
 Open access Proceedings Article DOI:10.1145/2517840.2517849

Secure genomic testing with size- and position-hiding private substring matching
— Source link

Emiliano De Cristofaro, Sky Faber, Gene Tsudik

Institutions: PARC, University of California, Irvine

Published on: 04 Nov 2013 - Workshop on Privacy in the Electronic Society

Topics: Substring and Genomics

Related papers:

 Countering GATTACA: efficient and secure testing of fully-sequenced human genomes

 Identifying personal genomes by surname inference.

Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP
genotyping microarrays.

 Protecting and evaluating genomic privacy in medical tests and personalized medicine

 Privacy-preserving data exploration in genome-wide association studies

Share this paper:

View more about this paper here: https://typeset.io/papers/secure-genomic-testing-with-size-and-position-hiding-private-
4he2sw7qbs

https://typeset.io/
https://www.doi.org/10.1145/2517840.2517849
https://typeset.io/papers/secure-genomic-testing-with-size-and-position-hiding-private-4he2sw7qbs
https://typeset.io/authors/emiliano-de-cristofaro-2vq4n897ub
https://typeset.io/authors/sky-faber-2j982c675j
https://typeset.io/authors/gene-tsudik-2nvvmgstwl
https://typeset.io/institutions/parc-1aellua8
https://typeset.io/institutions/university-of-california-irvine-3ptiah2u
https://typeset.io/conferences/workshop-on-privacy-in-the-electronic-society-2nd2x4bi
https://typeset.io/topics/substring-1duifmf7
https://typeset.io/topics/genomics-2xj41atv
https://typeset.io/papers/countering-gattaca-efficient-and-secure-testing-of-fully-39ypofonzw
https://typeset.io/papers/identifying-personal-genomes-by-surname-inference-55xiw7he5u
https://typeset.io/papers/resolving-individuals-contributing-trace-amounts-of-dna-to-nyg3k727ak
https://typeset.io/papers/protecting-and-evaluating-genomic-privacy-in-medical-tests-4uvvqt3k9w
https://typeset.io/papers/privacy-preserving-data-exploration-in-genome-wide-4ex8k3qhz0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/secure-genomic-testing-with-size-and-position-hiding-private-4he2sw7qbs
https://twitter.com/intent/tweet?text=Secure%20genomic%20testing%20with%20size-%20and%20position-hiding%20private%20substring%20matching&url=https://typeset.io/papers/secure-genomic-testing-with-size-and-position-hiding-private-4he2sw7qbs
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/secure-genomic-testing-with-size-and-position-hiding-private-4he2sw7qbs
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/secure-genomic-testing-with-size-and-position-hiding-private-4he2sw7qbs
https://typeset.io/papers/secure-genomic-testing-with-size-and-position-hiding-private-4he2sw7qbs

Secure Genomic Testing with Size- and Position-Hiding
Private Substring Matching

Emiliano De Cristofaro1 Sky Faber2 Gene Tsudik2

1
Palo Alto Research Center

2
University of California, Irvine

Palo Alto, CA Irvine, CA

me@emilianodc.com {fabers,gene.tsudik}@uci.edu

ABSTRACT

Recent progress in genomics and bioinformatics is bringing
complete and on-demand sequencing of human (and other)
genomes closer and closer to reality. Despite exciting new
opportunities, affordable and ubiquitous genome sequencing
prompts some serious privacy and ethical concerns, owing to
extreme sensitivity and uniqueness of genomic information.
At the same time, new medical applications, such as person-
alized medicine, require testing genomes for specific markers
that themselves represent sensitive (e.g., proprietary) ma-
terial. This paper focuses on privacy challenges posed by
such genetic tests. It presents a secure and efficient protocol
called: Size- and Position-Hiding Private Substring Match-
ing (SPH-PSM). This protocol allows two parties – one with
a digitized genome and the other with a set of DNA markers
– to conduct a test, such that the result is only learned by
the former, and no other information is learned by either
party. In particular, the genome owner does not even learn
the size or the position of the markers, which makes SPH-
PSM the first of its kind. Finally, we report on a prototype
of the proposed technique which attests to its practicality.

Categories and Subject Descriptors: E.3 [Data En-
cryption]: Secure Multi-party Computation

General Terms: Security.

Keywords: Privacy, DNA, Cryptographic Protocols.

1. INTRODUCTION
Whole Genome Sequencing (WGS) is a revolutionary tech-

nology that determines the complete genetic blueprint of any
organism. In the context of human genomics, WGS is ex-
pected to foster significant progress in the quality of health-
care [15]. In particular, genetic features and mutations are
being increasingly and more effectively studied in relation
to treatment of – as well as predisposition to – diseases and
genetic conditions, such as Alzheimer’s, diabetes and vari-
ous types of cancer. Availability of fully sequenced genomes

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WPES’13, November 4, 2013, Berlin, Germany.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2487-4/13/11 ...$15.00.

http://dx.doi.org/10.1145/2517840.2517849 .

makes such testing seamless and low-cost, since complex op-
erations can now be executed in software, in a matter of
seconds [26]. This fuels the race toward cheaper, faster, and
more accurate sequencing technologies. Naturally, progress
in genomics and WGS prompts numerous immediate and
anticipated benefits. At the same time, it amplifies security,
privacy and ethical concerns that stem from unprecedented
sensitivity of genomic data. The human genome contains
detailed and extremely personal information, e.g., suscepti-
bility to somatic and mental conditions as well as ethnicity
and ancestry. Therefore, potential disclosure triggers fears
of genetic discrimination, aka “eugenism”. Moreover, due to
its hereditary (cumulative) nature, the human genome en-
codes information beyond the individual: it also contains
information about one’s siblings, parents as well as other
ancestors and descendants.

A genome uniquely identifies its owner, which makes anon-
ymization and de-identification techniques ineffective [29,
32, 39, 52, 56]. Security and privacy issues in genomics have
been studied by security experts [5, 39] as well as biologists,
ethicists [28, 32, 48] and policy-makers [47]. We refer to [3]
for a comprehensive overview.

Risks of disclosure motivate the need for secure storage
and testing of human genomes. In particular, there is a
need for genetic testing by physicians and/or laboratories
without full access to individuals’ genomes. In an idealized
future setting, genetic tests should only disclose the required
minimum amount of information. At the same time, ge-
nomics and biotechnology companies often treat test details
as trade secrets, since they represent valuable intellectual
property [24, 25]. For instance, Myriad Genetics recently
attempted to patent two human genes, which, if mutated,
are associated with significantly increased risk for breast and
ovarian cancers [45]. The legality of these patents was re-
cently challenged and the US Supreme Court has declared
them invalid [54]. This decision was based on the premise
that, owing to its natural occurrence, no part of a genome is
patentable. We believe that, because of this landmark deci-
sion, the commercial sector will have no choice but to keep
its test specifics (e.g., genetic markers) proprietary. Thus,
while the outcome of a genetic test might be made available
to the patient and/or the testing laboratory, test specifics
would be kept confidential by the latter.

These challenges extend to the emerging field of person-
alized medicine, i.e., the practice of tailoring diagnoses, pre-
symptomatic examinations, and treatments to the precise
genetic makeup of individual patients. Already today, a

number of companies (e.g., 23andme, i-gene and Knome)
provide customers with detailed reports about their predis-
position to diseases and conditions. Several drugs (e.g., for
treating cancer, HIV and leukemia) are coming to market ac-
companied by related genetic tests, that are necessary to as-
sess correct dosage and/or expected effectiveness [1, 10, 46].
Again, while details of such tests might be proprietary, pa-
tients are strongly dis-incentivized from submitting their en-
tire genomes for testing.

