted value m of the ciphertext c ∈ C
with respect to the dataset identifier ∆ ∈ D and the

admissible labeled program P of arity l, or outputs ⊥ if

something is wrong.

We assume that evaluation key ek implicitly contains the

information about the message spaceM, the ciphertext space

C, the dataset identifier space D, the data identifier space T
and the admissible function space F . As mentioned above,

we assume both Eval and Dec are deterministic algorithms.

2) Compactness

An MDHAE is required to have compact ciphertexts, where

the compactness is defined as follows. If (ek , sk) ←
KeyGen(1λ) for a security parameter λ, then the output

size of algorithms Enc(sk , ·, ·, ·) and Eval(ek , . . . ) must be

bounded by a polynomial in λ regardless of the choice of their

inputs. This way, the ciphertext size becomes independent of

the evaluated function.

3) Correctness

An MDHAE is required to satisfy the following correctness

properties except for negligible probability.

• Correctness of the evaluation:

f(m1, . . . ,ml)

=Dec(sk ,∆, P,Eval(ek , f, c1, . . . , cl))

holds for any λ, any ciphertexts c1, . . . , cl that satisfy

mi = Dec(sk,∆, Pi, ci) for some mi ∈ M and

admissible labeled program Pi for all i ∈ [l], the

labeled program P = f(P1, . . . , Pl), any arity-l func-

tion f : Ml → M such that P is admissible and

(ek , sk)← KeyGen(1λ).
• Projection preservation:

ci = Eval(ek , πi, c1, . . . , cl)

for any λ and any ciphertexts c1, . . . , cl that satisfy

mi = Dec(sk,∆, Pi, ci) for some mi ∈M, admissible

labeled program Pi for all i ∈ [l] and (ek , sk) ←

KeyGen(1λ), where πi is the ith projection function

overMl.

Note that it follows that an MDHAE also satisfies the

correctness of encryption:

m = Dec(sk ,∆, (id, τ),Enc(sk ,∆, τ,m))

holds for the identity function id.

Remark 1. Suppose m = Dec(sk ,∆, P, c) for an MDHAE

where (ek , sk) ← KeyGen(1λ). If we let P ′ be the fully

bound sub-program of P , then from the correctness proper-

ties of an MDHAE, we see that m = Dec(sk ,∆, P ′, c). Sim-

ilarly, if ⊥ = Dec(sk ,∆, P, c) then ⊥ = Dec(sk ,∆, P ′, c).

4) Efficient decryption

We say that an MDHAE supports efficient decryption, if there

exist two additional algorithms Prep and EffDec such that:

• skP ← Prep(sk , P ): given sk and the admissible

program P , deterministically outputs a decryption key

skP for P . Note that this does not involve any dataset

identifier ∆ ∈ D.

• m or⊥ ← EffDec(skP ,∆, c): deterministically outputs

the decrypted value m ∈ M of the ciphertext c ∈ C
with respect to the decryption key skP for an admissible

program P and the dataset identifier ∆ ∈ D, or outputs

⊥ if something is wrong.

The above algorithms are required to satisfy the following

properties.

• Correctness: EffDec(skP ,∆, c) = Dec(sk ,∆, P, c) for

any dataset identifier ∆ ∈ D and ciphertext c ∈ C, when

(ek , sk) ← KeyGen(1λ) and skP ← Prep(sk , P ) for

some admissible program P .

• Amortized efficiency: let P be an admissible program.

Let (m1, . . . ,ml) ∈ Ml be an input for P , and let

t(l) be the time required to compute P (m1, . . . ,ml).
For skP ← Prep(sk , P ), the time required for

EffDec(skP ,∆, c) is o(t(l)).

B. A NEW SECURITY NOTION FOR MULTI-DATASET

HOMOMORPHIC AUTHENTICATED ENCRYPTIONS

We define a new security notion of an MDHAE H using

the security game GameMDHAE below. Unlike the original

definitions given in Joo and Yun [5], this is an ‘all-in-one’

definition, combining both privacy and authenticity of an

MDHAE.

Let $(·, ·, ·, ·) be an algorithm such that $(sk ,∆, τ,m)
samples and outputs a ciphertext c from a distribution

Csk ,∆,τ over the ciphertext space C of an HAE H . So, the

output of $(sk ,∆, τ,m) is independent of m. Let⊥(·, ·, ·) be

the trivial algorithm that outputs ⊥ for any input.

The challenger only answers non-redundant decryption

queries. The definition of a non-redundant decryption query

comes after the main definition.
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GameMDHAE
H,$,A (λ) :

Initialization

A key pair (ek , sk) ← H.KeyGen(1λ) is gener-

ated, and ek is given to A. The challenger initializes

a set S with ∅, and flips a coin b
$← {0, 1}. If b = 0,

then the challenger defines oracles E and D as

E = H.Enc(sk , ·, ·, ·) and D = H.Dec(sk , ·, ·, ·).
Otherwise, the challenger lets E = $(sk , ·, ·, ·) and

D = ⊥(·, ·, ·). The adversary is given oracle access

to E and D. For convenience, E-queries and D-

queries are also called as encryption queries and

decryption queries, respectively.

Queries

A makes encryption and decryption queries adap-

tively. The queries are handled as follows.

• For each encryption query (∆, τ,m), if

(∆, τ, ·, ·) 6∈ S, then the challenger returns the

answer c← E(∆, τ,m) to A, and update S ←
S ∪ {(∆, τ,m, c)}. Otherwise, the challenger

rejects the query.

• For each decryption query (∆, P, c), if P is

admissible and the query is non-redundant with

respect to S, then the challenger returns the

answer m or⊥ ← D(∆, P, c) to A. Otherwise,

the challenger rejects the query.

Finalization

A outputs a bit b′. The challenger returns 1 if b = b′,
and 0 otherwise.

The advantage of the adversary A in the game GameMDHAE

for the scheme H with respect to the algorithm $ is defined

as

AdvMDHAE
H,$,A (λ) :=

∣

∣

∣

∣

Pr
[

GameMDHAE
H,$,A (λ) = 1

]

− 1

2

∣

∣

∣

∣

.

We say that an MDHAE H is secure if there exists an algo-

rithm $ such that the advantage AdvMDHAE
H,$,A (λ) is negligible

for any PPT adversary A.
Let (∆, P, c) be a decryption query. Let P ′ =

(f ′, τ ′1, . . . , τ
′
l′) be the fully bound sub-program of P . The

decryption query (∆, P, c) is redundant with respect to S if

(∆, τ ′i ,m
′
i, c
′
i) ∈ S for some (unique) m′i ∈ M and c′i ∈ C

for all i ∈ [l′] and c = H.Eval(ek , f ′, c′1, . . . , c
′
l′). And

we say that a decryption query is non-redundant if it is not

redundant.
In other words, the decryption queries that can trivially

distinguishes H.Dec(sk , ·, ·, ·) and ⊥(·, ·, ·) are not allowed;

for a redundant query (∆, P, c) as above, it is guaranteed that

the response for the query is f(m′1, . . . ,m
′
l′) 6= ⊥, when

D = H.Dec(sk , ·, ·, ·).

IV. HOMOMORPHIC ENCRYPTION

A. SYNTAX

1) Homomorphic encryption

Definition 2 (HE). A homomorphic encryption (HE) is a

tuple of PPT algorithms (KeyGen,Enc,Eval,Dec) as fol-

lows:

• (ek , sk) ← KeyGen(1λ): outputs a public evaluation

key ek and a secret key sk for the given security param-

eter λ.

• c ← Enc(sk ,m): given sk , outputs a ciphertext c ∈ C
of the message m ∈M.

• c← Eval(ek , f, c1, . . . , cl): given ek , deterministically

outputs the homomorphically evaluated ciphertext c ∈
C with respect to an admissible function f ∈ F of arity

l and c1, . . . , cl ∈ C.

• m ← Dec(sk , c): given sk , deterministically outputs

the decrypted value m of the ciphertext c ∈ C.

We assume that evaluation key ek implicitly contains the

information about the message spaceM, the ciphertext space

C and the admissible function space F . As mentioned above,

we assume both Eval and Dec are deterministic algorithms.

2) Compactness

An HE is required to have compact ciphertexts, where

the compactness is defined as follows. If (ek , sk) ←
KeyGen(1λ) for a security parameter λ, then the output size

of algorithms Enc(sk , ·) and Eval(ek , . . . ) must be bounded

by a polynomial in λ regardless of the choice of their inputs.

This way, the ciphertext size becomes independent of the

evaluated function.

3) Correctness

An HE is required to satisfy the following correctness prop-

erties except for negligible probability.

• Correctness of the evaluation:

f(m1, . . . ,ml) = Dec(sk ,Eval(ek , f, c1, . . . , cl))

holds for any λ, any ciphertexts c1, . . . , cl such that

ci ← Eval(ek , fi, ci,1, . . . , ci,ti) for some admissible

circuit fi ∈ F and ciphertexts ci,j ← Enc(sk ,mi,j)
that satisfies mi = fi(mi,1, . . . ,mi,ti) for some mi,j ∈
M for (i, j) ∈ [l] × [ti] and any circuit f ∈ F such

that f∗ ∈ F where f∗ is a circuit that evaluates f
on the outputs of circuits f1, . . . , fl when (ek , sk) ←
KeyGen(1λ).

• Projection preservation:

ci = Eval(ek , πi, c1, . . . , cl)

and the circuit for Eval(ek , πi, . . . ) is also the bitwisely

described ith projection over Cl for any λ and any

ciphertexts c1, . . . , cl that satisfy mi = Dec(sk, ci)
for some mi ∈ M for all i ∈ [l] when (ek , sk) ←
KeyGen(1λ) and πi is the ith projection function over

Ml.

Note that it follows that an HE also satisfies the correct-

ness of encryption: m = Dec(sk ,Enc(sk ,m)) holds for

the identity function id since Eval(ek , id,Enc(sk ,m)) =
Enc(sk ,m).

Remark 2. Unlike conventional correctness property, we ad-

ditionally require projection preservation. But some (leveled)
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fully homomorphic encryption already satisfies the projection

preservation [6].

B. A SECURITY NOTION FOR HOMOMORPHIC

ENCRYPTIONS

We define a security notion of an HE K using the security

game GameHE below. For ease of comparison, we change

some formalisms from conventional IND-CPA security defi-

nition, but the equivalence of two formulations can be proven.

Let $(·, ·) be an algorithm such that $(sk ,m) samples

and outputs a ciphertext c from a distribution Csk over the

ciphertext space C of an HE K. So, the output of $(sk ,m) is

independent of m.

GameHE
K,$,A(λ) :

Initialization

A key pair (ek , sk) ← K.KeyGen(1λ) is gener-

ated, and ek is given to A. The challenger flips a

coin b
$← {0, 1}. If b = 0, then the challenger de-

fines an oracle E as E = K.Enc(sk , ·). Otherwise,

the challenger lets E = $(sk , ·). The adversary is

given oracle access to E, and for convenience, E-

queries are also called as encryption queries.

Queries

A makes encryption queries adaptively. For each

encryption query m ∈ M, the challenger returns

the answer c← E(m) to A.

Finalization

A outputs a bit b′. The challenger returns 1 if b = b′,
and 0 otherwise.

The advantage of the adversary A in the game GameHE for

the scheme K with respect to the algorithm $ is defined as

AdvHE
K,$,A(λ) :=

∣

∣

∣

∣

Pr
[

GameHE
K,$,A(λ) = 1

]

− 1

2

∣

∣

∣

∣

.

