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Secure Hybrid A/D Beamforming for
Hardware-Efficient Large-Scale Multiple-Antenna

SWIPT Systems
Yunlong Cai, Fangyu Cui, Qingjiang Shi, Yongpeng Wu, Benoit Champagne, and Lajos Hanzo

Abstract—In this work, we investigate the problem of secure
communications in a downlink large-scale multi-antenna assisted
simultaneous wireless information and power transfer (SWIPT)
system, where a base station (BS) transmits signals to serve a
number of information decoding (ID) and energy harvesting (EH)
users. Considering that the EH users can potentially eavesdrop
the ID users’ confidential information, we study the robust joint
design of the hybrid analog-digital (A/D) beamforming (BF)
matrices and of the artificial redundant signal (ARS) covariance
matrix at the BS, where the aim is to maximize the worst-
case sum secrecy rate for the ID users under a transmit power
constraint, a nonlinear EH constraint and a unit-modulus con-
straint on the entries of the analog BF matrix. The corresponding
optimization problem is very challenging due to the nonlinear and
nonconvex objective function and constraints. Using innovative
optimization techniques, we first transform the original problem
into an equivalent but more tractable form, and then develop
a novel joint iterative algorithm based on the penalty-concave-
convex procedure (CCCP) for solving the resultant problem. We
show that the proposed penalty-CCCP based algorithm for ARS-
aided robust joint hybrid BF design converges to a Karush-Kuhn-
Tucker solution of the original problem, and also analyze its
computational complexity. Our simulation results verify that the
resultant robust joint hybrid BF design algorithm relying on ARS
significantly outperforms the conventional hybrid BF benchmark
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algorithms and efficiently achieves the performance of the fully-
digital BF with reduced number of radio frequency chains and
energy consumption.

Index Terms—Robust hybrid A/D beamforming, secure com-
munications, large-scale multiple-antenna, energy harvesting,
joint optimization.

I. INTRODUCTION

A. Literature Review
Large-scale multiple-antenna techniques have attracted con-

siderable interest for the development of next generation
wireless networks [1]–[4], since they can dramatically increase
system capacity, hence mitigating the spectrum shortage. N-
evertheless, the conventional fully-digital beamforming (BF)
structure imposes an excessive fabrication cost and energy
consumption owing to using numerous costly radio frequency
(RF) chains and analog-digital (A/D) converters. In recent
years, a hybrid A/D BF structure has been proposed for
circumventing this problem, which allows system developers
to rely on a lower number of RF chains than the number of
antenna elements [5]–[15].

The main challenges in the design of hybrid A/D BF
arise owing to the transmit power constraint with coupling
components, imposed by the product of analog and digital BF
matrices, and by the unit modulus constraint on the elements
of the RF analog BF matrix. By exploiting the structure of
large-scale multiple-antenna channels, orthogonal matching
pursuit (OMP) and channel matching based hybrid BF (HBF)
algorithms have been proposed in [5] and [6], respectively. The
authors of [7] and [8] developed joint HBF design algorithms
based on manifold optimization, while a design procedure
based on the maximization of the system’s sum rate was
proposed in [9]. The authors of [10] developed a sophisticated
joint HBF algorithm based on novel penalty methods, and
this algorithm was then further extended to millimeter wave
multiple-input multiple-output (MIMO) relay systems in [11].
Additionally, considering the associated hardware limitations,
several codebook-based HBF algorithms have been investi-
gated in [12] and [13]. Two-timescale hybrid BF algorithms
have been proposed for reducing the overhead in large-scale
multiple antenna systems [14], [15], where the long-timescale
analog BF matrices are designed based on the channel statistics
and the short-timescale digital BF matrices are optimized by
using the low-dimensional real-time effective channel state
information (CSI) matrices.

Electromagnetic energy harvesting (EH) technologies en-
abling simultaneous wireless information and power transfer
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(SWIPT) have drawn significant attention as a means to
provide cost-effective and perpetual power supply for wireless
networks [16]–[20]. The authors of [21] studied a multiple-
antenna wireless broadcast system consisting of three nodes,
where one receiver harvests energy and another receiver de-
codes information separately from the signals sent by a com-
mon transmitter. Two scenarios have been examined, in which
the information receiver and energy receiver are separated or
co-located. A general receiver operation has been proposed in
[22], which splits the received signal with adjustable power
ratio for EH and information decoding (ID) separately. Refer-
ences [23]–[25] investigate a multiuser multiple-input single-
output (MISO) broadcast SWIPT system configuration, where
a multi-antenna base station (BS) sends wireless information
and energy signals simultaneously via spatial multiplexing to
multiple single-antenna receivers, each implementing either ID
or EH. In these works, different optimization problems have
been investigated for transmit beamforming design. In [26],
a practical nonlinear energy harvesting model and a resource
allocation algorithm have been proposed for SWIPT systems.

