
J. Cryptol. (2011) 24: 292–321

DOI: 10.1007/s00145-010-9085-7

Secure Hardware Implementation of Nonlinear Functions

in the Presence of Glitches

Svetla Nikova

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC and IBBT, Kasteelpark Arenberg 10, 3001

Heverlee, Belgium

and

University of Twente, EEMCS-DIES, P.O. Box 217, 7500 AE Enschede, The Netherlands

Vincent Rijmen

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC and IBBT, Kasteelpark Arenberg 10, 3001

Heverlee, Belgium

and

Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology,

Inffeldgasse 16a, 8010 Graz, Austria

Martin Schläffer

Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology,

Inffeldgasse 16a, 8010 Graz, Austria

martin.schlaeffer@iaik.tugraz.at

Received 1 September 2009

Online publication 19 October 2010

Abstract. Hardware implementations of cryptographic algorithms are vulnerable to

side-channel attacks. Side-channel attacks that are based on multiple measurements of

the same operation can be countered by employing masking techniques. Many protec-

tion measures depart from an idealized hardware model that is very expensive to meet

with real hardware. In particular, the presence of glitches causes many masking tech-

niques to leak information during the computation of nonlinear functions. We discuss a

recently introduced masking method which is based on secret sharing and multi-party

computation methods. The approach results in implementations that are provably re-

sistant against a wide range of attacks, while making only minimal assumptions on the

hardware. We show how to use this method to derive secure implementations of some

nonlinear building blocks for cryptographic algorithms. Finally, we provide a provable

secure implementation of the block cipher Noekeon and verify the results by means of

low-level simulations.

Key words. DPA, Masking, Glitches, Sharing, Nonlinear functions, S-box, Noekeon.

1. Introduction

Side-channel analysis exploits the information leaked during the computation of a cryp-

tographic algorithm. The most common technique is to analyze the power consump-

© International Association for Cryptologic Research 2010

mailto:martin.schlaeffer@iaik.tugraz.at

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 293

tion of a cryptographic device using differential power analysis (DPA) [17]. This side-

channel attack exploits the correlation between the instantaneous power consumption

of a device and the intermediate results of a cryptographic algorithm. A years-long se-

quence of increasingly secure designs and increasingly sophisticated attack methods

breaking again these designs suggests that the problem won’t be solved easily. There-

fore, securing hardware implementations against advanced DPA attacks is still an active

field of research.

The approach that we propose in this paper1 is based on multi-party computation

techniques, which makes it rather different from the mainstream. The most important

differences are that we use more than one mask and share the data being processed

through nonlinear operations such that each computation is independent of at least one

input share. Further, we do not use fresh randomness after one or more steps and we

make only realistic assumptions about the hardware. We provide also proofs of security

against a wide range of attacks and experimental evidence to back up our claims.

The remainder of this paper is organized as follows. In Sect. 2 we discuss some

related work both in side-channel attacks and defense strategies, and in multi-party

computation protocols and derived protection techniques. In Sect. 3 we explain how

many of the “classical” protection techniques fail when the underlying hardware is not

glitch-free. We introduce our approach in Sect. 4, define three properties sufficient for

security and prove our main theorems. In Sect. 5, we apply our method to some func-

tions that form the basis of cryptographic systems, e.g. multiplication in the extension

field GF(22m)/GF(2m), which is often used in implementations of the AES S-box. In

Sect. 6, we apply our method to the block cipher Noekeon and report on the simulations

that we made in order to verify our claims. Finally, we conclude and present topics for

further research in Sect. 7.

2. Related Work

In this section, we review popular countermeasures against DPA attacks. Subsequently,

we briefly introduce threshold cryptography and Multi-Party Computation (MPC) pro-

tocols, which form the inspiration for our approach to protect implementations against

side-channel attacks. Finally, we explain the relations between our approach and MPC

protocols, and discuss related literature.

2.1. History of Countermeasures

In order to counteract DPA attacks several different approaches have been proposed. The

general approach is to make the intermediate results of the cryptographic algorithm in-

dependent of the secret key. Circuit design approaches [36,37] try to remove the root of

the side-channel leakage by balancing the power consumption of different data values.

However, even small remaining asymmetries make a DPA possible. Another method

is to randomize the intermediate values of an algorithm by masking them. This can be

done at the algorithm level [1,5,13,25], at the gate level [15,38] or even in combination

with circuit design approaches [27].

However, recent attacks have shown that masked hardware implementations (con-

trary to software implementations [31,32]) can still be attacked using even first-order

1 Parts of this work appeared earlier in [23] and [24].

294 S. Nikova, V. Rijmen, and M, Schläffer

DPA. The problem of most masking approaches is that they were designed and proven

secure in the assumption that the output of each gate switches only once per clock cycle.

Instead, glitches [30] occur in combinational CMOS circuits and each signal switches

several times. Due to these glitches, these circuits are vulnerable to DPA attacks [19,

20]. Furthermore, the amount of information leaked cannot be easily determined from

the mathematical description of a masked function. It depends too much on the used

hardware technology and the way the circuit is actually placed on a chip. All these

approaches start from compact but rather insecure implementations. Subsequently the

designers try to solve the known security issues by adding as little hardware as possible.

A different type of approach was proposed in [23,24] and is continued in this paper.

The idea is to first start from a very secure implementation and then, make this approach

more practical by minimizing the hardware requirements while still maintaining the

security level. Secret sharing schemes and techniques from multi-party computation are

used to construct combinational logic which is completely independent of the unmasked

values. The approach holds for both FPGAs and ASICs, and the idea can also be used

in software implementations. In this approach, the implementations increase with the

number of shares and for each nonlinear part of a circuit at least three shares (or masks)

are needed. Further, constructing secure implementations of arbitrary functions using

only a small number of shares is a difficult task.

2.2. Threshold Cryptography and Multi-Party Computation

MPC protocols enable a set of players to securely evaluate an arbitrary function on

their private inputs, but some of the players could be corrupted by an adversary. Con-

sider s players, each player holding an input xi . The players want to compute a func-

tion F(x1, . . . , xs) = z in a secure manner, which informally implies two things. The

adversary cannot interrupt the computation, hence the computed value is correct. Ad-

ditionally the adversary cannot learn any information about the inputs of the honest

players, except of course what can be inferred from the function value. The results can

be easily extended to more general types of functionality e.g. computing a function

F(x1, . . . , xs) = (z1, . . . , zs). A (t + 1, s) threshold system allows s parties to do secure

computations when at least t + 1 parties are needed to recover the secret. A protocol

is called t-private if any set of size at most t cannot get from the protocol execution

any additional information then what they already have from their shares. Hence, up

to t corrupt players can be tolerated, which will learn nothing about the secret. The

following theorem illustrates the power of MPC protocols.

Theorem 1 ([4, Theorem 1]). For every function f and t < s/2 there exists a t-private

protocol.

In order to prove this result, Ben-Or et al. use Shamir’s secret sharing scheme [33].

Let αi denote n distinct non-zero elements. A secret x is shared by randomly selecting

t elements ai and defining the polynomial p(y):

p(y) = x + a1y + a2y
2 + · · · + aty

t .

Each player Pi obtains the value xi = p(αi) and the secret is equal to p(0).

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 295

Let x, y be two elements that are shared using the polynomials p(y), respectively

q(y). Then the element x + y is encoded by the polynomial (p + q)(y) = p(y) + q(y).

Hence, in order to compute the shares for x +y = p(0)+q(0), each player Pi computes

xi +yi = (p+q)(αi). In the same way, the scaling of a secret with a constant is achieved

when each player scales his share by the same constant.

Let r(y) = p(y)q(y). Then indeed x · y = r(0) as desired, but the degree of r equals

2t , if the underlying field is of large enough order. If 2t ≥ s, then we can no longer have

enough data points to recover x ·y uniquely. Ben-Or et al. then define a degree reduction

and randomization step which transforms the s shares xi · yi into shares r̃(αi), where

r̃(y) is a new random polynomial of degree t and with r̃(0) = x · y. This step requires

linear multi-party computations on each of the shares xi · yi , which are implemented

again by defining polynomials and distributing shares to each of the players.

2.3. Our Approach

We construct a secret sharing scheme to share the secret variables that have to be

processed by the circuit. Splitting each variable in s shares was previously proposed

in [8]. Chari et al. analyze extensively the case s = 2, relating the amount of infor-

mation leaking by means of side channels to the number of sequences that an attacker

needs to observe in order to mount a successful attack. However, Chari et al. do not

investigate how nonlinear operations should be implemented in such a scheme.

In this paper here, we complete this approach and propose a way to implement non-

linear functions. Namely, we divide our circuits into combinatorial blocks which are

completely independent of the secret variables. We achieve this by making sure that no

single combinatorial block acts on all shares.

Linking our approach to MPC protocols, one can say that we equate each combina-

torial block with a party. In this paper, we investigate only the case where we need the

output of all sub-circuits in order to compute the output of the circuit. This corresponds

to an (s, s) threshold system. Our situation differs from the typical MPC case, because

each input xi is used by several parties (functions). Since each two functions together

(possibly) use all inputs, we have a (1, s, s) ramp scheme.

