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Abstract. One interesting and important challenge for the cryptologic
community is that of providing secure authentication and identification
for unassisted humans. There are a range of protocols for secure iden-
tification which require various forms of trusted hardware or software,
aimed at protecting privacy and financial assets. But how do we verify
our identity, securely, when we don’t have or don’t trust our smart card,
palmtop, or laptop?
In this paper, we provide definitions of what we believe to be reason-
able goals for secure human identification. We demonstrate that existing
solutions do not meet these reasonable definitions. Finally, we provide
solutions which demonstrate the feasibility of the security conditions at-
tached to our definitions, but which are impractical for use by humans.

1 Introduction

Consider the problem of human identification. A human H wishes to prove his
identity to a computational device C. The channel over which H and C will
communicate is insecure and possibly controlled by an adversary. The protocol
which accomplishes this task must satisfy the property that no adversary, even
one who has witnessed past identifications, may successfully impersonate H ex-
cept with negligible probability. Complicating matters further, H and C would
like to reuse the secret they share for many identifications.

This problem arises on a daily basis in our society, yet the solutions to date
are inadequate for several reasons. The traditional password approach is unac-
ceptable, since a network snoop can record the password and will then be able
to falsely authenticate as the user at will. Schemes which build a cryptograph-
ically strong key from some initial weak secret, such as SRP and EKE, require
trusted hardware and software, since the computations involved are far beyond
the abilities of most humans. Zero-knowledge schemes such as Fiat-Shamir [1]
require trusted hardware which can be stolen or compromised. One-time pass-
words [2] are just that – good for only a single authentication; pads of such
passwords are vulnerable to theft and still require a large ratio of “key material”
to authentications.

These schemes all require the human to have some computational or memory
aid to securely authenticate himself. In this paper we seek a solution that is viable
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for the traveler who lost his luggage, or the purchaser who forgot his wallet. We
believe that practical scenarios such as these justify the need for such a solution.

An alternative to the above schemes (SRP, EKE, Fiat-Shamir, one-time pass-
words) is a challenge-response protocol:

– The user and computer share a secret.
– The computer randomly challenges the user
– The user responds in such a way that an adversary cannot easily learn the

secret.

Papers by Matsumoto and Imai [3], Wang et al [4], and Matsumoto [5] provide
schemes which are sufficient for a small number of authentications. In their case,
the secret can be recovered in polynomial time once a linear (in the size of
the secret) number of authentications have been witnessed by an eavesdropper.
(In our case, the number of authentications that must be witnessed to recover
a secret in polynomial time is quadratic in the size of the challenge, which in
turn is superpolynomial in the size of the secret.) Naor and Pinkas [6] give an
identification protocol which is secure for a number of identifications which is
linear in the size of the challenge and which requires a low-tech hardware item: a
transparency. If stolen, the transparency can be copied and used to masquerade
successfully as the legitimate user.

It is the goal of this paper to suggest that protocols which allow unaided hu-
mans to identify themselves securely and repeatedly may be feasible and should
be a goal of the cryptographic community. In Section 2 we provide security defi-
nitions which we contend should be the goal of human identification protocols. In
Section 3, we give examples of some cryptographic primitives which humans can
execute without assistance. Section 4 gives a protocol which is provably secure
against eavesdropping adversaries, based on these primitives; Section 5 outlines
a protocol which is heuristically secure against arbitrary adversaries. This pro-
tocol is composed of a small number of steps that are individually feasible for
humans. As a whole, however, the protocol requires too much computation (and
possibly too much memory) to be practical for most humans.

2 Definitions

We begin by formally defining the notion of an identification protocol, and what
we will mean for a protocol to be human executable. We then define two notions
of security, in terms of passive and active adversaries. Finally we show how some
traditional solutions to this problem either fail to satisfy the conditions of human
execution or security.