Considering that the same signal waveform is used for
information and energy transmission, security in SWIPT is
a major concern, especially within the flourishing context of
heterogeneous networks and Internet of things (IoT). Artificial
redundant signal (ARS) aided secure BF design algorithms
have been developed as a complement to traditional encryption
in order to enhance the secrecy performance for the ID users,
while supplying energy for the EH users in multiple-antenna
SWIPT systems. Some representative studies on this aspect
can be found in [27]–[36]. Furthermore, the security problem
in large-scale multiple-antenna assisted SWIPT systems has
been investigated in [37]–[42]. Recently, the design of secure
HBF for large-scale multiple-antenna systems has also attract-
ed substantial interests [43]–[47]. The authors of [43] proposed
a HBF algorithm for minimizing the power leaked to the
eavesdroppers while guaranteeing the received signal quality
of the legitimate user. In order to maximize the system’s
secrecy rate, the authors of [44] and [45] studied ARS aided
secure HBF algorithms only relying on partial CSI. The design
of secure HBF has been investigated in two-way MIMO relay
networks in [46]. Moreover, the authors of [47] investigated an
energy-efficient HBF algorithm to minimize the total transmit
energy and meet the signal-to-noise ratio (SNR) and EH
requirements of the ID and EH users, respectively.

B. Motivation

Although many studies have been conducted on beamform-
ing for secrecy-preserving SWIPT, most of them are based
on the fully-digital beamforming structure which imposes an
excessive fabrication cost and energy consumption. Besides,
the existing security enhancement techniques conceived for
HBF typically design the digital and analog BF matrices
separately, which may lead to a significant performance degra-
dation. To the best of our knowledge, the efficient joint design
of ARS-aided HBF for secrecy rate maximization in large-
scale multiple-antenna assisted SWIPT systems has not been
previously addressed, and it is well worth studying due to the
hardware-efficient hybrid beamforming structure. Against this

backdrop, we consider the problem of secure communications
in a downlink large-scale multiple-antenna SWIPT system,
where a BS transmits signals to serve a number of ID and
EH users simultaneously. Considering that the EH users can
potentially eavesdrop the ID users’ confidential information,
we study the joint design of the hybrid A/D BF matrices and
of the ARS covariance matrix at the BS, where the aim is to
maximize the worst-case sum secrecy rate for the ID users
under a transmit power constraint, a nonlinear EH constraint
and a unit-modulus constraint on the entries of the analog
BF matrix. The corresponding optimization problem is very
challenging due to the nonlinear and nonconvex objective
function and constraints. By exploiting the problem structure
and using avant-garde techniques, we first transform the o-
riginal problem into an equivalent yet more tractable form
and then develop a novel twin-loop joint iterative algorithm
based on the penalty concave-convex procedure (CCCP) to
solve the resultant problem. In particular, in the outer loop we
adjust the penalty coefficient, while in the inner loop, through
insightful approximations and linearization, we optimize the
variables in a block coordinate descent fashion, where the
subproblems within each block can be solved in parallel. We
discuss the convergence and computational complexity of the
proposed ARS-aided robust joint HBF design algorithm. Our
simulation results show that the proposed algorithm signifi-
cantly outperforms the existing HBF algorithms and achieves
the performance of the fully-digital BF efficiently.

C. Our Contributions

The main contributions of this work are summarized as
follows:

1) We consider the robust joint design of hybrid A/D BF
and ARS covariance matrices to maximize the worst-case
secrecy rate, by taking the CSI uncertainties into account.
This problem, which has not been previously addressed
in the literature, is very challenging due to the nonlinear
objective function, the nonconvex transmit power and EH
constraints with coupling terms, and the unit-modulus
constraint on the entries of the analog BF matrix. By
introducing carefully chosen auxiliary variables, we first
convert the challenging constraints into simpler ones, and
then transform the objective function into a more tractable
form. The resultant problem is equivalent to the original
problem but much easier to solve.

2) To solve the transformed problem efficiently, we further
introduce a number of auxiliary variables and equality
constraints and develop a novel iterative algorithm based
on the penalty-CCCP. The proposed algorithm contains
two loops, where in the inner loop, through insightful
approximations and linearization, the resulting penalized
problem is solved in a block coordinate descent fashion
to update the optimization variables, while in the outer
loop the penalty coefficient is adjusted. Specially, the
subproblems within each block of the inner loop can be
solved in parallel.

3) We show that the proposed penalty-CCCP-based algo-
rithm for ARS-aided robust joint HBF design converges
to a Karush-Kuhn-Tucker (KKT) point of the original
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problem and evaluate its computational complexity. Our
simulation results demonstrate the advantages of the
newly introduced algorithm over other conventional HBF
designs and show that it can achieve the performance of
the fully-digital BF with reduced number of RF chains
and energy consumption in large-scale multiple-antenna
SWIPT systems.

D. Organization of the Paper
The paper is structured as follows. Section II briefly de-

scribes the system model and formulates the optimization
problem of interest in mathematical terms. In Section III, after
transforming this problem into a tractable form, the proposed
penalty-CCCP based algorithm for robust design of ARS-aided
joint HBF in SWIPT systems is derived, and its convergence
properties and complexity are discussed. The simulation result-
s are presented in Section IV and our conclusions are drawn
in Section V.

Notations: Scalars, vectors and matrices are respectively
denoted by lower case, boldface lower case and boldface
upper case letters. I represents an identity matrix and 0
denotes an all-zero matrix. For a matrix A, AT , A∗, AH

and ∥A∥ denote its transpose, conjugate, conjugate transpose
and Frobenius norm, respectively. For a square matrix A,
Tr{A} denotes its trace, A ≽ 0 (A ≼ 0) means that A is
positive (negative) semidefinite. For a vector a, ∥a∥ represents
its Euclidean norm. E{.} denotes the statistical expectation.
ℜ{.} (ℑ{.}) denotes the real (imaginary) part of a variable,
while | · | represents the absolute value of a complex scalar.
Cm×n (Rm×n) denotes the space of m× n complex (real)
matrices. The projection function to the nonnegative orthant
is denoted by [a]+ = max(a, 0).