The functions are corrupted by means of side-channel attacks. A corrupt function

still produces correct results, hence we have passive corruption. In a first-order attack,

the attacker can corrupt at most one function at a time. Theorem 1 implies that given

enough random values and enough rounds of communication, every function can be im-

plemented. Our main constraint of course, is that we have to economize on the amount

of randomness and extra operations. Thereby we can tolerate a loss in provable security

but still try to achieve the best possible security.

A similar approach is followed in [15], where the authors try to achieve perfect se-

curity against all attackers that can measure up to t wires simultaneously. Besides the

high amount of extra operations, the main drawback of the approach in [15] is that they

ignore some typical aspects of real-life hardware implementations. For instance, they do

not achieve security against an attack where the sum of all instantaneous power signals

is measured, which in reality is of course a more easily accessible side channel than the

signals on t individual wires. They also stick to the idealized hardware model without

gate delays and glitches. The follow-up paper [14] looks into active probing attacks, but

does not solve the issues that we mentioned here.

296 S. Nikova, V. Rijmen, and M, Schläffer

3. DPA Attacks on Masking

Masking is a side-channel countermeasure which tries to randomize the intermediate

values of a cryptographic algorithm [22]. Then, the (randomized) power consumption

does not correlate with the intermediate values anymore. The most common masking

scheme is Boolean or linear masking where the mask is added by an XOR operation.

However, one problem of masking is that cryptographic algorithms like AES [9] com-

bine linear and nonlinear functions. Thus, many different hardware masking schemes

and masked gates have been proposed [1,5,25,39] but all of them have been broken again

[2,13,20,41]. Even though no wire carries an unmasked value, the power consumption

correlates with the unmasked intermediate results of the algorithm.

3.1. Glitches

The problem of these hardware masking schemes is that the effect of glitches has not

been considered. Glitches have first been analyzed in [19] and a technique to model

glitches has been presented in [35]. Glitches occur because the signals of a combina-

tional circuit can switch more than once if an input changes. The amount of glitches

depends on the specific hardware technology, the implementation and on the input val-

ues of a combinational logic.

For example in the common CMOS technology, circuits consume very low amounts

of power. The power consumption caused by glitches is relatively large compared to the

power consumption caused by non-switching operation of CMOS circuits. It follows

that the total power consumption of a CMOS circuit is strongly correlated to the number

of glitches that occur.

The reason why most masking schemes can be attacked is that they combine masks

and masked values into the same combinational logic. Since they are not processed

independently, also the number of glitches and thus, the power consumption is not in-

dependent of the masks and unmasked values. It follows that the power consumption is

a function of the unmasked value. Hence, it depends on the actual hardware implemen-

tation whether a design is secure. In this case, nothing about the security can be proven

during the design process.

3.2. Glitches in a Traditionally Masked AND Gate

In this section, we study the effect of glitches in a masked AND gate. We consider a

typical implementation of a masked AND gate [38], illustrated in Fig. 1. To make the

analysis easier, we assume here that XOR gates exist as basic primitives and do not

decompose them into smaller building blocks. We show that nevertheless, the number

of glitches and thus, the power consumption depends indeed on the unmasked value.

The circuit takes 5 inputs: the two random masks mx,my , the two masked inputs

xm = mx ⊕ x, ym = my ⊕ y, and a new random value mz to mask the output z =

x AND y. The circuit outputs the output mask mz and the masked output zm, which is

computed as follows:

zm = xmym ⊕
(

myxm ⊕
(

mxym ⊕ (mxmy ⊕ mz)
))

. (1)

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 297

Fig. 1. Glitch propagation through a masked AND gate.

Table 1. Number of affected gates in the circuit of Fig. 1, when a glitch occurs in input xm.

y my ym AND XOR

0 0 0 0 0

1 0 1 1 1

1 1 0 1 2

0 1 1 2 2

Note that the order in which the XOR gates are evaluated, is not arbitrary. If the circuit

would compute at any time the sum of any of the products, then there would be a leakage

of an unmasked value. For instance, xmym ⊕ my · xm = yxm, which leaks information

about y. This is one of the reasons why the new random value mz is introduced in the

beginning and why all the products are added one by one to it.

Consider now what happens if a glitch occurs in input xm. The propagation of this

glitch will depend on the values of my and ym. The power consumption caused by the

glitch is related to the number of gates that see the glitch. It is clear from Table 1 that

the energy consumption depends on the values of my and ym. Since the mean power

consumption is different for y = 0 and y = 1, the power consumption leaks information

on the value of y. Similar results can be obtained by analyzing the effect of a glitch

in one of the other inputs, and the cases where some of the inputs arrive delayed with

respect to the other inputs [19,20]. We conclude that switching characteristics of log-

ical circuits invalidate some of the assumptions commonly made in proofs of security

against side-channel attacks.

3.3. Simulating Attacks and Gate Delays

Although it is difficult to verify whether a design or a masking scheme is secure, dif-

ferent simulation techniques have been developed to verify the security of a design. A

simple method to analyze a design is by using the assumption that there is no delay at the

inputs and inside of a combinational logic. In this case, each signal and output switches

at most once and even simple masking schemes are secure using this model. However,

in [18] it has been shown by means of computer simulations, that most masked gates can

298 S. Nikova, V. Rijmen, and M, Schläffer

be attacked if the input signals of the combinational logic arrive at different moments in

time.

In [11] a model is used where each of the n input signals of a gate can arrive at a

different time. Thus, the output can switch up to n times. Although the model does not

allow delays inside the gate it takes glitches into account. In their paper a gate is defined

to be G-equivalent, if there is no correlation between the number of output transitions

and the unmasked value. Since it is not possible to build any nonlinear gate which is G-

equivalent using standard masking, the weakened requirement of semi-G-equivalence

has been defined. Using this notation it is possible to define nonlinear masked gates

which can be used to build arbitrary circuits. However, the big disadvantage of this

method is that semi-G-equivalent circuits have routing constraints, and it still depends

on the implementation whether a circuit is secure.

Another disadvantage of the previous model is that it does not take delays inside

the gate into account. Therefore, a more detailed power consumption model is to count

all transitions which occur in a combinational logic. A common method is to use unit

delay for all gates and an even more accurate method is to derive the delay of a circuit

by back-annotated netlists [16]. In this case, different timing information for different

gates and wire lengths are considered. Most secure masking schemes can be broken by

performing attacks based on these simulations.

However, none of these methods can prove that a circuit is secure in the presence of

glitches because each method takes only special cases into account. Therefore, these

methods can only be used to attack masking schemes. In the following sections we

examine a masking scheme based on secret sharing which is provable secure in the

presence of glitches.

4. Sharing

In this section we introduce terminology, formulate requirements and prove results

about the security of our approach. Note that both sharing (higher-order masking), as

well as the uniformity requirement we give in Sect. 4.4 are not new approaches in the

quest for side-channel resistant implementations. However, the main improvement in

our approach is the noncompleteness requirement (see Sect. 4.3) for each computa-

tion and combinational logic of a hardware implementation. This requirement seems

obvious but is rather difficult to achieve in combination with the other requirements.

Nevertheless, we further show how to construct and implement basic shared Boolean

functions which fulfill all requirements.

4.1. Terminology

We denote stochastic variables by small characters x, y, . . . and samples of these vari-

ables by capitals X,Y, We denote by Pr(x = X) the probability that x takes the

value X, and often abbreviate this to Pr(x). Probability is defined as the number of

times that the variable x takes the value X, divided by the number of different values

that the input of the circuit can take.

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 299

We denote a vector of s shares xi by x = (x1, x2, . . . , xs) and split a variable x into s

additive shares xi with

x =
∑

i

xi .

We will only use (s, s) secret sharing schemes, hence all s shares are needed in order

to determine x uniquely. In a perfect (s, s) secret sharing scheme, knowledge of up to

s − 1 shares does not give any additional information on the value of x. Observe that a

traditional masking scheme corresponds to a (2,2) secret sharing scheme.

In a function f with p > 1 input variables, we will use superscripts x1, x2, . . . , xp

to differentiate the different input variables. Let Q denote the number of different

(X1,X2, . . . ,Xp) values that the input of f can take. Then Qs is the number of dif-

ferent (X
1
,X

2
, . . . ,X

p
) values that the vector of input shares can take. In this paper,

we use secret sharing schemes where

Pr
(

x1 = X
1
, . . . , xp = X

p)

= Q1−s Pr

(

x1 =

s
∑

i=1

X1
i , . . . , x

p =

s
∑

i=1

X
p
i

)

. (2)

Hence we have

s
∑

i=1

X
j

i =

s
∑

i=1

Y
j

i ,∀j ⇒ Pr
(

x1 = X
1
, . . . , xp = X

p)

= Pr
(

x1 = Y
1
, . . . , xp = Y

p)

.

In words, any bias present in the joint distribution of the shares (x1, . . . , xp) is only due

to a bias in the distribution of the unshared variables x1, . . . , xp .

4.2. Realization

In order to implement a vector function (z1, . . . , zq) = f(x1, . . . , xp) we need a set of

functions fi which together compute the output(s) of f. We call this a realization and get

the following property:

Property 1 (Correctness). Let (z1, . . . , zq) = f(x1, . . . , xp) be a vector function. Then

the set of functions fi(x
1, . . . , xp) is a realization of f if and only if

(Z1, . . . ,Zq) = f
(

X1, . . . ,Xp
)

=

s
∑

i=1

fi
(

X
1
, . . . ,X

p)

for all vectors of input shares (X
1
, . . . ,X

p
) satisfying

∑s
i=1 X

j
i = Xj with 1 ≤ j ≤ p.

