
Secure Hamming Distance Based Computation

and Its Applications

Ayman Jarrous and Benny Pinkas�

University of Haifa

Abstract. This paper examines secure two-party computation of func-
tions which depend only on the Hamming distance of the inputs of the
two parties. We present efficient protocols for computing these functions.
In particular, we present protocols which are secure in the sense of full
simulatability against malicious adversaries.

We show different applications of this family of functions, including a
protocol we call m-point-SPIR, which is an efficient variant of symmet-
ric private information retrieval (SPIR). It can be used if the server’s
database contains N entries, at most N/ log N of which have individual
values, and the rest are set to some default value. This variant of PIR is
unique since it can be based on the existence of OT alone.

1 Introduction

There are many known generic constructions of secure two-party and multi-party
computation. It is preferable, of course, to use constructions which are secure
against malicious adversaries, and where security is proved according to the full
simulatability notion defined in [8]. In that case the composition theorem of [8]
implies that the resulting protocol can be used as a building-block for more
complex protocols, and security can be analyzed assuming that the building-
block protocol is implemented by a trusted oracle [8,15]. There are recent efficient
constructions of generic protocols which are secure according to this definition
(by Lindell and Pinkas [22], and Jarecki and Shmatikov [20]), and there is even an
implementation of the former protocol [23]. Our work investigates only the stand-
alone setting, but there are also efficient generic constructions of secure two-party
protocols in the UC model [19]. The downside of generic constructions is that
they impose additional overheads, such as communicating and checking multiple
copies of a circuit computing the functionality [22], or computing public key
operations for every gate of the circuit [20]. It is therefore important to identify
functionalities that are essential for many applications, and design efficient secure
constructions of these specific functionalities. This paper performs this task for a
functionality denoted as “Hamming distance based oblivious transfer”, for which
we also demonstrate different interesting applications.
� Supported by the the Israel Science Foundation (grant No. 860/06), the European

Union under the FP7-STREP project CACE, and a European Research Council
(ERC) Starting Grant.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 107–124, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

108 A. Jarrous and B. Pinkas

The Hamming distance between two strings is defined as the number of charac-
ters in which they differ. We define “Hamming distance based oblivious transfer”
(HDOT, pronounced “h-dot”) as a protocol which allows two parties, a receiver
P1 which has an input w, and a sender P2 which has an input w′, to securely
evaluate a function f(·, ·) whose output is determined only by the Hamming
distance between w and w′ (denoted dH(w, w′)). More precisely, the output is
defined in the following way: Let |w| = |w′| = �, then P2 must provide � + 1 ad-
ditional inputs Z0, . . . , Z�, and P1’s output is set to be Zd where d = dH(w, w′).
With regards to this functionality, this paper contains the following results:

– HDOT protocols secure against semi-honest adversaries:
• A protocol denoted binHDOT for binary inputs w, w′ ∈ {0, 1}�. This

protocol operates by computing O(�) homomorphic encryptions and only
log � invocations of 1-out-of-2 oblivious transfer.

• A general HDOT protocol, for w, w′ ∈ Σ�, where Σ can be arbitrary.
This protocol uses binHDOT as a building block.

– A binHDOT protocol secure against malicious adversaries (in the stand-
alone setting). The protocol uses two primitives that must also be secure
against malicious adversaries: Committed Oblivious Transfer with Constant
Difference (COTCD), and Oblivious Polynomial Evaluation (OPE). We give
a construction for the first primitive, which is an example of a new class of
OT protocols, constrained OT, which we define. The latter primitive is based
on a construction of Hazay and Lindell [17].

– Applications of HDOT. These include several straightforward applications,
such as computing the Hamming distance between strings, or transferring
one of two words based on whether the two input strings are equal or not (a
functionality we denote as EQ, for equality based transfer). Another applica-
tion is a variant of symmetric PIR (SPIR) which we denote as m-point-SPIR,
and which can be used when the server’s database contains N items, of which
at most m = o(N/ log N) are unique and the other N − m items have some
default value. The receiver does not know whether it learns a unique or a
default value. We show a protocol which is based on HDOT and can be
reduced to oblivious transfer alone, which computes this functionality more
efficiently than known PIR protocols. m-point-SPIR can be used for other
applications, as described in Section 6.

2 Preliminaries

We use the standard definitions of secure two-party computation in the stand-
alone setting (see Goldreich’s book [15, Chapter 7]). Security of protocols is
analyzed by comparing what an adversary can do in a real execution of the
protocol to what it can do in an ideal scenario that is secure by definition. The
ideal scenario involves an incorruptible trusted third party (TTP) which receives
the inputs of the parties, computes the desired functionality, and returns to
each party its respective output. A protocol is secure if any adversary which
participates in the real protocol (where no trusted third party exists) can do

Secure Hamming Distance Based Computation and Its Applications 109

no more harm than if it was involved in the above-described ideal computation.
The exact definition appears in [15].

The hybrid model. Our protocols use other secure protocols, such as oblivious
transfer, as subprotocols. It has been shown in [8] that if the subprotocols are
secure according to the right definition (i.e., full simulatability in the case of
the malicious adversary scenario), it suffices to analyze the security of the main
protocol in a hybrid model. In this model the parties interact with each other
and have access to a trusted party that computes for them the functionalities
that are implemented by the subprotocols. The composition theorem states that
it is not required to analyze the execution in the real model, but rather only
compare the execution in the hybrid model to that in the ideal model.

2.1 Cryptographic Primitives and Tools

Homomorphic Encryption. A homomorphic encryption scheme allows to
perform certain algebraic operations on an encrypted plaintext by applying an
efficient operation to the corresponding ciphertext. In addition, we require in
this paper that the encryption scheme be semantically secure. In particular, we
use an additively homomorphic encryption schemes where the message space is
a ring (or a field). There therefore exists an algorithm +pk whose input is the
public key of the encryption scheme and two ciphertexts, and whose output is
Epk(m1 + m2) = Epk(m1) +pk Epk(m2). (Namely, given the public key alone
this algorithm computes the encryption of the sum of the plaintexts of two
ciphertexts.) The new ciphertext is an encryption which is done with fresh and
independent randomness. There is also an efficient algorithm ·pk, whose input
consists of the public key of the encryption scheme, a ciphertext, and a constant
c in the field, and whose output is Epk(c · m) = c ·pk Epk(m).