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the model of the hardware-
efficient multi-antenna SWIPT system, and then mathematical-
ly formulate the optimization problem of interest.

A. System model
Consider the hardware-efficient multiple-antenna SWIPT

system depicted in Fig. 1, which consists of a BS, J ID
users and K EH users which can potentially eavesdrop the
confidential information of each ID user. The BS is equipped
with M transmit antennas and N RF chains, where M ≥ N .
The ID user and the EH users are equipped with a single
antenna.

In order to guarantee the ID users’ security while transfer-
ring energy to the EH users, a randomly generated ARS vector
f ∈ CN×1 with zero mean and covariance matrix V = E[ffH ]
is embedded in the baseband signal for transmission. Then,
the signal received at the jth ID user, j ∈ J , {1, . . . , J}, is
given by

yD,j = hH
j U(f +Wb) + nD,j , (1)

where hj ∈ CM×1 denotes the Hermitian transpose of the
flat fading channel vector between the BS and the jth ID
user, U ∈ CM×N denotes the analog BF matrix, b =
[b1, . . . , bJ ]

T ∈ CJ×1 represents the transmit symbol vector,

whose elements are modeled as independent zero-mean cir-
cular complex Gaussian random variables with unit variance,
i.e., E[|bj |2] = 1, W = [w1, . . . ,wJ ] ∈ CN×J represents the
baseband BF matrix, and nD,j denotes the complex circular
Gaussian noise at the jth ID user with zero mean and variance
σ2
D,j .
The signal received at the kth EH user, k ∈ K ,

{1, . . . ,K}, can be expressed as

yE,k = gH
k U(f +Wb) + nE,k, (2)

where gk ∈ CM×1 denotes the Hermitian transpose of the
channel vector between the BS and the kth EH user, while
nE,k denotes the complex-valued circular Gaussian noise at
the kth EH user with zero mean and variance of σ2

E,k.
The transmit power of the BS is given by

E[∥U(f +Wb)∥2] = ∥UF∥2 + ∥UW∥2, (3)

where based on the positive and Hermitian structure of the
ARS covariance matrix, we have introduced a matrix F ∈
CN×N so that V = FFH , i.e., F is the square-root of V.

From (1) and (2), the signal-to-interference plus noise
(SINR) at the jth ID user and the SINR at the kth EH user
for the jth ID user signal are given as follows, respectively,

SINRj
D ,

|hH
j Uwj |2

∥hH
j UF∥2 +

∑J
j′ ̸=j |hH

j Uwj′ |2 + σ2
D,j

,

SINRj
E,k , |gH

k Uwj |2

∥gH
k UF∥2 +

∑J
j′ ̸=j |gH

k Uwj′ |2 + σ2
E,k

.

(4)

Besides, considering the nonlinear EH model [48], the total
energy that the kth EH user can harvest is given by

ϕk(Pin,k) =

{
ξPin,k, Pin,k ≤ Psat,k

ξPsat,k, Pin,k > Psat,k

(5)

where ξ ∈ (0, 1] denotes the energy conversion efficiency of
the kth EH user, Psat,k denotes the saturation threshold of the
kth EH receiver, and Pin,k denotes the input RF power, given
by

Pin,k , ∥gH
k UF∥2 + ∥gH

k UW∥2 + σ2
E,k. (6)

Thus, the maximum harvested energy can be expressed by
ξPsat,k, which is a constant power, when the input power
exceeds the threshold Psat,k.

B. Problem formulation
Since the ID users and the EH users are all authorized

network users managed by the BS, the latter can obtain their
CSI based on the channel estimates of the users, which are
fed back to the BS. However, the CSI errors are inevitable in
practice. To characterize this uncertainty, let us consider the
commonly used norm-bounded error (NBE) model [49], [50].
Under the NBE model, the true (but unknown) CSI from the
BS to the jth ID user, j ∈ J , and from the BS to the kth EH
user, k ∈ K, can be expressed as follows:

hj = ĥj +△hj (7)

and
gk = ĝk +△gk, (8)
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Fig. 1: Hardware-efficient multiple-antenna SWIPT system

where ĥj and ĝk denote the imperfect estimates while △hj

and △gk capture the corresponding uncertainty. In the absence
of a priori statistical knowledge about the channel uncertainty,
the errors are simply assumed to lie within the following
bounded regions

Hj = {△hj : ∥△hj∥2 ≤ η2j } (9)

and
Rk = {△gk : ∥△gk∥2 ≤ ε2k} (10)

where ηj and εk denote the corresponding radii of uncertainty.
The worst-case sum secrecy rate achieved by the ID users

is given by (11) [38]. In this contribution we aim for jointly
designing the baseband BF matrix W, the ARS shaping matrix
F and the analog BF matrix U in order to maximize the worst-
case sum secrecy rate in (11). Hence, the design problem for
the secure hybrid A/D BF can be formulated as (12). The
constraint (12b) reflects the limited transmit power budget of
the BS, while the constant modulus constraint (12c) is due
to the fact that the analog beamformer is implemented using
low cost phase shifters. Constraint (12d) guarantees that the
energy harvested by the kth EH user meets a given energy
target ψk, where tk denotes the tight lower bound of Pin,k

in the presence of CSI errors. We note that the constrained
optimization problem (12) is very challenging to solve due to
the highly nonconvex objective function and constraints.