4.3. Noncompleteness

The next property is important to prove the security of a realization of a function. We

denote the reduced vector (x
j

1 , . . . , x
j

i−1, x
j

i+1, . . . , x
j
s) by x

j
i .

300 S. Nikova, V. Rijmen, and M, Schläffer

Property 2 (Noncompleteness). Every function is independent of at least one share

of the input variable x and consequently, independent of at least one share of each

component. Without loss of generality, we require that zi is independent of x
j
i ,∀j :

z1 = f1

(

x1
1, x

2
1, . . . , x

p

1

)

z2 = f2

(

x1
2, x

2
2, . . . , x

p

2

)

. . .

zs = fs
(

x1
s , x

2
s , . . . , x

p
s

)

When constructing a realization for a vector function fj , we need to ensure that Prop-

erty 2 is satisfied for each component of the output. As we have defined in Property 2,

each output share with index i needs to be independent of all input shares with the same

index i.

4.4. Uniformity

The following property will turn out to be useful in Sect. 4.8, where we introduce

pipelined implementations.

Property 3 (Uniformity). A realization of (z1, . . . , zq) = f(x1, . . . , xp) is uniform, if

the distribution of the shares of the output satisfies

Pr
(

z1 = Z
1
, . . . , zq = Z

p)

= Q1−s Pr

(

z1 =

s
∑

i=1

Z1
i , . . . , z

q =

s
∑

i=1

Z
q
i

)

(3)

provided that the distribution of the shares of the input satisfies (2).

If the function f is invertible, then Property 3 is satisfied by invertible realizations. In

an invertible realization of f, every vector (Z
1
, . . . ,Z

q
) is reached for exactly one input

vector (X
1
, . . . ,X

p
). This condition is stricter than the requirement that every output

tuple (Z1, . . . ,Zq) is reached for exactly one input tuple (X1, . . . ,Xp).

4.5. Implementing Linear Transformations

Consider a linear transformation (z1, . . . , zq) = ℓ(x1, . . . , xp). The easiest way to im-

plement a linear transformation securely is to process the s shares independently. In-

deed, if

(

z1
i , . . . , z

q
i

)

= ℓ
(

x1
i+1, . . . , x

p

i+1

)

, 1 ≤ i < s,

(

z1
s , . . . , z

q
s

)

= ℓ
(

x1, . . . , x
p

1

)

,

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 301

then by definition of a linear transformation, we have

(

z1, . . . , zq
)

=

s
∑

i=1

(

z1
i , . . . , z

q

i

)

=

s
∑

i=1

ℓ
(

x1
i , . . . , x

p

i

)

= ℓ

(
s

∑

i=1

(

x1
i , . . . , x

p

i

)

)

= ℓ
(

x1, . . . , xp
)

.

Such an implementation of a linear transformation does not leak information that can be

used in a side-channel attack, even if glitches are taken into account [19,20]. A typical

property of this implementation is that each output share z
j

i depends only on one input

share of each variable.

4.6. Implementing Nonlinear Transformations of Low Degree

We will construct circuits for nonlinear transformations having a similar property as

the secure circuits for linear transformations. Intuitively, it is clear that if a share z
j

i

does not depend on input shares x1
i , x2

i , . . . then z
j

i cannot be correlated to x1, x2,

Neither will the computation of z
j
i leak information about the value of x1, x2, This

is formalized in the following theorem.

Theorem 2. In a realization satisfying Property 1 and Property 2, if the distribution

of the shares of the inputs satisfies (2), then each of the output shares z
j
i is statistically

independent of the input variables xj and the output variables zj . Furthermore, the

same holds for all intermediate results that are computed during the computation of

the output shares and for physical quantities, like power consumption, electro-magnetic

radiation etc., which are a function of these intermediate results.

Proof. Without loss of generality, we give the proof for output variable z1. Let

ϕ(x1
1, . . . , x

p

1) denote an arbitrary function of the p × (s − 1) input shares x
j

i with

1 ≤ j ≤ p and 2 ≤ i ≤ s. For instance, ϕ can be z1
1, an intermediate result needed to

compute z1
1, the power consumed by the combinatorial circuit that computes z1

1, . . .

Pr(ϕ = �) =
∑

X
1
,...,X

p

ϕ(X
1
1,...,X

p
1

)=�

Pr
(

x1 = X
1
, . . . , xp = X

p)

=
∑

X
1
1,...,X

p
1

ϕ(X
1
1,...,X

p
1

)=�

∑

X1
1,...,X

p
1

Pr
(

x1 = X
1
, . . . , xp = X

p)

.

302 S. Nikova, V. Rijmen, and M, Schläffer

Since Xj =
∑

i X
j

i , we can change variables and replace X1
1, . . . ,X

p

1 by X1, . . . ,Xp .

Furthermore we use (2) and obtain:

Pr(ϕ = �) =
∑

X
1
1,...,X

p
1

ϕ(X
1
1,...,X

p
1

)=�

Q1−s
∑

X1,...,Xp

Pr
(

x1 = X1, . . . , xp = Xp
)

︸ ︷︷ ︸

=1

.

Next, we compute

Pr
(

ϕ = � | x1 = X1, . . . , xp = Xp
)

=
∑

X
1
,...,X

p

ϕ(X
1
1,...,X

p
1

)=�

Pr
(

x1 = X1, . . . , xp = Xp | x1 = X1, . . . , xp = Xp
)

=
∑

X
1
1,...,X

p
1

ϕ(X
1
1,...,X

p
1

)=�

∑

X1
1,...,X

p
1

Pr
(

x1 = X
1
, . . . , xp = X

p
| x1 = X1, . . . , xp = Xp

)

︸ ︷︷ ︸

A

.

The terms in the sum A are non-zero for exactly one combination of X1
1, . . . ,X

p

1 , which

satisfies

Xj =

s
∑

i=1

X
j

i .

It follows from (2) that in this case Pr(x1 = X
1
, . . . , xp = X

p
| x1 = X1, . . . , xp =

Xp) = Q1−s . We conclude that ϕ and (x1, . . . , xp) are statistically independent. �

In other words, a circuit of a realization satisfying the requirements of Theorem 2

leaks no information on the variables that are processed.

Corollary 1. If a realization satisfies Property 1 and Property 2, and if the distribution

of the shares of the inputs satisfies (2), then the expected value of the power consumption

of a circuit implementing the realization is independent of x1, . . . , xp and z1, . . . , zq ,

even in the presence of glitches or the delayed arrival of some inputs.

Proof. Since the proof of Theorem 2 makes no assumption on the behavior of the

circuit and/or the presence of glitches, the theorem holds for each sub-circuit computing

one of the y
j

i , also in the case of delayed inputs or glitches. Furthermore, the mean

power consumption of the whole circuit is the sum of the mean power consumptions of

the sub-circuits and expectation is a linear operation. �

4.7. Implementing Arbitrary Functions

Property 1 and Property 2 impose a lower bound on the number of shares s.

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 303

Theorem 3. The minimum number of shares required to implement a product of D

variables with a realization satisfying Property 2 and 1 is given by

s ≥ 1 + D.

Proof. Multiplying D factors with s shares each can be done in the following way.

Collect in the first output share all terms that do not contain the first share of any of

the inputs. Collect in the second output share all terms that contain the first share of

any of the inputs, but not the second share of any of the inputs. Continuing in this way,

collect in output share i all the terms containing input shares 1,2, . . . and i − 1, but not

input share i. Finally, collect in output share s the terms containing the terms with input

shares 1,2, . . . and s − 1 but not input share s. Only if s − 1 ≥ D, there are no terms

left after step s. �

It follows that we need at least three shares in order to implement a nonlinear function.

The construction used in the proof of Theorem 3 can also be used to implement more

general monomials. For instance, the monomial x3y can be implemented as a product

of four variables. Because not all variables are independent, it might be that there exist

other solutions with a lower number of shares. Hence, we have the following corollary.

Corollary 2. The maximum number of shares required to implement a function f of u

variables over GF(2m), equals 1 + 2mu.

Proof. Since ∀x ∈ GF(2m) : x2m
= x, it is always possible to describe f as a multi-

variate polynomial of degree at most 2mu. For instance, we can use the Lagrange in-

terpolation formula. We construct the functions fi for each separate monomial of f by

applying the same method as in the proof of Theorem 3. Summing up the functions for

each monomial, we obtain the functions for f. �

Theorem 3 shows that implementing more complicated functions typically leads to

an increase in the number of shares required, as well as an increase in the number of

gates required. This should not come as a big surprise, because introducing resistance

against power attacks always comes at a price. For instance, in [27], the authors re-

port an increase in area with a factor 5, for a decrease in performance with factor 0.6.

The software solution proposed in [32] doubles the code size, multiplies the RAM re-

quirements with a factor of 20 and decreases the performance with a factor 50. Other

proposals add more complexity for the same security level. Nevertheless, for functions

with large numbers of inputs, it is better to adopt pipelining.