Motivated by the above discussion, this paper explores ef-
ficient cryptographic protocols for genomic testing that sat-
isfy aforementioned privacy requirements. Specifically, we
focus on a setting where one party, Bob, holds a copy of his
digitized genome and the other, Alice, holds a (possibly non-
contiguous) substring that might occur in a certain location
of Bob’s genome. The specific problem at hand is: how to
allow Bob to test for the presence of Alice’s substring at a
certain location in his genome, such that Bob learns nothing
about the substring (including its position and its size), while
Alice learns nothing about the genome?

We address this problem by building a novel cryptographic
primitive, called Size- and Position-Hiding Private Sub-
string Matching (SPH-PSM)Despite its genomics-based
motivation, SPH-PSM is appealing in any substring-testing
setting where size and position (and, clearly, the contents) of
the partial substring should be concealed, since both values
can leak information about the nature of the test.

We also describe a prototype of SPH-PSM and demon-
strate its practicality via a thorough performance evaluation,
which shows that many genomics tests can be conducted to-
day in under a minute.

Paper Organization: Next section presents the problem
statement. Then, Section 3 overviews related work. Sec-
tion 4 describes and analyzes the SPH-PSM protocol. Next,
Section 5 presents efficient instantiations of SPH-PSM and
introduces several optimizations. Section 6 discusses further
extensions and variations. Finally, Section 7 concludes the
paper and Appendix A presents a brief genomics primer.

2. PROBLEM STATEMENT
The quest for Predictive, Preventive, Participatory, and

Personalized (P4) medicine [33] has been one of the main
motivating factors in genomics research. With the advent
of low-cost sequencing technologies, the natural next step
is to provide physicians and testing facilities with computa-
tional means to query, correlate, and analyze entire digitized
genomes [55].

One prominent challenge is where and how to store a dig-
itized genome, i.e., 3.2 billion letters. This issue is rife with
privacy and trust considerations. As noted in [5], individuals
should ideally retain ownership of their sequenced genome
and selectively allow partially trusted third parties (such as
physicians, clinicians and testing facilities) to query it.

Privacy and ethical concerns prompt the need for secure
genomic tests that offer simultaneous confidentiality of the
individual’s genome and test specifics. Since data obfusca-
tion and anonymization tools are ineffective in the genomic
context [29, 32, 39, 52], secure computation techniques are
needed to realize privacy-preserving versions of these tests,
whereby only the test result is disclosed to one or both
participants. This presents some challenges: First, secure

computation techniques must contend with the sheer size
of the genome, which makes it crucial to maximize pre-
computation and minimize protocol input size. Further-
more, each current genetic test needs to be mapped to a
function with output conveying nothing beyond the test out-
come. For example, a testing facility may want to check for
the presence of a few DNA markers in a patient’s genome
to determine correct dosage for a blood thinning drug: a
privacy-preserving version of this test would disclose noth-
ing beyond whether this patient has these exact markers.

Specifically, the test should not leak:

1. Position(s) of tested markers,

2. How many markers are being tested, and

3. The subset of matched markers, in case of an overall
negative result.

In the genomic setting, where the number of current ge-
nomic tests is relatively small, the size- and position-hiding
are particularly important. This is because disclosure of the
number or positions of markers could allow the adversary
to infer test specifics. As discussed in Section 3, satisfy-
ing aforementioned three requirements is an open problem,
which we address in this paper.

3. RELATED WORK
Related work falls into several categories described sepa-

rately below.

Secure Genomics. Motivated by extreme sensitivity of
DNA data, the security research community proposed some
cryptographic techniques for secure computation on short
DNA fragments, such as: searching [7, 9, 50], computing
distance between snippets [35, 53] and related functionali-
ties [21, 37]. With the advent of affordable technologies for
WGS, focus shifted to protocols that can scale to the entire
genome. In particular, [5] introduced protocols for pater-
nity testing and personalized medicine. Similar to our work,
it is assumed that an individual retains control of (i.e., se-
curely stores) his digitized genome. The protocol for secure
personalized medicine testing in [5] involves (i) a patient, on
input her genome, and (ii) a testing facility, on input a list of
DNA mutations, along with their corresponding positions.
The testing facility needs to check for the presence of these
markers in the patient’s genome. At the end of the inter-
action, the patient has no output, while the testing facility
learns which markers appear in the patient’s genome. The
construction in [5] is based on the Private Set Intersection
(PSI) concept [22] and thus has the following limitations:

• If the patient’s genome contains only a subset of tested
mutations, this subset is revealed to the testing facil-
ity, hence violating the goal of only disclosing the test
outcome.

• The number of tested markers is revealed to the pa-
tient. This information might be enough to (partially
or entirely) disclose the nature of the test, thus poten-
tially violating the requirement of hiding test specifics
from the patient.

Subsequently, [17] extended the work in [5] by implementing
privacy-preserving ancestry (e.g., paternity) testing on An-
droid devices and demonstrating its current viability. How-
ever, these results exhibit the same limitations as [5]. The

a←$ A Variable a chosen uniformly at random from A
Σ={A,G,C, T,−} DNA Alphabet (‘−’ denotes deletion)
p = {Σ}m Potential substring held by Alice, of length m
t = {Σ}n String held by Bob, of length n
i ∈ [1,m], j ∈ [1, n] Indices of characters in p and t, respectively
pi, tj Elements in positions i and j, of p and t, respectively
t[j : x] Substring in t starting at tj , of length x
s Presumed starting location of p in t
λ Security parameter
AddHomEnc An IND-CPA additively homomorphic cryptosystem
PK,SK Bob’s private and secret key for AddHomEnc
E(·), D(·) Encryption (with PK) and decryption (with SK) in AddHomEnc
G Plaintext group of E
q = ord(G) The order of the plaintext group
E(a) · E(b) = E(a+ b) Multiplication of two ciphertexts resulting in addition of two plaintexts
E(a)c = E(a · c) Exponentiation of a ciphertext resulting in multiplication of plaintext by constant
⊥ No output
≡c Computational indistinguishability

Table 1: Notation used throughout the paper.

work in [11] proposed to secure biomedical data using cryp-
tographic hardware, and [36] used homomorphic encryption
to perform scientific investigations on integrated genomic
data. Finally, [13] proposed techniques to securely map and
align human genomic sequences to a reference genome, while
outsourcing computation to a hybrid cloud.

Secure Pattern Matching. There are a few cryptographic
techniques for Secure Pattern Matching (SPM) [6, 23, 30,
31], where one party (P1) holds a pattern and the other
party (P2) holds a text string. P1 learns where the pattern
appears in the text, without revealing it to P2, or learning
anything else about P2’s input. However, the size of P1’s
pattern is always revealed to P2. Although [31] sketched
out a way to hide the pattern size by means of wildcard
padding, the upper bound on the size is still revealed. Plus,
supporting wildcards causes a communication and compu-
tational performance increase from linear to multiplicative
in the size of the text (n) and the size of the pattern (m).
In the genomic setting, even a pattern of length 4 would
result in around 12 billion modular exponentiations. In or-
der to completely hide the pattern size, communication and
computational complexity further increases to O(n2).

Moreover, SPM actually reveals all occurrences of P1’s
pattern in P2’s string. Therefore, it is not well-suited for
the problem at hand, since, our setting only needs a bi-
nary output indicating whether a substring, representing the
marker(s) to be tested, appears in a larger string (i.e., the
patient’s genome) at some specific position(s). It is possible
to extend SPM to only disclose the presence of a contiguous
substring in a string at a specific location, e.g., by modifying
parties’ inputs from a sequence of letters to a sequence of
hash(letter||position). However, there is no straightforward
way to adapt SPM to match non-contiguous substrings, ex-
cept for surrounding the pattern with single-character wild
cards, which (as noted earlier) considerably increases proto-
col complexity.