2.1 Human Identification Protocols

We follow [7] in defining a protocol as a pair of (public, probabilistic) interact-
ing programs (H,C) with auxiliary inputs; we denote the result of interaction
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between H and C with inputs x and y as 〈H(x), C(y)〉 and we denote the tran-
script of bits exchanged during their interaction by T (H(x), C(y)). A protocol
yields some form of identification if H and C accept with high probability when
run with the same auxiliary input and reject with high probability when run
with different auxiliary input.

Definition 1. An identification protocol is a pair of probabilistic interactive
programs (H,C) with shared auxiliary input z, such that the following conditions
hold:

– For all auxiliary inputs z, Pr[〈H(z), C(z)〉 = accept] > 0.9
– For each pair x �= y, Pr[〈H(x), C(y)〉 = accept] < 0.1

When 〈H,C〉 = accept, we say that H verifies his identity to C, C authenticates
H, or H authenticates to C.

In this paper we are interested in the case where H can be executed by a
human. For the reasons outlined in Section 1, we rule out any form of com-
putational aid. Additionally, we allow for occasional human error and varying
abilities of the human population:

Definition 2. An identification protocol (H,C) is said to be (α, β, t) - human
executable if at least a (1−α) portion of the human population can perform the
computations H unaided and without errors in at most t seconds, with probability
greater than 1− β.

An ultimate goal might be to design a (.1, .1, 10)-human executable identifi-
cation protocol that also meets the security definitions defined subsequently; the
protocols we give here are on the order of (.9, .2, 300)-human executable, which
is clearly not practical as a replacement for traditional solutions to the problem.
Still, since they meet our security conditions, we believe they provide evidence
that such a protocol is feasible.

A practical issue concerns whether the claim “(H,C) is (α, β, t)-human ex-
ecutable” can be demonstrated. Since we lack a well-defined model of human
computation, establishing the claim rigorously seems infeasible in most cases.
However, we believe that for the present, in many cases such claims can be eval-
uated intuitively. In cases where they cannot, empirical evidence should suffice.

2.2 Security Definitions

We give both a weak characterization of security, in terms of passive adversaries,
and a strong characterization of security, in terms of active adversaries. Both
characterizations are parameterized by a pair (p, k) where p gives the probability
that a computationally bounded attacker can successfully simulate H to C after
k interactions with H and/or C.
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Definition 3. An identification protocol (H,C) is (p, k)-secure against passive
adversaries if for all computationally bounded adversaries A,

Pr[〈A(T k(H(z), C(z))), C(z)〉 = accept] ≤ p ,

where T k(H(z), C(z)) is a random variable sampled from k independent tran-
scripts T (H(z), C(z)).

That is, even after a passive adversary has witnessed k identification sessions
between H and C, he still cannot successfully masquerade as H with probability
greater than p. A passive adversary models the eavesdropper or “shoulder-surfer”
who is willing to watch H identify himself but does not control the communi-
cation channel between H and C. On the other hand, an active adversary is
permitted to control the channel between H and C, which leads to a much
stronger definition of security.

Definition 4. An identification protocol (H,C) is (p, k)-secure against active
adversaries if for all computationally bounded adversaries A,

Pr[〈A(T k(A, H(z), C(z))), C(z)〉 = accept] < p ,

where T k(A, H(z), C(z)) denotes a random variable sampled from k sessions
where A is allowed to observe and make arbitrary changes to the communications
between H and C.

This last definition is a theoretical goal which in practice is not achieved by
any existing solution to this problem, except for the case k = 1. For example,
most password-based protocols may be compromised in one authentication by a
trojan horse which records the user’s password before performing (or failing to
perform) the computational steps involved. Therefore, we will relax this condi-
tion as follows. We will allow a third outcome for the interaction of H and C
(and any third parties): we will allow H to reject C. This will be denoted by
〈H(·), C(·)〉 =⊥. Our relaxed security requirement is that after eavesdropping
on k identification sessions, A still has probability at most q of interacting with
H and C without being detected:

Definition 5. An identification protocol (H,C) is (p, q, k)-detecting against ac-
tive adversaries if for all computationally bounded adversaries A,

– Pr[〈H(z),A(T k(H(z), C(z)))〉 �=⊥] < q
– Pr[〈A(T k(H(z), C(z))), C(z)〉 = accept] < p .