4.8. Pipelining

Pipelining is often used to speed up hardware implementations. In order to allow large

clock frequencies, combinatorial logic circuits should not be too deep. Pipelining is

an implementation technique where a logical circuit with l levels is divided into two

circuits with l/2 levels, separated by a register, which stores the intermediate result of

the first stage until the active phase of the next clock cycle. As an example, the AES

implementation of [42] uses a pipeline with two stages to implement the S-boxes.

304 S. Nikova, V. Rijmen, and M, Schläffer

Dividing a combinatorial circuit into separate pipelining stages, can also reduce the

number of shares and the number of gates required for an implementation that has to

be protected against side-channel attacks in the presence of glitches. By definition, a

register is insensible to glitches. The registers storing the intermediate results at the end

of stage bound the propagation of glitches and delays. When considered individually,

each of the pipeline stages represents a mathematical function that is less complex than

the full circuit: the nonlinear degree will be lower and/or the number of monomials that

needs to be summed. This will typically reduced the required number of shares and

gates.

We now prove a result about the security of a pipelined implementation. Consider a

pipelined realization consisting of r combinatorial layers and r registers, i.e. one register

for the output shares and r − 1 for the intermediate shares. The function that computes

share y
j

i,t at the output of pipeline stage t is denoted by fi,j,t . The power consumption

in the circuit that implements this function is denoted by Pi,j,t .

As before, we assume that the distribution of the shares of the inputs satisfies (2).

Note that condition (2) needs now to be fulfilled at the input of each pipeline stage.

Since the input of the next pipeline stage is formed by the output of the previous pipeline

stage, we can achieve this goal by demanding that the functions fi,j,t satisfy additionally

Property 3, next to Property 1 and Property 2. We can then prove the following.

Theorem 4. Under the conditions described above, no linear combination of the

power consumptions Pi,j,t is statistically correlated to any of the input variables xj

nor to any of the output variables yj .

Proof. We prove that for any choice of the linear coefficients ci,j,t the covariance

cov

(
∑

i,j,t

ci,j,tPi,j,t , y
1

)

= 0.

The proof can easily be extended to other output variables and to input variables. We

start with the definition of the covariance:

cov

(
∑

i,j,t

ci,j,tPi,j,t , y
1

)

= E

[

y1
∑

i,j,t

ci,j,tPi,j,t

]

− E
[

y1
]

E

[
∑

i,j,t

ci,j,tPi,j,t

]

=
∑

i,j,t

ci,j,t

(

E
[

y1Pi,j,t

]

− E
[

y1
]

E[Pi,j,t]
)

.

Each of the fi,j,t satisfies Property 1 and Property 2. Their inputs satisfy (2). Hence we

can apply Corollary 1 to derive that E[y1Pi,j,t] = E[y1]E[Pi,j,t]. �

4.9. Summary: What do we Achieve?

In a circuit implementing a realization satisfying the conditions of Theorem 2, each

intermediate result of the computation is statistically independent of the input and the

output variables. This is a strong result. However, the required number of shares and the

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 305

typical number of gates required to implement such a circuit increases with the degree

of the function that is to be implemented.

If we adopt the pipelining approach, then Property 2 is fulfilled only within each stage

of the pipeline, instead of the whole realization. Hence the conditions of Theorem 2 are

not fulfilled. If each of the pipeline stages satisfies the three properties, then Theorem 4

applies. The theorem implies that we achieve security against attacks that are based on

correlating a secret variable or a variable derived from secret variables to the expected

values of the power consumption or any other side-channel of a device or parts of a

device. A foremost example of a variable derived from a secret variable is the hypothet-

ical power consumption of a device computed by adopting a certain leakage model and

a guess for some bits of the secret key [21]. We also achieve security against attacks

that perform linear operations (addition, subtraction, scaling) on the side-channels be-

fore computing averages. To summarize, Theorem 4 implies first-order resistance of a

shared implementation.

Alas, Theorem 4 does not cover every physical effect of a hardware implementation,

nor every attack based on side-channel information. Remember that in order to prove

Corollary 1, we need to make an assumption on the hardware, namely that the power

consumption of each shared sub-circuit is indeed independent of the other sub-circuits.

Hence, we have to make sure that for instance cross-coupling effects between different

sub-circuits are negligible. However, this is at least a much easier requirement then

for instance equal wire lengths, since we could place the sub-circuits separately on the

chip. Further, Theorem 4 does not cover resistance against attacks using any nonlinear

combination of shares or analyzing higher-order moments of the distribution of the

power consumption. However, in practice these higher-order attacks are more difficult

to perform due to the presence of noise, which is illustrated by the experimental results

in Sect. 6. Further, the resistance of an implementation against higher-order attacks can

be strengthened by using sharing in combination with other counter measures.

5. Implementing Nonlinear Functions Using Three Shares

Recall that Theorem 3 implies, that for any nonlinear function at least three shares are

needed to fulfill Property 2. In this section we analyze which basic nonlinear func-

tions can be shared using only three shares and present a method to construct them,

such that all three properties are fulfilled. Finally, we show how the multiplication in

the extension field GF(22m)/GF(2m) (and in particular in GF(4)) can be successfully

shared using three shares. This tower field approach is often used in implementations

of the AES S-box [7]. Replacing the multiplication in GF(4) by a shared multiplication

(which fulfills all three properties) does not immediately give pipelining stages which

fulfill Property 3 as well. In general, the output distribution of combined functions is

not uniform anymore. However, this could be solved by using additional random inputs

at each pipelining stage.

Before we show how to find shared functions, we introduce a simplified notation

which is used in the following sections. We will denote the n components of the input

x by (a, b, . . .) and the m components of the output z by (e, f, . . .). We define the

vectorial Boolean function of z = f(x) by

(e, f, . . .) = f(a, b, . . .) (4)

306 S. Nikova, V. Rijmen, and M, Schläffer

and its m Boolean component functions fj (x) of f(x) as follows:

e = f1(x) = f1(a, b, . . .),

f = f2(x) = f2(a, b, . . .).
(5)

To construct a shared implementation of the function f, each element of the input x and

of the result z is divided into s shares. To divide the function f, we need to split each

component function fj into s shared functions with

e = e1 + · · · + es = f1
(

(a1 + · · · + as), (b1 + · · · + bs), . . .
)

,

f = f1 + · · · + fs = f2
(

(a1 + · · · + as), (b1 + · · · + bs), . . .
)

.
(6)

For example Property 2 requires the shares ei , fi , . . . to be independent of ai , bi , . . .

ei = f1
i (ai, bi, . . .),

fi = f2
i (ai, bi, . . .).

5.1. Constructing Nonlinear Shared Functions

In this section, we start investigating how to construct realizations that successfully

“share” a given function. Here, to successfully share implies that the resulting real-

ization of a nonlinear function satisfies all three Properties 1, 2 and 3. Note that the

following steps can simply be generalized to more shares as well.

We construct nonlinear shared functions by splitting the shared function, such that

only Property 1 and 2 are fulfilled first. This is always possible for any function of

algebraic degree two (see Corollary 2). If we continue with the notation of Sect. 4.3

(function fj is independent of all shares with index j), terms of degree two can only be

placed in the share with the missing index. For example, the term a1b2 can only be a

part of function (or share) f3 since f1 has to be independent of a1 and f2 of b2. However,

all linear terms and quadratic terms with equal index i can be placed in one of the two

shared functions fj with i �= j .

Usually, Property 3 is not fulfilled after this step. To change the output share distri-

bution we can add other terms to the noncomplete shared functions. These correction

terms must not violate the first two properties but can be used to fulfill Property 3.

Hence, only a special set of correction terms can be added to the individual shares. To

maintain Property 1, it is only possible to add the same term to an even number of differ-

ent shares. This ensures that the correction terms cancel out after adding the shares. To

retain Property 2, we can only add terms which are independent of at least two shares.

Therefore, only linear terms and terms with equal index i can be used as correction

terms.

Usually, this step is difficult to fulfill for arbitrary functions with a high algebraic

degree. Two approaches can be used to simplify this step. In the first approach, we split

the functions into subsequent parts with lower algebraic degree and then, try to ensure

all requirements for these sub-functions first. Note that Property 3 is easier to fulfill if

the resulting sub-functions are permutations (also see Sect. 6). The second approach

is to add additional random inputs to the (sub-)functions. If we just remask the output

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 307

of the shared functions using fresh masks, we can always ensure Property 3. However,

in our approach we try to minimize these additional masks and for simple Boolean

functions, we do not need to remask at all.

5.2. Sharing Nonlinear Functions with Two Inputs

We first start with the most simple nonlinear Boolean functions and provide the follow-

ing Theorem:

Theorem 5. No nonlinear gate or Boolean function with two inputs and one output

can be shared using three shares.

Proof. All nonlinear Boolean functions with two inputs and one output can be de-

fined in algebraic normal form (ANF) by the following eight functions with parameters

k0, k1, k2 ∈ {0,1} and index i = k0 · 4 + k1 · 2 + k2:

fi(a, b) = k0 + k1a + k2b + ab. (7)

To share these nonlinear Boolean functions using three shares, we first split the inputs

a and b into three shares and get the following functions:

e1 + e2 + e3 = fi(a1 + a2 + a3, b1 + b2 + b3)

= k0 + k1(a1 + a2 + a3) + k2(b1 + b2 + b3)

+ (a1 + a2 + a3) · (b1 + b2 + b3)

= k0 + k1(a1 + a2 + a3) + k2(b1 + b2 + b3)

+ a1b1 + a1b2 + a1b3 + a2b1 + a2b2 + a2b3 + a3b1 + a3b2 + a3b3.