We say that an HE K is secure if there exists an algorithm

$ such that the advantage AdvHE
K,$,A(λ) is negligible for any

PPT adversary A.

V. HOMOMORPHIC AUTHENTICATOR

A. SYNTAX

Definition 3 (MDHA). A multi-dataset homomorphic

authenticator (MDHA) is a tuple of PPT algorithms

(KeyGen,Auth,Eval,Verify) as follows:

• (ek , sk) ← KeyGen(1λ) : outputs a public key pk and

a secret key sk for the given security parameter λ.

• σ ← Auth(sk ,∆, τ,m) : given sk , outputs an authenti-

cation tag (or sometimes just called a tag) σ ∈ Σ of the

message m ∈ M with respect to the dataset identifier

∆ ∈ D and the data identifier τ ∈ T .

• σ ← Eval(ek , f, (m1, σ1), . . . , (ml, σl)) : given ek ,

deterministically outputs the homomorphically evalu-

ated authentication tag σ ∈ Σ of the message m =
f(m1, . . . ,ml) with respect to an admissible function

f ∈ F of arity l and tags σ1, . . . , σl ∈ Σ of the

messages m1, . . . ,ml ∈M, respectively.

• b← Verify(sk ,∆, P,m, σ): given sk , deterministically

outputs the acceptance bit b of a tag σ ∈ Σ with respect

to the dataset identifier ∆ ∈ D, the message m ∈ M
and the admissible labeled program P of arity l.

We assume that keys ek and sk implicitly contains the

information about the message space M, the tag space Σ,

the dataset identifier space D, the data identifier space T and

the admissible function space F .

1) Compactness

An MDHA is required to have compact authentication tags,

where the compactness is defined as follows. If (ek , sk) ←
KeyGen(1λ) for a security parameter λ, then the output

size of algorithms Auth(sk , . . . ) and Eval(ek , . . . ) must be

bounded by a polynomial in λ regardless of the choice of

their inputs. This way, the tag size becomes independent of

the evaluated function.

2) Correctness

An MDHA is required to satisfy the following correctness

properties except for negligible probability.

• Correctness of the evaluation: For a homomorphically

evaluated tag σ ← Eval(ek , f, (m1, σ1), . . . , (ml, σl)),

1← Verify(sk ,∆, P, f(m1, . . . ,ml), σ)

holds for any λ, any tags σ1, . . . , σl ∈ Σ such that

1 = Verify(sk ,∆, Pi,mi, σi) for a dataset identifier ∆,

a message mi ∈ M and an admissible program Pi for

i ∈ [l], the labeled program P = f(P1, . . . , Pl) and any

arity-l function f :Ml →M such that P is admissible

when (ek , sk)← KeyGen(1λ).
• Projection preservation:

σi = Eval(ek , πi, (m1, σ1), . . . , (ml, σl))

for any λ and any tags σ1, . . . , σl ∈ Σ that satisfy

1 = Verify(sk,∆, Pi,mi, σi) for some mi ∈ M and

some admissible labeled program Pi for all i ∈ [l] when

(ek , sk)← KeyGen(1λ), where πi is the ith projection

function overMl.

3) Efficient verification

We say that an MDHA supports efficient verification, if

there exist two additional deterministic algorithms Prep and

EffVerify such that:

• skP ← Prep(sk , P ): given sk and the admissible

program P , deterministically outputs a verification key

skP for P . Note that this does not involve any dataset

identifier ∆ ∈ D.

• b ← EffVerify(skP ,∆,m, σ): deterministically out-

puts the acceptance bit b of the authentication tag σ
with respect to the verification key skP for P , dataset

identifier ∆ ∈ D and a message m ∈M.

The above algorithms are required to satisfy the following

properties.
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• Correctness: For any dataset identifier ∆ ∈ D
and a tag σ ∈ Σ, EffVerify(skP ,∆,m, σ) =
Verify(sk ,∆, P,m, σ) when (ek , sk) ← KeyGen(1λ)
and skP ← Prep(sk , P ) for some admissible program

P .

• Amortized efficiency: let P be an admissible program.

Let (m1, . . . ,ml) ∈ Ml be an input for P , and let

t(l) be the time required to compute P (m1, . . . ,ml).
For skP ← Prep(sk , P ), the time required for

EffVerify(skP ,∆,m, σ) is o(t(l)).

4) Multi-dataset fully homomorphic authenticator

We say that T is multi-dataset leveled fully homomorphic

authenticator (MDFHA) if the admissible function space F
is defined as

F = {f |f :Ml →M is a circuit of

depth at most d for some l = poly(λ)}

for some d = poly(λ).

5) Bitwisely evaluable MDHA

We say that an MDHA T is bitwisely evaluable (or T is a

BE-MDHA) if the algorithms T.Eval and T.Verify takes a

bitwisely described circuit and a bitwisely described program

as a part of their inputs instead of an ordinary circuit and

an ordinary program, respectively. Also, selective security,

correctness and the support for efficient verification can be

defined as above by replacing circuits and programs to bit-

wisely described counterparts. Moreover, we say that T is a

bitwisely evaluable multi-dataset leveled fully homomorphic

authenticator (BE-MDFHA) if the admissible function space

F is defined as

F = {f̄ |f̄ :Ml →M is a bitwisely described circuit of

depth at most d for some l = poly(λ)}

for some d = poly(λ).

Remark 3. Since most homomorphic encryption has expo-

nential ciphertext space and our generic construction for

FHAE uses encrypt-then-authenticate structure, we need an

homomorphic authenticator scheme that can authenticate

messages with exponential size. But, to our knowledge, there

is no direct MDHA construction that has exponentially large

message space. Therefore, we define BE-MDHA as above and

suggest a generic construction of BE-MDHA using existing

MDHA with message space {0, 1} in Section VII.

6) OR-homomorphic MDHA

We say that an MDHA T is OR-homomorphic if the admis-

sible function space F is defined as

F = {f |f :Ml →M is a circuit of depth d for some

l = poly(λ) such that all the gates of f are OR gates}

for some d = poly(λ).

B. A SECURITY NOTION FOR MULTI-DATASET

HOMOMORPHIC AUTHENTICATORS

We define a security notion of an MDHA T using the security

game GameMDHA below. Unlike the security definition of a

homomorphic signature in Gorbunov, Vaikuntanathan, and

Wichs [4], our security definition is over MDHA that can

authenticate for freely chosen data identifiers. Also, unlike

previous security notions above, we define selective security

of an MDHA; for our purposes, the selective security of

MDHA is enough.

GameMDHA
T,A (λ) :

Selective Queries

A makes authentication queries selectively. A se-

lects polynomially many queries ((∆i, τi,mi))i∈[q]
and sends ((∆i, τi,mi))i∈[q] to the challenger.

Initialization and Response

If (∆i, τi) = (∆j , τj) for some i 6= j, then the

challenger rejects the query. If (∆i, τi) 6= (∆j , τj)
for any i 6= j, then the challenger generates a

key pair (ek , sk)← T.KeyGen(1λ) and computes

σi ← T.Auth(sk ,∆i, τi,mi) and sends (ek , S) to

A where S = {(∆i, τi,mi, σi)}i∈[q].
Finalization

A outputs a forgery attempt (∆∗, P ∗,m∗, σ∗) such

that for the fully bound sub-program P ∗′ =
(f∗, τ∗1 , . . . , τ

∗
l ) of P ∗ where f∗ ∈ F , there is

(∆∗, τ∗i ,m
∗
i , σ
∗
i ) ∈ S for some (unique) m∗i ∈

M and σ∗i ∈ Σ for all i ∈ [l]. If 1 ←
T.Verify(sk ,∆∗, P ∗′,m∗, σ∗) and (m∗, σ∗) 6=
(m∗∗, σ∗∗) where m∗∗ = f∗(m∗1, . . . ,m

∗
l ) and

σ∗∗ ← T.Eval(ek , f∗, (m∗1, σ
∗
1), . . . , (m

∗
l , σ
∗
l )),

then the challenger outputs 1. Otherwise, the chal-

lenger outputs 0.

The advantage of the adversary A in the game GameMDHA

for the scheme T is defined as

AdvMDHA
T,A (λ) := Pr

[

GameMDHA
T,A (λ) = 1

]

.

We say that an MDHA T is selectively secure if the

advantage AdvMDHA
T,A (λ) is negligible for any PPT adversary

A.

VI. GENERIC CONSTRUCTION OF SECURE FULLY

HOMOMORPHIC AUTHENTICATED ENCRYPTION

A. OVERVIEW OF OUR CONSTRUCTION

In this section, we construct a secure FHAE. Our FHAE

scheme is a generic construction using one FHE scheme

and two HA schemes, one fully homomorphic and one OR-

homomorphic. Overall, our construction can be regarded as

following the encrypt-then-authenticate paradigm, but with

one additional HA to meet our new security notion.
Before giving construction directly, we give a high-level

overview of how we created our construction and some

preliminary definitions.
First, let H0 be a straightforward encrypt-then-authenticate

construction made out of a FHE K and an MDFHA T̄ , as

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3100852, IEEE Access

Jeongsu Kim and Aaram Yun: Secure Fully Homomorphic Authenticated Encryption

well as additional random functions F̄0 and Ḡ0: H0 encrypts

an input (∆, τ,m) as (̊c, σ̄) ← H0.Enc(sk0,∆, τ,m),
where c̊ ← K.Enc(s̊k ,m) and σ̄ ← T̄ .Auth(s̄k , ∆̄, τ̄ , c̊)
for ∆̄ := F̄0(∆) and τ̄ := Ḡ0(τ).

For homomorphic evaluation of H0, we define

H0.Eval(ek0, f, . . . ) as applying the homomorphic eval-

uation algorithm K.Eval(e̊k , f, . . . ) to the first parts of

its input ciphertexts, encryptions of K, and the algo-

rithm T̄ .Eval(ēk ,K.Eval(e̊k , f, . . . ), . . . ) to the second

parts, the tags of the first parts. The decryption algo-

rithm H0.Dec(sk0,∆, P, c0) parses P = (f, τ1, . . . , τl)
and c0 = (̊c, σ̄), and outputs K.Dec(s̊k , c̊) when

1 ← T̄ .Verify(s̄k , ∆̄, P̄ , c̊, σ̄), ⊥ otherwise where P̄ =
(K.Eval(e̊k , f, . . . ), τ̄1, . . . , τ̄l).

The construction H0 is comparable to the generic con-

struction of adaptively secure fully homomorphic signature

given by Gorbunov, Vaikuntanathan and Wichs [4]. Their

basic scheme satisfies only the selective security, but, by

using their homomorphic trapdoor function as a homomor-

phic version of a chameleon hashing [12], they constructed

an adaptively secure fully homomorphic signature scheme.

In our construction, the inner FHE serves two purposes: the

first is to encrypt the message to achieve privacy, the second

is, like a chameleon hashing, to upgrade the authentication

security from selective to adaptive.