In this setting, we deprive the adversary A of the opportunity to interfere
with communication between H and C. For a protocol satisfying this security
condition, H should consider his communications with C to be compromised
once H rejects C, and should not respond to any further authentication requests
until the parties may securely exchange a new secret z′.
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We note that in the human-executable setting some parameters may be re-
laxed when compared with computationally intensive protocols for identifica-
tion. For example, a “standard” cryptographic goal for an identification protocol
might be a protocol which is (2−m, 2−m, 2100)-detecting against active adver-
saries. But when a human is providing the transcripts for T k(C(z), H(z)) it is
quite reasonable to expect that security for 106 authentications will be sufficient,
since a human would take decades to provide so many. Further, many applica-
tions which require human authentication are apparently more tolerant to false
positives; for example, most automated teller machines have a confidence level
of only 10−4. Thus a (10−6, 10−6, 107)-detecting protocol may be acceptable for
humans.

3 Plausible Hard Problems

In this section we introduce two computational problems as candidates for con-
structing secure human executable authentication protocols, along with some
evidence that these computational problems are hard. Both problems can be
characterized as loosely based on the sparse subset sum problem, taken over
vectors of digits, with some twists intended to allow more authentications.

3.1 Learning Parity in the Presence of Noise

Suppose the secret shared between the human and the computer is a vector x
of length n over GF (2). Authentication proceeds as follows: The computer, C,
generates a random n-vector c over GF (2) and sends it to the human, H, as a
challenge. H responds with the bit r = c · x, the inner product over GF (2). C
accepts if r = c · x. Clearly on a single authentication, C accepts a legitimate
user H with probability 1, and an impostor with probability 1

2 ; iteration k times
results in accepting an impostor with probability 2−k. Unfortunately, after ob-
serving O(n) challenge-response pairs between C and H, the adversary M can
use Gaussian elimination to discover the secret x and masquerade as H.

Suppose we introduce a parameter η ∈ (0, 1
2 ) and allow H to respond incor-

rectly with probability η; in that case the adversary can no longer simply use
Gaussian elimination to learn the secret x. This is an instance of the problem
of learning parity with noise (LPN). In fact the problem of learning x becomes
NP-Hard in the presence of errors; it is NP-Hard to even find an x satisfying
more than half of the challenge-response pairs collected by M [8]. Of course,
the hardness results of H̊astad [8] simply imply that there exist instances of this
problem which cannot be solved in polynomial time unless P=NP; it is still pos-
sible that the problem is tractable in the random case. However, Kearns[9] has
shown that in the random case, parity is not efficiently learnable in the statisti-
cal query model; and all known efficient learning algorithms for noisy concepts
can be cast in this model. Additionally, Blum et al [10] show that for the case of
uniformly distributed challenges, weak prediction is equivalent to strong predic-
tion – that is, any algorithm to predict the next response bit with probability
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1
2 + 1

nc can be used to recover the underlying parity function; and any algo-
rithm which can learn LPN when the parity function is chosen uniformly can
be used to learn arbitrary parity functions. Further, the best known algorithm
for the general random problem, due to Blum, Kalai and Wasserman, requires
2Ω(n/ logn) challenge-response pairs and works in time 2Ω(n/ logn); here we will
give some evidence that this problem is, in fact, uniformly hard and cannot be
solved in time and sample size poly(n, 1/( 1

2 − η)).
In the following, we will refer to an instance of LPN as a m × n matrix A

(where m = poly(n)); a m-vector b, and a noise parameter η; the problem is
to find a n-vector x such that |Ax− b| ≤ ηm, where |x| denotes the Hamming
weight of the vector x.

Lemma 1. (Pseudo-randomizability)
Any instance of LPN can be transformed in polynomial time into an instance
chosen uniformly at random from a space of 2n

2
possibilities.