III. PROPOSED ARS-AIDED JOINT ROBUST HBF DESIGN
ALGORITHM

In this section, we first convert the challenging problem
(12) into a more easily tractable yet equivalent form, and then
develop a novel penalty-CCCP based iterative algorithm to
efficiently obtain its solution.

A. Problem transformation
The transformation of problem (12) into a simpler yet

equivalent form relies on the following lemma whose proof
is given in Appendix A.

Lemma 1. Let G ∈ CL×L be a semi-positive definite
Hermitian matrix represented in block form as follows,

G ,
[
x x̄H

x̄ Ḡ

]
≽ 0, (13)

where x ∈ C, x̄ ∈ C(L−1)×1, and Ḡ ∈ C(L−1)×(L−1). Then
x ≥ 0 and Ḡ ≽ 0, and if x = 0, then x̄ = 0.

By defining X , [W,F] ∈ CN×(J+N), we can represent
W and F as W = XΩ1 and F = XΩ2, where Ω1 ,
[IJ ,0J×N ]T and Ω2 , [0N×J , IN ]T denote the selection
matrices. Making use of this notation, we can now state the
following theorem, which provides the desired equivalence
between (12) and a more tractable problem.

Theorem 1. Problem (12) is equivalent to the following
problem in (14), in the sense that the global optimal solution
X and U for the two problems are identical.

Here A ∈ CM×M ,B ∈ CM×(N+1),C ∈
C(N+1)×(N+1), αj ∈ R+, βj ∈ R+ and γj ∈ R+ denote a
set of auxiliary variables introduced to simplify the problem
solution. ωj denotes a J × 1 selection vector, where the jth
element is one and the remaining elements are zeros.

Proof: Firstly, we show that constraints (12b) and (12c)
are equivalent to constraints (14b)–(14e). By defining Ū ,
UUH , constraint (14b) can be rewritten as

Ũ ,
[

Ū−A UX−B
XHUH −BH XHX−C

]
≽ 0. (15)

It is readily seen that Û , Ū−A ≽ 0. Hence, it follows on the
one hand that Û(m,m) ≥ 0, while on the other hand, we have
Û(m,m) = Ū(m,m) − A(m,m) =

∑N
n=1 |U(m,n)|2 −

A(m,m). Based on constraints (14d) and (14e), we obtain
Û(m,m) ≤ 0. Therefore, we must have Û(m,m) = 0.

By considering in turn the upper M diagonal entries of
the semi-positive definite matrix Ũ, which are equal to ze-
ro as shown above, and repeatedly applying Lemma 1, we
obtain Ū = A and B = UX. By substituting B = UX
into (14c), we obtain the constraint (12b). Moreover, since∑N

n=1 |U(m,n)|2 = A(m,m) ≥ N , while from (14e),
|U(m,n)| ≤ 1, we obtain |U(m,n)| = 1, i.e. constraint (12c)
must be satisfied.

Secondly, let us turn our attention to the objective function
in (12a). By introducing the auxiliary variables αj , βj and γj ,
where αj denotes the upper bound of the SINR among the EH
users, βj ≥ 1

αj
, and γj denotes the lower bound of the jth ID

user’s SINR, we can see that problem (12) can be equivalently
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J∑
j=1

[
log
(
1 + min

∀△hj∈Hj

SINRj
D

)
− log

(
1 + max

∀k∈K
max

∀△gk∈Rk

SINRj
E,k

)]+
. (11)

max
W,F,U,tk

J∑
j=1

log
(
1 + min

∀△hj∈Hj

SINRj
D

)
−

J∑
j=1

log
(
1 + max

∀k∈K
max

∀△gk∈Rk

SINRj
E,k

)
(12a)

s.t. ∥UW∥2 + ∥UF∥2 ≤ Pt, (12b)
|U(m,n)| = 1, ∀m,n, (12c)
ϕk(tk) ≥ ψk, Pin,k ≥ tk, ∀△gk ∈ Rk, ∀k. (12d)

max
X,U,A,B,

C,αj ,βj ,γj>0,tk

J∑
j=1

log (1 + γj)−
J∑

j=1

log (1 + αj) (14a)

s.t.
[

U
XH

] [
UH X

]
≽
[

A B
BH C

]
(14b)

∥B∥2 ≤ Pt, (14c)
A(m,m) ≥ N, (14d)
|U(m,n)| ≤ 1, ∀m,n, (14e)

|hH
j BΩ1ωj |2

∥hH
j BΩ2∥2 +

∑J
j′ ̸=j |hH

j BΩ1ωj′ |2 + σ2
D,j

≥ γj , ∀△hj ∈ Hj , ∀j, (14f)

αjβj ≥ 1, ∀j, (14g)
|gH

k BΩ1ωj |2

∥gH
k BΩ2∥2 +

∑J
j′ ̸=j |gH

k BΩ1ωj′ |2 + σ2
E,k

≤ 1

βj
, ∀△gk ∈ Rk, ∀k, (14h)

ϕk(tk) ≥ ψk, ∀k, (14i)

∥gH
k B∥2 + σ2

E,k ≥ tk, ∀△gk ∈ Rk, ∀k. (14j)

converted into the following problem:

max
X,U,A,B,

C,αj ,βj ,γj>0,tk

J∑
j=1

log (1 + γj)−
J∑

j=1

log (1 + αj) (16a)

s.t. (14b) − (14h), (12d). (16b)

Due to the fact that the constraints (12b) and (12c) are
equivalent to constraints (14b)–(14e) and B = UX, we
find that problem (12) can be equivalently transformed into
problem (14). This completes the proof.