An efficient implementation of an additive homomorphic encryption scheme
with semantic security was given by Paillier [30,31]. In this cryptosystem the
encryption of a plaintext from [0, N − 1], where N is an RSA modulus, requires
two exponentiations modulo N2. Decryption requires a single exponentiation.
Security is based on the decisional composite residuosity (DCR) assumption.

Oblivious Transfer. The paper uses 1-out-of-N oblivious transfer (OTN
1) as a

basic building block. The OTN
1 protocol runs between two parties, a sender that

has an input (X0, X1, . . . , XN−1), where Xi ∈ {0, 1}m, and a receiver that has
an input I ∈ {0, 1, . . . , N −1}. By the end of the protocol, the receiver learns XI

and nothing else and the sender does not learn any information about I. In [29]
it was shown how to implement OTN

1 using log N invocations of OT2
1. There

are many efficient implementations of OT2
1, starting with a protocol of Even,

Goldreich and Lempel [10]. Most of these protocols are designed for the semi-
honest scenario, or for a malicious scenario where the protocol provides only the
privacy property and not full simulatability. We note that while our protocol for
the semi-honest scenario can use any OT protocol, the protocol for the malicious
adversary scenario must use an OT protocol which is secure in the sense of full
simulatability against malicious adversaries. Such protocols were described, e.g.,

110 A. Jarrous and B. Pinkas

in [6,16,32,17]. (We specifically need a committed OT variant where we can also
prove a relation between the inputs of the sender, and therefore we use a protocol
which builds on the work of Jarecki and Shmatikov [20].) We also note that in
the malicious case we use OT2

1 and not OTN
1 .

2.2 Related Work

Generic secure computation. Generic protocols (e.g., of [35]) can be used to
compute any function. They are typically based on representing the computed
function as a binary or an algebraic circuit, and applying the protocol to this
representation. The overhead of these protocols depends on the size of the cir-
cuit representation of the functions. There are many theoretical constructions of
secure generic protocols. Notable examples of implementations of secure compu-
tation are the Fairplay system [24] for secure two-party computation, and the
FairplayMP and SIMAP systems [1,3] for secure multi-party computation. The
system described in [23] implements fully simulatable secure two-party compu-
tation according to the recent construction of [22].

Computing the Hamming distance. Protocols for computing the scalar
product of vectors (which is equal to the Hamming distance if the alphabet
is binary) were suggested in [34,14]. These protocols are based on the use of
homomorphic encryption, and are only secure against semi-honest adversaries.
(Our HDOT protocol for binary alphabets and semi-honest adversaries borrows
its first step from these protocols.)

A protocol for secure efficient approximate computation of the Hamming dis-
tance, with a polylogarithmic communication overhead, was suggested in [18]
(previous protocols for this task use O(

√
�) communication for �-bit words [12,13]).

We wanted to improve upon these protocols for three reasons: (1) These protocols
introduce approximation errors. (2) The protocols are only secure against semi-
honest adversaries. (3) In addition, these protocols have good asymptotic commu-
nication overhead, but use non-trivial components which seem difficult to imple-
ment with a performance that will be competitive for reasonable input sizes1.

3 Hamming Distance Based Oblivious Transfer

A Hamming Distance based Oblivious Transfer protocol (abbrev. HDOT) is run
between two parties, a receiver (P1) and a sender (P2). It is defined as follows:

– Input: P1’s input is a word w ∈ Σ�. P2’s input contains a word w′ ∈ Σ�, and
� + 1 values Z0, . . . , Z�.

– Output: P1’s output is Zd, where d = dH(w, w′) is the Hamming distance
between w and w′ (note that P1 does not learn the Hamming distance itself).
P2 has no output.

1 For example, the protocol in [18] applies the Naor-Nissim [27] protocol to a cir-
cuit which computes vector operations over the Real numbers and samples from a
Bernoulli distribution; in addition it uses symmetric PIR protocols.

Secure Hamming Distance Based Computation and Its Applications 111

The paper describes a special protocol, binHDOT, for the case that the input
words are binary (i.e., Σ = {0, 1}), and a general protocol which works for
alphabets Σ of arbitrary size.

3.1 Straightforward Applications

An HDOT protocol can be immediately used for computing any function which
depends on the Hamming distance. Following are some interesting examples of
such functions:

– The Hamming distance itself can be computed by setting Zi = i for every
0 ≤ i ≤ �.

– The parity of the exclusive-or of the two inputs is computed by setting Zi

to be equal to the least significant bit of i, for 0 ≤ i ≤ �.
– EQ – Equality based transfer, or EQV0,V1(w, w′): This functionality outputs

V0 if w = w′, and V1 otherwise. The functionality is computed by setting
Z0 = V0 and Zi = V1 for 1 ≤ i ≤ �, and executing an HDOT protocol. P1

does not know which of the two cases happens (namely, whether w = w′).
This is crucial for the applications that are described below.
Recall that it is easy to design a protocol in which P1 learns a specific value
V0 if the two inputs are equal, and a random value otherwise. (See [11], or
consider a protocol where P1 sends a homomorphic encryption E(w), and
receives back E(r · (w−w′) +V0), where r is a random value.) Our protocol
is unique in defining a specific value to be learned if the two inputs are
different, and in hiding whether the inputs are equal or not.2

– Threshold HDOT protocol: The equality based transfer protocol can be gen-
eralized to tolerate some errors and have the output be V0 if the Hamming
distance is smaller than a threshold τ , and be V1 otherwise. In other words,
it implements the following functionality:

HDOTτ
V0|V1

(w, w′) =
{V0, dH(w, w′) < τ
V1, dH(w, w′) ≥ τ

This functionality is implemented by setting Z0 = · · · = Zτ−1 = V0, and
Zτ = · · · = Z� = V1.

The protocol for equality based transfer is the major building blocks of the
m-point-SPIR SPIR application described in Section 6.

4 Protocols Secure against Semi-honest Adversaries

We first describe protocols which are secure against semi-honest behavior of the
potential adversaries. These protocols are relatively simple, yet they are unique
in invoking oblivious transfer a number of times which is only logarithmic in the
input length. The malicious adversary scenario is covered in Section 5.
2 In [2] it was shown how to implement a protocol which transfers one of two strings

if w > w′, and transfers the other string if w < w′ (if w = w′ the output is random).
It is possible to compute the EQ functionality by combining that protocol with a
protocol which outputs a specific value if w = w′ and a random value otherwise.