Based on the above discussion and to the best of our
knowledge, no SPM technique can efficiently handle genomic-
scale inputs. Moreover, there are scarcely any SPM imple-
mentations; one is described [6]. Whereas, we report on
the performance of an actual prototype which confirms the
practicality of the proposed SPH-PSM technique.

Input-Size Hiding. There are only a few constructions
that support hiding input size in secure computation pro-
tocols. Ishai and Paskin [34] did so in the generic context
of branching programs: one party can evaluate a program
on some encrypted input, in such a way that the size of the
program is not revealed to the other party. In [2], Ateniese
et al. showed that the assumption that secure multi-party
computation necessitates revealing input sizes does not al-
ways hold. [2] demonstrated a Size-Hiding Private Set Inter-
section (SHI-PSI) protocol where the size of the set held by
the party receiving the intersection (client) is not disclosed.
Although somewhat relevant to the problem at hand, SHI-
PSI cannot be used for private substring matching, since,
as discussed above, any known linear reduction to PSI leaks
the subset of matching mutations. Note, however, SHI-PSI
could be reduced to substring matching (only for contiguous
substrings) with quadratic computation and communication
complexities: the text holder could encode each possible sub-
string as a set element, thus creating a set with n2 elements;
meanwhile, the pattern could be represented as a single el-
ement set, and substring matching can be executed as a set
intersection. Finally, Lindell et al. [38] recently presented
some feasibility results on hiding input size in secure com-
putation, based on Fully Homomorphic Encryption (FHE).

4. SPH-PSM
We now introduce a technique for private genomic test-

ing, whereby a testing facility checks for the presence of a
substring or a pattern in a patient’s genome, such that the
latter learns the outcome and no other knowledge is obtained
by either party. We do so by introducing a cryptographic
primitive called Size- and Position-Hiding private Substring
Matching (SPH-PSM). After defining privacy requirements,
we present a generic construction based on additively homo-
morphic encryption and analyze its security.

4.1 Definitions & Notation
Our notation is reflected in Table 1.

Definition 1 (SPH-PSM). Size- and Position-Hiding Pri-
vate Substring Matching (SPH-PSM) involves two parties:
Alice, on input ((p = p1, ..., pm), s), and Bob, on input
(t = t1, ..., tn):

FSPH-PSM((p, s), t)→ (⊥, b),where b =

{

1 iff t[s : m] = p
0 otherwise

Correctness. If both parties are honest and run on correct
input (as above), at the end of the protocol, Bob outputs
1 iff t[s : m] = p and 0 otherwise (except with negligible
probability).

Notation used throughout the rest of the paper is reflected
in Table 1.

Adversarial Model. We use standard security models for
secure two-party computation and assume the Honest-but-
Curious (HbC) model. The term adversary refers to insiders,
i.e., protocol participants. Outside adversaries are not con-
sidered, since their actions can be mitigated via standard
network security techniques. Protocols secure in the HbC
adversarial model assume that all parties faithfully follow
all protocol specifications. However, during or after proto-
col execution, any party might (passively) attempt to infer
additional information about the other party’s input.

We argue that, in the genomic testing setting, HbC secu-
rity is sufficient. Genomic testing usually takes place in a
medical lab or a physician’s office and we therefore expect
some degree of trust between the patient and the testing lab.
Thus, we envision no incentive for participants to arbitrar-
ily deviate from the protocol. Also, due to their sensitivity,
genomic tests can be audited and there might be legal con-
sequences for malicious behavior by either party. Further-
more, in the event of a testing facility breach and/or data
loss, privacy of the genome holder remains guaranteed.

The HbC model is formalized by considering an ideal im-
plementation where a trusted third party (TTP) receives the
inputs of both parties and outputs the result of the desired
function. Security in this model requires that, in the real im-
plementation of the protocol (without a TTP), each party
does not learn more information than in the ideal implemen-
tation. We introduce simulation-based privacy definitions
below.

NOTE: Recall that, in our setting, Alice plays the role of
the testing laboratory and Bob is the individual in possession
of a digitized genome.

Alice’s Privacy. Let V iewB((p, s), t) be a random vari-
able representing Bob’s view during the real execution of
SPH-PSM. We say that SPH-PSM guarantees Alice’s pri-
vacy if there exists a Probabilistic Polynomial Time (PPT)
algorithm B∗ such that, given Bob’s output b, the following
holds:

{B∗(t, b)}((p,s),t) ≡
c {V iewB((p, s), t)}((p,s),t)

That is, for all possible inputs, with the knowledge of the
output bit b and Bob’s input, B∗ can efficiently simulate the
view of Bob.

Bob’s Privacy. Similarly, let V iewA((p, s), t) be a random
variable representing Alice’s view during the real execution
of SPH-PSM. We say that SPH-PSM guarantees Bob’s pri-
vacy if there exists a PPT algorithm A∗ such that, given
n = |t|:

{A∗((p, s), n)}((p,s),t) ≡
c {V iewA((p, s), t)}((p,s),t)

Although we require knowledge of text length for efficient
simulation, in many applications this variable is public or
fixed, e.g., 3.2 billion for human genomes.

Additively Homomorphic Encryption. We assume the
existence of an efficient additively homomorphic public-key
cryptosystem with indistinguishability under CPA attacks
(IND-CPA). To ease presentation, we denote it as AddHomEnc.
Recall that there are several AddHomEnc instantiations, in-
cluding: Paillier [44], D̊amgard-Jurik [16], as well as the
Additively Homomorphic ElGamal variant [19].

For each instantiation application of homomorphic oper-
ations vary slightly. As described in Table 1, we denote the
homomorphic addition operation as multiplication of cipher-
texts. Further, we denote multiplication by a constant by
the exponentiation of a ciphertext.

4.2 Proposed Construction
We now present an SPH-PSM protocol that involves Bob

on input a string t (i.e., a genome), and Alice who holds a
substring p (of length m) that might occur at location s in
t. We later extend this protocol to support multiple starting
locations. At the end of the interaction, Bob learns noth-
ing about Alice’s substring, not even its length or intended
position, while Alice learns the test outcome, i.e., b = 1 iff
t[s : m] = p and b = 0 otherwise.

Protocol. Figure 1 illustrates the protocol. It relies on an
additively homomorphic cryptosystem AddHomEnc, com-
posed by KeyGen(1λ), E(·), and D(·). It assumes that
Bob has previously generated a keypair (PK,SK) for Ad-
dHomEnc, as part of KeyGen.
First, Bob encrypts, under its own public key, each nu-

cleotide of the genome and sends Alice the resulting cipher-
texts. Starting at position s, Alice homomorphically adds
each encrypted nucleotide to the encryption (under PK) of
the inverse of each substring character. If the correspond-
ing plaintexts match, the product of the two ciphertexts is
an encryption of zero, due to the homomorphic property
of AddHomEnc. To guarantee privacy, each product is re-
randomized by exponentiating it to a random value. Then,
Alice multiplies all products so that, if the substring is found
in Bob’s genome, the result would still be an encryption of
zero. Otherwise, it corresponds to an encryption of a ran-
dom number. Finally, this cumulative ciphertext (denoted
as acc) is sent to Bob. Upon decryption, Bob learns the
test outcome: positive if the ciphertext decrypts to zero and
negative otherwise.