Proof: Choose the n × n matrix R ∈U {0, 1}n2
; Then if there is a solution to

the instance (AR,b, η), say y, then we have:

|(AR)y − b| ≤ ηm ,

and if we let x := Ry we find that Ax = A(Ry) = (AR)y, which yields the
desired x, since:

|Ax− b| = |(AR)y − b| ≤ ηm .

Thus there is a polynomial-time transformation between adversarial instances
and and a large class of random instances, such that a solution to the randomly
chosen instance can be transformed into a solution to the adversarial instance.
Phrased differently, each instance of LPN belongs to a space of O(2n

2
) instances

such that either all of the instances are easy or only a negligible fraction are
easy. This is similar to the situation with discrete logarithms, where either all
of the instances modulo a given prime are easy, or only a negligible fraction are
easy.

Lemma 2. (Log-Uniformity)
If there exists an algorithm A capable of solving a 1/poly(n) fraction of the
instances (A,b, η) of LPN in time poly(n, log(1/( 1

2 − η))), then with high prob-
ability, any instance can be solved in time poly(n, log(1/( 1

2 − η))).

Proof: Let ε(η) = 1
2 − η, and let A be an algorithm which solves random

instances in time poly(n, log(1/ε(η))). Let (A,b, η) be an adversarial instance of
LPN. Create the new instance (A′,b′, η′) as follows:

– For each row of A, randomly choose n other rows of A and use the sum of
these rows as the corresponding entry in A′

– Fill in the corresponding entry in b′ by adding the corresponding rows of b.
– Set η′ := 1

2 − 1
2 (1− 2η)n+1
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Given the error rate η in the initial instance, the error rate η′ is correct, by the
following lemma (due to Blum, Kalai, and Wasserman):

Lemma 3. Let (a1, b1), . . . , (as, bs) be samples from (A,b, η); then b1 + . . .+ bs
is the correct label for a1 + . . . + as with probability 1

2 + 1
2 (1− 2η)s.

The proof follows by induction on s [11]. The resulting instance is distributed
uniformly; so with probability 1/poly(n), A solves it in time poly(n, log(1/ε(η′))).
But note that:

ε(η′) =
1
2

(1− 2η′)n+1

=
1
2

(1− 2(
1
2
− ε(η)))n+1

=
1
2

(2ε(η))n+1

so that poly(n, log(1/ε(η′))) = poly(n, log(1/ε(η))); since the expected number
of attempts to find an instance soluble by A is poly(n), A solves adversarial
instances in time poly(n, log(1/ε(η))).

Conjecture 1. (Hardness of LPN)
LPN is uniformly hard in n and η: there is no algorithm to solve a uniformly
chosen instance (A,b, η) in time poly(n, 1/( 1

2 − η)) with non-negligible proba-
bility.

Evidence:

– (LPN) is not efficiently learnable in the statistical query model; combined
with the uniformity results of Blum et al this suggests that uniformly chosen
inputs are hard.

– The best known algorithm for the random case, given by Blum, Kalai, and
Wasserman, has superpolynomial complexity.

– Lemmas 1 and 2.

This assumption is not unprecedented: the McEliece public-key cryptosystem
[12] relies on a related assumption, and the pseudo-random generator proposed
by Blum, Furst, Kearns and Lipton [10] is secure under a very similar assumption.

In adapting this problem to use by humans, we restrict the hamming weight of
the secret vector x to be k, where k is roughly logarithmic in n, the length of the
challenge. Rather than taking the inner product of vectors over GF (2), challenges
are vectors of decimal digits, and responses are the sum without carries (i.e.,
modulo 10) of the digits in the positions corresponding to the non-zero entries of
x. Our best algorithm for solving instances of this related problem has complexity(
n
k/2

)
. The algorithm proceeds by evaluating all possible hamming-weight k/2

vectors on the challenges, and applying hashing to find pairs of vectors which
sum to the correct response on roughly a fraction 1− η of challenges. Note that
while this attack is better than the brute force approach of guessing all weight-k
vectors – which has complexity

(
n
k

)
– the complexity is still superpolynomial

when k is logarithmic in n.
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3.2 Sum of k Mins

Let z = 〈(x1, y1), (x2, y2), . . . , (xk, yk)〉 be a set of pairs (xi, yi) of integers mod
n. Let v ∈ {0, . . . , 9}n, and define f(v, z) by:

f(v, z) =
k∑
i=1

min{v[xi],v[yi]} mod 10 .