Then, terms with different indices are placed into the share with the missing index and

the share for all other terms can be chosen freely.

To satisfy Property 3, the shared-output distribution of (e1, e2, e3) needs to be uni-

form for each unshared input value (a, b). In other words, each possible shared out-

put value has to occur equally likely. The input of the unshared functions can take

the four values (a, b) ∈ {00,01,10,11}. In the case of the shared multiplication with

f (a, b) = ab, we get for the input (a, b) = 00 the output e = e1 + e2 + e3 = 0 and

the distribution of its shared output values (e1, e2, e3) ∈ {000,011,101,110} has to be

uniform.

For each of the eight nonlinear functions all possible correction terms are the con-

stant term, the six linear terms a1, a2, a3, b1, b2, b3 and the three quadratic terms

a1b1, a2b2, a3b3. Due to the small number of correction terms we can evaluate all pos-

sibilities and prove that no combinations leads to a uniform shared representation. It

follows that a shared nonlinear function with two inputs, one output and three shares

does not exist. �

308 S. Nikova, V. Rijmen, and M, Schläffer

5.3. Sharing Nonlinear Functions with Three Inputs

The result of the previous section leads to the question if there are any nonlinear func-

tions that can be shared using three shares. To answer this question we look at the class

of nonlinear Boolean functions with three inputs and one output bit:

fi(a, b, c) = k0 + k1a + k2b + k3c + k4ab + k5ac + k6bc + k7abc (8)

with k0, . . . , k7 ∈ {0,1}. It follows from Theorem 3 that a Boolean function of algebraic

degree 3 can never be shared using three shares. Therefore, we always require k7 = 0.

To get a nonlinear function at least one of the coefficients with degree two (k4, k5, k6)

needs to be non-zero and we get 112 nonlinear functions. To share these 112 functions,

we split each input and output into three shares and get:

e1 + e2 + e3 = fi(a1 + a2 + a3, b1 + b2 + b3, c1 + c2 + c3)

= k0 + k1(a1 + a2 + a3) + k2(b1 + b2 + b3) + k3(c1 + c2 + c3)

+ k4(a1b1 + a1b2 + a1b3 + a2b1 + a2b2 + a2b3 + a3b1 + a3b2 + a3b3)

+ k5(a1c1 + a1c2 + a1c3 + a2c1 + a2c2 + a2c3 + a3c1 + a3c2 + a3c3)

+ k6(b1c1 + b1c2 + b1c3 + b2c1 + b2c2 + b2c3 + b3c1 + b3c2 + b3c3).

These functions can be shared using the same method as in the previous section but we

can now use the following 22 correction terms:

linear: 1, a1, a2, a3, b1, b2, b3, c1, c2, c3

degree 2: a1b1, a2b2, a3b3, a1c1, a2c2, a3c3, b1c1, b2c2, b3c3

degree 3: a1b1c1, a2b2c2, a3b3c3

By adding at least three correction terms, many uniform shared functions for all of the

112 nonlinear functions can be found.

5.4. Shared Multiplication in GF(22m)/GF(2m)

In this section we show that the multiplication in GF(22m)/GF(2m) and in particular

GF(4) can be successfully shared using three shares. We have implemented the multipli-

cation using normal bases, i.e. for GF(22m)/GF(2m) the bases is defined by an element

v of GF(22m).

– Let {v, v2m
} be a normal basis of GF(22m) over GF(2m).

– Define q = TrGF(22m)/GF(2m)(v) = v + v2m
, so q ∈ GF(2m)∗ and

– g = q−1NormGF(22m)/GF(2m)(v) = q−1v2m+1 = q−1v2 + v, i.e. g ∈ GF(2m)∗.

Then any element x from GF(22m) can be described by a tuple (a, b) such that

x = av + bv2m
. Let (a, b) and (c, d) be the coordinates of two elements of GF(22m).

Therefore coordinates of the product are given by the following formula:

(e, f) = (a, b) × (c, d) ⇔

{

e = (a + b)(c + d)g + qac,

f = (a + b)(c + d)g + qbd.
(9)

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 309

In the following, we will illustrate the sharing for the case m = 1, i.e. the multiplica-

tion in GF(4), in more detail. Formula (9) can be simplified since both constants g and

q are equal to 1. Further, we use the normal basis {v = 01, v2 = 10}.

(e, f) = (a, b) × (c, d) ⇔

{

e = (a + b)(c + d) + ac,

f = (a + b)(c + d) + bd.
(10)

To construct a shared multiplication, each of the four inputs a, b, c, and d and the results

e and f are divided into three shares:

(e1 + e2 + e3)

= (a1 + a2 + a3)(c1 + c2 + c3)

+
(

(a1 + a2 + a3) + (b1 + b2 + b3)
)(

(c1 + c2 + c3) + (d1 + d2 + d3)
)

,

(f1 + f2 + f3)

= (b1 + b2 + b3)(d1 + d2 + d3)

+
(

(a1 + a2 + a3) + (b1 + b2 + b3)
)(

(c1 + c2 + c3) + (d1 + d2 + d3)
)

.

After expanding the multiplication formulas, each term of the two component functions

is placed into one of the three output shares. Since the multiplication consists only of

quadratic terms it is always possible to fulfill Property 2:

e1 = a2d2 + a2d3 + a3d2 f1 = a2c2 + a2c3 + a3c2

+ b2c2 + b2c3 + b3c2 + a2d2 + a2d3 + a3d2

+ b2d2 + b2d3 + b3d2, + b2c2 + b2c3 + b3c2,

e2 = a1d3 + a3d1 + a3d3 f2 = a1c3 + a3c1 + a3c3

+ b1c3 + b3c1 + b3c3 + a1d3 + a3d1 + a3d3

+ b1d3 + b3d1 + b3d3, + b1c3 + b3c1 + b3c3,

e3 = a1d1 + a1d2 + a2d1 f3 = a1c1 + a1c2 + a2c1

+ b1c1 + b1c2 + b2c1 + a1d1 + a1d2 + a2d1

+ b1d1 + b1d2 + b2d1, + b1c1 + b1c2 + b2c1.

To fulfill Property 3 we need a uniform output share distribution for each of the

16 unshared input values (a, b, c, d). For example, the input (a, b, c, d) = 0111 re-

sults in the output (e, f) = 01. The shared result is uniform, if each possible value of

(e1, e2, e3, f1, f2, f3) with e1 + e2 + e3 = 0 and f1 +f2 +f3 = 1 occurs equally likely.

We have 24 unshared and 212 shared input values and, hence, we get 212−4 = 28 values

for each unshared output (e, f). Since two bits of the shares (e1, e2, e3, f1, f2, f3) have

already been determined, each of the remaining 24 shares has to occur 28−4 = 24 times.

The input of the shared multiplication are the 12 variables ai , bi , ci and di with

i ∈ {1,2,3}. When searching for uniform functions, we can add only correction terms

which have the same index i in all of its elements. We get one constant, four linear and

310 S. Nikova, V. Rijmen, and M, Schläffer

six quadratic terms, four terms of degree 3 and one term (aibicidi) of degree 4. This

gives 16 possible correction terms for each shared component function of e and f . The

search space of finding a uniform representation can be reduced by allowing for only a

limited number of correction terms. Further, ei and fi are rotation symmetric and each

Boolean shared function needs to be balanced. Using at most six linear or quadratic

correction terms, we have found thousands of uniform realizations of the multiplication

in GF(4) using three shares. Hence, a hardware designer has still lots of freedom to

choose an efficient implementation. We give one example for correction terms here:

e′
1 = a3 + b2c2 + b3c3 + a2c2,

f ′
1 = c3 + d3 + a2c2 + a3c3 + b2d2 + b3d3,

e′
2 = a1 + a3 + d1 + b1c1 + b3c3 + a1d1,

f ′
2 = c3 + d1 + d3 + a3c3 + b1d1 + b3d3,

e′
3 = a1 + d1 + b1c1 + b2c2 + a2c2 + a1d1,

f ′
3 = d1 + a2c2 + b1d1 + b2d2.

6. Secure Implementation of Noekeon

In the previous section we have analyzed which nonlinear function can be successfully

shared such that all required properties are fulfilled. It turns out to be quite difficult to

find a realization for more complex functions such as the AES. Especially Property 3

is difficult to achieve if no new randomness is added to the shares. However, the block

ciphers Noekeon [10] and Present [6] have been designed for compact hardware im-

plementations and consist of less complex nonlinear functions. Therefore, it is easier to

find a realization for these block ciphers which is shown in this section for Noekeon and

in [28] for Present.

In the following, we show a realization for the S-box of the Noekeon block cipher

using three shares. We have implemented this shared function and simulate the power

consumption based on back-annotated netlists, which takes data dependent glitches and

timing delays into account. Then, we analyze the side-channel resistance of sharing by

attacking this shared S-box and confirm its security against first-order attacks. Addi-

tionally, we analyze the higher-order resistance of the shared Noekeon S-box at the end

of this section.