Complexity. Communication overhead amounts to O(n)
ciphertexts, i.e., ≈ 3.2 billion encrypted nucleotides. Al-
though this might seem overwhelming, we discuss how to
reduce online costs in Section 6.4. On the other hand, com-
putational complexity is minimal, since the only operation
that involves all n nucleotides is encryption of Bob’s ge-
nome. This needs to be done only once, ahead of time,
for all possible tests. In fact, it could even be done by the
sequencing lab, at sequencing time. Whereas, online com-
putational complexity is linear in the size of the substring,
i.e., m = |p|. Specifically, Alice needs to perform O(m) op-
erations (where m << n), while Bob’s overhead is constant
— one decryption.

Finally, Alice only performs computation on ciphertexts
etj for s ≤ j < s+m. All other ciphertexts can be discarded.

Common input: E(·), D(·), PK, q

Alice on input: (p={p1, ..., pm}, s) Bob on input: SK, t={t1, ..., tn}

[Offline]

For 1 ≤ j ≤ n:

etj = E(tj)

[Either Online or Offline] [Either Online or Offline]

{et1, ..., etn}
oo

[Online] [Online]

acc = E(0)

For s ≤ j < s+m,

i = j − s+ 1
ri ←$ Zq

acc = acc · ((E(−pi) · etj)
ri)

acc
// If D(acc) == 0 : Output b = 1

Else: Output b = 0

Figure 1: Base-line SPH-PSM Protocol.

Also, Alice’s computation can start as soon as ets is received.
Therefore, Alice requires only a negligible amount of local
storage.

4.3 Security Analysis
Theorem. If AddHomEnc is an IND-CPA additively ho-
momorphic cryptosystem, the protocol in Figure 1 correctly
computes SPH-PSM with both Bob’s and Alice’s privacy.

Proofs. We now show that the protocol satisfies correctness
and both parties’ privacy, as defined in Section 4.3.

Correctness. We show that b = 1 if and only if t[s : m] = p
except for probability negligible in λ. First, we note that:

t[s : m] = p⇐⇒ ∀i=1,...,m ts+i−1 = pi=⇒
m
∑

i=1

(ts+i−1−pi)
ri = 0

Furthermore, since:

acc =
m
∏

i=1

(E(ts+i−1) · E(−pi))
ri = E

(

m
∑

i=1

(ts+i−1 − pi)
ri

)

it follows that:

t[s : m] = p =⇒
∑m

i=1(ts+i−1 − pi)
ri = 0 ⇐⇒ acc = E(0)

⇐⇒ b = 1

To complete the proof, we only need to show that:
m
∑

i=0

(ts+i−1 − pi)
ri = 0 =⇒ t[s : m] = p

Note that, if pi does not match ts+i, then the i-th element
in the sum is a random group element r′i.

ts+i−1 6= pi =⇒ (ts+i−1 − pi)
ri = r′i

Thus, the sum comprises m random group elements. How-
ever, it equals zero with probability 1/q, which is negligible
in λ. Hence, if the sum is zero, then it must hold that
t[s : m] = p, with overwhelming probability.

Alice’s Privacy. To show that Bob’s view can be efficiently
simulated, we construct a simulator B∗. On input of (t, b),
B∗ outputs the real transcript, except for acc – the only
value received by Bob– which B∗ computes as: acc = E(0)
if b = 1 and acc = E(r) for r ←$ Zq, otherwise. Note that
acc is distributed identically to the real execution, since, as
noted above, if b = 0, then acc is the encrypted sum of one
or more random group elements and/or many zeros, and is
itself an encryption of a random group element.

Bob’s Privacy. To show Bob’s privacy, we construct a simu-
lator A∗. On inputs ((p, s), n), A∗ first outputs {et′1, ..., et

′

n}
where et′j = {E(rj)} and rj ←$ Zq. Then, A∗ outputs the
rest of the view, as usual. Based on indistinguishability of
AddHomEnc, it holds that: ∀j et′j ≡

c etj , hence the view
and the simulation are computationally indistinguishable.

4.4 Timing Attacks
Alice’s and Bob’s privacy properties discussed above guar-

antee that each party only learns what it is intended to
learn, based on the information (i.e., protocol messages) ex-
changed. However, they do not take into account auxiliary
means of information leakage, such as the timing channel.

It is easy to see that Alice’s computation in the online
phase of the protocol is proportional to m – search substring
size. Thus, assuming negligible message transmission delay
and knowledge of the Alice’s computing platform, Bob (or
anyone observing the protocol) could estimate m.1

There are several ways to counter such timing attacks.
One trivial counter-measure is for Alice to pipeline (or par-
allelize) transfer of the encrypted genome, i.e., {et1, ..., etn},
with the computation of acc in the loop of Figure 1. Since
m << n, O(m) computation overhead at Alice is dominated
by the O(n) communication overhead incurred by transfer
of the encrypted genome. Though this is easy to achieve,
Alice would have to wait to reply with acc until all cipher-

1Note that timing attacks against Bob are not meaningful
in our context.

Common input: (g, P, q, y = gx mod P,H(·))

Alice on input: (p={p1, ..., pm}, s) Bob on input: sk=x, t={t1, ..., tn}

[Offline] [Offline]

For 1 ≤ i ≤ m: For 1 ≤ j ≤ n:

ri ←$ Zq rj ←$ Zq

hpi = H(pi||i+ s) htj = H(tj ||j)

epi = (gri , g−hpiyri) etj = (grj , ghtj yrj)

[Either Online or Offline] [Either Online or Offline]

{et1, ..., etn}
oo

[Online] [Online]

α←$ Zq

acc = (gα, g0yα)

For s ≤ j < s+m,

i = j − s+ 1
acc = acc · etj · epi

β ←$ Zq

acc = (acc)β
acc = (c1, c2)

// If (c1)x == c2 : Output b = 1

Else: Output b = 0

Figure 2: AH-ElGamal based SPH-PSM. (Computation is done mod P).

texts are received, regardless of the starting location of the
search substring.

Alternatively, we could consider transfer of the encrypted
genome as part of the protocol’s offline phase. Then, the
online phase begins with Alice performing O(m) operations
and no other party can infer m since it is not privy to Alice’s
actual starting time. This might, in fact, reflect a real-world
setting where a testing facility receives encrypted genomes
from many patients and batches computation.

Finally, Alice could delay sending the final protocol mes-
sage containing acc for a certain period. If this delay matches
the time to compute a pattern of length m′, Alice can ef-
fectively pad m to m′. With the optimized version of our
protocol (see Section 5.2), Alice’s O(m) operations reflect in-
expensive modular multiplications, which can be completed,
for m ≤ 108, in under one minute. Thus, m′ can be sev-
eral orders of magnitude greater than m, without unduly
affecting the overall run-time of the protocol.

5. SPH-PSM IN PRACTICE
We now discuss some practical considerations for imple-

mentating SPH-PSM.

5.1 Instantiating AddHomEnc
As discussed in Section 4, SPH-PSM relies on availabil-

ity of AddHomEnc, i.e., IND-CPA-secure additively homo-
morphic encryption. There are several suitable candidates,
including Paillier [44], D̊amgard-Jurik [16], and Okamato-
Uchiyama [42].

However, it is easy to see that SPH-PSM does not actu-
ally require ability to decrypt arbitrary ciphertexts. In fact,
for the purposes of SPH-PSM, it suffices to test whether a
ciphertext is an encryption of zero. This allows us to con-
sider the Additively Homomorphic ElGamal variant (AH-
ElGamal) as one of the choices.