112 A. Jarrous and B. Pinkas

4.1 A Protocol for Binary Alphabets (binHDOT)

Consider first the case where the alphabet is binary (Σ = {0, 1}). The binHDOT
functionality can be securely implemented by applying Yao’s protocol to a circuit
computing it. That solution would require running � invocations of OT2

1. We
describe here a protocol which accomplishes this task using only log(�+1) OT2

1s
(see below a comparison of the performance of these two protocols).

The protocol works in the following way: In the first step the parties use ho-
momorphic encryption to count the number of bits in which the two words differ.
The result is in the range [0, �]. Next, the two parties use OT�+1

1 (implemented
using log(� + 1) OT2

1s) to map the result to the appropriate output value. The
protocol is described in detail in Figure 1.

Correctness. The value dH is equal to the Hamming distance. In Step 4, P1

computes (in F) the value dH + r, which can have one of � + 1 values (namely
r, r + 1, . . . , r + �). It holds with probability 1 − �/|F| that r < |F| − �. (And

binHDOT〈Z0,...,Z�〉(w, w′) Protocol

Input: P1’s input is a word w = (w0, . . . , w�−1), P2’s input is w′ = (w′
0, . . . , w

′
�−1),

where wi, w
′
i ∈ {0, 1}. P2 has additional inputs (Z0, . . . , Z�).

Output: P1 receives Zi such that dH(w, w′) = i. P2 learns nothing.
The protocol uses Epk(·), a homomorphic encryption function. The plaintexts are in
a ring or a field F . (We emphasize that � and |Σ| are negligible compared to |F|. A
typical size could be |F| = 21024.) pk is a public key that both parties know, but only
P1 knows the corresponding private key and can decrypt messages.

1. P1 sends the homomorphic encryption of each bit of the binary representation of
w = {w0, . . . , w�−1}, where wi ∈ {0, 1}.

2. P2 receives the encrypted representation {Epk(w0), . . . , Epk(w�−1)}. For each bit
location j it calculates Epk(ϑj), where ϑj ∈ {0, 1} and is equal to 1 if, and only
if, wj �= w′

j . The calculation is done in the following way:

Epk(ϑj) = Epk(wj) ·pk (1 − w′
j) +pk (1 −pk Epk(wj)) ·pk w′

j

3. Using the homomorphic properties, P2 sums the results of the previous step and
computes Epk(dH) =

∑�−1
0 Epk(ϑi). The value dH is in the range {0, 1, . . . , �}

and is equal to the Hamming distance between the two input words. In addition,
P2 chooses a random value r ∈ F , computes the value Epk(dH + r), and sends it
to P1. (In other words, it shifts the result by a random value r. Note that with
overwhelming probability, 1 − �/|F|, this addition operation does not involve a
modular reduction.)

4. P1 receives Epk(dH + r) and decrypts the result.
5. Next, the parties map the result to the appropriate Zi value, by invoking a OT�+1

1

protocol where P1 is the receiver and P2 is the sender:
- The input of P1 is (dH + r) mod (� + 1).
- P2 has inputs X0, . . . , X�, where Xi = Z(i−r) mod (�+1) (namely, Zi is mapped

to input (i + r) mod (� + 1) of the OT).
P1’s output in the OT is its output in the binHDOT protocol.

Fig. 1. The binHDOT protocol

Secure Hamming Distance Based Computation and Its Applications 113

since |F| is typically very large compared to �, e.g. |F| ≈ 21024 and � < 1000, we
do not consider here the negligible probability that this event does not happen.)
Therefore, the computation of dH + r in F does not involve a modular reduction
and has the same result as adding them over the integers. Reducing the result
modulo � + 1 (in Step 5) is therefore equal to (r + dH) mod (� + 1). P1 uses this
result as its input to the 1-out-of-(�+1) OT protocol of Step 5. P2, on the other
hand, sets the sender’s inputs in the OT such that each Zi value is the sender’s
input indexed by (r + i) mod (� + 1). As a result, the output of P1 in the OT
protocol is ZdH , as required.

Note that if the parties are only interested in computing the value of the
Hamming distance then the protocol can be greatly simplified: P2 should send
to P1 in Step 3 the encryption Epk(dH). There is no need to run Steps 4 and 5.

Improving the initial step using non-interactive preprocessing. An ad-
ditional improvement can be achieved in the first step of the protocol, where P1

sends an encrypted binary representation of the word. This representation can
be precomputed using non-interactive preprocessing: P1 can prepare in advance
� encrypted zeros and � encrypted ones, instead of encrypting the input bits
online. This preprocessing enables P1 to send the binary representation directly
without spending time online encrypting 0 and 1 values.

Overhead. We compare the overhead of the binHDOT protocol to that of ap-
plying Yao’s protocol to a circuit computing the same functionality. We note
that the runtime of an OT protocol is slower than that of a homomorphic en-
cryption or decryption, and that the runtime of these latter operations is much
slower than that of a homomorphic addition or a homomorphic multiplication
by a constant (which in turn is much slower than symmetric encryption or de-
cryption). This relation between run times can be summarized as follows (where
> denotes “slower”, and � denotes slower by an order of magnitude):

OT > homomorphic enc. � homomorphic addition � symmetric enc.

Without using any preprocessing, the binHDOT protocol requires P1 to com-
pute � encryptions and a single decryption, while P2 computes �+1 homomorphic
additions, and the two parties run log(�+1) OT2

1s and 2(�+1) symmetric encryp-
tions (in order to implement OT�+1

1). In Yao’s protocol, the parties compute a
circuit with � input bits and a total of O(�) gates. This requires � executions of an
OT2

1 protocol and O(�) symmetric encryptions and decryptions. Both protocols
require O(�) communication.

The improvement achieved by the binHDOT protocol is noticeable since it
reduces the number of OTs, which are the most time consuming operation, from �
to log(�+1). In addition, the binHDOT protocol can benefit from the use of non-
interactive preprocessing to precompute all homomorphic encryption operations
even before the parties know of each other. In that case the � encryptions done
by P1 are computed offline, and its online computation is composed of a single
decryption and log(�+1) OTs. (Yao’s protocol cannot precompute the oblivious
transfers without using interaction. We note that if interactive preprocessing is

114 A. Jarrous and B. Pinkas

possible, then the OTs themselves can be precomputed in both protocols, and
this reduces the overhead of both protocols.)