Now, let us observe the security of H0. If an FHE K is

secure, then there is an algorithm $K that is indistinguishable

from K.Enc. Therefore, if we define H ′0 to be the same as

H0 except using $K instead of K.Enc, then H ′0 and H0

are also indistinguishable. Note that H ′0.Enc randomizes its

inputs with F̄0, Ḡ0 and $K , and is independent of its message

input. Using lazy sampling on random functions F̄0 and Ḡ0,

one can answer adaptive queries of H ′0.Enc using selective

queries of T̄ .Auth with random inputs (∆̄, τ̄ , $K(e̊k , ·)).
One can view the attacks on H ′0 distinguishing H ′0.Dec(·)
and ⊥(·) as attacks on T̄ with randomly chosen selective

queries. Therefore, the security of T̄ ensures that it is hard for

adversaries to output an accepting decryption query (∆, P, c)
such that P = (f, τ1, . . . , τl) and there has been encryption

queries with respect to (∆, τi) for all i ∈ [l]. In other words,

we have a form of adaptive security for authenticity, as long

as the ‘forgery attempt’ (∆, (f, τ1, . . . , τl), c) does not have

any ‘empty slot’. However, we need also to take care of the

cases when some slots are empty. One way to do this is to

ensure that there are no empty slots. We might use a hash

tree for this purpose, as in [3] and [5], but that technique is

not compatible with multi-dataset. Instead, we will adapt a

technique using an OR-homomorphic authenticator given by

Catalano, Fiore, and Nizzardo [10].

The idea is to modify the plain encrypt-then-authenticate

construction H0 so that for each ciphertext we add an

authentication tag of 0. When we perform homomorphic

evaluation, we need also to homomorphically evaluate the

authentication tag as well. When we evaluate a unary gate,

we will homomorphically evaluate the identity gate for the

authentication of 0. When we evaluate a binary gate, we will

homomorphically evaluate logical OR of the corresponding

two zeroes. Therefore, for unaltered ciphertexts and their

homomorphic evaluation, the additional tags are all authen-

tication tags of zeroes. During the decryption, we verify the

additional authentication tag as well. The MDHA Ť we use

for the authentication of 0 can be OR-homomorphic, and

since the message 0 is fixed and we may randomize the labels

as in the construction of H0, Ť needs only to be selectively

secure.
Now, suppose that the adversary makes a decryption query

(∆, P, c) with P = (f, τ1, . . . , τl). Without loss of general-

ity, let us assume that P is fully bound. The basic intuition

is that, if any of the labels τi∗ is empty, that is, no message

was encrypted with respect to (∆, τi∗), then the reduction al-

gorithm may guess the position i∗, and replace the additional

authentication of 0 at (∆, τi∗) with the authentication of 1.

Since we will always evaluate ORs of inputs, the final value

of this circuit made out of OR gates will be 1. Then, any

such decryption query (with the additional tag for 0 verified)

would produce a forgery of Ť . Hence, if Ť is secure, then it is

infeasible to produce a valid decryption query with an empty

slot.
Our MDFHAE can be instantiated with existing schemes.

For example, some popular FHE schemes like [2], [6] can

be used as K, and the first fully homomorphic signature [4]

can be used as Ť . As for T̄ , since there is no dedicated

MDFHA scheme with exponential message space, one can

follow our generic construction, Construction 3, for BE-

MDHA in Section VII to construct such scheme. Using the

first fully homomorphic signature [4] and Construction 3, one

can construct a secure BE-MDFHA and it can be used as T̄ .
Before describing the construction, we need a preparation.

Suppose a circuit f : Ml → M is given. We define the

corresponding boolean circuit f̌ : {0, 1}l → {0, 1} as the

circuit obtained by replacing each unary gate of f with the

identity gate (sending a bit b to b itself), and each binary gate

of f with the OR gate.

B. GENERIC CONSTRUCTION

Construction 1. Let K be an HE scheme, T̄ be a BE-

MDHA scheme and Ť be an OR-homomorphic MDHA. Let

M̊, C̊, F̊ be the message space, the ciphertext space, and

the admissible function space of K, where every element

in C̊ is given as an n bit binary encoding. Similarly, let

M̄ := C̊, Σ̄, D̄, T̄ , F̄ be the message space, the tag space,

the dataset identifier space, the data identifier space, and the

admissible (bitwisely described) function space of T̄ . Also,

let M̌ := {0, 1}, Σ̌, Ď, Ť , F̌ be the corresponding ones of

Ť . LetM := M̊, C := C̊ × Σ̄× Σ̌, D, T , F be the message

space, the ciphertext space, the dataset identifier space, the

data identifier space, and the admissible function space of the

FHAE H below where

F := {f ∈ F̊ |f̌ ∈ F̌ and f̄ ∈ F̄ where f̄ is the bitwisely

described circuit of K.Eval(e̊k , f, . . . ) for

any choices of (e̊k , s̊k)← K.KeyGen(1λ)}.
VOLUME 4, 2016 9
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Let F̄ : {0, 1}λ × D → D̄, Ḡ : {0, 1}λ × T → T̄ , F̌ :
{0, 1}λ×D → Ď and Ǧ : {0, 1}λ×T → Ť be secure PRFs.

Using K, T̄ , Ť , F̄ , Ḡ, F̌ , Ǧ we construct an MDHAE H
as follows.

• H.KeyGen(1λ): let (e̊k , s̊k) ← K.KeyGen(1λ),
(ēk , s̄k)← T̄ .KeyGen(1λ), (ěk , šk)← Ť .KeyGen(1λ),
kF̄ , kḠ, kF̌ , kǦ ← {0, 1}λ, and output (ek , sk) :=
(e̊k‖ēk‖ěk , e̊k‖s̊k‖s̄k‖šk‖kF̄ ‖kḠ‖kF̌ ‖kǦ).

• H.Enc(sk ,∆, τ,m): parse given input sk =
e̊k‖s̊k‖s̄k‖šk‖kF̄ ‖kḠ‖kF̌ ‖kǦ, let c̊← K.Enc(s̊k ,m),
∆̄ ← F̄ (kF̄ ,∆), τ̄ ← Ḡ(kḠ, τ), ∆̌ ← F̌ (kF̌ ,∆),
τ̌ ← Ǧ(kǦ, τ), σ̄ ← T̄ .Auth(s̄k , ∆̄, τ̄ , c̊), σ̌ ←
Ť .Auth(šk , ∆̌, τ̌ , 0). Output c := (̊c, σ̄, σ̌).

• H.Eval(ek , f, c1, . . . , cl): parse given input ek =
e̊k‖ēk‖ěk . For i = 1, . . . , l, parse ci = (̊ci, σ̄i, σ̌i).
Evaluate a ciphertext c̊ ← K.Eval(e̊k , f, c̊1, . . . , c̊l),
and authentication tags σ̄ ← T̄ .Eval(ēk , f̄ , σ̄1, . . . , σ̄l),
σ̌ ← Ť .Eval(ěk , f̌ , σ̌1, . . . , σ̌l) where f̄ is the bit-

wisely described circuit of the deterministic algorithm

K.Eval(e̊k , f, . . . ). Output c := (̊c, σ̄, σ̌).
• H.Dec(sk ,∆, P, c): parse given inputs sk =

e̊k‖s̊k‖s̄k‖šk‖kF̄ ‖kḠ‖kF̌ ‖kǦ, P = (f, τ1, . . . , τl)
and c = (̊c, σ̄, σ̌). Let ∆̄ ← F̄ (kF̄ ,∆), ∆̌ ←
F̌ (kF̌ ,∆). For i ∈ [l], let τ̄i ← Ḡ(kḠ, τi),
τ̌i ← Ǧ(kǦ, τi). Now, let P̄ = (f̄ , τ̄1, . . . , τ̄l),
P̌ = (f̌ , τ̌1, . . . , τ̌l) where f̄ is the bitwisely

described circuit of the deterministic algorithm

K.Eval(e̊k , f, . . . ). If 1 ← T̄ .Verify(s̄k , ∆̄, P̄ , c̊, σ̄)
and 1 ← Ť .Verify(šk , ∆̌, P̌ , 0, σ̌), then output m ←
K.Dec(s̊k , c̊). Otherwise, output ⊥.

Remark 4. Construction 1 satisfies the correctness proper-

ties of an MDHAE. We can prove the correctness as follows:

• Correctness of the evaluation: From description of

H.Eval and the correctness of K, T̄ and Ť , H satisfies

the correctness of evaluation.

• Projection preservation: From the correctness of K,

if f is a projection, then f̌ is also a projection and

f̄ is a bitwisely described projection where f̄ is the

bitwisely described circuit of the deterministic algo-

rithm K.Eval(e̊k , f, . . . ). Then, from the description of

H.Eval and the correctness of T̄ and Ť , H satisfies the

projection preservation.

Remark 5. If T̄ and Ť supports efficient verification,

then Construction 1 supports efficient decryption. We define

H.Prep and H.EffDec as follows:

• H.Prep(sk , P ): parse given two inputs sk =
e̊k‖s̊k‖s̄k‖šk‖kF̄ ‖kḠ‖kF̌ ‖kǦ and P = (f, τ1, . . . , τl).
For i ∈ [l], let τ̄i ← Ḡ(kḠ, τi), τ̌i ← Ǧ(kǦ, τi).
Now, let P̄ = (f̄ , τ̄1, . . . , τ̄l), P̌ = (f̌ , τ̌1, . . . , τ̌l) where

f̄ is the bitwisely described circuit of the determin-

istic algorithm K.Eval(e̊k , f, . . . ). Compute s̄k P̄ ←
T̄ .Prep(s̄k , P̄ ) and šk P̌ ← T̄ .Prep(šk , P̌ ) and output

skP := s̊k‖s̄k P̄ ‖šk P̌ .

• H.EffDec(skP ,∆, c): parse skP = s̊k‖s̄k P̄ ‖šk P̌ and

c = (̊c, σ̄, σ̌). Let ∆̄ ← F̄ (kF̄ ,∆) and ∆̌ ←
F̌ (kF̌ ,∆). If 1 ← T̄ .EffVerify(s̄k P̄ , ∆̄, c̊, σ̄) and

1 ← Ť .EffVerify(šk P̌ , ∆̌, 0, σ̌), then output m ←
K.Dec(s̊k , c̊). Otherwise, output ⊥.

Then H.EffDec(H.Prep(sk , P ),∆, c) = H.Dec(sk ,∆, P, c)
where (ek , sk) ← H.KeyGen(1λ). Since the complexity of

H.EffDec is independent of the time complexity of comput-

ing f , the above algorithms satisfy amortized efficiency.

C. SECURITY

Theorem 1. Suppose F̄ , Ḡ, F̌ and Ǧ are pseudorandom

functions such that, D̄, T̄ , Ď and Ť are superpolynomially

large: |D̄|, |T̄ |, |Ď|, |Ť | ≥ 2ω(log λ). If T̄ and Ť are selec-

tively secure and K is secure, then H is a secure MDHAE.

Proof. We use the same notations defined in Construction 1.

We define AdvF̄ (λ), AdvḠ(λ), AdvF̌ (λ) and

AdvǦ(λ) to be distinguishing advantages of F̄ (kF̄ , ·),
Ḡ(kḠ, ·), F̌ (kF̌ , ·) and Ǧ(kǦ, ·) from random functions

F̄ ′ : D → D̄, Ḡ′ : T → T̄ , F̌ ′ : D → Ď and Ǧ′ : T → Ť ,

respectively, for kF̄ , kḠ, kF̌ , kǦ
$← {0, 1}λ.

We assume that there is an upper bound l̄ = poly(λ) on

the number of inputs of the admissible function.