AH-ElGamal involves the following algorithms:

• Key Generation: On input of security parameter λ,
select public parameters (g, P, q) for primes P, q and g
generator of subgroup of ZP of order q. (Note: we use
P instead of more customary p, since, in our notation,
p denotes Alice’s substring). Private key SK is x ←$

Zq and public key PK is y = gx mod P .
• Encryption: EPK(m) = (c1, c2), where c1 = gr mod P

and c2 = gmyr mod P , for r ←$ Zq.
• Testing for Encryption of Zero: DSK(c1, c2) = 0 if and

only if c2 = (c1)
x mod P .

There is also an Elliptic Curve-based ElGamal variant
(EC-ElGamal) that is additively homomorphic [51]. It in-
volves the following algorithms:

• Key Generation: On input of security parameter λ, se-
lect public parameters (P, e,G, η), where e is an elliptic
curve over finite field GF(P), η is the order of curve
e, and G is the generator point of e. SK is integer
x ∈ GF(P), and PK is Y = xG.
• Encryption: EPK(m) = (R,S), where R = rG and

S = M + rY , for r ∈ [1, η − 1].
• Decryption: DSK(R,S) = −xR+ S.

Naturally, to efficiently realize SPH-PSM, we need an Ad-
dHomEnc instantiation that meets the following criteria: (1)
ability to test for encryption of zero, (2) small ciphertext
size, (3) fast encryption, and (4) fast homomorphic addition
operations.

Actually, the “weight” of such factors depends on whether
transfer of Bob’s encrypted genome is part of the offline
phase. If so, complexity of SPH-PSM is clearly dominated
by Alice’s O(m) computation overhead. Thus, the preferred
instantiation is AH-ElGamal due to its computational effi-
ciency. Since random exponents can be taken from a sub-

group (e.g., 160-bit), encryptions and re-randomizations can
be computed efficiently, e.g., relative to Paillier.

Conversely, if transferring the encrypted genome is part
of the online phase, transfer dominates complexity of SPH-
PSM. Thus, the preferred instantiation is EC-ElGamal, since
group elements are much smaller (160-bit), as opposed to
1024-bit in AH-ElGamal and 2048-bit in Paillier, using the
same security parameters.

5.2 ElGamal-based SPH-PSM
We now present an ElGamal-based instantiation of SPH-

PSM and introduce some optimizations. We focus on reduc-
ing computational complexity of the online phase. Although
we describe this instantiation in terms of AH-ElGamal, the
discussion applies to EC-ElGamal as well.

In AH-ElGamal, multiplying two ciphertexts (adding two
corresponding plaintexts) is markedly more efficient than
exponentiating a ciphertext with a constant (multiplying
the corresponding plaintext by the constant). Therefore, we
modify the basic protocol of Figure 1 such that Alice’s online
phase only involves multiplications. Rather than encrypting
a raw nucleotide, Bob encrypts the hash of the nucleotide
along with its corresponding position in the genome. To this
end, we need a hash function H : {0, 1}∗ → Zq (modeled as
a random oracle)2.

The resulting protocol is shown in Figure 2. Alice per-
forms O(m) modular multiplications and only O(1) modu-
lar exponentiations during the online phase. This greatly
reduced online overhead also helps thwart timing attacks
discussed in Section 4.4.

5.3 Performance Evaluation
Protocols proposed in this paper have been implemented

in C++, and tested on a desktop machine running Ubuntu
12.10, with an Intel i7-3770 3.4GHz quad-core CPU and
16GB of RAM. We implemented 1024-bit AH-ElGamal us-
ing the gmp [27] library and 160-bit EC-ElGamal – using
the OpenSSL library [43]. We break up the measurements
as follows:

1. Genome Encryption – time for Bob to encrypt his ge-
nome.

2. Data Transfer – time for Alice to download Bob’s ge-
nome.

3. Substring Pre-processing – time for Alice to pre-process
her substring.

4. Online Phase – time elapsed after genome is received,
until Bob outputs the result, i.e., b. (This phase is
dominated by Alice’s computation).

Experiments were conducted with Alice’s substring size rang-
ing from 10 to 3 · 109 letters. For tests taking longer than
several hours, run-times have been estimated by perform-
ing tests on a “smaller” genome (107 nucleotides). This is
justifiable since tested protocols incur linear complexities.

We also note that our experiments were conducted rather
conservatively, using a single thread on a regular (mid-range)
desktop machine. More realistic scenarios would involve ma-
chines with multiple cores, much bigger RAM and higher-
end CPU-s.

First, we measured genome encryption: it took approx-
imately 115 hours using AH-ElGamal and an impressive
2Without a hash function, there can be cross cancellation
between positions.

2, 580 hours using EC-ElGamal. This significant difference
can be explained by the fact that AH-ElGamal is imple-
mented using gmp, whereas, EC-ElGamal – using OpenSSL,
which is markedly slower. While we do plan to optimize
EC-ElGamal performance, this issue is somewhat secondary,
since: (1) EC-ElGamal is used in settings where first priority
is to minimize communication overhead, and (2) a genome
is encrypted only once, ahead of time, and (3) encryption
can be easily parallelized, using multiple cores.

Next, we estimate the time to transfer the encrypted ge-
nome. On a 1Gbps link, it takes approximately 2.7 hours
with EC-ElGamal and 8.7 hours with AH-ElGamal. Due to
linear complexity of SPH-PSM, transfer times over networks
with different speed can be straightforwardly inferred, e.g.,
27 hours with EC-ElGamal and 87 hours with AH-ElGamal
over a 100Mbps link.

Finally, Table 2 reports on run-times for Alice’s substring
pre-processing and for the online phase dominated by Alice’s
computation. For the latter, we quantify the speedup due
to the optimization presented in Section 5.2.

Although we report on tests conducted up to the largest
possible substring, i.e., the entire genome (3 · 109 letters),
most genomic applications used today require testing of sig-
nificantly smaller substrings. For example, prior work in [5]
and [17] supported personalized medicine testing with fewer
than 1, 002 markers, e.g., analysis of the tpmt gene common
in leukemia patients, or testing for hla-b variants associated
to sensitivity to some HIV drugs. For this class of tests, our
optimized SPH-PSM protocol completes in less than minute.
However, it is still feasible to securely conduct future tests
with much larger substrings.

6. EXTENSIONS
We now discuss some natural extensions to the basic SPH-

PSM protocol.

6.1 Revealing Test Outcome to Alice
Under some circumstances, it might be necessary for both

Bob and Alice to learn the test outcome. For example, “Al-
ice” might actually be a medical laboratory and it could be
in the patient’s best interest to reveal the test outcome to a
specialist as soon as possible.

In the HbC model,we can trivially extend the basic SPH-
PSM protocol to allow Bob to communicate b to Alice. Nonethe-
less, we leave it for future work to explore the use of thresh-
old cryptosystems to provably enforce mutual output in SPH-
PSM, e.g., by relying on threshold ElGamal [18] or threshold
Paillier [16, 20].

6.2 Fixed-Size Wildcards and Non-Contiguous
Substrings

Alice’s substring might contain fixed-length wildcards or
it might be non-contiguous. There is no real difference be-
tween a substring such as “ACG??TAAC” (where “?” is a
single-character wildcard) and a two-part (non-contiguous)
substring “ACG” and “TAAC”, with each part starting at
some locations s1 and s2, that are arbitrary number of po-
sitions apart, e.g., s2 = s1 + 5.

It is easy to see that our basic protocol is independent of
contiguity of Alice’s substring. Computational complexity
remains O(m).

6.3 Multiple Substrings/Starting Locations

AH-ElGamal EC-ElGamal

m = |p| Online Online Optimized Substring Prepr. Online Online Optimized Substring Prepr.