6.1. Noekeon

Noekeon is a block cipher with a block and key length of 128 bits, which has been de-

signed to counter implementation attacks. It is an iterated cipher consisting of 16 iden-

tical rounds. In each round five simple round transformations are applied. The cipher is

completely linear except for the nonlinear S-box Gamma. The linear parts can be pro-

tected against first-order DPA using one mask (two shares), whereas for the nonlinear

part this is not possible.

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 311

Table 2. The substitution table of the 4-bit S-box Gamma of the block cipher Noekeon.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 7 A 2 C 4 8 F 0 5 9 1 E 3 D B 6

The nonlinear 4-bit S-box Gamma is defined by Table 2 and consists of two equal

nonlinear layers NL(x), separated by a linear layer L(x):

S(x) = NL
(

L
(

NL(x)
))

. (11)

The nonlinear layer (e, f, g,h) = NL(a, b, c, d), which consists of only one AND, one

NOR and two XOR operations, and the linear layer (i, j, k, l) = L(a, b, c, d) are defined

by:

e = a + (b ∧ c) = a + bc, i = d,

f = b + ¬(c ∨ d) = 1 + b + c + d + cd, j = b,

g = c, k = a + b + c + d,

h = d, l = a.

Due to this simple structure of the S-box, it is relatively easy to find a realization using

three shares, which we show in the following subsection.

6.2. Sharing the Noekeon S-box Using Three Shares

Since the algebraic degree of this function is 3, the whole function cannot be shared

using three shares. However, if we split Gamma into two layers with algebraic degree

two, we can share it using three shares again. We split Gamma after the linear layer

and combine the first nonlinear layer with the linear layer to get y = L(NL(x)) and

z = NL(y). This results in less complex formulas and we get for the ANF of the resulting

eight Boolean component functions (i, j, k, l) = L(NL(a, b, c, d)) and (e, f, g,h) =

NL(i, j, k, l):

i = d, e = i + jk,

j = 1 + b + c + d + cd, f = 1 + j + k + l + kl,

k = 1 + a + b + bc + cd, g = k,

l = a + bc, h = l.

To share these functions we need to share the four inputs and outputs of each layer and

get 24 shared Boolean functions. To construct these functions, we have placed the terms

depending on their index into the regarding output share. This results in uniform shared

functions for both layers of Gamma. The formulas for the two layers of the shared

Noekeon S-box using three shares are shown in Appendix A.

We have implemented both the protected and the unprotected Noekeon S-box using

a 0.35 µm standard cell library [3]. A schematic of the shared Noekeon S-box is shown

in Fig. 2. In a straightforward implementation using just the ANF of the functions, the

312 S. Nikova, V. Rijmen, and M, Schläffer

Fig. 2. A schematic of the shared Noekeon S-box using three shares.

protected S-box is approximately 3.5 times larger than the unprotected S-box (188 gate

equivalents compared to 54 gate equivalents). Since there is room for further improve-

ments and the linear parts of the Noekeon cipher can be implemented using two shares

only, the relative increase in size of the implementation for the whole cipher will be

smaller. This shows that shared implementations can already compete with other hard-

ware countermeasures.

6.3. Side-Channel Attacks Based on Simulated Power Consumptions

To analyze the side-channel resistance of secure implementations, it is common to sim-

ulate the instantaneous power consumption of a device under attack. This is the first step

to verify the effectiveness of a countermeasure. A quite accurate model is to determine

the power consumption using the transition count model and a back-annotated netlist to

derive the timing delays [16]. The simulated power consumption L(t) is computed by

counting the transitions at each point in time for an appropriate time quantization. The

resulting power traces cover the dynamic switching characteristics of CMOS circuits

which usually leak most information about the processed data. Note that this model

takes data dependent glitches and timing delays into account and the simulated device

leaks the Hamming distance (HD) between the previously and newly computed values.

In order to study the side-channel resistance of the shared S-box of Noekeon we have

simulated the power consumption of the synthesized circuit using the transition count

model with the timing delays of the used standard cell library. Usually, the resulting

power traces depend on a secret key and a side-channel attack is applied to recover this

key. We have implemented a shared Noekeon S-box with key addition at its input of the

form z = S(k ⊕ d), where k is the secret key, d the known input data and z the output of

the S-box. The shared Noekeon S-box takes as its input x1 = k ⊕ m1, x2 = d ⊕ m2, and

x3 = m1 ⊕ m2, with m1 and m2 two independent random masks. The simulated power

consumption at time t is denoted by L(t) and examples of simulated power traces for the

secret key k = 11 are given in Fig. 3. Note that in each clock cycle, glitches occur since

many signals switch their state more than once until the output of the combinational

logic is settled.

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 313

Fig. 3. A single (left) and 100 (right) simulated power traces for key k = 11 with a time quantization of 16

for each clock cycle. The two clock cycles of the computation (first layer: time 0-1, second layer: time 1-2)

and the cycle for storing the result in the output register (time 2-3) are clearly visible.

6.4. Correlation Attack

In this section, we analyze the first-order resistance of the shared Noekeon S-box. We

use a correlation attack to detect linear and first-order dependencies between the hypo-

thetical and simulated power consumption. Hence, according to Theorem 4 a successful

correlation attack on the shared Noekeon S-box should not be possible.

In a correlation attack, we try to correlate the simulated power consumption L(t)

with the hypothetical power consumption H(k) derived from the different key guesses

k and an appropriate power model. If the simulated device leaks the Hamming distance

(HD), also the hypothetical power consumption H(k) is based on the Hamming dis-

tance between the previously and newly computed hypothetical values. If the correct

key guess results in a correlation value that can be statistically distinguished from the

correlation values obtained using the wrong key guesses, then we declare the attack to

be successful.

We have computed the correlation between the simulated power consumption L(t)

and the hypothetical power consumption for the first Hy(k) = HD(y′, y′′) and second

layer Hz(k) = HD(z′, z′′) of the Noekeon S-box (y′, z′: previous values; y′′, z′′: new

values). Figure 4 shows the results for the unprotected (unshared) S-box. The correct

key guess results in a much larger correlation between L(t) and H(k) for each layer.

The results of the shared Noekeon S-box are shown in Fig. 5. There is no point in time

where the correlation between L(t) and H(k) for the correct key guess is distinguishable

from the correlation for the wrong key guesses. These results show that there is no

linear relation between the number of transitions and the unshared values. This confirms

Theorem 4 in practice and that a constant mean power consumption can be achieved

using the proposed sharing approach.

6.5. Mutual Information Analysis (MIA)

In the previous section we have verified that the mean power consumption is indepen-

dent of the unshared values. Hence, we have shown that the sharing scheme resists first-

order attacks using simulated power traces. In this section we perform a higher-order

314 S. Nikova, V. Rijmen, and M, Schläffer

Fig. 4. Simulated correlation attack on the unshared Noekeon S-box (black: correct key), with a time quan-

tization of 8 for each clock cycle which gives the best result.

attack or more specific, we analyze higher-order moments of the probability distribution

functions of the unshared values. Note that we do not claim provable security against

higher-order attacks in the case of the shared Noekeon S-box using three shares. Only

the mean value (the first-order moment) is provably independent of the unshared values.

Note that in Boolean masking, the distribution using three shares is not independent of

the unshared value. For example, a 1-bit value 0 is shared by {000,011,110,101} and

a 1-bit value 1 by {001,010,100,111} which clearly shows that the distributions or

higher-order moments are not independent of the unshared values.

Hence, Boolean sharing (or masking) schemes are usually not resistant against

higher-order attacks. If the power consumption of more shares are combined, the prob-

ability distribution functions of each unshared value can be distinguished by analyzing

their higher-order moments [26,34]. To analyze higher-order dependencies of proba-

bility distribution functions, mutual information analysis (MIA) has been proposed in

[12]. Indeed, mutual information analysis can lead to better side-channel attacks if the

measured statistical leakage L(t) is related to the hypothesis H(k) in a nonlinear way

[29,40]. However, using more shares the resistance of Boolean masking increases if the

noise increases as well [8,34].

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 315

Fig. 5. Simulated correlation attack on the shared Noekeon S-box (black: correct key), with a time quanti-

zation of 16 for each clock cycle which gives the best result.

In the following, we first give a brief introduction to mutual information analysis.

The mutual information of two random variables x and y can be defined using the

(conditional) entropy of these two variables. The entropy H(x) of a random variable x

is a measure of the amount of information one can obtain from an observation of x. The

entropy is defined as

H(x) = −
∑

X∈x

Pr(x = X) · log2

(

Pr(x = X)
)

.

To determine the mutual information, we also need to compute the conditional entropy.

The Conditional Entropy specifies the entropy of a random variable x, given a random

variable y which has been obtained from some related experiment and is defined as

follows:

H(x|y) =
∑

Y∈y

Pr(y = Y) · H(x|y = Y).

316 S. Nikova, V. Rijmen, and M, Schläffer

Fig. 6. Mutual information analysis on the shared Noeken S-box (black: correct key). In the first cycle only

the combinational logics and in the third cycle only the registers are attacked.

Using these two definitions, the Mutual Information gives the amount of information

that the given random variable y reveals about x and is defined as follows:

I(x;y) = H(x) − H(x|y).