Security. (sketch) We analyze security assuming that the parties are semi-
honest. The proof is simple, and therefore we only give a sketch of the proof:
We assume that the OT protocol is secure, and therefore we can prove security
in a hybrid model where the OT protocol is implemented by an oracle. In the
protocol, P2 receives homomorphic encryptions of a binary representation of a
word, and then it plays the role of the sender in an OT protocol in which it
receives no output. Therefore, if P2 learns anything this information must have
leaked from the encryptions it received. In other words, it is easy to write a
reduction showing that any algorithm that P2 might use to learn information
can be used to break the security of the semantic security of the encryption.
P1 receives from P2 a random value (dH + r). It then participates in the OT
protocol, which we assume to be implemented by an oracle. P2 therefore learns
nothing but the output of the OT, which is its designated output of the protocol.

4.2 A Protocol for Arbitrary Alphabets (HDOT)

We now describe an HDOT protocol which works over arbitrary alphabets Σ.
The protocol is based on applying the binHDOT protocol to every character of
the words. More specifically, the parties have inputs w, w′ ∈ Σ�, respectively.
The protocol begins with the parties representing each of the letters of Σ as
a binary word of length �log |Σ|	, and then running (for each letter location)
the equality based transfer (EQ) protocol, which was defined above and is an
application of binHDOT. In each execution of the EQ protocol P1 learns a value
αi if wi = w′

i, or the value αi + 1 otherwise, where αi is chosen at random by
P2. Then, P1 sums the values that it has received modulo � + 1. The result is
equal, modulo � + 1, to

∑
αi plus the Hamming distance of the original words.

The parties then run an OT�+1
1 protocol to map the result to the desired output.

The protocol is detailed in Figure 2.

Correctness. For every 0 ≤ i ≤ � − 1, P1 and P2 learn in Step 1 values βi, αi,
respectively, such that βi = αi if the letters wi and w′

i are equal, and βi = αi +1
if the letters are different. Let Sα =

∑�−1
i=0 αi, where here the addition is done in

F . Define Sβ similarly. Let d be the Hamming distance between the two input
words. Then it holds with probability 1 − �/|F| that Sβ = Sα + d, where the
addition here is done over the integers. Therefore, the values σα = Sα mod (�+1)
and σβ = Sα mod (� + 1) computed in Step 2 satisfy that σβ − σα mod (� + 1)
is equal to the Hamming distance d (which is in the range [0, �]).

Consider now the OT in Step 3. Assume first that σα = 0. In this case P1’s
input to the OT, σβ , is equal to the Hamming distance, and the inputs of P2

to the OT are the values Z0, . . . , Z� (in that order). The OT protocol therefore
computes the desired output in this case. Now, if σα > 0 then P1’s input to the
OT protocol is cyclically shifted (modulo � + 1) by σα, while the order of P2’s
inputs to the OT is also cyclically shifted (modulo � + 1) by the same value σα.
The OT protocol therefore computes the correct result.

Secure Hamming Distance Based Computation and Its Applications 115

HDOT〈Z0,...,Z�+1〉(w, w′) Protocol

Input: P1 has an input w = 〈w0, w1, . . . , w�−1〉 ∈ Σ�. P2 has an input w′ =
〈w′

0, w
′
1, . . . , w

′
�−1〉 ∈ Σ�, and additional input values Z0, . . . , Z�. We denote by w̄j

the binary representation of wj , which is �log(|Σ|)� bits long.
Output: P1 learns Zi such that dH(w, w′) = i, P2 learns nothing.

1. For every i ∈ [0, �−1], P2 chooses at random a value αi ∈R F . Both parties then
run the protocol EQαi,αi+1(w̄i, w̄i

′). (w̄i, w̄i
′ denote the binary representations

of the letters wi and w′
i, respectively. The output of this protocol is αi if wi = w′

i,
and αi + 1 otherwise.)
At the end of the process, P1 obtains the values {β0, . . . , β�−1}, where

βi =

{
αi, wi = w′

i

αi + 1, wi �= w′
i

2. P1 sums, modulo � + 1, the βi values it received. Namely, it computes
σβ = (

∑�−1
0 βi) mod (� + 1). P2 sums its α values and computes σα =

(
∑�−1

0 αi) mod (� + 1).
3. Both parties run an OT�+1

1 protocol with the following inputs:

- P1 is the receiver and its input is σβ.
- P2 is the sender and its input is {X0, . . . , . . . , X�}, where Xi =

Z(i−σα) mod (�+1).

The value that P1 receives in the OT is defined as its output in the protocol.

Fig. 2. The HDOT protocol for general alphabets

Overhead. The overhead is that of applying the binHDOT protocol � times
over log |Σ| long binary strings, and then running log(�+1) invocations of OT2

1.
The parties run � log log |Σ| + log(� + 1) OT2

1s. (A direct implementation of
this functionality using Yao’s protocol would have required invoking O(� log |Σ|)
OTs.)

Security. (sketch) Analyzing security in the hybrid model, we assume that the
binHDOT and OT protocols are executed by a trusted oracle. Then P2, being
the sender in these protocols, cannot learn any information about the input of
P1. P1 receives the βi values in the first step, but it cannot distinguish whether
βi = αi or βi = αi + 1, since each αi value was chosen randomly by P2. In
the last step, P1 receives the result of mapping the sum of the β values to the
appropriate Zi value, which is also the result it would have received from the
trusted party.

4.3 Weighted Hamming Distance Based OT

The weighted Hamming distance between two �-letter strings w, w′ is defined in
the following way: The function depends on a set of integer weights ω0, . . . , ω�−1.
We define δi, for 0 ≤ i ≤ � − 1, to be 0 if wi = w′

i, and 1 otherwise. The
weighted Hamming distance is

∑�−1
i=0 δiωi (earlier we handled the case where

116 A. Jarrous and B. Pinkas

∀i ωi = 1). This function enables to assign to any letter location a specific
weight corresponding to its importance.