10 0.76ms 0.1ms 0.46ms 12.71ms 0.78ms 7.05ms
102 4.51ms 0.22ms 4.05ms 66.15ms 3.77ms 36.9ms
103 28.72ms 0.68ms 20.35ms 635.99ms 32.64ms 317.62ms
104 291.12ms 6.02ms 168.28ms 6.41s 318.65ms 3.17s
105 2.86s 60.18ms 1.63s 1m 7s 3.28s 31.95s
106 28.61s 647.05ms 16.9s 10m 35s 31.85s 5m 17s
107 4m 45s 6.25s 2m 41s 1h 45m 5m 19s 52m 55s
108 47m 37s 1m 2s 26m 53s 17h 38m. 53m 17s 8h 49m
109 7h 56m 10m 25s 4h 28m 7d 8h 8h 52m 3d 16h

3 · 109 23h 48m 31m 16s 13h 26m 22d 1h 1d 2h 11d 54s

Table 2: SPH-PSM: computation time for varying substring lengths.

In some applications, Alice might not know the exact
starting position of a particular search substring: it could
begin in several (v) possible positions. This situation is typ-
ical in genomic testing since alignment of the patient’s ge-
nome may not always be exactly precise. We can easily
extend SPH-PSM such that Alice only learns whether any
one of these positions match. The resulting extension is a
trivial variation of the basic version. The resulting protocol
only incurs O(m ∗ v) computation overhead, at Alice’s side,
as compared to O(m) in the basic protocol; communication
and Bob’s computation overheads are unaltered.

A similar case occurs when, even if the exact starting posi-
tion is known, a particular position in a search substring can
be one of several choices. For example, “GA[G,T]TACA”
denotes that position 3 in the substring can be either G or
T. This is clearly distinct from a single-character wildcard,
since neither A nor C is allowed in this position. The nat-
ural way to deal with such disjunctive conditions is to try
to match two substrings: “GATTACA” and “GAGTACA”
starting at the same position. The very same protocol ex-
tension applies here.

Yet another variation occurs whenever multiple distinct
substrings (p1, . . . , pw) are matched in parallel or disjunc-
tively. In this case Bob learns how many matches occur.
This case is slightly different from that of non-contiguous
substrings or wildcards mentioned above, where Bob only
learns the result of a single test. Again, the same exten-
sion handles this case. Communication and Bob’s computa-
tion complexities are unaltered, while Alice’s computation
overhead would amount to O(

∑w

i=1 |pi|), as compared to
O(|p| = m) in the basic version.

6.4 Reducing Data Transfer Time
The basic protocol entails Bob sending the entire letter-

by-letter encrypted genome to Alice. This constitutes the
most costly part of the protocol – about 3.2 ·109 ciphertexts.
With EC-ElGamal, where each ciphertexts is a 320-bit value,
transferring the encrypted genome translates into roughly
100GB of data.

However, this massive data transfer needs to happen only
once for many tests that Bob (e.g., a given patient) con-
ducts with Alice (e.g., a particular medical facility). Also,
while transmitting encrypted genomes in real time might be
unfathomable today, it will likely become realistic in not-so-
distant future. Plus, most genomic tests are not typically
spontaneous, i.e., patients plan and schedule them in ad-
vance. Consequently, transfer of the encrypted genome can

take place incrementally over some period preceding the ac-
tual test. In fact, a testing facility could interact with many
patients at a time, gradually uploading their encrypted ge-
nomes. Once a given patient’s genome is fully uploaded, the
actual protocol begins.

Physical Transfer. For some tests, Bob might physically
visit the testing facility (Alice). In that setting, Bob might
be asked to bring along a dedicated device, e.g., a USB stick
or a portable flash drive, containing the entire encrypted
genome. Such passive devices capable of storing over 1TB of
data are readily available today and cost well below US$100.
Once plugged into Alice’s computing equipment, much faster
transfer rates apply: for example, USB 3.0 offers transfer
rates of up to 4.8Gbps, which translates into about 3 minutes
for transferring the encrypted genome.

Alternatively, Alice could simply read the desired m ci-
phertexts directly from Bob’s drive and perform computa-
tion on them, without bothering with any other data. This
would clearly minimize communication delay. However, care
must be taken to prevent attacks that might exploit the
portable drive’s logs or other data to later infer locations
that have been read by Alice.

Leveraging Cloud Storage. Another possibility is to use
the cloud. By storing Bob’s encrypted genome at a cloud
provider, transfer of the encrypted genome would need to
be performed only once, for all possible tests and testing
facilities. The cloud provider can offer both higher band-
width and availability. However, if the cloud provider is
also trusted not to collude with Bob, Alice could avoid bulk
transfer and selectively fetch only desired ciphertexts. (A
collusion would reveal the size and position of the substring
held by Alice.)

One potential concern, even without any collusion, is that
the cloud provider would learn the size and position of Al-
ice’s substring. Fortunately, the latter can be mitigated by
letting Alice and Bob pre-agree on a common secret that
Bob could later use to shuffle encrypted nucleotides before
uploading to the cloud. This way, ordering of ciphertexts
(but not m – the substring size) would be obscured from
the cloud provider.

Alternatively, Alice could rely on cryptographic techniques
for Private Information Retrieval (PIR) [14] to securely re-
trieve m desired ciphertexts from the cloud. Despite PIR’s
computational overhead, recent results [8, 40] show that PIR
can be efficiently adapted to cloud settings where a static
database is maintained in a MapReduce cluster. However,

the size of Alice’s substring would be revealed to the cloud
provider.

6.5 Coping with (Some) Malicious Input
We now consider the case where malicious Bob tries to

guess the specifics of Alice’s test, by verifying its guess of Al-
ice’s input. Let (p, s) denote Alice’s input and (p′, s′) – Bob’s
guessed version. While faithfully following all SPH-PSM
protocol steps, Bob inputs a concocted genome t′ where
t′[s′ : m′] = p′ and m′ = |p′|. In other words, the sub-
string in t′ starting at position p′ is set to s′. (We assume,
without loss of generality, that s and s′ are contiguous sub-
strings). For all other positions, Bob sets tj = X for some
X /∈ {A,C,G, T,−}. Then, Bob uses t′ as input for SPH-
PSM with Alice. It is easy to see that, if acc decrypts to
zero, Bob learns that (p, s) = (p′, s′).

On one hand, in the HbC model, Bob is assumed not to de-
viate from the protocol, which should rule out this guessing
attack. On the other hand, while HbC is clear with respect
to participants scrupulously following all protocol steps, it is
somewhat murky with regard to the validity or goodness of
participants’ input. To err on the side of caution, we can ad-
dress Bob’s input validity (and hence guessing attacks such
as the one above) by indirectly integrating the genome se-
quencing lab into the domain of SPH-PSM.

Specifically, at sequencing time, the genome sequencing
facility (denoted by Charlie) could offer some additional ser-
vices beyond supplying a digitized genome:

• Encrypt the genome, one nucleotide at a time, under
Bob’s public key to produce et1, ..., etn. This is a rea-
sonable service for Charlie to provide, since it anyhow
learns Bob’s genome and must communicate it back
securely.

• Sign the encrypted genome (et1, ..., etn) as a whole.
Similarly, to prevent any kind of future disputes and
provide overall integrity as well as origin authenticity,
it makes sense for Charlie to sign what it produces.