Then the sum of k mins problem is: given m pairs (v1, u1), . . . (vm, um),
where vi ∈ {0, . . . , 9}n, ui ∈ {0, . . . , 9}, and k log10 n ≤ m ≤ (n2), find a set z
such that ui = f(vi, z) for all i = 1, . . . ,m.

An algebraic approach to this problem is to form the system of equations
given by:



v1,1,2 v1,1,3 . . . v1,n−1,n
v2,1,2 . . . v2,i,j . . .
...

. . .
vm,1,2 . . . vm,i,j . . . vm,n−1,n







z1,2

z
...

zi,j
...

zn−1,n




=



u1
u2
...

um


 (mod 10) ,

where vk,i,j = min{vk[i],vk[j]}, zi,j = 1 if (i, j) ∈ z, and 1 ≤ i < j ≤ n.
If m ≥ (n2) we expect to solve this system uniquely by Gaussian elimination.
When m <

(
n
2

)
, on the other hand, this approach leads to a sparse subset sum

problem. The best known algorithms for these instances have complexity roughly(
n(n−1)/2

k/2

)
(which is greater than

(
n
k

)
when k > 3).

Another approach to the problem is a form of maximum-likelihood estima-
tion (MLE): for some subset of the locations in z, try all possible values, while
modeling the remaining inputs to f(·, z) as uniform random variables (an accu-
rate model when the vi are chosen at random). Choose the subset of locations
which gives the best chance of observing the output values ui. If the subset of z
we are guessing has l locations, this algorithm has complexity

(
n
l

)
. However, to

succeed in selecting correct locations, the algorithm may require many samples
(perhaps more than

(
n
2

)
).

For any distribution D, the maximum probability of distinguishing between
D and the uniform distribution on the same range U is ∆(D, U), where

∆(A,B) =
1
2

∑
e∈E
|PrA[e]− PrB [e]| ,

i.e., the statistical distance between A and B. Thus the expected minimum num-
ber of samples required to distinguish between D and U is 1/∆(D, U). Therefore
calculating this distance for the distribution of the modulo 10 sum of k mins will
help us develop lower bounds on the required sample complexity for MLE.

To calculate the statistical distance between k mins and uniformly random
digits, we derive an expression which will allow us to calculate the probability
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of obtaining a digit as the sum of k mins. Let P kd denote the probability of
obtaining the digit d as a sum of k mins. Then the P 1

d are easily obtainable by
enumerating all pairs of digits. For k > 1, we note that for each d, there are 10
ways to obtain d as the sum of k mins: for each digit d′, we obtain d′ from one
min and d− d′ mod 10 from the other k − 1 mins. In other words, we can write
the recurrence P kd =

∑
0≤d′≤9 P

k−1
d−d′P

1
d′ , which leads to the observation that

dynamic programming is sufficient for obtaining the distribution over k mins.
Table 1 yields the result of applying this procedure to calculate the expected
minimum sample complexity to distinguish between the uniform distribution on
{0, . . . , 9} and a sum of k mins, for k ≤ 12.

Table 1. Distribution of sum of k mins, and expected minimum number of samples
required to distinguish from uniform

k 1 2 3 4 5 6 7 8 9 10 11 12
#S 4 14 44 140 532 1346 4154 12848 39696 122682 379100 1171498

Note that the essential meaning of this table is that without guessing more
than 12 locations from a challenge, an adversary cannot expect to use statisti-
cal procedures to learn a sum of 12 mins password with fewer than 1,171,498
challenge-response pairs. In general, we can protect against this attack by choos-
ing k such that the number of required samples is greater than

(
n
2

)
, since

(
n
2

)
samples are sufficient for Gaussian elimination.