B. Proposed joint iterative design algorithm

In this subsection, we develop the proposed penalty-CCCP
based iterative algorithm for the efficient joint design of robust
secure HBF via the solution of problem (14) and subse-
quently discuss its properties, including convergence behavior
and complexity. The proposed penalty-CCCP based algorithm
contains two loops1, where the penalty coefficient is adjusted
in the outer loop, while in the inner loop the optimization
variables are updated in a block coordinate descent fashion.
In each block of the inner loop, we aim to decompose the

1The penalty-CCCP optimization framework is introduced in Appendix B.

resulting penalized problem into a number of subproblems,
which can be solved easily in parallel. To this end, we
introduce auxiliary variables Y ∈ C(M+N+1)×N , D ∈
C(M+N+1)×(M+N+1), Pj ∈ CM×(N+1), B̃k,j ∈ CM×(N+1),
B̄k ∈ CM×(N+1), β̃k,j , t̄k and ϕ̄k, ∀k, ∀j, which are subject
to the following equality constraints,

Y =

[
U
XH

]
, D =

[
A B
BH C

]
, (17)

Pj = B, B̃k,j = B, B̄k = B, β̃k,j = βj , t̄k = tk,

ϕ̄k = ϕk(t̄k), ∀k, ∀j.
(18)

Using these variables, we conveniently recast problem
(14) as the equivalent form shown in (19), where S ,
{X,U,A,B,Y,Pj ,C,D, B̃k,j , B̄k, t̄k, tk, αj , βj , β̃k,j , γj , ϕ̄k}
denotes the variable set, while Φ1 = [IM ,0M×(N+1)],
Φ2 = [0(N+1)×M , IN+1], Ψ1 = [IM ,0M×(N+1)]

T and
Ψ2 = [0(N+1)×M , IN+1]

T are selection matrices.
By penalizing the equality constraints (19h)-(19k) into the

objective function, we obtain the following penalized problem
for (19):

max
S

J∑
j=1

log (1 + γj)−
J∑

j=1

log (1 + αj)− Lρ(X )

s.t. (19b) − (19g),

(20)
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max
S

J∑
j=1

log (1 + γj)−
J∑

j=1

log (1 + αj) (19a)

s.t. YYH ≽ D, (19b)
(14c) − (14e), (14g), (19c)

|hH
j PjΩ1ωj |2

∥hH
j PjΩ2∥2 +

∑J
j′ ̸=j |hH

j PjΩ1ωj′ |2 + σ2
D,j

≥ γj , ∀△hj ∈ Hj , ∀j, (19d)

|gH
k B̃k,jΩ1ωj |2

∥gH
k B̃k,jΩ2∥2 +

∑J
j′ ̸=j |gH

k B̃k,jΩ1ωj′ |2 + σ2
E,k

≤ 1

β̃k,j
, ∀△gk ∈ Rk, ∀k, ∀j, (19e)

ϕ̄k ≥ ψk, ∀k, (19f)

∥gH
k B̄k∥2 + σ2

E,k ≥ tk, ∀△gk ∈ Rk, ∀k, (19g)

Φ1Y = U, Φ2Y = XH , (19h)

ΨH
1 DΨ2 = B, ΨH

2 DΨ1 = BH , (19i)

ΨH
2 DΨ2 = C, ΨH

1 DΨ1 = A, (19j)

Pj = B, B̃k,j = B, B̄k = B, β̃k,j = βj , tk = t̄k, ϕk(t̄k) = ϕ̄k, ∀k, ∀j. (19k)

Lρ(X ) , ρ

(
∥Φ1Y −U∥2 + ∥Φ2Y −XH∥2 + ∥ΨH

1 DΨ1 −A∥2 + ∥ΨH
1 DΨ2 −B∥2

+ ∥ΨH
2 DΨ1 −BH∥2 + ∥ΨH

2 DΨ2 −C∥2 +
J∑

j=1

∥Pj −B∥2 +
J∑

j=1

K∑
k=1

|βj − β̃k,j |2

+

J∑
j=1

K∑
k=1

∥B− B̃k,j∥2 +
K∑

k=1

∥B− B̄k∥2 +
K∑

k=1

|tk − t̄k|2 +
K∑

k=1

|ϕk(t̄k)− ϕ̄k|2
)
.

(21)

where Lρ(X ) is expressed as (21) which
captures the penalty terms and ρ denotes the
penalty coefficient. Moreover, we define X ,
{X,U,A,B,Y,Pj ,C,D, B̃k,j , B̄k, βj , β̃k,j , tk, t̄k, ϕ̄k}.
In the proposed penalty-CCCP algorithm, the outer loop
adjusts the penalty coefficient ρ and the inner loop solves the
penalized problem (20) iteratively based on the CCCP in a
block coordinate descent fashion.