Armed with these modifications we can easily amend SPH-
PSM to let Bob send Alice a signed encrypted genome. By
verifying Charlie’s signature, Alice can be assured that Bob’s
input is a valid genome sequenced by a reputable entity –
Charlie. This change has negligible effect on performance if
transfer of the encrypted genome is part of the online phase.
This is because Alice needs to anyway receive all ciphertexts;
it can gradually hash the encrypted genome as it is being
received and, at the end, verify Charlie’s signature.

However, if transfer is done off-line (as in Section 6.4) or
the encrypted genome is accessed piece-meal from a cloud
provider, signing the entire encrypted genome is not useful.
In this case – also at sequencing time – Charlie could indi-
vidually sign each ciphertext (encrypted nucleotide). Dur-
ing the off-line phase, Alice can obtain selected ciphertext
directly (from the cloud provider or from Bob’s flash drive or
USB stick) and easily verify that each etj , for s ≤ j < s+m,
is accompanied by a valid Charlie’s signature.

7. CONCLUSION
This paper presented a novel cryptographic primitive called

Size- and Position-Hiding Private Substring Matching (SPH-
PSM) that appeals to the increasingly relevant scenario of
privacy-preserving genomic testing (Personalized Medicine).

A prototype implementation attests to the practicality of the
proposed technique.

Naturally, our work does not end here. We intend to ex-
plore the use of SPH-PSM in the context of unordered sets,
i.e., to realize efficient two-party private set disjointness test,
while hiding the size of one party’s set. Let one party (P1)
represent its set as a polynomial P (with roots corresponding
to set items) and sends encrypted coefficients to the other
party (P2). P2, for each element yj in its set, can obliviously
evaluate P at yj using additively homomorphic encryption,
and compute eej = E(rjP(yj)), for a random value rj . Af-
ter multiplying all eej values, P2 can send the result to P1,
which, upon decryption, only learns whether the sets are
disjoint.

Furthermore, we plan to extend SPH-PSM to support
additional genomic tests, such as, testing for organ donor-
recipients matching. We also intend to distribute an opti-
mized open-source implementation of SPH-PSM, along with
implementations of some common Personalized Medicine tests,
such as: hla-B, tpmt, as well as API support for application
developers.

References

[1] A. Abbott. Special section on human genetics: With
your genes? Take one of these, three times a day. Na-
ture, 425(6960), 2003.

[2] G. Ateniese, E. De Cristofaro, and G. Tsudik. (If) Size
Matters: Size-Hiding Private Set Intersection. In PKC,
2011.

[3] E. Ayday, E. De Cristofaro, J.-P. Hubaux, and
G. Tsudik. The Chills and Thrills of Whole Genome
Sequencing. ArXiv Report 1306.1264, 2013.

[4] E. Ayday, M. Humbert, J. Fellay, P. J. McLaren,
J. Rougemont, J. L. Raisaro, A. Telenti, and
J.-P. Hubaux. Privacy-Enhancing Technolo-
gies for Medical Tests Using Genomic Data.
https://documents.epfl.ch/users/a/ay/ayday/

www/erman_publications/genomic_privacy.pdf,
2012.

[5] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and
G. Tsudik. Countering GATTACA: Efficient and Se-
cure Testing of Fully-Sequenced Human Genomes. In
CCS, 2011.

[6] J. Baron, K. El Defrawy, K. Minkovich, R. Ostrovsky,
and E. Tressler. 5pm: Secure pattern matching. In
SCN, 2012.

[7] M. Blanton and M. Aliasgari. Secure outsourcing of dna
searching via finite automata. In DBSec, 2010.

[8] E. Blass, R. D. Pietro, R. Molva, and M. Onen. PRISM:
Privacy-Preserving Searches in MapReduce. In PETS,
2012.

[9] F. Bruekers, S. Katzenbeisser, K. Kursawe, and
P. Tuyls. Privacy-Preserving Matching of DNA Pro-
files. http://eprint.iacr.org/2008/203, 2008.

[10] A. Burke. Foundation Medicine: Personalizing Cancer
Drugs. http://is.gd/foundation_medicine, 2012.

[11] M. Canim, M. Kantarcioglu, and B. Malin. Secure Man-
agement of Biomedical Data With Cryptographic Hard-
ware. IEEE Transactions on Information Technology in
Biomedicine, 16(1), 2012.

[12] B. Carlson. SNPs – A shortcut to personalized medi-
cine. Genetic Engineering & Biotechnology News, 2008.

https://documents.epfl.ch/users/a/ay/ayday/www/erman_publications/genomic_privacy.pdf
https://documents.epfl.ch/users/a/ay/ayday/www/erman_publications/genomic_privacy.pdf
http://eprint.iacr.org/2008/203
http://is.gd/foundation_medicine

[13] Y. Chen, B. Peng, X. Wang, and H. Tang. Large-
Scale Privacy-Preserving Mapping of Human Genomic
Sequences on Hybrid Clouds. In NDSS, 2012.

[14] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. In FOCS. IEEE, 1995.

[15] F. Collins and V. McKusick. Implications of the Hu-
man Genome Project for medical science. Jama, 285(5),
2001.

[16] I. Damg̊ard and M. Jurik. A generalisation, a simplifi-
cation and some applications of Paillier’s probabilistic
public-key system. In PKC, 2001.

[17] E. De Cristofaro, S. Faber, P. Gasti, and G. Tsudik.
GenoDroid: Are Privacy-Preserving Genomic Tests
Ready for Prime Time? In WPES, 2012.

[18] Y. Desmedt and Y. Frankel. Threshold cryptosystems.
In CRYPTO, 1989.

[19] T. ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE transactions
on Information Theory, 31(4), 1985.

[20] P.-A. Fouque and D. Pointcheval. Threshold cryptosys-
tems secure against chosen-ciphertext attacks. In ASI-
ACRYPT, 2001.

[21] M. Franz, B. Deiseroth, K. Hamacher, S. Jha,
S. Katzenbeisser, and H. Schröder. Towards secure
bioinformatics services (short paper). Financial Cryp-
tography and Data Security, 2012.

[22] M. Freedman, K. Nissim, and B. Pinkas. Efficient pri-
vate matching and set intersection. In EUROCRYPT,
2004.

[23] R. Gennaro, C. Hazay, and J. Sorensen. Text Search
Protocols with Simulation Based Security. In PKC,
2010.

[24] Genomics Law Report. Patenting and Personal Ge-
nomics: 23andMe Receives its First Patent, and Plenty
of Questions. http://preview.tinyurl.com/7ebpft9,
2012.

[25] Genomics Law Report. Some Thoughts on Myriad Af-
ter the Supreme Court Argument. http://preview.

tinyurl.com/bqy25wz, 2012.
[26] G. Ginsburg and H. Willard. Genomic and personalized

medicine: foundations and applications. Translational
Research, 154(6), 2009.

[27] GMP. http://gmplib.org/.
[28] D. Greenbaum, A. Sboner, X. Mu, and M. Gerstein.

Genomics and privacy: Implications of the new real-
ity of closed data for the field. PLoS Computational
Biology, 7(12), 2011.

[29] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and
Y. Erlich. Identifying personal genomes by surname
inference. Science, 339(6117):321–324, 2013.

[30] C. Hazay and Y. Lindell. Efficient protocols for set
intersection and pattern matching with security against
malicious and covert adversaries. In TCC, 2008.

[31] C. Hazay and T. Toft. Computationally secure pat-
tern matching in the presence of malicious adversaries.
ASIACRYPT, 2010.

[32] N. Homer et al. Resolving individuals contributing
trace amounts of DNA to highly complex mixtures us-
ing high-density SNP genotyping microarrays. PLoS
Genetics, 4(8), 2008.