It is possible to slightly change the HDOT protocols to support the computa-
tion of a weighted Hamming distance based OT. In the binary alphabet case, the
revised binHDOT protocol computes in Step 2 the values Epk(ϑjωj) by multiply-
ing Epk(ϑj) by ωi. The value dH is defined to be the sum of these values. Let Ω =∑�−1

i=0 ωi. The value of dH is in the range [0, Ω]. ThereforeP2 has inputs Z0, . . . , ZΩ,
and the last step of the protocol computes a 1-out-of-(Ω + 1) OT. In the case of an
arbitrary alphabet, each βi value is set to αi +ωi if the two letters are different, and
to αi is they are equal. Again, the last step computes a 1-out-of-(Ω + 1) OT.

5 A binHDOT Protocol for Malicious Adversaries

We design a new binHDOT protocol to handle the presence of malicious adver-
saries. In this protocol the parties use a new variant of OT2

1 to learn whether cor-
responding bits of the two words are equal, and then use an Oblivious Polynomial
Evaluation (OPE) protocol [28,17] to map the result to an output value. (This is
different than the semi-honest case, where homomorphic encryption was used to
compare bits, and OTN

1 was used to compute the final result.) The new protocol
uses OT and OPE protocols which are efficient and yet are secure in the sense of
full simulatability against malicious adversaries. Security can therefore be ana-
lyzed in the hybrid model. In more detail, the protocol uses the following tools:

Committed 1-out-of-2 Oblivious Transfer with Constant Difference (or
COTCD2

1), secure against malicious adversaries. A committed OT protocol in
an OT protocol where the parties commit to their inputs: the sender commits
to its inputs m0, m1 and the receiver commits to its input σ ∈ {0, 1}. During
the protocol each party can verify that the other party’s input is equal to the
corresponding committed value. We define a committed OT with constant differ-
ence (COTCD, pronounced “cot-cd”) to be a committed OT with an additional
auxiliary input composed of a value Δ known to the sender, and a commitment
to Δ which is known to the receiver. The protocol lets the receiver verify that
the difference of the two inputs of the sender is ±Δ. In other words, it either
holds that m1 − m0 = Δ or that m0 − m1 = Δ.

We use a COTCD primitive which is based on the Jarecki and Shmatikov (JS)
committed OT protocol [20], which is in turn based on the Camenisch-Shoup
(CS) encryption scheme [7]. The details of the COTCD protocol are described in
the full version of our paper.3 We use that protocol since it can be used to transfer

3 The COTCD protocol is identical to the Jarecki and Shmatikov (JS) protocol [20],
with an addition of a preliminary step and a verification step. In the preliminary
step, both parties receive their auxiliary inputs: the sender receives a value Δ, which
is the difference that must hold between its input values, and the receiver receives
the committed value of Δ. In the verification step the sender proves to the receiver
in zero-knowledge that the committed values, m0, m1, have a difference ±Δ. It is
important to note that the receiver knows only Com(Δ) and does not learn Δ.

Secure Hamming Distance Based Computation and Its Applications 117

strings, and since it is easy to add to it an efficient zero-knowledge proof that the
messages of the sender have the required difference (it seems much harder to add
a proof of this type to other OT protocols which are secure against malicious
adversaries, such as the protocols of [17,32]). The JS protocol is UC-secure in
the common reference string model and therefore all invocations of that protocol
can be run in parallel (as a result, the HDOT protocol we construct can execute
in parallel all � invocations of the COTCD protocol). The protocol is proved
to be secure under the decisional composite residuosity (DCR) assumption (i.e.,
the assumption on which the Paillier homomorphic encryption system is based).

Commitment scheme. The Camenisch-Shoup (CS) encryption scheme [7] is
used in our protocol as a commitment scheme, as is suggested in [20].

An Oblivious Polynomial Evaluation (OPE) protocol secure against ma-
licious adversaries. An OPE protocol [28] is a protocol where the sender’s input
is a polynomial P () of a certain degree, and the receiver’s input is a value x.
The receiver’s output is P (x) while the sender learns nothing. We use the OPE
construction of Hazay and Lindel [17], which is secure (in the sense of full sim-
ulatability) against malicious adversaries, and uses very few exponentiations.

The underlying fields. The output of the COTCD protocol is used as an input
of the OPE protocol. The COTCD protocol runs in a group F = Z

∗
n2 , where Z

∗
n2

is defined by a safe RSA modulus n = pq. The encryption scheme of Camenisch
and Shoup, which is used in the protocol as a commitment scheme, works in
the same group. The OPE protocol of [17] runs in ZN , with N being an RSA
modulus. Our protocol must enable the parties to use the result of the COTCD
protocol as an input to the OPE protocol. It must therefore use a group Z

∗
n2 and

a field ZN , which satisfy that |Z∗
n2 | < |ZN |, and therefore we will require that

n2 < N . We define a simple mapping f : Z
∗
n2 → ZN , where the only requirement

is that no two elements of Z
∗
n2 are mapped by f to the same value in ZN . The

protocol then performs the initial computations in Z
∗
n2 and then uses f to map

the result to ZN .
The protocol itself is described in Figure 3. In the protocol, for every bit

location i P1 receives a value t0i if the corresponding bits are equal, and the value
t0i +Δ otherwise. The value Δ, and also all t0i values, are randomly chosen by P2.
(In the semi-honest caseP1 learned one of two values whose difference was 1. Here
the difference is a random number Δ in order to prevent attacks by a malicious
P1.) P1 then sums the values it received, and obtains the result

∑�
i=1 t0i + d ·Δ,

where d is the Hamming distance. We use the notation σr =
∑�

i=1 t0i . P2 then
prepares an OPE where ∀j ∈ [0, �], P (σr + j · Δ) = Zj . The parties execute an
OPE and P1 computes P (σr + dΔ) and learns the desired result.

The protocol uses an OPE instead of OT�+1
1 since the values are mapped to

locations in a large range, rather than to indices in the range [0, �], in order to
prevent a malicious P1 from learning any Zi value which does not correspond to
the actual Hamming distance. If P1 evaluates the polynomial at any point other
than intended, it is likely to receive a random answer since it does not know Δ
and is therefore unlikely to choose any point corresponding to a Zi value. As for

118 A. Jarrous and B. Pinkas

Input: P1’s input is a word w = (w0, . . . , w�−1), P2’s input is w′ = (w′
0, . . . , w

′
�−1),

where wi, w
′
i ∈ {0, 1}. P2 has additional inputs (Z0, . . . , Z�).