In order to handle the nonconvex objective function and
the nonconvex constraints shown in (19b), (19d), (19e) and
(19g), we derive a locally tight lower bound for the objective
function along with linearization of the nonconvex constraints.
The details are as follows.

1) Lower bound of the objective function: Due to the log-
arithmic term in its objective function, problem (20) remains
difficult to handle. To overcome this difficulty in the local
iterative search, we propose to minimize a locally tight upper
bound of the objective function instead. Based on the CCCP
concept [51], [52], we approximate the function d1(αj) =
log (1 + αj) in the ith iteration of the proposed algorithm by
its first order Taylor expansion around the current value αi

j ,
denoted as d̂1(αi

j , αj) = d1(α
i
j)+ 2ℜ{▽d∗1(αi

j)(αj −αi
j)} =

log
(
1 + αi

j

)
+

(αj−αi
j)

(1+αi
j)

. Thus, the locally tight lower bound

of the objective function in (20) is given by

J∑
j=1

log (1 + γj)−
J∑

j=1

(
log
(
1 + αi

j

)
+

(αj − αi
j)

(1 + αi
j)

)
− Lρ(X ).

(22)

2) Approximation of constraint (19b): Next, let us approx-
imate the nonconvex constraint in (19b). Note that the con-
ventional linearization methods cannot be applied for (19b).
However, the following theorem provides a useful alternative.

Theorem 2. A tight lower bound of YYH is given by
Y(Yi)H +YiYH −Yi(Yi)H , where Yi denotes the value
of Y at the ith iteration.

Proof: Let us consider the following positive semidefinite
matrix:

(Y −Yi)(Y −Yi)H ≽ 0. (23)

By expanding the matrix product in (23), we obtain YYH ≽
YYiH +YiYH −YiYiH . This completes the proof.

Therefore, by using Theorem 2 constraint (19b) can be
approximated as the following linear matrix inequality (LMI)
constraint:

YYiH +YiYH −YiYiH ≽ D. (24)

3) Approximation of constraints (19d), (19e) and (19g) :
Let us rewrite the constraint (19e) as the following difference
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of convex (DC) functions:

d2(B̃k,j)− d3(B̃k,j , β̃k,j) ≤ 0, ∀k, ∀j, (25)

where d2(B̃k,j) , |gH
k B̃k,jΩ1ωj |2, d3(B̃k,j , β̃k,j) ,

∥gH
k B̃k,jΩ̄j∥2+σ2

E,k

β̃k,j
,

Ω̄j , [Ω1ω1, . . . ,Ω1ωj−1,Ω1ωj+1, . . . ,Ω1ωJ ,Ω2]. Using
the first order Taylor expansion around (B̃i

k,j , β̃
i
k,j) in the ith

iteration, we linearize d3(B̃k,j , β̃k,j) as shown in (26). Then,
(19e) can be approximated as the following convex constraint:

d2(B̃k,j)− d̂3(B̃k,j , β̃k,j ; B̃
i
k,j , β̃

i
k,j) ≤ 0, ∀k, ∀j. (27)

By introducing an auxiliary matrix variable Sk,j ∈ CM×M as
the upper bound of B̃k,jΩ1ωjω

H
j ΩH

1 B̃H
k,j , i.e.,

Sk,j ≽ B̃k,jΩ1ωjω
H
j ΩH

1 B̃H
k,j , ∀k, ∀j, (28)

(27) can be equivalently transformed as

gH
k Sk,jgk − d̂3(B̃k,j , β̃k,j ; B̃

i
k,j , β̃

i
k,j) ≤ 0, ∀k, ∀j. (29)

Note also that (29) must hold for ∀△gk ∈ Rk,
which results in an infinite number of inequalities. By
applying the S-procedure [53], (29) can be equivalent-
ly converted to the following finite number of LMI
constraints shown in (30) and (31), where Wk,j ,
Sk,j −

(
B̃k,jΩ̄jΩ̄

H
j B̃iH

k,j+B̃i
k,jΩ̄jΩ̄

H
j B̃H

k,j

β̃i
k,j

− β̃k,j
B̃i

k,jΩ̄jΩ̄
H
j B̃iH

k,j

(β̃i
k,j)

2

)
and τk,j is a slack variable.

Furthermore, by using the Schur complement [49], [53],
(28) can be equivalently converted to the following LMI
constraints[

Sk,j B̃k,jΩ1ωj

ωH
j ΩH

1 B̃H
k,j 1

]
≽ 0, ∀k, ∀j. (32)

By following the same approach, constraint (19d) can be
approximated as the convex one shown in (33) which must
hold ∀△hj ∈ Hj . Based on the S-procedure and Schur
complement, we convert (33) into the following finite number
of LMI constraints:[

−W̄j + τ̄jI −W̄jĥj

−ĥH
j W̄j −σ2

D,j − ĥH
j W̄jĥj − τ̄jη

2
j

]
≽ 0, (34)[

S̄j PjΩ̄j

Ω̄H
j PH

j I

]
≽ 0, (35)

and
τ̄j ≥ 0, (36)

where S̄j is an auxiliary variable, W̄j , S̄j −(
PjΩ1ωjω

H
j ΩH

1 PiH
j +Pi

jΩ1ωjω
H
j ΩH

1 PH
j

γi − γj
Pi

jΩ1ωjω
H
j ΩH

1 PiH
j

γi2
j

)
,

and τ̄j is a slack variable.
Similarly, (19g) can be approximated as the following linear

constraints:

gH
k Πkgk + σ2

E,k − tk ≥ 0, ∀△gk ∈ Rk, (37)

where Πk , B̄i
kB̄

H
k + B̄kB̄

iH
k − B̄i

kB̄
iH
k . Then, by using the

S-procedure, (37) can be transformed into the following finite
number of LMI constraints,[