4 Security against Passive Adversaries

In this section, we will give a protocol which is (p, k)-secure against passive
adversaries but not against arbitrary adversaries. We also give some empirical
evidence that it is (0.9, 0.25, 160)-human executable. Intuitively, C generates the
coefficient matrix of some LPN instance while H generates the output vector and
some errors. Thus after a number of repetitions C can be reasonably sure that
H knows the shared secret vector x.

Protocol 1

Shared Secrets: H and C share a secret 0-1 vector x with |x| = k.

Authentication:

(C1) C sets i := 0
– Repeat m times:

(C2) C selects a random challenge c ∈R {0, 1}n and sends it to H
(H1) With probability 1−η, H responds with r := c ·x, otherwise H responds

with r := 1− c · x.
(C3) if r = c · x, C increments i.

(C4) if i ≥ (1− η)m, C accepts H.
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Theorem 1. If H guesses random responses r, C will accept H with probability
at most (

1
2

)m m∑
i=(1−η)m

(
m

i

)
≤ e−c0m ,

where c0 ≥ 2
3 is a constant depending only on η.

Proof: Let X be the random variable denoting the number of times H guesses
correctly; since this probability is at most 1

2 , the probability of guessing correctly
exactly i times out of m is

(
m
i

) ( 1
2

)m; the first result follows from summing the
probabilities of guessing correctly (1 − η)m or more times; the second result
follows by a Chernoff bound with c0 = (3− 2η)2/6 ≥ (3− 1)2/6 = 2

3 .

Theorem 2. If LPN is hard, then Protocol 1 is (e−
2
3m, poly(n)) - secure against

a passive adversary.

Proof: Obvious. Since a passive adversary can only observe challenge-response
pairs (c, r), obtaining the secret x can only be accomplished via solving the LPN
problem.

Unfortunately, as previously mentioned, this protocol is not secure against an
active adversary: suppose M can insert arbitrary challenges into the interaction;
then M can record n/m(1−η)2 successful authentications and replay them back
to H, discarding (c, r) pairs which do not match; the remaining pairs will have
no errors and can be solved by Gaussian elimination. Additionally, this protocol
must be iterated many times in order to achieve any sort of security.

As an additional consideration for the human user, the challenges c could
be selected from {0, . . . , 9}n and the arithmetic done modulo 10, a natural base
for many humans. This reduces the number of iterations necessary for a given
security level by a constant factor. It also requires modifying the method of
making an error: in cases when an error is to be made, the response should be
chosen uniformly from {0, . . . , 9}.

Note that assuming the best known attack complexity is optimal, we can
choose parameters which will provide ample security in this setting. For example,
when n = 1000 and k = 19, the best known attack’s complexity of

(
n
�k/2�

)
is

roughly 278. This compares favorably with common minimum strength guidelines
for choosing cryptographic parameters.

To assess the property of human executability, we conducted the following
experiment. A computer implementing this authentication system with m = 7,
η = 1

7 , n = 200 and k = 15 was attached to a Coke machine in our department’s
lounge. The system was also implemented as a web page, which provided a tu-
torial in its use. Students and faculty were permitted to access the web page
as often as they wished, and a free Coke was given to anyone who could suc-
cessfully authenticate himself to the computer attached to the coke machine.
In a one week period, 54 users attempted 195 authentications and successfully
completed 155. The average time per successful authentication was 166 seconds,
and the average time per unsuccessful authentication was 171 seconds. Thus it
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is empirically clear that there is some value α for which this is a (α, .25, 160)-
human executable identification protocol which is secure against computationally
bounded eavesdropping adversaries.