Let A be any PPT adversary against H in GameMDHAE

with at most q queries for at most d different datasets. Then

there are PPT adversaries B̊, B̊′, B̄ and B̌ with at most q, q,

dl̄q and dl̄q queries, respectively, such that

AdvMDHAE
H,$H ,A(λ)

≤AdvF̄ (λ) +AdvḠ(λ) +AdvF̌ (λ) +AdvǦ(λ)

+
2q2
∣

∣D̄
∣

∣

+
2q2
∣

∣Ď
∣

∣

+
2q2 l̄2
∣

∣T̄
∣

∣

+
2q2 l̄2
∣

∣Ť
∣

∣

+AdvHE
K,$K ,B̊

(λ)

+AdvHE
K,$K ,B̊′

(λ) + qAdvMDHA
T̄ ,B̄ (λ)

+ (d+ 1)
(

l̄q + 1
)

AdvMDHA
Ť ,B̌

(λ).

for some algorithms $H and $K .

Suppose $K be an algorithm such that AdvHE
K,$K ,B(λ) is

negligible for any PPT algorithm B. Then, in the rest of the

proof, we specify $H with respect to $K as follows:

• $H(sk ,∆, τ, ·): parse given secret key sk =
e̊k‖s̊k‖s̄k‖šk‖kF̄ ‖kḠ‖kF̌ ‖kǦ, let c̊ ← $K(s̊k , ·),
∆̄ ← F̄ (kF̄ ,∆), τ̄ ← Ḡ(kḠ, τ), ∆̌ ← F̌ (kF̌ ,∆),
τ̌ ← Ǧ(kǦ, τ), σ̄ ← T̄ .Auth(s̄k , ∆̄, τ̄ , c̊), σ̌ ←
Ť .Auth(šk , ∆̌, τ̌ , 0). Output c := (̊c, σ̄, σ̌).

In short, $H is the same as H.Enc but instead of K.Enc, $H
uses $K .

Before constructing adversaries B̊, B̊, B̄ and B̌, we first

switch PRFs with random functions using the games defined

as follows:

Game 0(λ):
The original security game GameMDHAE

H,$H ,A(λ).
Game 1(λ):

The security game GameMDHAE
H′,$′

H′
,A(λ) where H ′

and $′H′ are the same as H and $H , respectively,
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except for the parts that use PRFs. In this game,

H ′.KeyGen(1λ) samples random functions F̄ ′ :
D → D̄, Ḡ′ : T → T̄ , F̌ ′ : D → Ď and Ǧ′ : T →
Ť , and lets sk := e̊k‖s̊k‖s̄k‖‖šk‖F̄ ′‖Ḡ′‖F̌ ′‖Ǧ′ as

a secret key. Also, H ′,Enc, H ′,Dec and $′H′ use

F̄ ′, Ḡ′, F̌ ′ and Ǧ′ instead of F̄ (kF̄ , ·), Ḡ(kḠ, ·),
F̌ (kF̌ , ·) and Ǧ(kǦ, ·), respectively.

Using the security of the PRFs, we can bound

Adv
Game 0,Game 1
A (λ) ≤AdvF̄ (λ) +AdvḠ(λ)

+AdvF̌ (λ) +AdvǦ(λ).

To bound AdvGame 1
A (λ), we construct a PPT adversary B̊

against the challenger of the game GameHE
K,$K ,B̊

(λ) that runs

A internally as follows (written in A’s perspective):

Initialization

The challenger generates (e̊k , s̊k)← K.KeyGen(1λ)
and send e̊k to B̊. The challenger flips a coin

b
$← {0, 1}. If b = 0, then the challenger lets

EK = K.Enc(s̊k , ·). Otherwise, the challenger

lets EK = $K(·). Then, B̊ generates (p̄k , s̄k) ←
T̄ .KeyGen(1λ), (p̌k , šk) ← Ť .KeyGen(1λ) and

send ek = e̊k‖ēk‖ěk to A. B̊ initializes a set S as

∅.
Queries

B̊ responds to the queries of A as follows:

• For every encryption query (∆, τ,m) that

A makes, B̊ checks if (∆, τ, ·, ·) ∈ S. If

(∆, τ, ·, ·) ∈ S, then B̊ rejects the query.

Otherwise, B̊ queries m to the challenger, and

gets c̊ = EK(m) as the response. Then, B̊
lets ∆̄ = F̄ ′(∆), τ̄ = Ḡ′(τ), ∆̌ = F̌ ′(∆),
τ̌ = Ǧ′(τ), σ̄ ← T̄ .Auth(s̄k , ∆̄, τ̄ , c̊) and

σ̌ ← Ť .Auth(šk , ∆̌, τ̌ , 0), and sends c :=
(̊c, σ̄, σ̌) to A.

• For every decryption query (∆, P, c) that A
makes, B̊ checks if the query is redundant. If

the query is redundant, B̊ rejects the query.

If the query is non-redundant, B̊ checks if

H ′.Dec(sk ,∆, P, c) 6= ⊥ using the knowl-

edge of F̄ ′, Ḡ′, F̌ ′, Ǧ′ e̊k , s̄k and šk . If

H ′.Dec(sk ,∆, P, c) 6= ⊥, then B̊ outputs

“Bad" and halts. Otherwise, B̊ sends ⊥ to A.

Finalization

A outputs a bit b′. Receiving b′, B̊ also outputs b′.

Note that B̊’s responses to A are identical to the responses

of the challenger of Game 1(λ) until A makes a decryption

query (∆, P, c) such that B̊ outputs “Bad" and halts (in other

words, H ′.Dec(sk ,∆, P, c) 6= ⊥). We call such a query as

a bad query. Also, B̊ wins the game GameHE
K,$K ,B̊

(λ) if and

only if A does not make any bad queries on B̊ and outputs

the winning bit b′ = b in the Finalization phase. Now, define

two following events:

• EGame 1 = {A makes a bad query on Game 1(λ)}
• EB̊ = {A makes a bad query on B̊}

Then we see that

Pr [Game 1(λ) = 1]

≤Pr
[

EGame 1
]

+Pr
[

(

EGame 1
)∁
]

Pr
[

A outputs b′ = b
∣

∣

∣

(

EGame 1
)∁
]

=Pr
[

EB̊
]

+Pr

[

(

EB̊
)∁

]

Pr

[

GameHE
K,$K ,B̊

(λ) = 1

∣

∣

∣

∣

(

EB̊
)∁

]

≤Pr
[

EB̊
]

+AdvHE
K,$K ,B̊

(λ)

=Pr
[

EGame 1
]

+AdvHE
K,$K ,B̊

(λ).

Note that

Pr
[

EGame 1
]

=Pr
[

EGame 1 | b = 0
]

Pr[b = 0]

+Pr
[

EGame 1 | b = 1
]

Pr[b = 1]

≤1

2

∣

∣

∣

∣

Pr
[

EGame 1 | b = 0
]

−Pr
[

EGame 1 | b = 1
]

∣

∣

∣

∣

+Pr
[

EGame 1 | b = 1
]

.

To bound the probability

1

2

∣

∣

∣

∣

Pr
[

EGame 1 | b = 0
]

−Pr
[

EGame 1 | b = 1
]

∣

∣

∣

∣

,

we construct a PPT adversary B̊′ against the challenger of

the game GameHE
K,$K ,B̊′

(λ). B̊′ is the same as B̊ except

for the Finalization phase and the Queries phase. In the

Finalization phase, B̊′ always outputs 0 instead of outputting

A’s output b′ as B̊. In Queries phase, when A makes a

query (∆, P, c) such that H ′.Dec(sk ,∆, P, c) 6= ⊥, B̊′

outputs 1 and halts instead of outputting “Bad” as B̊. In A’s

perspective, B̊ and B̊′ are identical to each other. Therefore,

we can write

AdvHE
K,$K ,B̊′

(λ)

=
1

2

∣

∣

∣
Pr

[

B̊′ outputs 1 | b = 0
]

−Pr
[

B̊′ outputs 1 | b = 1
]∣

∣

∣

=
1

2

∣

∣Pr
[

EGame 1 | b = 0
]

−Pr
[

EGame 1 | b = 1
]
∣

∣

Now, we need to bound Pr[EGame 1 | b = 1].
We first define Game 2(λ), which is the same as

Game 1(λ) with slight changes. In Game 2(λ), the chal-

lenger always sets b = 1 instead of choosing b randomly as

in Game 1(λ). Also, if A makes a bad query in the Queries

phase, the challenger returns 1 and the game ends. If A does

not output any bad queries, then the challenger returns 0 and

the game ends. From the definition of Game 2, we see that

Pr[EGame 1 | b = 1] = Pr[Game 2(λ) = 1]. When A
outputs a bad query (∆∗, P ∗, c∗), from the correctness of

T̄ and Ť , we see that H ′.Dec(sk ,∆∗, P ∗′, c∗) 6= ⊥ where

P ∗′ is the fully bound sub-program of P ∗. Also, if we let

P ∗′ = (f∗, τ∗1 , . . . , τ
∗
l ), then the bad query (∆∗, P ∗, c∗) falls

into one of the following two case:
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Type 1 bad query:

(∆∗, τ∗i , ·, ·) 6∈ S for at least one i ∈ [l].
Type 2 bad query:

For i ∈ [l], (∆∗, τ∗i ,m
∗
i , c
∗
i ) ∈ S for some (unique)

m∗i ∈M, c∗i ∈ C, and c∗ 6= c∗∗

where c∗∗ ← H ′.Eval(ek , f∗, c∗1, . . . , c
∗
l ). Also, if the bad

query (∆∗, P ∗, c∗) is of Type 2, then it also falls into one of

the following two cases:

Type 2̄ bad query:

(̊c∗, σ̄∗) 6= (̊c∗∗, σ̄∗∗)
Type 2̌ bad query:

σ̌∗ 6= σ̌∗∗

where c∗ = (̊c∗, σ̄∗, σ̌∗) and c∗∗ = (̊c∗∗, σ̄∗∗, σ̌∗∗). If we let

Ě :={The first bad query of A is of Type 1 in Game 2(λ)}∪
{The first bad query of A is of Type 2̌ in Game 2(λ)},

Ē :={The first bad query of A is of Type 2̄ in Game 2(λ)},

then we see that

Pr[Game 2(λ) = 1] ≤ Pr[Ě ] +Pr[Ē ].

To bound Pr[Ē ], we construct a PPT adversary B̄ of the

game GameMDHA
T̄ ,B̄ (λ) as follows:

Initialization

B̄ generates (e̊k , s̊k) ← K.KeyGen(1λ),
(ěk , šk) ← Ť .KeyGen(1λ), and prepares the se-

lective queries as follows:

1) Sample q∗
$← [q]

2) Sample ∆̄i
$← D̄, ∆̌i

$← Ď for i ∈ [d] and

τ̄j
$← T̄ , τ̌j

$← Ť for j ∈ [l̄q]
3) Compute c̊i,j ← $K(s̊k , ·) for (i, j) ∈ [d] ×

[l̄q]
4) Submit

((

∆̄i, τ̄j , c̊i,j
))

(i,j)∈[d]×[l̄q]
to the

challenger

If (∆̄i, τ̄j) = (∆̄i′ , τ̄j′) for some (i, j) 6= (i′, j′),
then the challenger rejects the query. Otherwise, the

challenger generates (ēk , s̄k) ← T̄ .KeyGen(1λ),
computes σ̄i,j ← T̄ .Auth(s̄k , ∆̄i, τ̄j , c̊i,j) for

(i, j) ∈ [d] × [l̄q] and sends (ēk , ST̄ ) to B where

ST̄ :=
{

(∆̄i, τ̄j , c̊i,j , σ̄i,j)
}

(i,j)∈[d]×[l̄q]
. Then, B̄

sends ek := e̊k‖ēk‖ěk to A and initializes a set S
as ∅. B̄ also programs F̄ ′ : D → D̄, F̌ ′ : D → Ď,

Ḡ′ : T → T̄ , Ǧ′ : T → Ť to be functions that

output ∆̄i, ∆̌i, τ̄i, τ̌i, respectively for the ith new

input.