We apply a mutual information analysis to the same simulated power consumption

L(t) as in the correlation attack. Again, the hypothetical power consumption is the Ham-

ming distance (HD) of the unshared values again and we get Hy = HD(y′, y′′) for the

first, and Hz = HD(z′, z′′) for the second layer. Then, we evaluate I(Hy(k);L(t)) and

I(Hz(k);L(t)) for all key guesses, which gives the mutual information between the hy-

pothetical and simulated power consumption. We have determined the probability dis-

tribution functions (pdf) of H(k) and L(t) using the histogram method with 256 bins.

For more details on computing the mutual information we refer to [29]. For a success-

ful attack, the mutual information using the correct key guess should be statistically

distinguishable from the mutual information using the wrong key guesses.

Figure 6 and Fig. 7 show the result of the mutual information analysis for the first

and second layer of the shared Noekeon S-box at different points in time. In this attack

we have used the total transition count for each clock cycle. Note that the results of the

attacks do not change if a higher time quantization or more traces are used. We have

attacked the three peaks of Fig. 3 at clock cycle 1, 2 and 3: Fig. 6(a) shows the first

cycle (time 0-1), where only the combinational logic of the first layer is computed, and

Fig. 6(b) shows the third cycle (time 2-3), where the output of the shared S-box is stored

in the output registers without subsequent combinational logic. The mutual information

analysis shows that an attack on merely the combinational logic (first cycle, Fig. 6(a))

is not feasible due to the high algorithmic noise of the combinational logic itself. The

correct key can only be recovered in the third cycle, where only the result of the second

layer is stored in the output register (Fig. 6(b)). In this case the register transitions are

measured and attacked without any noise.

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 317

Fig. 7. Mutual information analysis on the shared Noeken S-box (black: correct key). In the second cycle,

the computation of the combinational logic overlaps storing the previous results in the registers.

6.6. Protections against Mutual Information Analysis

Even though an attack is feasible in the third cycle, sharing is secure in the first-order

setting i.e. if only the power consumption of one combinational logic or the mean of the

total power consumption is analyzed. However, mutual information analysis exploits

higher-order moments of the probability distribution function as well as the combina-

tion of all three shares. Note that higher-order countermeasures such as sharing are more

powerful in the presence of noise. Additionally, the measurement of higher-order mo-

ments is also more sensitive to noise. Note that in practice, the transitions of the registers

are overlapped by the algorithmic noise of the subsequent combinational logic which

makes a higher-order comparison of probability distribution functions more difficult.

We confirm this behavior by performing a mutual information analysis on the second

cycle (time 1-2), where the results of the previous computation are stored in the registers

and the combinational logic of the second layer is computed. The results show that an

attack is indeed not possible if the transitions of the registers are overlapped by the

transitions of the subsequent combinational logic (second cycle, Fig. 7(a) and Fig. 7(b)).

Hence, already the algorithmic noise make a mutual information analysis infeasible for

shared implementations. In practice, the noise level will be even higher and it seems

to be difficult that a shared implementation can be attacked in practice using mutual

information analysis.

7. Conclusion

In this paper we have proposed a method to construct implementations of cryptographic

functions that are secure against a large class of side-channel attacks, making only mini-

mal assumptions on the underlying hardware. In particular, our method works also when

the hardware technology is not glitch-free.

The approach is based on multi-party computation protocols. It also takes into ac-

count that in order to be used in practice, the overhead caused by protection measures

should be kept under control. We have defined three properties that are sufficient to

318 S. Nikova, V. Rijmen, and M, Schläffer

make an implementation resistant against attacks that work by computing the correla-

tion between the average power consumption of the device and the hypothetical power

consumption using a known (guessed) key.

We have analyzed which basic nonlinear functions can be securely implemented us-

ing the minimum of three shares and presented a method to construct shared Boolean

functions. We have implemented the block cipher Noekeon using only three shares by

introducing pipelining stages separated by latches or registers. Finally, we have pre-

sented the first verification of this implementation method based on computer simula-

tions.

We see several possibilities to extend our work. Firstly, it might be possible to ex-

tend our approach in order to achieve provable resistance against a wider range of at-

tacks, e.g. by using more shares and/or fresh randomness after a number of steps. An

alternative approach would be to introduce some assumptions on the hardware and the

signal-to-noise ratio of its side-channels. For instance, in theory very powerful mutual

information attack turns out to be very sensitive toward noise. Combining our approach

with the addition of fresh randomness or some extra noise to the hardware circuit seems

to result in a very strong protection (also see [28]).

Secondly, one might want to provide resistance also against fault attacks. In a fault

attack, the attacker causes an error during the execution of the cryptographic functions

in order to defeat some of the protection mechanisms. In some sense, a fault attack

compares to an ordinary side-channel attack like a chosen-plaintext attack compares to a

known-plaintext attack. We imagine that techniques from threshold cryptography could

help to make a circuit recover automatically from errors, without leaking information.

A third line of future work is to securely implement more complex nonlinear func-

tions, such as the AES S-boxes, which is still a mathematically challenging task. How-

ever, the construction of complex Boolean functions according to Theorem 4 can be

simplified by using additional, fresh random input masks at each register level.

Acknowledgements

We thank Thomas Popp and Marcel Medwed for many useful discussions. This work

has been supported in part by the IAP Programme P6/26 (BCRYPT) of the Belgian

State (Belgian Science Policy), by the Research Fund K.U.Leuven and by the European

Commission under contract ICT-2007-216646 (ECRYPT II). We also thank Thomas

Popp and Marcel Medwed for many useful discussions.

Appendix A. Formulas for the Noekeon S-box Using Three Shares

The formulas in ANF of the shared Noekeon S-box or nonlinear function Gamma using

three shares. The first step combines the first nonlinear layer with the linear layer:

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 319

i1 = d2,

i2 = d3,

i3 = d1,

j1 = 1 + b2 + c2 + d2 + c2d2 + c3d2 + c2d3,

j2 = b3 + c3 + d3 + c3d1 + c1d3 + c3d3,

j3 = b1 + c1 + d1 + c1d1 + c2d1 + c1d2,

k1 = 1 + a2 + b2 + b2c2 + b3c2 + b2c3 + c2d2 + c3d2 + c2d3,

k2 = a3 + b3 + b3c1 + b1c3 + b3c3 + c3d1 + c1d3 + c3d3,

k3 = a1 + b1 + b1c1 + b2c1 + b1c2 + c1d1 + c2d1 + c1d2,

l1 = a2 + b2c2 + b3c2 + b2c3,

l2 = a3 + b3c1 + b1c3 + b3c3,

l3 = a1 + b1c1 + b2c1 + b1c2.

The second step consists only of the second nonlinear layer:

e1 = i2 + j2k2 + j3k2 + j2k3,

e2 = i3 + j3k1 + j1k3 + j3k3,

e3 = i1 + j1k1 + j2k1 + j1k2,

f1 = 1 + j2 + k2 + l2 + k2l2 + k3l2 + k2l3,

f2 = j3 + k3 + l3 + k3l1 + k1l3 + k3l3,

f3 = j1 + k1 + l1 + k1l1 + k2l1 + k1l2,

g1 = k2,

g2 = k3,

g3 = k1,

h1 = l2,

h2 = l3,

h3 = l1.

References

[1] M.L. Akkar, C. Giraud, An implementation of DES and AES, secure against some attacks, in CHES,

ed. by Çetin Kaya Koç, D. Naccache, C. Paar. LNCS, vol. 2162 (Springer, Berlin, 2001), pp. 309–318

[2] M.L. Akkar, R. Bevan, L. Goubin, Two power analysis attacks against one-mask methods, in FSE, ed.

by B.K. Roy, W. Meier. LNCS, vol. 3017 (Springer, Berlin, 2004), pp. 332–347

320 S. Nikova, V. Rijmen, and M, Schläffer

[3] Austria Microsystems: Standard Cell Library 0.35 µm CMOS (C35), http://asic.austriamicrosystems.

com/databooks/c35/databook_c35_33

[4] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant

distributed computation (extended abstract), in STOC (ACM, New York, 1988), pp. 1–10

[5] J. Blömer, J. Guajardo, V. Krummel, Provably secure masking of AES, in Selected Areas in Cryptogra-

phy, ed. by H. Handschuh, M.A. Hasan. LNCS, vol. 3357 (Springer, Berlin, 2004), pp. 69–83

[6] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin, C. Vikkel-

soe, PRESENT: An ultra-lightweight block cipher, in CHES, ed. by P. Paillier, I. Verbauwhede. LNCS,

vol. 4727 (Springer, Berlin, 2007), pp. 450–466

[7] D. Canright, A very compact S-box for AES, in CHES, ed. by J.R. Rao, B. Sunar. LNCS, vol. 3659

(Springer, Berlin, 2005), pp. 441–455

[8] S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi, Towards sound approaches to counteract power-analysis at-

tacks, in CRYPTO, ed. by M.J. Wiener. LNCS, vol. 1666 (Springer, Berlin, 1999), pp. 398–412

[9] J. Daemen, V. Rijmen, AES proposal: Rijndael. Submitted as an AES Candidate Algorithm (2000),

http://www.nist.gov/aes

[10] J. Daemen, M. Peeters, G.V. Assche, V. Rijmen, Nessie proposal: NOEKEON. Submitted as an NESSIE

Candidate Algorithm (2000), http://www.cryptonessie.org

[11] W. Fischer, B.M. Gammel, Masking at gate level in the presence of glitches, in CHES, ed. by J.R. Rao,