Πk + τ̃kI Πkĝk

ĝH
k Πk −tk + σ2

E,k + ĝH
k Πkĝk − τ̃kε

2
k

]
≽ 0, ∀k,

(38)

τ̃k ≥ 0, ∀k, (39)

where τ̃k denotes a slack variable.
Moreover, we note that constraint (14g) can be represented

as a second-order cone programming (SOCP) as follows,∥∥[1, αj − βj
2

]∥∥ ≤ αj + βj
2

, ∀j. (40)

4) Proposed penalty-CCCP based joint design: By apply-
ing (22), (24), (30)–(32), (34)–(36), (38) and (39), we obtain
the following approximated convex problem for (20) in the ith
iteration of the inner loop:

max
S̄

J∑
j=1

log (1 + γj)−
J∑

j=1

(
log
(
1 + αi

j

)
+

(αj − αi
j)

(1 + αi
j)

)
− Lρ(X )

s.t. (24), (14c) − (14e), (30) − (32),
(34) − (36), (38) − (40), (19f),

(41)

where S̄ , {X,U,A,B,Y,Pj ,C,D, B̃k,j , B̄k,Sk,j , S̄j , αj ,
βj , β̃k,j , γj , τk,j , τ̄j , τ̃k, tk, t̄k, ϕ̄k} denotes the complete set
of variables. In each iteration, the optimization variables are
divided into the following four blocks, such that for each
block the corresponding subproblems can be solved efficiently
in parallel.

In Block 1, we optimize {τk,j ,Sk,j , B̃k,j , β̃k,j},
{τ̃k, B̄k, tk} and {τ̄j , S̄j ,Pj , γj} by fixing the other
variables. In this block, the corresponding subproblems for
∀k ∈ K and ∀j ∈ J can be solved in parallel.

In Block 2, we optimize B, {αj , βj} and {t̄k} by fixing the
other variables. The corresponding subproblems can be solved
in closed form.

In Block 3, we optimize A, U, X and C by fixing the other
variables. In this block, we have two constrained subproblems
and two unconstrained subproblems, which can be solved in
closed form.

In Block 4, we optimize (X,D) and {ϕ̄k} by fixing the
other variables.

A detailed derivation for each one of the updating steps
of the inner-loop iterative algorithm is provided in Appendix
C. The proposed two-loop penalty-CCCP based joint iterative
algorithm is summarized in Algorithm 1.

C. Convergence and complexity
Based on the proposed approximations and linearization in

Subsection III-B and the convergence analysis for penalty-
CCCP in [49], we can see that the proposed Algorithm 1
converges to the KKT solution of problem (19). Note that (12)
and (19) are equivalent, in the sense that the global optimal
solution (w,F,U) for the two problems are identical. We
therefore conclude that any limit point (w⋆,F⋆,U⋆) in S̄
of the iterates generated by Algorithm 1 is a KKT point of
problem (12).

According to the aforementioned description, the proposed
joint design algorithm can be implemented in a parallel
manner. We note that the overall computational complexity
is dominated by the semidefinite programming (SDP) sub-
problem with respect to (τ̄j , S̄j ,Pj , γj) in Block 1 as shown
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d̂3(B̃k,j , β̃k,j ; B̃
i
k,j , β̃

i
k,j) =

Tr{Ω̄H
j B̃iH

k,jgkg
H
k B̃k,jΩ̄j + Ω̄H

j B̃H
k,jgkg

H
k B̃i

k,jΩ̄j}
β̃i
k,j

−β̃k,j
∥gH

k B̃i
k,jΩ̄j∥2 + σ2

E,k

(β̃i
k,j)

2
+
2σ2

E,k

β̃i
k,j

. (26)

[ −Wk,j + τk,jI −Wk,j ĝk

−ĝH
k Wk,j

2σ2
E,k

β̃i
k,j

− β̃k,j
σ2
E,k

β̃i2
k,j

− ĝH
k Wk,j ĝk − τk,jε

2
k

]
≽ 0, ∀k, ∀j, (30)

τk,j ≥ 0, ∀k, ∀j. (31)

∥hH
j PjΩ̄j∥2 + σ2

D,j −
(ωH

j ΩH
1 PiH

j hjh
H
j PjΩ1ωj + ωH

j ΩH
1 PH

j hjh
H
j Pi

jΩ1ωj

γij
−
γj∥hH

j Pi
jΩ1ωj∥2

(γij)
2

)
≤ 0. (33)

Algorithm 1 Proposed penalty-CCCP based joint iterative
design algorithm

1. Define the tolerance of accuracy δ1 and δ2. Initialize the
algorithm with a feasible point. Set the iteration number
i = 0 and n = 0. Set c > 1 and ρ(0) > 0.