Queries

Among the queries of A, let ∆i ∈ D be the ith new

dataset identifier and τj ∈ T be the jth new data

identifier. B̄ handles queries of A as follows:

• For an encryption query (∆i, τj ,mi,j) that

A makes, B̄ checks if (∆i, τj , ·, ·) ∈ S. If

(∆i, τj , ·, ·) ∈ S, then B̄ rejects the query. Oth-

erwise, B̄ responds to the query (∆i, τj ,mi,j)
with ci,j := (̊ci,j , σ̄i,j , σ̌i,j) where σ̌i,j ←

Ť .Auth(šk , ∆̌i, τ̌j , 0) for ∆̌i = F̌ ′(∆i) and

τ̌j = Ǧ′(τj) (also, B̄ asks ∆i and τj to F̄ ′

and Ḡ′, respectively, to set F̄ ′(∆i) = ∆̄i

and Ḡ′(τj) = τ̄j). After responding to the

encryption query of A, B̄ updates S with S ←
S ∪ {(∆i, τj ,mi,j , ci,j)}.

• For every decryption query (∆∗, P ∗, c∗) that

A makes, B̄ checks if the query is re-

dundant. If the query (∆∗, P ∗, c∗) is re-

dundant, then B̄ rejects the query. If the

query (∆∗, P ∗, c∗) is non-redundant decryp-

tion query before the q∗th query, then B̄ gives

⊥ as the response. If the q∗th query is an

encryption query or a rejected query, then B̄
outputs nothing and halts. If the q∗th query

is the decryption query (∆∗, P ∗, c∗), then B̄
parses c∗ = (̊c∗, σ̄∗, σ̌∗) and finds P ∗′ :=
(f∗, τ∗1 , . . . , τ

∗
l ), the fully bound sub-program

of P ∗. If (∆∗, τ∗i ,m
∗
i , c
∗
i ) ∈ S for some

(unique) m∗i ∈M and c∗i ∈ C for all i ∈ [l] and

(̊c∗, σ̄∗) 6= (̊c∗∗, σ̄∗∗) where (̊c∗∗, σ̄∗∗, σ̌∗∗) =
H ′.Eval(ek , f∗, c∗1, . . . , c

∗
l ), then B̄ outputs

(∆̄∗, P̄ ∗
′
, c̊∗, σ̄∗) as a forgery attempt and halts

where ∆̄∗ = F̄ ′(∆∗), τ̄∗i = Ḡ′(τ∗i ) for i ∈ [l],
f̄∗ is the bitwisely described circuit of the de-

terministic algorithm K.Eval(ek , f∗, . . . ) and

P̄ ∗
′
= (f̄∗, τ̄∗1 , . . . , τ̄

∗
l ). Otherwise, B̄ outputs

nothing and halts.

Finalization

B̄ does not reach this phase.

Note that If A makes a Type 2̄ bad query on the q∗th query,

then B̄ wins the game GameMDHA
T̄ ,B̄ (λ).

For simplicity of the definitions below, we first let

prms =
(

coins, (∆̄i)i∈[d], (∆̌i)i∈[d], (τ̄j)j∈[l̄q], (τ̌j)j∈[l̄q],

rK , rT̄ , rŤ , (ei,j)(i,j)∈[d]×[l̄q], (āi,j)(i,j)∈[d]×[l̄q],

(ǎi,j)(i,j)∈[d]×[l̄q]

)

For ease of comparison, we define the following two

games:

• Game 2(λ; prms): a deterministic Game 2(λ) that

samples PRFs as B̄ with deterministic A using ran-

domness coins . More precisely, the challenger samples

(∆̄i)i∈[d], (∆̌i)i∈[d], (τ̄j)j∈[l̄q], (τ̌j)j∈[l̄q] and programs

F̄ ′ : D → D̄, F̌ ′ : D → Ď, Ḡ′ : T → T̄ ,

Ǧ′ : T → Ť to be functions that output ∆̄i, ∆̌i, τ̄i,
τ̌i, respectively, for the ith new input. To run algorithms

K.KeyGen, T̄ .KeyGen, Ť .KeyGen, $K(s̊k , ·),
T̄ .Auth(s̄k , ∆̄i, τ̄j , ·), Ť .Auth(šk , ∆̌i, τ̌j , 0), the chal-

lenger uses the randomness rK , rT̄ , rŤ , ei,j , āi,j , ǎi,j
for (i, j) ∈ [d]× [l̄q].

• Game B̄(λ; prms): a partially deterministic game

GameMDHA
T̄ ,B̄ (λ) with deterministic A using randomness

coins . More precisely, except for the choice of q∗ ∈ [q],
the other parts of B̄ and the challenger of this game

12 VOLUME 4, 2016
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are deterministic. In A’s perspective, the simulated

challenger, consisting of B̄ and the challenger of this

game, samples (∆̄i)i∈[d], (∆̌i)i∈[d], (τ̄j)j∈[l̄q], (τ̌j)j∈[l̄q]
and programs F̄ ′ : D → D̄, F̌ ′ : D → Ď, Ḡ′ : T → T̄ ,

Ǧ′ : T → Ť to be functions that output ∆̄i, ∆̌i, τ̄i, τ̌i,
respectively for the ith new input. To run algorithms

K.KeyGen, T̄ .KeyGen, Ť .KeyGen, $K(s̊k , ·),
T̄ .Auth(s̄k , ∆̄i, τ̄j , ·), Ť .Auth(šk , ∆̌i, τ̌j , 0), the sim-

ulated challenger uses the randomness rK , rT̄ , rŤ , ei,j ,

āi,j , ǎi,j for (i, j) ∈ [d]× [l̄q].

Since Game 2(λ; prms) is Game 2(λ) with certain imple-

mentation of PRFs, Pr[Ē ] = Pr[Ē ′] where

Ē ′ :=
{

prms |The first bad query that A outputs is of Type 2̄

in Game 2(λ; prms)
}

.

Let

Coll :=
{

prms | ∆̄i = ∆̄i′ or ∆̌i = ∆̌i′ for some i 6= i′

or τ̄j = τ̄j′ or τ̌j = τ̌j′ for some j 6= j′
}

.

Then for any fixed prms ∈ Coll∁ ∩ Ē ′, suppose A made

the first bad query on the q∗∗th query in Game 2(λ; prms).
If q∗ = q∗∗, Game 2(λ; prms) becomes the same as

Game B̄(λ; prms) in A’s perspective and B̄ wins the game

GameMDHA
T̄ ,B̄ (λ). Therefore,

1

q
Pr

[

Coll∁ ∩ Ē ′
]

≤Pr
[

GameMDHA
T̄ ,B̄ (λ) = 1

]

=AdvMDHA
T̄ ,B̄ (λ)

and

Pr
[

Ē ′
]

=Pr
[

Coll ∩ Ē ′
]

+Pr
[

Coll∁ ∩ Ē ′
]

≤Pr [Coll ] + qAdvMDHA
T̄ ,B̄ (λ)

≤ q2
∣

∣D̄
∣

∣

+
q2
∣

∣Ď
∣

∣

+
q2 l̄2
∣

∣T̄
∣

∣

+
q2 l̄2
∣

∣Ť
∣

∣

+ qAdvMDHA
T̄ ,B̄ (λ).

To bound Pr[Ě ], we construct a PPT algorithm B̌ of the

game GameMDHA
Ť ,B̌

(λ) as follows:

Initialization

B̌ generates (s̊k , s̊k) ← K.KeyGen(λ),
(s̄k , s̄k) ← T̄ .KeyGen(λ) and prepares the selec-

tive queries as follows:

1) Sample q∗
$← [q], i∗

$← [d + 1], and j∗
$←

[l̄q + 1]

2) Sample ∆̄i
$← D̄, ∆̌i

$← Ď for i ∈ [d] and

τ̄j
$← T̄ , τ̌j

$← Ť for j ∈ [l̄q]
3) For i ∈ [d] and j ∈ [l̄q] such that (i, j) 6=

(i∗, j∗), let bi,j = 0. If (i, j) = (i∗, j∗), then

let bi∗,j∗ = bi,j = 1
4) Submit

(

(∆̌i, τ̌j , bi,j)
)

(i,j)∈[d]×[l̄q]
to the

challenger

If (∆̌i, τ̌j) = (∆̌i′ , τ̌j′) for some (i, j) 6= (i′, j′),
then the challenger rejects the query. Otherwise, the

challenger generates (ěk , šk) ← Ť .KeyGen(1λ),

computes σ̌i,j ← Ť .Auth(šk , ∆̌i, τ̌j , bi,j) for

(i, j) ∈ [d] × [l̄q] and sends (ěk , SŤ ) to B̌ where

SŤ :=
{

(∆̌i, τ̌j , bi,j , σ̌i,j)
}

(i,j)∈[d]×[l̄q]
. B̌ sends

ek := e̊k‖ēk‖ěk to A and initializes a set S as

∅. B̄ also programs F̄ ′ : D → D̄, F̌ ′ : D → Ď,

Ḡ′ : T → T̄ , Ǧ′ : T → Ť to be functions that

output ∆̄i, ∆̌i, τ̄i, τ̌i, respectively for the ith new

input.

Queries

Among the queries of A, let ∆i ∈ D be the ith new

dataset identifier and τj ∈ T be the jth new data

identifier. B̌ handles queries of A as follows:

• For an encryption query (∆i, τj ,mi,j) that

A makes, B̌ checks if (∆i, τj , ·, ·) ∈ S. If

(∆i, τj , ·, ·) ∈ S, then B̌ rejects the encryp-

tion query. Otherwise, B̌ responds the query

(∆i, τj ,mi,j) with ci,j := (̊ci,j , σ̄i,j , σ̌i,j)
where c̊i,j ← $K(s̊k , ·) and σ̄i,j ←
T̄ .Auth(s̄k , ∆̄i, τ̄j , c̊i,j) for ∆̄i = F̄ ′(∆i),
τ̄j = Ḡ′(τj) (B̌ asks ∆i and τj to F̌ ′ and

Ǧ′, respectively, to set F̌ ′(∆i) = ∆̌i and

Ǧ′(τj) = τ̌j). After responding the encryption

query of A, B̌ updates S with S ← S ∪
{(∆i, τj ,mi,j , ci,j)}

• For every decryption query (∆∗, P ∗, c∗) that

A makes, B̌ checks if the query is redundant.