Output: P1 receives Zi such that dH(w, w′) = i (i.e. the Hamming distance of w
and w′ is i). P2 learns nothing.

1. P2 chooses at random Δ ∈R Z
∗
n2 and sends to P1 a commitment to Δ. In addi-

tion it proves to P1, using a zero-knowledge proof of knowledge, the knowledge
of Δ.

2. For each pair of bits (wi, w
′
i), both parties use COTCD to check whether the

bits are equal:
– P2 chooses a random value t0i ∈R F , and defines t1i = t0i + Δ.
– Both parties run a COTCD protocol:

(a) The auxiliary inputs to the protocol are Δ, known to P2, and a com-
mitment to Δ, known to P1.

(b) P1 is the receiver and its input is wi.
(c) P2 is the sender. If w′

i = 0 then it sets (x0
i , x

1
i) = (t0i , t

1
i); Otherwise,

(x0
i , x

1
i) = (t1i , t

0
i).

In each execution of the protocol, if both bits are equal then P1 learns t0i ,
otherwise, P1 learns t1i . (If |x1

i − x0
i | �= Δ then P1 aborts.)

By the end of this step, P1 learns tb0
0 , . . . , t

b�−1
�−1 , where bi = wi ⊕ w′

i, while P2

does not learn any information.
3. P1 computes σt =

∑
tbi
i and P2 computes σr =

∑
t0i . These summations are

done in Z
∗
n2 .

4. P2 constructs a polynomial P (x) =
∑�

0 aix
i in ZN , such that P (f(σr + i ·Δ)) =

Zi, ∀i ∈ {0, 1, . . . , �} (where f is the simple mapping from Z
∗
n2 to ZN), and P (0)

is random. (This construction succeeds if 0 �∈ {σr, . . . , σr + �Δ}, which happens
with probability 1 − (� + 1)/|ZN |.) The degree of P is � + 1.

5. P1 and P2 run an OPE protocol to evaluate P (f(σt)), such that P1 learns the
result while P2 does not learn any information.

Fig. 3. The binHDOT protocol for the malicious case

a malicious P2, its inputs w′ and Z0, . . . , Z� can be extracted from its interaction
with the OT and OPE protocols, and are used for a simulation based proof.

Theorem 1. The protocol computes the binHDOT functionality.

Proof. Let us follow the steps of the protocol. In each execution of the COTCD
protocol, P1 learns t0i if both bits are equal, otherwise, it learns t1i = t0i + Δ.
In other words, it learns tbi

i , where bi = wi ⊕ w′
i. Then, in Step 3, P1 computes

σt = tb00 + · · ·+ t
b�−1
�−1 , and P2 computes σr = t00 + · · · t0�−1. Therefore it holds that

σt − σr = Δ · dH(w, w′). In Step 4, P2 constructs a polynomial P (x) such that:
P (f(σr)) = Z0; P (f(σr +Δ)) = Z1;. . . ; P (f(σr + � ·Δ)) = Z�. In the last step of
the protocol, the parties use an OPE protocol to compute P (f(σt)) = ZdH(w,w′).

Theorem 2. The protocol securely computes binHDOT in the presence of ma-
licious adversaries.

Proof. (Sketch) The security of the protocol is proved in the hybrid model,
assuming that the COTCD and OPE primitives, as well as the zero-knowledge

Secure Hamming Distance Based Computation and Its Applications 119

proof of knowledge of Δ used in the protocol, are performed by a trusted oracle
(or trusted party). This assumption is justified since, as we detailed above, there
are constructions of these primitives which have fully simulatable security against
malicious adversaries (where the security is based on the Decisional Composite
Residuosity (DCR) assumption).

We compare the execution of the protocol between P1 and P2 to an execution
with a trusted third party (TTP), where the TTP receives the inputs of both
parties and computes the following functionality: If the input of P1 is w and the
input of P2 is 〈w′, Z0, . . . , Z�〉, then the output of P1 is ZdH(w,w′). Otherwise if
the input of P1 is a special symbol ρ then the output of P1 is a random value;
otherwise if the input of either party is a special symbol ⊥ then the protocol
terminates prematurely.

We first prove security in the case that P1 is corrupt and then in the case
that P2 is corrupt.

P1 is corrupt. The full proof appears in the full version of the paper. The idea
behind the proof is that P1’s choices in the COTCD protocols define its input w.
Then, P1 is supposed to add the values it received in the COTCD invocations
and use the result as its input to the OPE. If it uses a different input to the
OPE protocol, then, since it does not know Δ, it happens with overwhelming
probability that P1 queries a value of the polynomial at a point which was not
defined by Z0, . . . , Z� and receives a random answer.

P2 is corrupt. The full proof appears in the full version of the paper. The proof
is based on the following ideas: (1) the simulator extracts the value of Δ from
the zero-knowledge proof of knowledge; (2) the simulator then learns the inputs
that P2 uses in the COTCD invocations, and based on these values the simulator
computes w′ and σr ; (3) it also learns the coefficients of the polynomial P () which
is P2’s input to the OPE, and can therefore compute Z0 = P (σr), . . . , Z� =
P (σr + �Δ); (4) finally, the simulator sends 〈w′, Z0, . . . , Z�〉 to the TTP.

Efficiency. The overhead of the protocol is composed of running � invocations
of the COTCD protocol (which can be run in parallel, since the protocol is
UC-secure), and a single invocation of the OPE protocol of [17]. Both of these
protocol can be run in a constant number of rounds.

5.1 Securing the Applications against Malicious Adversaries

The protocol described above is secure against malicious behavior of either party.
However, it does not enforce any structure of the inputs Z0, . . . , Z� of P2 and
therefore a corrupt P2 can set these inputs to arbitrary values. This “feature”
does not affect plain usage of the protocol, but it means that security against
malicious adversaries cannot be guaranteed if the protocol is used for computing
any functionality that requires specific relations between the Zi values. Unfor-
tunately, this is relevant to the relations required in the applications detailed
in Section 3.1. For example, the EQ application, i.e., equality based transfer,
requires that Z1 = Z2 = · · · = Z�. As a result, the protocol cannot be used “as

120 A. Jarrous and B. Pinkas

is” as a building block for protocols (secure against malicious adversaries) for
the HDOT functionality for arbitrary alphabets, or for the EQ functionality.