5 Security against Arbitrary Adversaries

The protocol of the previous section is quite insecure against an adversary who
is capable of modifying the communications between H and C. For example, by
simply replaying the same challenge r back to H several times, A can compute
the true value of r ·x and thus after collecting n such error-free values, can learn
the secret x by Gaussian elimination. Even if we simply replace weight-k LPN
by sum of �k/2� mins, the problem persists. That is, while simply replaying the
same challenge to H will no longer allow A to learn the secret z, replaying the
same challenge with a slight change — for example, changing a single ’9’ to a ’0’
— will still allow A to learn the secret z with O(n) well-chosen challenges.

Thus we seek to make it difficult for A to submit arbitrary challenges to H
in place of those sent by C. To do so, we will introduce two mechanisms. First,
Error-Correcting Challenges have the property that it with very high probabil-
ity a challenge cannot be modified in a small number of locations. Second, we
require the challenges to satisfy some concept which is hard to learn without
membership queries, such as satisfying f(r, z) = 0 mod 10 for an independent
k-mins password z.

5.1 Error-Correcting Challenges

Blum et al. [13] show how a function which is linear with probability 1−δ can be
self-corrected to a linear function which matches the given function with proba-
bility 1−2δ. Self-correction of this form is used in many Probabilistically Check-
able Proof (PCP) arguments. We propose that a similar error-detecting/self-
correcting approach can be applied to the challenges in our system, resulting in
a system which has the property that with high probability an adversary cannot
make local changes to a challenge.

The protocol proposed in this document will use the self-correction algorithm
of [13] to achieve this goal. A legitimate challenge will consist of w × h 10× 10
squares of digits, or n = 100wh digits. Each square will be generated by choosing
3 digits (a, b, c) uniformly at random; then the digit at location x, y will have
the value L(x, y) = ax + by + c mod 10. Linearity can be tested by choosing a
random point x (mod 10) and random offset mod 10, r, and testing whether
L(x) = L(x+r)−L(r)+L(0). If a challenge square passes this test several times
then we say that it is close to linear, and in the subsequent phase we will access
the value of a location x by accessing its “self-corrected” value at the randomly
chosen offset r, which is given by L(x + r) − L(r) + L(0). Thus if we reject a
challenge which contains a highly non-linear square and self-correct otherwise,
with high probability an adversary will be unable to effect a local change to a
challenge.



Secure Human Identification Protocols 63

5.2 The Protocol

Coupled with a deterministic response protocol to prevent replay attacks, we
obtain the protocol outlined below.

Protocol 2

Shared Secrets: H and C share two sum of k mins secrets p1 and p2, and a
secret digit d. As in Section 3, we denote by f(c, pi) the result of taking the sum
of the self-corrected min of each pair in pi for the challenge c.

Authentication: Repeat m times for confidence 10−m:

(C1) Uniformly pick wh sets of parameters (ai, bi, ci) and form the error-correcting
challenge for these parameters, c = ECC(a, b, c). If f(c, p1) �= d, repeat until
the condition holds. Send the resulting challenge to H:

C → H : c = ECC(a, b, c) .

(H1) Test each square for linearity. Reject if any square is not close to linear.
(Report a network infiltration to system administrator and choose a new
password)

(H2) Check that f(c, p1) = d. If not, reject and report a network infiltration to
system administrator.

(H3) Respond with the self-corrected sum of mins for the password p2:

H → C : r = f(c, p2) .

(C2) Reject if r �= f(c, p2).

C accepts H if it has not rejected after m rounds.
Intuitively, we use self-correction on error-correcting challenges to make it

infeasible for an adversary to make local changes to a challenge. Thus, to make
a membership query, the adversary must make global changes to the challenge,
yet since f(·, p1) is distributed essentially uniformly any global change will be
caught with probability at least 0.9.