If the query (∆∗, P ∗, c∗) is redundant, then

B̌ rejects the query. If the query (∆∗, P ∗, c∗)
is non-redundant decryption query before the

q∗th query, then B̌ returns ⊥ as the re-

sponse. If the q∗th query is an encryp-

tion query or a rejected query, then B̌ out-

puts nothing and halts. If the q∗th query is

the decryption query (∆∗, P ∗, c∗), B̌ parses

c∗ = (̊c∗, σ̄∗, σ̌∗) and computes P ∗′ :=
(f∗, τ∗1 , . . . , τ

∗
l ), the fully bound sub-program

of P ∗. If (∆∗, τ∗i ,m
∗
i , c
∗
i ) ∈ S for some

(unique) m∗i ∈ M and c∗i ∈ C for all i ∈
[l] and σ̌∗ 6= σ̌∗∗ where (̊c∗∗, σ̄∗∗, σ̌∗∗) =
H ′.Eval(ek , f∗, c∗1, . . . , c

∗
l ), then B̌ outputs

(∆̌∗, P̌ ∗
′
, 0, σ̌∗) as a forgery attempt and halts

where P̌ ∗
′
= (f̌∗, τ̌∗1 , . . . , τ̌

∗
l ), ∆̌

∗ = F̌ ′(∆∗),
τ̌∗i = Ǧ′(τ∗i ) for i ∈ [l], f̌∗ is the boolean

circuit obtained by replacing each unary gate

of f∗ with the identity gate, and each binary

gate of f∗ with the OR gate as defined in

the beginning of the Section VI. If there is at

least one i ∈ [l] such that (∆∗, τ∗i , ·, ·) /∈ S,

then let l∗ be the smallest number in the set

{i ∈ [l] | (∆∗, τ∗i , ·, ·) 6∈ S}. If ∆∗ = ∆i∗ and

τ∗l∗ = τj∗ , then B̌ outputs (∆̌∗, P̌ ∗
′
, 0, σ̌∗) as

a forgery attempt and halts where ∆̌∗ and P̌ ∗
′

are defined as above. For other cases, B̌ outputs

nothing and halts.

Finalization

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3100852, IEEE Access

Jeongsu Kim and Aaram Yun: Secure Fully Homomorphic Authenticated Encryption

B̌ does not reach this phase.

Note that on q∗th query, if A makes a Type 1 bad query

while ∆∗ = ∆i∗ and τ∗l∗ = τj∗ , or a Type 2̌ bad query, then

B̌ wins the game GameMDHA
Ť ,B̌

(λ).
Let prms be the tuple of randomness as defined above. For

ease of comparison, we define the following game:

• Game B̌(λ; prms): a partially deterministic game

GameMDHA
Ť ,B̌

(λ) with A using randomness coins . More

precisely, except for the choices of q∗ ∈ [q], i∗ ∈
[d + 1], j∗ ∈ [l̄q + 1], the other parts of B̌ and

the challenger of this game are deterministic. In A’s

perspective, the simulated challenger, consisting of B̌
and the challenger of this game, samples (∆̄i)i∈[d],
(∆̌i)i∈[d], (τ̄j)j∈[l̄q], (τ̌j)j∈[l̄q] and programs F̄ ′ :

D → D̄, F̌ ′ : D → Ď, Ḡ′ : T → T̄ , Ǧ′ :
T → Ť to be functions that output ∆̄i, ∆̌i, τ̄i, τ̌i,
respectively for the ith new input. To run algorithms

K.KeyGen, T̄ .KeyGen, Ť .KeyGen, $K(s̊k , ·),
T̄ .Auth(s̄k , ∆̄i, τ̄j , ·), Ť .Auth(šk , ∆̌i, τ̌j , ·), the sim-

ulated challenger uses the randomness rK , rT̄ , rŤ , ei,j ,

āi,j , ǎi,j for (i, j) ∈ [d]× [l̄q].

If we define events Ě ′, Ě ′1, Ě ′2 as

Ě ′ =
{

prms |The first bad query that A outputs is of Type 1

or Type 2̌ in Game 2(λ; prms)
}

,

Ě ′1 =
{

prms |The first bad query that A outputs is of Type 1

in Game 2(λ; prms)
}

,

Ě ′2 =
{

prms |The first bad query that A outputs is of Type 2̌

in Game 2(λ; prms)
}

,

then we see that Ě ′ = Ě ′1 ∪ Ě ′2, Ě ′1 ∩ Ě ′2 = ∅ and Pr[Ě ] =
Pr[Ě ′].

For a fixed prms ∈ Coll∁ ∩ Ě ′1, suppose A made, in

Game 2(λ; prms), the first bad (Type 1) query (∆∗, P ∗, c∗)
on the q∗∗th query where P ∗′ = (f∗, τ∗1 , . . . , τ

∗
l ) is the

fully bound sub-program of P ∗. If q∗ = q∗∗, ∆∗ = ∆i∗

and τ∗l∗ = τj∗ where l∗ is the smallest integer in the

set {i ∈ [l] | (∆∗, τ∗i , ·, ·) 6∈ S}, then Game 2(λ; prms)
becomes the same as Game B̌(λ; prms) in A’s perspective

and B̌ wins the game Game B̌(λ; prms). On the other hand,

for fixed prms ∈ Coll∁ ∩ Ě ′2, suppose A made the first bad

(Type 2̌) query on the q∗∗th query. If q∗ = q∗∗, i∗ = d + 1
and j∗ = l̄q+1, then Game 2(λ; prms) becomes the same as

Game B̌(λ; prms) in A’s perspective and B̌ wins the game

Game B̌(λ; prms). In other words, if prms ∈ Coll∁ ∩ Ě ′,
then Game 2(λ; prms) and Game B̌(λ; prms) acts the same

in A’s perspective with probability greater than, or equal to
1

(d+1)(l̄q+1)
. Therefore,

1

(d+ 1)
(

l̄q + 1
) Pr

[

Coll∁ ∩ Ě ′
]

≤Pr[GameMDHA
Ť ,B̌

(λ) = 1]

=AdvMDHA
Ť ,B̌

(λ)

and

Pr
[

Ě ′
]

=Pr
[

Coll ∩ Ě ′
]

+Pr
[

Coll∁ ∩ Ě ′
]

≤Pr [Coll ] + (d+ 1)
(

l̄q + 1
)

AdvMDHA
Ť ,B̌

(λ)

≤ q2
∣

∣D̄
∣

∣

+
q2
∣

∣Ď
∣

∣

+
q2 l̄2
∣

∣T̄
∣

∣

+
q2 l̄2
∣

∣Ť
∣

∣

+ (d+ 1)
(

l̄q + 1
)

AdvMDHA
Ť ,B̌

(λ).

In conclusion, we can write

AdvMDHAE
H,$H ,A(λ)

≤AdvF̄ (λ) +AdvḠ(λ) +AdvF̌ (λ) +AdvǦ(λ)

+
2q2
∣

∣D̄
∣

∣

+
2q2
∣

∣Ď
∣

∣

+
2q2 l̄2
∣

∣T̄
∣

∣

+
2q2 l̄2
∣

∣Ť
∣

∣

+AdvHE
K,$K ,B̊

(λ)

+AdvHE
K,$K ,B̊′

(λ) + qAdvMDHA
T̄ ,B̄ (λ)

+ (d+ 1)
(

l̄q + 1
)

AdvMDHA
Ť ,B̌

(λ).

VII. AN MDHA SCHEME AND A GENERIC

CONSTRUCTION FOR BITWISELY EVALUABLE MDHA

In this section, we propose a selectively secure multi-dataset

(leveled) fully homomorphic authenticator scheme and a

generic construction for a selectively secure BE-MDHA. Our

MDFHA scheme, Construction 2, can be directly used as

Ť in Construction 1. The generic construction we propose,

Construction 3, can be used to construct a selectively secure

BE-MDHA using a selectively secure MDHA such as Con-

struction 2. Also, the result of Construction 3 can be used as

T̄ in Construction 1.

Like other (leveled) fully homomorphic authenticator

schemes, our scheme is based on the first fully homomorphic

signature scheme [4]. Our scheme is a slightly modified

version of the first fully homomorphic signature [4], but

our scheme supports multiple datasets without any additional

transformation.

A. A SELECTIVELY SECURE MULTI-DATASET FULLY

HOMOMORPHIC AUTHENTICATOR SCHEME

Before we introduce our secure MDFHA scheme, we go

through some preliminaries.

1) Entropy

The min-entropy of a random variable X is defined as

H∞(X) := − log(maxx Pr[X = x]). The average condi-

tional min-entropy of X conditioned on Y is defined as

H∞(X | Y ) := − log

(

E
y←Y

[

max
x

Pr[X = x | Y = y]
]

)

.

Lemma 1. Let X and Y be random variables defined on

X and Y , respectively. Then H∞(X | Y ) ≥ H∞(X) −
log(|Y|).

2) The short integer solution problem

For a security parameter λ, suppose n = poly(λ), k =
poly(λ), q = 2poly(λ), β = 2poly(λ) (β ≤ q) are given,

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3100852, IEEE Access

Jeongsu Kim and Aaram Yun: Secure Fully Homomorphic Authenticated Encryption

then the SISn,k,q,β hardness assumption means the following:

For any PPT algorithm A that A
$← Z

n×k
q is given, the

probability that A outputs u ∈ Z
k
q such that ‖u‖∞ ≤ β and

Au = 0 is negligible. If A outputs u such that Au = 0, then

we say that A solved SISn,k,q,β problem.

Remark 6. There are several versions of SIS hardness as-

sumptions and the assumption above is believed to be true

for some parameters [13]–[16].

3) Lattice trapdoors

We can construct a matrix with a trapdoor using the following

lemma.

Lemma 2. ([17]–[21]) For integers n and q, let k1 =
n⌈log q⌉, k0 = O(n log q) ≥ n log q + ω(log n), k =
k0 + k1, βsam = O(n

√
log q), G0 = In ⊗ gT ∈ Z

n×nk1

q

where In is the n-dimensional identity matrix and gT =
(1, 2, 22, . . . , 2⌈log q⌉−1). Then for all k̄ = k̄(n) = poly(n),
there are efficient algorithms (halts within polynomial time

with respect to their inputs) Sam, TrapGen, SamPre, Halg

satisfying the following:

1) U ← Sam(1k, 1k̄, q) samples a matrix U ∈ Z
k×k̄
q

such that ‖U‖∞ ≤ βsam .

2) For A0
$← Z

n×k0

q and an invertible matrix H ∈ Z
n×n
q ,

(A,R) ← TrapGen(A0,H) generates a random

R ← DR for certain distribution DR over Z
k0×k1

q

and defines A as A = [A0|HG0 −A0R]. Moreover,

(A,R) and the algorithm SamPre satisfies the follow-

ing:

• For A′
$← Z

n×k
q , A

stat≈ A′.

• For R ← DR, max‖u‖=1 ‖Ru‖∞ ≤ O(n log q)
except for negligible probability.

• For U ← Sam(1k, 1k̄, q), V = AU,

V′
$← Z

n×k̄
q , U′ ← SamPre(A0,R,H,V′),

(A,R,U,V)
stat≈ (A,R,U′,V′). Also, U′ ←

SamPre(A0,R,H,V′) always satisfies AU′ =
V′ and ‖U′‖∞ ≤ βsam .

• For any non-zero (u0,u1) ∈ Z
k0 ×Z

k1 , when A0

and A0R are given, the average min-entropy of

Ru1 is at least Ω(n).

3) Let G = [G0|0] ∈ Z
n×k
q , then there exists a deter-

ministic algorithm G-1 such that for any V ∈ Zn×k̄
q ,

B← G-1(V) such that B ∈ {0, 1}k×k̄ and GB = V.

4) There is a deterministic algorithm H′alg : Fqn →
Z
n×n
q such that for any distinct x, y ∈ Fqn , H′alg(x)−

H′alg(y) is an invertible matrix [21]. Therefore, there

is a deterministic algorithm Halg : Fqn \{0} → Z
n×n
q

such that for any ∆ ∈ Fqn \ {0}, Halg(∆) :=
H′alg(∆)−H′alg(0) ∈ Z

n×n
q is an invertible matrix.