B. Sunar. LNCS, vol. 3659 (Springer, Berlin, 2005), pp. 187–200

[12] B. Gierlichs, L. Batina, P. Tuyls, B. Preneel, Mutual information analysis, in CHES, ed. by E. Oswald,

P. Rohatgi. LNCS, vol. 5154 (Springer, Berlin, 2008), pp. 426–442

[13] J.D. Golic, C. Tymen, Multiplicative masking and power analysis of AES, in CHES, ed. by B.S. Kaliski

Jr., Çetin Kaya Koç, C. Paar. LNCS, vol. 2523 (Springer, Berlin, 2002), pp. 198–212

[14] Y. Ishai, M. Prabhakaran, A. Sahai, D. Wagner, Private circuits II: Keeping secrets in tamperable circuits,

in EUROCRYPT, ed. by S. Vaudenay. LNCS, vol. 4004 (Springer, Berlin, 2006), pp. 308–327

[15] Y. Ishai, A. Sahai, D. Wagner, Private circuits: Securing hardware against probing attacks, in CRYPTO,

ed. by D. Boneh. LNCS, vol. 2729 (Springer, Berlin, 2003), pp. 463–481

[16] M. Kirschbaum, T. Popp, Evaluation of power estimation methods based on logic simulations, in Aus-

trochip, ed. by K.C. Posch, J. Wolkerstorfer (Verlag der Technischen Universität Graz, Graz, 2007), pp.

45–51

[17] P.C. Kocher, J. Jaffe, B. Jun, Differential power analysis, in CRYPTO, ed. by M.J. Wiener. LNCS, vol.

1666 (Springer, Berlin, 1999), pp. 388–397

[18] S. Mangard, K. Schramm, Pinpointing the side-channel leakage of masked AES hardware implementa-

tions, in CHES, ed. by L. Goubin, M. Matsui. LNCS, vol. 4249 (Springer, Berlin, 2006), pp. 76–90

[19] S. Mangard, T. Popp, B.M. Gammel, Side-channel leakage of masked CMOS gates, in CT-RSA, ed. by

A. Menezes. LNCS, vol. 3376 (Springer, Berlin, 2005), pp. 351–365

[20] S. Mangard, N. Pramstaller, E. Oswald, Successfully attacking masked AES hardware implementations,

in CHES, ed. by J.R. Rao, B. Sunar. LNCS, vol. 3659 (Springer, Berlin, 2005), pp. 157–171

[21] S. Mangard, E. Oswald, T. Popp, Power Analysis Attacks—Revealing the Secrets of Smart Cards

(Springer, Berlin, 2007), http://www.dpabook.org

[22] T.S. Messerges, Securing the AES finalists against power analysis attacks, in FSE, ed. by B. Schneier.

LNCS, vol. 1978 (Springer, Berlin, 2000), pp. 150–164

[23] S. Nikova, C. Rechberger, V. Rijmen, Threshold implementations against side-channel attacks and

glitches, in ICICS, ed. by P. Ning, S. Qing, N. Li. LNCS, vol. 4307 (Springer, Berlin, 2006), pp. 529–

545

[24] S. Nikova, V. Rijmen, M. Schläffer, Secure hardware implementation of non-linear functions in the

presence of glitches, in ICISC, ed. by P.J. Lee, J.H. Cheon. LNCS, vol. 5461 (Springer, Berlin, 2008),

pp. 218–234

[25] E. Oswald, S. Mangard, N. Pramstaller, V. Rijmen, A side-channel analysis resistant description of the

AES S-box, in FSE, ed. by H. Gilbert, H. Handschuh, LNCS, vol. 3557 (Springer, Berlin, 2005), pp.

413–423

[26] F.J. Pautot, Some formal solutions in side-channel cryptanalysis—an introduction. Cryptology ePrint

Archive, Report 2008/508 (2008), http://eprint.iacr.org/

[27] T. Popp, S. Mangard, Masked dual-rail pre-charge logic: DPA-resistance without routing constraints, in

CHES, ed. by J.R. Rao, B. Sunar. LNCS, vol. 3659 (Springer, Berlin, 2005), pp. 172–186

http://asic.austriamicrosystems.com/databooks/c35/databook_c35_33
http://asic.austriamicrosystems.com/databooks/c35/databook_c35_33
http://www.nist.gov/aes
http://www.cryptonessie.org
http://www.dpabook.org
http://eprint.iacr.org/

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches 321

[28] A. Poschmann, A. Moradi, K. Khoo, C.W. Lim, H. Wang, S. Ling, Side-channel resistant crypto for less

than 2,300 GE. J. Cryptol. Special Issues on Hardware and Security (2010). doi:10.1007/s00145-010-

9086-6

[29] E. Prouff, M. Rivain, Theoretical and practical aspects of mutual information based side channel analy-

sis, in ACNS, ed. by M. Abdalla, D. Pointcheval, P.A. Fouque, D. Vergnaud. LNCS, vol. 5536 (2009),

pp. 499–518

[30] J.M. Rabaey, Digital Integrated Circuits: A Design Perspective (Prentice-Hall, Upper Saddle River,

1996)

[31] M. Rivain, E. Dottax, E. Prouff, Block ciphers implementations provably secure against second order

side channel analysis, in FSE, ed. by K. Nyberg. LNCS, vol. 5086 (Springer, Berlin, 2008), pp. 127–143

[32] K. Schramm, C. Paar, Higher order masking of the AES, in CT-RSA, ed. by D. Pointcheval. LNCS, vol.

3860 (Springer, Berlin, 2006), pp. 208–225

[33] A. Shamir, How to share a secret. Commun. ACM 22(11), 612–613 (1979)

[34] F.X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed, M. Kasper, S. Mangard, The

world is not enough: Another look on second-order DPA. Cryptology ePrint Archive, Report 2010/180

(2010), http://eprint.iacr.org/

[35] D. Suzuki, M. Saeki, T. Ichikawa, DPA leakage models for CMOS logic circuits, in CHES, ed. by J.R.

Rao, B. Sunar. LNCS, vol. 3659 (Springer, Berlin, 2005), pp. 366–382

[36] K. Tiri, I. Verbauwhede, Securing encryption algorithms against DPA at the logic level: Next genera-

tion smart card technology, in CHES, ed. by C.D. Walter, Çetin Kaya Koç, C. Paar. LNCS, vol. 2779

(Springer, Berlin, 2003), pp. 125–136

[37] K. Tiri, I. Verbauwhede, A logic level design methodology for a secure DPA resistant ASIC or FPGA

implementation, in DATE (IEEE Computer Society, Los Alamitos, 2004), pp. 246–251

[38] E. Trichina, T. Korkishko, K.H. Lee, Small size, low power, side channel-immune AES coprocessor:

Design and synthesis results, in AES Conference, ed. by H. Dobbertin, V. Rijmen, A. Sowa. LNCS, vol.

3373 (Springer, Berlin, 2004), pp. 113–127

[39] E. Trichina, D.D. Seta, L. Germani, Simplified adaptive multiplicative masking for AES, in CHES, ed.

by B.S. Kaliski Jr., Çetin Kaya Koç, C. Paar. LNCS, vol. 2523 (Springer, Berlin, 2002), pp. 187–197

[40] N. Veyrat-Charvillon, F.X. Standaert, Mutual information analysis: How, when and why? in CHES, ed.

by C. Clavier, K. Gaj. LNCS, vol. 5747 (Springer, Berlin, 2009), pp. 429–443

[41] J. Waddle, D. Wagner, Towards efficient second-order power analysis, in CHES, ed. by M. Joye, J.J.

Quisquater. LNCS, vol. 3156 (Springer, Berlin, 2004), pp. 1–15

[42] J. Wolkerstorfer, E. Oswald, M. Lamberger, An ASIC implementation of the AES SBoxes, in CT-RSA,

ed. by B. Preneel. LNCS, vol. 2271 (Springer, Berlin, 2002), pp. 67–78

http://dx.doi.org/10.1007/s00145-010-9086-6
http://dx.doi.org/10.1007/s00145-010-9086-6
http://eprint.iacr.org/

	Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches
	Abstract
	Introduction
	Related Work
	History of Countermeasures
	Threshold Cryptography and Multi-Party Computation
	Our Approach

	DPA Attacks on Masking
	Glitches
	Glitches in a Traditionally Masked AND Gate
	Simulating Attacks and Gate Delays

	Sharing
	Terminology
	Realization
	Noncompleteness
	Uniformity
	Implementing Linear Transformations
	Implementing Nonlinear Transformations of Low Degree
	Implementing Arbitrary Functions
	Pipelining
	Summary: What do we Achieve?

	Implementing Nonlinear Functions Using Three Shares
	Constructing Nonlinear Shared Functions
	Sharing Nonlinear Functions with Two Inputs
	Sharing Nonlinear Functions with Three Inputs
	Shared Multiplication in GF(22m)/GF(2m)

	Secure Implementation of Noekeon
	Noekeon
	Sharing the Noekeon S-box Using Three Shares
	Side-Channel Attacks Based on Simulated Power Consumptions
	Correlation Attack
	Mutual Information Analysis (MIA)
	Protections against Mutual Information Analysis

	Conclusion
	Acknowledgements
	Appendix A. Formulas for the Noekeon S-box Using Three Shares
	References