In order to adapt the protocol for these tasks, it is required to add zero-
knowledge proofs which assure P1 that the Zi inputs follow the desired structure.
This is of course possible in principle, but in this work we have not examined
how to optimize the efficiently of such proofs. We will only describe here the
steps which are required in order to design and implement an EQ protocol se-
cure against malicious adversaries (protocols for the other applications can be
designed in a similar way): (1) The protocol needs an additional step where P1

obtains a commitment Com(σr) to σr =
∑

t0i . This commitment can be com-
puted given the commitments that P2 generates in the committed OT protocols;
the correctness of the committed value can be proved using P2’s proofs about
the Δ differences of its input pairs. (Namely, P2 must prove that there exist
bits b0, . . . , b�−1 such that

∑
xbi

i = σr, and that ∀i x1
i = x0

i + Δ.) (2) The
parties need to use a “committed OPE” protocol, where P2 commits to the co-
efficients of its polynomial (such a protocol has not been described yet, but it
is not hard to imagine how to implement it using techniques similar to those
used for committed OT). (3) P2 must prove that there are values s, d such that
s is committed to in Com(σr), d is committed to in Com(Δ), and it holds that
P (s+d) = P (s+2d) = · · · = P (s+�d). The main challenge in designing this step
is that P (s+d) is computed to by multiplying the committed coefficients of P by
powers of the value s + d. Namely, the proof is about the sum of multiplications
of committed values.

6 m-Point SPIR

Another application of the HDOT protocol is a new variant of symmetric private
information retrieval (SPIR – Symmetric PIR) which we denote as m-point-
SPIR. For a definition and discussion of single server PIR and symmetric PIR,
see, e.g. [21,5]. In short, a PIR protocol involves a server with a database of
N items x0, . . . , xN−1 and a client who is interested in learning entry xi of
the database. This must be accomplished with o(N) communication, without
revealing i to the server, and (in the case of symmetric PIR) without revealing
to the client anything but xi.

The m-point-SPIR protocol that we define can be applied if at most m of
the items of the server’s database have specific values, and all other items have
some default value x̄. The client must not know whether the value it learns is
the default value x̄ or one of the unique values. We describe below a couple
of applications of m-point-SPIR. The m-point-SPIR functionality is similar to a
simpler functionality, where the client learns a random value if its input does not
match any of the m indices which have specific values. The latter functionality
is much simpler to implement (using OPE), as we detail below.

We show a protocol which implements m-point-SPIR with O(m log N) com-
munication and O(m log N) computation (the smaller m is, the more efficient the
protocol is). Therefore the communication is o(N) as long as m = o(N/ log N).

Secure Hamming Distance Based Computation and Its Applications 121

Another nice property of the m-point-SPIR protocol if that it can be imple-
mented based on the existence of oblivious transfer alone. This property is not
known for general SPIR protocols. (Furthermore, it is known that there cannot
exist any transparent black-box reduction of PIR to OT [25].)

The m-point-SPIR functionality is defined in the following way. The server
has inputs 0 ≤ p1, . . . , pm ≤ N − 1, which are all distinct, and additional values
x̄, xp1 , . . . , xpm . The client has an input 0 ≤ i ≤ N − 1. The output of the client
is xpj if there is an index 1 ≤ j ≤ m such that i = pj, or x̄ if no such pj exists.

1-point SPIR. The implementation of 1-point-SPIR is straightforward given
our previous protocols. The parties simply execute the protocol EQxp1 ,x̄(i, p1),
whose output is xp1 if i = p1, and x̄ otherwise. (The EQ protocol is defined in
Section 3.1.) The communication overhead is of the order of the length of the
index i, namely O(log N), times the length of the security parameter (i.e., the
length of the homomorphic encryption). (This is under the reasonable assump-
tion that the length of the database values (the x values) is in the order of the
length of the security parameter; otherwise the communication is O(log N · |x|).)
The computation overhead is O(log N), and it is composed of O(log N) homo-
morphic encryptions and O(log log N) OTs.

m-point-SPIR. For the general case of m-point-SPIR, the server first defines
m random values z′1, . . . , z

′
m under the constraint that their exclusive-or is x̄. It

then defines values z1, z2, . . . , zm satisfying the constraints z1⊕z′2⊕· · ·⊕z′m = x1,
z′1 ⊕ z2 ⊕ z′3 ⊕ · · · ⊕ z′m = x2, up to z′1 ⊕ · · · ⊕ z′m−1 ⊕ zm = xm. The parties
execute the protocols EQz1,z′

1
(i, p1), EQz2,z′

2
(i, p2), up to EQzm,z′

m
(i, pm). The

client then computes the exclusive-or of the m values that it learned in these
protocols.

Correctness follows from the fact that if there exists a j coordinate for which
i = pj then the client learns a single zj value. Otherwise i �= p1, . . . , pm and the
client learns only z′j values. Therefore the exclusive-or of all the values that the
client receives is equal to xj in the former case, or to x̄ in the latter case.

It is easy to verify the security of this protocol (assuming that the parties
are semi-honest). Note that the client always performs the same operations and
does not recognize whether it learned the value x̄ or one of the m special values.
The communication overhead is O(m log N) times the length of the security
parameter, and the computation overhead is also O(m log N). This is therefore
a SPIR protocol (with o(N) communication) as long as m = o(N/ logN), and in
that case the computation overhead is also o(N). (A “traditional” PIR protocol
will have O(N) computation overhead, since it must also process the entries with
the default value.)

Basing m-point-SPIR on OT. The EQ protocol (which is essentially the
HDOT protocol) is based on using a homomorphic encryption scheme and an
oblivious transfer. However, it is easy to see that the usage of homomorphic
encryption can be replaced with the usage of oblivious transfer alone (as is done
in the HDOT protocol for the malicious case). As a result, m-point-SPIR can
be based oblivious transfer alone.

122 A. Jarrous and B. Pinkas

Comparison to other protocols. Our m-point-SPIR protocol can be com-
pared to oblivious polynomial evaluation (OPE), in which the server has an
(m − 1)-degree polynomial P , defined over a field of size at least N , and where
the polynomial satisfies P (pj) = xj for all j ∈ [1, m]. The client has input
0 ≤ j ≤ N − 1 and it obliviously computes P (j). The OPE protocol has com-
munication and computation overheads of O(m) field operations, but it has the
drawback that for inputs not in p1, . . . , pm the client receives a random output
rather than a specific value x̄.