Construction 2. For a security parameter λ, we first choose

a parameter d = d(λ) = poly(λ) which is related to the

depth of the admissible functions and let βmax = 2ω(log λ)d,

βSIS = 2ω(log λ)βmax . Then, we choose n = poly(λ) =
ω(log λ), a prime q = 2poly(λ) so that SISn,k,q,βSIS

hard-

ness assumption holds, where k0 = Θ(n log q), k1 =
n⌈log q⌉ and k = k0 + k1. Let DR be the distribution

given in Lemma 2, DU be the distribution of the output

of Sam(1k, 1k, q), and βinit = βsam = poly(λ). Let

M = {0, 1}, Σ = D × {U ∈ Z
k×k
q | ‖U‖∞ ≤ βmax},

D = Fqn \ {0}, T be any set and

F = {f :Ml →M | l = poly(λ) ∈ Z, and (∆,U)←
T.Eval(ek , f, (m1, (∆,U1)), . . . , (ml, (∆,Ul)))

satisfies ‖U‖∞ ≤ βmax for any choices of

∆ ∈ D, (ek , sk)← T.KeyGen(1λ) and Ui ← DU ,

for all i ∈ [l], such that for some τi ∈ T and mi ∈M,

1← T.Verify(sk ,∆, (id, τi),mi, (∆,Ui))}

where id is the identity function and T.Eval is defined below.

Let F : {0, 1}λ × T → Z
n×k
q be a secure PRF.

We define a leveled fully homomorphic MDHA T as fol-

lows:

• T.KeyGen(1λ): sample A0
$← Z

n×k0

q , R ← DR,

kF
$← {0, 1}λ and let A := [A0|A1] = [A0| −A0R].

Let ek := A and sk := (A,R, kF ), and output

(ek , sk).
• T.Auth(sk ,∆, τ,m): parse sk = (A,R, kF ) and let

A∆ := [A0|Halg(∆)G −A0R] = [A0|Halg(∆)G +
A1] and V := F (kF , τ). Compute U ←
SamPre(A0,R,Halg(∆),V), and output σ = (∆,U).

• T.Eval(ek , f, (m1, σ1), . . . , (ml, σl)): parse ek =
[A0|A1], σi = (∆i,Ui) for i ∈ [l]. Let ∆ = ∆1,

A∆ := [A0|Halg(∆)G +A1], Vi := A∆Ui +miG

for i ∈ [l]. Evaluate U and V by following each gate of

the circuit f where each gates are evaluated as follows:

1) When f(m1,m2) = m1 +m2 is an addition gate,

U = U1 +U2, V = V1 +V2

2) When f(m1,m2) = m1 · m2 is a multiplication

gate,

U = m2U1 +U2 G
-1(V1), V = V2 G

-1(V1)

3) When f(m1) = m1 + a is an addition with

constant gate for some constant a ∈ Zq ,

U = U1, V = V1 + aG

4) When f(m1) = a · m1 is a multiplication with

constant gate for some constant a ∈ Zq ,

U = aU1, V = aV1

Finally, output σ = (∆,U).
• T.Verify(sk ,∆, P,m, σ): parse sk = ([A0|A1],R, kF ),

P = (f, τ1, . . . , τl) and σ = (∆′,U). If ∆ 6= ∆′, then

output 0. Otherwise, let A∆ := [A0|Halg(∆)G+A1],
V := A∆U +mG, Vi := F (kF , τi) for i ∈ [l]. From

V1, . . . ,Vl, evaluate V′ by following each gates of f
as T.Eval. If V = V′, then output 1. Otherwise, output

0.
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Remark 7. Construction 2 satisfies the correctness property

of an MDHA. We can prove the correctness as follows:

• Correctness of evaluation: Since T.Verify accepts the

output of T.Eval when its inputs are also accepted

by T.Verify, we see that T satisfies the correctness of

evaluation.

• Projection preservation: As

σi = T.Eval(ek , πi, (m1, σ1), . . . , (ml, σl))

for (ek , sk) ← T.KeyGen(1λ) and the ith projection

function πi overMl, we can say that T satisfies projec-

tion preservation.

Remark 8. Construction 2 supports efficient verification if

we define T.Prep and T.EffVerify as follows:

• T.Prep(sk , P ): parse sk = (A = [A0|A1],R, kF ),
P = (f, τ1, . . . , τl). Let Vi := F (kF , τi) for i ∈ [l].
From V1, . . . ,Vl, evaluate V′ by following each gates

of f as T.Eval. Output skP = A‖V′.
• T.EffVerify(skP ,∆,m, σ): parse skP = A‖V′, A =

[A0|A1] and σ = (∆′,U). If ∆ 6= ∆′, then output 0.

Otherwise, let A∆ := [A0|Halg(∆)G+A1] and V :=
A∆U + mG. If V = V′, then output 1. Otherwise,

output 0.

Note that T.EffVerify (T.Prep (sk , P ) ,∆,m, σ) =
T.Verify (sk , P,∆,m, σ) where (ek , sk)← T.KeyGen(1λ).
Also, from the definition of T.EffVerify, the complexity

of T.EffVerify is independent of the time complexity of

computing input P .

Remark 9. Construction 2 is (leveled) fully homomorphic

from the following reasons. First, let f(x1, x2) = 1− x1 · x2

be a NAND gate. Consider two signatures σ1 = (∆,U1),
σ2 = (∆,U2) such that 1 ← T.Verify(sk ,∆, P1,m1, σ1),
1 ← T.Verify(sk ,∆, P2,m2, σ1), ‖U1‖∞ ≤ β and

‖U2‖∞ ≤ β for some admissible programs P1, P2, messages

m1,m2 ∈ {0, 1} and (ek , sk) ← T.KeyGen(1λ). By

following the definition of T.Eval, we see that ‖U‖∞ ≤
(k + 1)β when U ← T.Eval(ek , f, (m1, σ1), (m2, σ2)).
Therefore, for any freshly generated message-signature tu-

ples (m′1, σ
′
1), . . . , (m

′
l, σ
′
l) and any depth d circuit g

with arity l that consists of NAND gates, ‖U∗‖∞ ≤
(k + 1)dβinit ≤ 2ω(log λ)d ≤ βmax when U∗ ←
T.Eval(ek , g, (m′1, σ

′
1), . . . , (m

′
l, σ
′
l)). In other words, any

depth d circuit that consists of NAND gates is an admissible

function of T .

Theorem 2. T on Construction 2 is selectively secure under

the SISn,k,q,βSIS
hardness assumption.

Proof. We define AdvF (λ) to be the distinguishing advan-

tage of F (kF , ·) from random function F ′ : T → Z
n×k
q for

kF
$← {0, 1}λ.

Let A be any PPT adversary of T in GameMDHA
T,A that

makes at most q queries. Then there is a PPT algorithm B,

running A internally, which solves SISn,k,q,βSIS
problem with

probability AdvSIS
B (λ) such that

AdvMDHA
T,A (λ) ≤ AdvSIS

B (λ) +AdvF (λ) + negl(λ)

Before constructing B, we define some games as follows:

Game 0(λ):

The original security game GameMDHA
T,A (λ)

Game 1(λ):

The security game GameMDHA
T ′,A (λ) where T ′ is the

same as T except for the parts that use PRF F .

In this game, T ′.KeyGen(1λ) samples a random

function F ′ : T → Z
n×k
q , and lets sk :=

(A,R, F ′) as a secret key. Also, T ′.Auth and

T ′.Verify uses F ′ instead of F (kF , ·).
Using the security of the PRF F , we can bound

Adv
Game 0,Game 1
A (λ) ≤ AdvF (λ).

To bound AdvGame 1
A (λ), we construct a PPT algorithm B

that solves the SIS problem for A0
$← Z

n×k0

q by running A
internally as follows (written in A’s perspective):

Selective Queries

A makes selective queries ((∆i, τi,mi))i∈[q].
Initializatoin and Response

B samples i∗
$← [q], R ← DR and let A =

[A0|A1] = [A0| − Halg(∆i∗)G − A0R] and

A∆i∗
:= [A0| − A0R]. B samples Ui ← DU

and program a random function F ′ : T → Z
n×k
q to

satisfy F ′(τi) = Vi := A∆i∗
Ui + miG for i ∈

Ind∗ := {i ∈ [q] | ∆i = ∆i∗}. For i ∈ [q] \ Ind∗,
B samples Ui ← SamPre(A0,R,Halg(∆i) −
Halg(∆i∗),Vi) where A∆i

:= [A0|Halg(∆i)G+
A1] and Vi := F ′(τi). Then, B lets ek = A,

σi := (∆i,Ui) for all i ∈ [q], and sends (ek , S)
to A where S = {(∆i, τi,mi, σi)}i∈[q].

Finalization

A outputs a forgery attempt (∆∗, P ∗,m∗, σ∗).

In A’s perspective, B’s simulation above is indistinguish-

able to the original challenger of GameMDHA
T,A (λ) except for

negligible probability from Lemma 2. Also, regardless of

the choice of i∗, B acts almost the same in A’s perspec-

tive from Lemma 2. Therefore, when A outputs a forgery

attempt (∆∗, P ∗,m∗, σ∗ = (∆∗,U∗)), the probability that

∆∗ = ∆i∗ is at least 1
q

except for negligible probability.

If (∆∗, P ∗,m∗, σ∗) is a forgery, then for the fully

bound sub-program P ∗′ = (f∗, τ1, . . . , τ
∗
l ) of P ∗,

there is (∆∗, τ∗i ,m
∗
i , σ
∗
i ) ∈ S for some (unique)

m∗i ∈ M, σ∗i ∈ Σ for i ∈ [l]. Also, A∆∗U∗ +
m∗G = V∗ where V∗ is evaluated as T ′.Eval using

(V∗1, . . . ,V
∗
l ) = (F ′(τ∗1 ), . . . , F

′(τ∗l )). If we let σ∗∗ =
(∆∗∗,U∗∗) ← T ′.Eval (ek , f∗, (m∗1, σ

∗
1), . . . , (m

∗
l , σ
∗
l ))

and m∗∗ = f∗(m∗1, . . . ,m
∗
l ), then (m∗, σ∗) 6= (m∗∗, σ∗∗)

also holds (∆∗ = ∆∗∗). In other words, If we let m× :=
m∗∗ −m∗ and U× := [Ik0

| −R](U∗ −U∗∗), then

A∆i∗
(U∗ −U∗∗) = A0U

× = m×G.
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Moreover, we have ‖U∗ − U∗∗‖∞ ≤ 2βmax from

(∆∗,U∗), (∆∗∗,U∗∗) ∈ Σ and max‖u‖=1 ‖Ru‖∞ ≤
O(n log q) from Lemma 2. Thus, we can write ‖U×‖∞ ≤
2βmax (O(n log q) + 1) ≤ βSIS .

To solve the SISn,k,q,βSIS
problem, we consider the follow-

ing cases:

• m× = 0: It is enough to show that U× 6= 0 except for

negligible probability. Let U∗−U∗∗ =

[

U∗0
U∗1

]

such that

U× = U∗0 − RU∗1. If U∗1 = 0, then U∗0 6= 0 from

U∗ −U∗∗ 6= 0. Therefore, U× 6= 0. If U∗1 6= 0, then

from Lemma 2, we know that the min-entropy of RU∗1
is at least Ω(n) when A0 and AR are given. Therefore,

U× 6= 0 except for negligible probability.