[33] L. Hood and D. Galas. P4 Medicine: Personalized,
Predictive, Preventive, Participatory A Change of View
that Changes Everything. http://www.cra.org/ccc/

docs/init/P4_Medicine.pdf, 2009.
[34] Y. Ishai and A. Paskin. Evaluating branching programs

on encrypted data. In TCC, 2007.
[35] S. Jha, L. Kruger, and V. Shmatikov. Towards practical

privacy for genomic computation. In S&P, 2008.
[36] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin. A

Cryptographic Approach to Securely Share and Query
Genomic Sequences. IEEE Transactions on Informa-
tion Technology in Biomedicine, 12(5):606–617, 2008.

[37] J. Katz and J. Malka. Secure text processing with ap-
plications to private dna matching. In CCS, 2010.

[38] Y. Lindell, K. Nissim, and C. Orlandi. Hiding the
Input-Size in Secure Two-Party Computation. http:

//eprint.iacr.org/2012/679, 2012.
[39] B. Malin. An evaluation of the current state of genomic

data privacy protection technology and a roadmap for
the future. Journal of the American Medical Informat-
ics Association, 12(1), 2005.

[40] T. Mayberry, E.-O. Blass, and A. H. Chan. PIRMAP:
Efficient Private information Retrieval for MapReduce.
In FC, 2013.

[41] National Center for Biotechnology Information (US).
Single Nucleotide Polymorphism Database. http://

www.ncbi.nlm.nih.gov/projects/SNP/.
[42] T. Okamoto and S. Uchiyama. A new public-key cryp-

tosystem as secure as factoring. In EUROCRYPT, 1998.
[43] OpenSSL. http://www.openssl.org/.
[44] P. Paillier. Public-key cryptosystems based on compos-

ite degree residuosity classes. In EUROCRYPT, 1999.
[45] A. Pollack. Justices Consider Whether Patents on

Genes Are Valid. http://nyti.ms/XB7Tf9, 2013.
[46] A. Prat and J. Baselga. The role of hormonal ther-

apy in the management of hormonal-receptor-positive
breast cancer with co-expression of her2. Nature Clini-
cal Practice Oncology, 5(9), 2008.

[47] Presidential Commission for the Study of Bioethical Is-
sues. PRIVACY and PROGRESS in Whole Genome
Sequencing. http://www.bioethics.gov/cms/sites/

default/files/PrivacyProgress508.pdf, 2012.
[48] S. Sankararaman, G. Obozinski, M. Jordan, and

E. Halperin. Genomic privacy and limits of individual
detection in a pool. Nature Genetics, 41(9), 2009.

[49] P. Stenson et al. The human gene mutation database:
2008 update. Genome Medicine, 1(1), 2009.

[50] J. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik.
Privacy preserving error resilient dna searching through
oblivious automata. In CCS, 2007.

[51] O. Ugus, D. Westhoff, R. Laue, A. Shoufan, and S. A.
Huss. Optimized implementation of elliptic curve based
additive homomorphic encryption for wireless sensor
networks. arXiv preprint 0903.3900, 2009.

[52] R. Wang et al. Learning your identity and disease from
research papers: information leaks in Genome Wide As-
sociation Study. In CCS, 2009.

[53] R. Wang, X. Wang, Z. Li, H. Tang, M. Reiter, and
Z. Dong. Privacy-preserving genomic computation
through program specialization. In CCS, 2009.

[54] R. Wolf. Justices rule human genes can-
not be patented. http://www.usatoday.

com/story/news/nation/2013/06/13/

supreme-court-gene-breast-ovarian-cancer-patent/

2382053/, 2013.

http://preview.tinyurl.com/7ebpft9
http://preview.tinyurl.com/bqy25wz
http://preview.tinyurl.com/bqy25wz
http://gmplib.org/
http://www.cra.org/ccc/docs/init/P4_Medicine.pdf
http://www.cra.org/ccc/docs/init/P4_Medicine.pdf
http://eprint.iacr.org/2012/679
http://eprint.iacr.org/2012/679
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.openssl.org/
http://nyti.ms/XB7Tf9
http://www.bioethics.gov/cms/sites/default/files/PrivacyProgress508.pdf
http://www.bioethics.gov/cms/sites/default/files/PrivacyProgress508.pdf
http://www.usatoday.com/story/news/nation/2013/06/13/supreme-court-gene-breast-ovarian-cancer-patent/2382053/
http://www.usatoday.com/story/news/nation/2013/06/13/supreme-court-gene-breast-ovarian-cancer-patent/2382053/
http://www.usatoday.com/story/news/nation/2013/06/13/supreme-court-gene-breast-ovarian-cancer-patent/2382053/
http://www.usatoday.com/story/news/nation/2013/06/13/supreme-court-gene-breast-ovarian-cancer-patent/2382053/

[55] S. Young. Knome Software Makes Sense of the Genome.
http://www.technologyreview.com/news/428179/

knome-software-makes-sense-of-the-genome/,
2012.

[56] X. Zhou, B. Peng, Y. Li, Y. Chen, H. Tang, and
X. Wang. To Release Or Not To Release: Evaluating
Information Leaks in Aggregate Human-Genome Data.
In ESORICS, 2011.

APPENDIX

A. GENOMICS PRIMER
This section provides some background on genomics.

Genomes carry hereditary information needed to build and
maintain an organism. Aside from certain kinds of viruses,
genomes are encoded in double-stranded DeoxyriboNucleic
Acid (DNA) molecules, i.e., two long polymer chains of four
units called nucleotides. A nucleotides is represented by one
of the four letters: A, C, G, and T. A human genome consists
of ≈ 3.2 billion nucleotides.

Whole Genome Sequencing (WGS) is the process of
determining the complete and exact DNA sequence of an
organism’s genome. Today, sequencing techniques extract,
from a DNA sample (e.g., saliva, hair, nails blood and skin
flakes), short DNA reads with hundreds of nucleotides, that
are then analyzed and aligned to a so-called reference ge-
nome. This allows progressive reconstruction of the whole
genome. Data produced by sequencing machines is usually
in the form of a set of aligned strings, with associated accu-

racy scores. Thus, in order to represent a genome as input
to SPH-PSM, we need to convert it to a single-string repre-
sentation where each character in the string corresponds to
the letter in the sequenced genome at the same offset.

Indels are occasional, naturally occurring insertions or dele-
tions in genomes. A deletion happens when one or more base
pairs are removed from a DNA segment. Analogously, an in-
sertion represents a mutation where one or more nucleotides
are inserted in a particular DNA fragment. Insertions are
rare in human genomes and are not relevant for the person-
alized medicine tests considered in this paper (see paragraph
on SNPs below); thus, we ignore them. Also, since sequenc-
ing involves alignment to a reference genome, insertions are
always detectable. To contend with deletions, we can in-
troduce a special symbol ‘−’ in lieu of a deleted letter at a
specific location in the genome. This new symbol should be
treated as any other base pair, and could potentially exist
within a search pattern.

Single Nucleotide Polymorphisms (SNPs) are the most
common form of DNA variation occurring when a single nu-
cleotide (A, C, G, or T) in the genome differs between mem-
bers of the same species or paired chromosomes of an indi-
vidual [49]. The average SNP frequency in the human ge-
nome is approximately 1 per 1,000 nucleotide pair. (See [41]
for a complete collection of all known SNPs). SNP variations
are often associated with how individuals develop diseases
and respond to pathogens, chemicals, drugs, vaccines, and
other agents, and constitute the main focus of personalized
medicine testing [12].

http://www.technologyreview.com/news/428179/knome-software-makes-sense-of-the-genome/
http://www.technologyreview.com/news/428179/knome-software-makes-sense-of-the-genome/