Thus heuristically, we have a protocol which is (0.1, 0.1,
(
n
2

)
)-detecting against

computationally bounded adversaries. With the challenge size n = 900, k = 12
and m = 6, the best known attack on sum of k mins given fewer than

(
n
2

)
samples

has complexity greater than
(900

12

)
, which is roughly 289. Thus the security of the

system appears to be quite high.
It seems reasonable that a human can learn to do linearity testing on sight,

since error-correcting challenges form distinctive patterns of digits; thus the hu-
man computational load in this protocol may be as low as 96 base 10 sums and
24 mins to compute the response to a single challenge. For confidence 10−6,
this translates to a protocol which requires a minimum of 576 base 10 sums plus
considerable search effort. Therefore, while this protocol offers a great deal of se-
curity against arbitrary computationally bounded adversaries, it seems unlikely
to be of practical significance on its own.
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6 Some Inherent Limitations

The approach to human-executable primitives taken here has some inherent lim-
itations which may, unfortunately, make it difficult to improve on these protocols
without a new approach. We now consider a large class of “similar” protocols in
which the shared secret is a set of k of relevant locations in a n-digit challenge.
We will show that, assuming the “meet in the middle” attack of time complex-
ity O(

(
n
k/2

)
) is optimal, there is no significantly harder function in this class,

computationally speaking, than parity with noise.
We model the human as a finite automaton which sequentially processes k

inputs by transitions between states in the range {1, . . . , Q} and which gives
an output in the range {1, . . . , d}. Since humans have highly bounded memory,
this model seems fitting for human computation in this application. We assume
that the transition table for this automaton may change between inputs but is
publicly known.

Now consider an attack which uses m challenge-response pairs and processes
all sequences of locations of length k/2. For each location sequence, the automa-
ton is run forward k/2 steps, producing a string in the range {1, . . . , d}m. This
string and its location are inserted in a hash table with Qm spaces. Also, for each
sequence of k/2 locations, for each challenge, the automaton is started from each
intermediate state {1, . . . , Q} and the list of intermediate states which produced
the correct response is retained. For each challenge, the expected number of
intermediate states retained will be Q/d. Thus we will expect approximately
(Q/d)m sequences of intermediate states to match the correct responses for each
sequence of k/2 locations; each of these intermediate state sequences can be in-
serted into the same hash table of size Qm. Any match in the hash table between
a “first-half” sequence and a “second-half” sequence suggests a length k sequence
of locations which matches on the m challenge-response pairs under considera-
tion; such a sequence can be tested against the O(k logd n) challenge-response
pairs required to uniquely determine the secret k locations.

Now we assess the total computational work factor for this attack. First, for
each sequence of k/2 locations, (Q/d)m length-m sequences must be inserted into
the hash table, for a total of O((Q/d)mnk/2) work. Also, each collision between
a “first-half” sequence and a “second-half” sequence will require some work to
check against the full set of challenge-response pairs. For an appropriate family
of universal hash functions, the expected number of collisions will be

nk/2 × (Q/d)mnk/2

Qm
=

nk

dm
.

Choosing m to minimize the sum (Q/d)mnk/2 + nk

dm results in the choice

m =
log nk/2 log d

log(Q/d)

logQ
,

and gives the total work factor

O(nk(1− log d
2 logQ )) .
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Thus if d and Q are close, or equal as in our protocols, an attacker can always
break such a protocol by guessing only about half of the shared secret. On the
other hand, decreasing d relative to Q increases the number of challenges a user
must respond to for a given confidence level, while increasing Q adds to the
cognitive load on the human. Thus while some incremental improvement in the
computational security of our protocols may be possible, overall our choice of
primitives represent a close to optimal tradeoff between computational difficulty
and human cognitive load for this class of protocols.

7 Conclusions

We believe that the search for protocols providing secure, reusable authentica-
tion to unaided humans is an interesting and important pursuit for the crypto-
graphic community. In this paper, we have shown that no current solutions to
this problem exist. We have provided definitions that we believe are reasonable
goals for such protocols, and we have given protocols which achieve the security
conditions attached to these goals. While we do not argue that the protocols
we present are practical solutions to this problem – executing the protocols and
remembering the secrets seem too hard – we believe that they are surprisingly
close to practical while offering a good deal of security. Thus we believe that
they suggest that more practical solutions may exist, which can match or even
exceed their security conditions. We invite the reader to surpass them.
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