The m-point-SPIR protocol can also be compared to PIR protocols of the type
of the protocol of Cachin, Micali and Stadler [5] (that protocol is based on the φ-
hiding assumption rather on general assumptions). These protocols, too, have the
property that the server’s work depends on the number of items in its database
that have non-default values. Namely, it is O(m) if the server has m items in its
database, even if the range of the client’s input is [1, N]. Still, in those protocols
the sender is not able to set a “default” value x̄ to be returned for all other
N − m values of the client’s input. Finally, the m-point-SPIR functionality can
be implemented using Yao’s generic protocol and a circuit of size O(m log N),
and m log N invocations of OT. The observations in Section 3 comparing the
overhead of the HDOT protocol to that of Yao’s construction, are relevant in
this case, too. We also believe that it is simpler to implement the m-point-SPIR
protocol compared to implementing a circuit based solution.

Application I: private matching for cardinality threshold. This is an
example where it is important that P1 receives the default value if no match
is found. The scenario involves two parties with private sets of m items, which
want to find out if the size of the intersection of the sets is greater than some
threshold. The problem was defined in [13] as a variant of the private matching
protocol which was the main subject of that paper. The solution there requires
the parties to run an OPE for each item xi of the first party, in which the first
party either learns a specific value or a random value, depending on whether xi

is in the set of the second party. The parties then use Yao’s protocol to evaluate
a circuit whose input is the values learned by P1, and which computes whether
the size of the intersection is greater than the threshold. We can use the m-point-
SPIR protocol to replace the OPE: Suppose that P1’s inputs are x1, . . . , xn and
P2’s inputs are y1, . . . , yn. Then for each xi the parties run an m-point SPIR
where P1 learns αi if xi ∈ {y1, . . . , yn}, or αi +1 otherwise, where α is a random
number chosen by P2. We can then ask P1 to sum the values it learned, and
replace Yao’s protocol with an OTm

1 , as was done in the binHDOT protocol of
Section 4.1. (This was impossible when an OPE was used, since in that case the
sum was random if there was even a single item of P1 which was not in P2’s set.)

Application II: lottery service As an example of another application of m-
point-SPIR, consider a lottery service where the server has a range of tickets,
only a few of which are winning tickets. The client uses the protocol to “buy”
a ticket, but the client must not know, at least not until some time in the
future, whether this is a winning ticket. The server’s database contains the prize
corresponding to each winning ticket, or the default “no prize” value x̄ (which, of

Secure Hamming Distance Based Computation and Its Applications 123

course, is associated to most of the tickets). It must be ensured that a client that
receives the value x̄ cannot identify that this is the default value. The server must
not learn which ticket was chosen by the buyer. (A lottery service with many
clients must handle many other different issues which we do not describe, but
m-point-SPIR seems like a good approach for handling the purchase of tickets.)

References

1. Ben-David, A., Pinkas, B., Nisan, N.: Fairplaymp – a system for secure multi-party
computation. In: ACM Conference on Computer and Communications Security—
ACM CCS 2008. ACM, New York (2008)

2. Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing en-
crypted numbers. In: Crescenzo and Rubin [9], pp. 206–220

3. Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practical
implementation of secure auctions based on multiparty integer computation. In:
Crescenzo and Rubin [9], pp. 142–147

4. Boneh, D. (ed.): CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg (2003)
5. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval

with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

6. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:
Naor [26], pp. 573–590

7. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh [4], pp. 126–144

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

9. Di Crescenzo, G., Rubin, A. (eds.): FC 2006. LNCS, vol. 4107. Springer, Heidelberg
(2006)

10. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Advances in Cryptology - Crypto 1982, pp. 205–210 (1982)

11. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Com-
munications of the ACM 39(5), 77–85 (1996)

12. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.:
Secure multiparty computation of approximations. ACM Transactions on Algo-
rithms 2(3), 435–472 (2006)

13. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004)

14. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product
computation for privacy-preserving data mining. In: Park, C.-s., Chee, S. (eds.)
ICISC 2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005)

15. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

16. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
265–282. Springer, Heidelberg (2007)

17. Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation and transfer with
simulation-based security (manuscript) (2008)

124 A. Jarrous and B. Pinkas

18. Indyk, P., Woodruff, D.P.: Polylogarithmic private approximations and efficient
matching. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 245–
264. Springer, Heidelberg (2006)

19. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner [33], pp. 572–591

20. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed
inputs. In: Naor [26], pp. 97–114

21. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS 1997, pp. 364–373 (1997)

22. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In: Naor [26], pp. 52–78

23. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg
(2008)

24. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation
system. In: USENIX Security Symposium, pp. 287–302. USENIX (2004)

25. Meier, R., Przydatek, B.: On robust combiners for private information retrieval
and other primitives. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
555–569. Springer, Heidelberg (2006)

26. Naor, M. (ed.): EUROCRYPT 2007. LNCS, vol. 4515. Springer, Heidelberg (2007)
27. Naor, M., Nissim, K.: Communication preserving protocols for secure function

evaluation. In: STOC, pp. 590–599 (2001)
28. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC

1999, pp. 245–254. ACM Press, New York (1999)
29. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptol-

ogy 18(1), 1–35 (2005)
30. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

31. Paillier, P.: Trapdooring discrete logarithms on elliptic curves over rings. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 573–584. Springer,
Heidelberg (2000)

32. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner [33], pp. 554–571

33. Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)
34. Wright, R., Yang, Z.: Privacy-preserving bayesian network structure computation

on distributed heterogeneous data. In: Proc. of the 10th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 713–718. ACM
Press, New York (2004)

35. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167. IEEE, Los Alamitos (1986)

	Secure Hamming Distance Based Computation and Its Applications
	Introduction
	Preliminaries
	Cryptographic Primitives and Tools
	Related Work

	 Hamming Distance Based Oblivious Transfer
	Straightforward Applications

	Protocols Secure against Semi-honest Adversaries
	A Protocol for Binary Alphabets (binHDOT)
	A Protocol for Arbitrary Alphabets (HDOT)
	Weighted Hamming Distance Based OT

	A binHDOT Protocol for Malicious Adversaries
	Securing the Applications against Malicious Adversaries

	m-Point SPIR