• m× 6= 0: B first samples t
$← {0, 1}k0 and computes

t′ = G−1(A0t/m
×) ∈ {0, 1}k. Then we see that

A0((U
∗ −U∗∗)t′ − t) =A0(U

∗ −U∗∗)t′ −A0t

=m×Gt′ −A0t

=0

If we let u = (U∗−U∗∗)t′− t, then we have ‖u‖∞ ≤
2kβmax+1 ≤ βSIS and A0u = 0. All we need to prove

is that u 6= 0 except for negligible probability. From the

fact that t′ is deterministic when A0t is given, we have

H∞(t|t′) ≥H∞(t|A0t)

≥H∞(t)− n log q

=k0 − n log q

=O(n)

from Lemma 1. In other words, u = (U∗−U∗∗)t′−t 6=
0 except for negligible probability.

In conclusion, if A makes a forgery, then B can solve

the SISn,k,q,βSIS
problem except for negligible probability.

Therefore, we may write

AdvMDHA
T,A (λ)

=AdvGame 0
A (λ)

≤Adv
Game 0,Game 1
A (λ) +AdvGame 1

A (λ)

≤AdvF (λ) +AdvSIS
B (λ) + negl(λ).

B. GENERIC CONSTRUCTION OF BITWISELY

EVALUABLE MULTI-DATASET HOMOMORPHIC

AUTHENTICATOR

Here, we give a generic construction of a selectively secure

BE-MDHA.

Construction 3. Let T be an MDHA. LetM := {0, 1}, Σ,

D, T , F be the message space, the tag space, the dataset

identifier space, the data identifier space, and the admissible

function space of T . Similarly, let M̄, Σ̄, D̄, T̄ , F̄ be the

corresponding ones of T̄ where every element in M̄ is given

as an n-bit binary encoding and F̄ is defined as

F̄ :=
{

f̄ = (f1, . . . , fn) ∈ Fn | f̄ is a bitwisely described

circuit onMl for some l = poly(λ)
}

.

Without loss of generality, we let T = T̄ × [n]. Using T , we

construct a BE-MDHA T̄ as follows.

• T̄ .KeyGen(1λ): let (ek , sk) ← T.KeyGen(1λ) and

outputs (ēk , s̄k) := (ek , sk).
• T̄ .Auth

(

s̄k ,∆, τ, m̄
)

: parse m̄ = 〈m1, . . . ,mn〉 and

let sk = s̄k , σi ← T.Auth(sk ,∆, (τ, i),mi) for i ∈
[n]. Output σ̄ := σ1‖ . . . ‖σn.

• T̄ .Eval
(

ēk , f̄ , (m̄, σ̄1), . . . , (m̄l, σ̄l)
)

: parse f̄ =
(f1, . . . , fn), m̄i = 〈mi,1, . . . ,mi,n〉, σ̄i =
σi,1‖ . . . , ‖σi,n for i ∈ [n]. For all i ∈ [n], compute

σi ← T.Eval
(

ek , fi, (mi′,j′ , σi′,j′)(i′,j′)∈[l]×[n]
)

. Out-

put σ̄ = σ1‖ . . . ‖σn.

• T̄ .Verify
(

s̄k ,∆, P̄ , m̄, σ̄
)

: parse P̄ =
(

f̄ , τ1, . . . , τl
)

,

f̄ = (f1, . . . , fn), m̄ = 〈m1, . . . ,mn〉 and σ̄ =

(σ1, . . . , σn). Let Pi :=
(

fi, ((τs, t))(s,t)∈[l]×[n]

)

for

i ∈ [n]. If 1← T.Verify (sk ,∆, Pi,mi, σi) for i ∈ [n],
then output 1. Otherwise, output 0.

Remark 10. Construction 3 satisfies the correctness prop-

erty of a BE-MDHA. We can prove the correctness as follows:

• Correctness of the evaluation: From descriptions of

T̄ .Eval, T̄ .Verify and the correctness of T , T̄ satisfies

the correctness of evaluation.

• Projection preservation: Let (ek , sk)← T.KeyGen(1λ),
ēk = ek , s̄k = sk and π̄i = (πi,1, . . . , πi,n)
be a bitwisely described projection on ith coordinate

on Ml for some l = poly(λ). If (m̄j′ , σ̄j′) =
(〈mj′,1, . . . ,mj′,n〉 , σj′,1‖ . . . ‖σj′,n) satisfies 1 ←
T̄ .Verify

(

s̄k ,∆, P̄j′ , m̄j′ , σ̄j′
)

for some admissible

bitwisely described program P̄j′ for all j′ ∈ [n], then

since πi,1, . . . , πi,n are projection circuits such that

πi,j

(

(bi′,j′)(i′,j′)∈[l]×[n]
)

= bi,j for j ∈ [n], we see that

T̄ .Eval (ek ,∆, π̄i, (m̄1, σ̄1), . . . , (m̄l, σ̄l)) = σ̄i from

the projection preservation of T .

Remark 11. If T supports efficient verification, then Con-

struction 3 also supports efficient verification with following

T̄ .Prep and T̄ .EffVerify.

• T̄ .Prep
(

s̄k , P̄
)

: parse P̄ =
(

f̄ , τ1, . . . , τl
)

and f̄ =

(f1, . . . , fn). Let Pi :=
(

fi, ((τs, t))(s,t)∈[l]×[n]

)

for

i ∈ [n]. Compute skPi
← T.Prep(sk , Pi) for i ∈ [n].

Output s̄k P̄ := skP1
‖ . . . ‖skPn

.

• T̄ .EffVerify
(

s̄k P̄ ,∆, m̄, σ̄
)

: parse given inputs s̄k P̄ :=
skP1
‖ . . . ‖skPn

, m̄ = 〈m1, . . . ,mn〉 and σ̄ =
σ1‖ . . . ‖σn. If 1 ← T.EffVerify (skPi

,∆,mi, σi) for

all i ∈ [n], then output 1. Otherwise, output 0.

Note that T̄ .EffVerify
(

T.Prep
(

s̄k , P̄
)

,∆, m̄, σ̄
)

=
T̄ .Verify

(

s̄k , P̄ ,∆, m̄, σ̄
)

where
(

ēk , s̄k
)

← T̄ .KeyGen(1λ).
Also, from the amortized efficiency of T , the complexity

of T̄ .EffVerify is independent of the time complexity of

computing input P̄ . In other words, T̄ supports efficient

verification if T supports efficient verification.

Theorem 3. If T is a selectively secure MDHA, then T̄ is a

selectively secure BE-MDHA.
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Proof. Let A be any PPT adversary of T̄ in GameMDHA
T̄ ,A that

makes at most q queries. Then there is a PPT algorithm B
that makes nq queries such that

AdvMDHA
T̄ ,A (λ) ≤ AdvMDHA

T,B (λ)

We construct such algorithm B that runs A internally as

follows (written in A’s perspective):

Selective Queries

A makes selective queries ((∆i, τi, m̄i))i∈[q]. If

(∆i, τi) = (∆i′ , τi′) for distinct i, i′ ∈ [q], then

B rejects the queries. Otherwise, B parses m̄i =
〈mi,1, . . . ,mi,n〉 for i ∈ [q] and makes selective

queries ((∆i, (τi, j),mi,j))(i,j)∈[q]×[n] to the chal-

lenger.

Initialization and Response

The challenger generates a key pair (ek , sk) ←
T.KeyGen(1λ), computes authentication tags

σi,j ← T.Auth(sk ,∆i, (τi, j),mi,j) for all

(i, j) ∈ [q] × [n] and sends (ek , ST ) to B where

ST := {(∆i, (τi, j),mi,j , σi,j)}(i,j)∈[q]×[n]. Then,

B lets ēk := ek , σ̄i := (σi,1, . . . , σi,n) for

i ∈ [q] and sends (ēk , S) to A where S :=
{(∆i, τi, m̄i, σ̄i)}i∈[q].

Finalization

A outputs a forgery attempt
(

∆∗, P̄ ∗, m̄∗, σ̄∗
)

such

that m̄∗ = 〈m∗1, . . . ,m∗n〉, σ̄∗ = (σ∗1 , . . . , σ
∗
n)

and for the fully bound bitwisely described sub-

program P̄ ∗
′
=

(

f̄∗ = (f∗1 , . . . , f
∗
n), τ

∗
1 , . . . , τ

∗
l

)

of P̄ ∗, there is (∆∗, τ∗i , m̄
∗
i , σ̄
∗
i ) ∈ S for some

(unique) m̄∗i ∈ M̄ and σ̄∗i ∈ Σ̄ for all i ∈ [l].
B then computes m̄∗∗ := 〈m∗∗1 , . . . ,m∗∗n 〉 =
P̄ ∗
′
(m̄∗1, . . . , m̄

∗
l ) and σ̄∗∗ := (σ∗∗1 , . . . , σ∗∗n ) ←

T̄ .Eval
(

ēk , f̄∗, (m̄∗1, σ̄
∗
1) , . . . , (m̄

∗
l , σ̄
∗
l )
)

. If the

calculated message-tag pair is different from the

forgery attempt, (m̄∗, σ̄∗) 6= (m̄∗∗, σ̄∗∗), then B
outputs

(

∆∗,
(

f∗i∗ , ((τs, t))(s,t)∈[l]×[n]
)

,m∗i∗ , σ
∗
i∗

)

as a forgery attempt where i∗ is the smallest number

of the nonempty set {j | (m∗j , σ∗j ) 6= (m∗∗j , σ∗∗j )}.
Otherwise, B outputs nothing and halts.

Note that in A’s perspective, B acts exactly the same

as the adversary of GameMDHA
T̄ ,A (λ). Also, if the forgery

attempt
(

∆∗, P̄ ∗, m̄∗, σ̄∗
)

that A made is a forgery,

then since 1 ← T̄ .Verify(s̄k ,∆∗, P̄ ∗, m̄∗, σ̄∗), we have

1 ← T.Verify(sk ,∆∗, P ∗i∗ ,m
∗
i∗ , σ

∗
i∗) where P ∗i∗ :=

(

f∗i∗ , ((τs, t))(s,t)∈[l]×[n]
)

for i∗ defined as above. Therefore,

(∆∗, P ∗i∗ ,m
∗
i∗ , σ

∗
i∗) becomes a forgery of T . In other words,

B wins if A outputs a forgery, and we may write

AdvMDHA
T̄ ,A (λ) ≤ AdvMDHA

T,B (λ).

VIII. CONCLUSIONS

In this work, we have proposed a new security notion for

HAEs that implies privacy and authenticity at the same time.

Our new security notion satisfies all the previous security

notions for HAEs. To make an FHAE that satisfies the new

security notion, we have designed a generic construction that

combines FHE and MDFHA.

Our construction is essentially an homomorphic version of

the encrypt-then-authenticate construction, while we added

another authentication independent of the message for our

stronger security definition.

Fully homomorphic encryptions and fully homomorphic

authenticators typically have very large ciphertext expansion,

and their real-life, practical performance is sometimes not

so satisfactory. Since our construction follows the ‘encrypt-

then-authenticate’ paradigm, our construction has large ci-

phertext expansion and less-than-ideal performances, while

it is true that existing FHA schemes supporting amortized

efficiency and satisfying adaptive security have similar im-

perfections. Our FHAE gives extra data privacy for free,

with asymptotically comparable performance as those FHA

schemes.

It would be a very interesting open problem to construct

more efficient FHAE schemes than our current generic com-

position.
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