2. Repeat
– Repeat

∗ Update {τk,j ,Sk,j , B̃k,j , β̃k,j}, {τ̃k, B̄k, tk},
{τ̄j , S̄j ,Pj , γj}, ∀k ∈ K, ∀j ∈ J , by solving the
subproblems in parallel.

∗ Update B, {αj , βj} and {t̄k} by solving the
subproblems in parallel.

∗ Update A, U, X and C by solving four subprob-
lems in parallel.

∗ Update (X,D) and {ϕ̄k} by fixing the other
variables.

∗ Update the iteration number : i = i+ 1.
– Until the penalty term value is less than δ1
– ρ(n+1) = cρ(n).
– Update the iteration number : n = n+ 1.

3. Until the difference of successive objective function val-
ues is less than δ2 or the maximum number of iterations
is reached, i.e., n > Nmax.

in Appendix C. In this work, we focus on evaluating the
order of computational complexity. The complexity of the
other subproblems that are solved in closed form or by the
method of Lagrange multipliers is much lower than that of
the SDP subproblem, hence it can be neglected. Thus, we
only concentrate on the main complexity for solving the SDP
subproblem which has 1 LMI constraint of size M + 1 and
1 LMI constraint of size M +N + J − 1. Hence, the overall
complexity of the proposed algorithm is given by

O(n
√
2M +N + J((M + 1)3 + n(M + 1)2

+ (M +N + J − 1)3 + n(M +N + J − 1)2 + n2)),
(42)

where the number of decision variables n is on the order of
O
(
M2 +M(N + J) + 2

)
[54].

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
robust design algorithm for ARS-aided joint HBF. We assume
that the BS is equipped with a uniform linear array of
M = 32 transmit antennas and, unless specified otherwise,
the transmit power, the number of RF chains, the number of
ID users, the number of EH users, the saturation threshold,
the energy conversion efficiency, and the EH target are set to
Pt = 40 dBm, N = 4, J = 2, K = 2, Psat,k = −5 dBm,
ξ = 0.5, and ψ = ψk = −20 dBm, ∀k ∈ K, respectively. For
the large-scale multiple-antenna channel model, we employ
the uniform linear antenna array and assume that there are 6
clusters and 8 rays per cluster as in [9], [10]. The large-scale
path loss is modeled as (in dB) PL = PL0−10α log10(d/d0),
where PL0 denotes the path loss at reference distance d0,
d is the link distance in meters, and α denotes the path
loss exponent. Here, we set d0 = 1 and PL0 = −30 dB.
The distances of the ID and EH users are dID,j = 500,
∀j ∈ J and dEH,k = 5, ∀k ∈ K, respectively [28]. The
path loss exponents regarding the ID and EH users are set as
αID,j = αEH,k = 3.6 [55]. Moreover, we set the channel
bandwidth as 20 MHz and the noise power density as −174
dBm/Hz. For simplicity, the channel error bounds are assumed
to be identical, i.e., ηj = εk = 0.1, ∀j ∈ J , ∀k ∈ K.
Regarding the implementation of the proposed ARS-aided
robust joint HBF design algorithm (Algorithm 1), we set
Nmax = 30, ρ0 = 1, c = 2, δ1 = 10−6 and δ2 = 10−4.

Fig. 2 shows the convergence performance of the proposed
Algorithm 1. Specifically, Fig. 2 (a) shows the evolution of
the sum secrecy rate versus the number of iterations for this
algorithm. We can observe that the secrecy rate increases with
the number of iterations and converges within 25 iterations,
which in this case demonstrates the convergence of the pro-
posed algorithm. Moreover, Fig. 2 (b) indicates the sum of
all the penalty terms versus the number of iterations, which
supports our claim that the proposed penalty-CCCP based joint
design algorithm can tackle the equality constraint effectively.

In the following, the performance of the proposed algorithm
is compared with that of other benchmark approaches. Specif-
ically, we consider the following HBF approaches:

• Proposed: The proposed ARS-aided robust joint HBF
design algorithm.

• Separate: The analog BF matrix U is first obtained
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Fig. 2: The convergence performance of the proposed ARS-aided robust joint HBF design algorithm: (a) Secrecy rate versus
iteration number; (b) penalty term versus iteration number.

by using the channel matching approach [6]. The total
transmit power is equally allocated to the digital BF
matrix W and the ARS shaping matrix F, where the
former is designed to maximize the ID users’ sum rate
and the latter is designed in the null space of the ID users’
estimated channel matrices and aligned with the EH users
estimated channel matrices.

• Without ARS: The analog BF matrix U and digital BF
matrix W are obtained by the channel matching approach
[6] for ID users without the consideration of EH users.

• Fully digital: The ARS-aided robust BF is optimized
assuming a fully-digital structure.

• Nonrobust: Simplified version of the proposed ARS-aided
joint HBF design algorithm based on estimated CSI only
(that is, knowledge of CSI errors is not used).

We first compare the proposed ARS-aided robust joint HBF
design algorithm to its nonrobust counterpart. Fig. 3 (a) and (b)
demonstrate the secrecy rate and feasible rate versus different
values of ψ, respectively. In this simulation, the solution
produced by a design algorithm is considered feasible for
a given channel realization if all the associated constraints
are satisfied. The feasible rate represents the proportion (frac-
tion) of simulations experiments where the design algorithm
produces a feasible solution in this sense. From the results,
the robust algorithm significantly outperforms the nonrobust
algorithm for ψ ≤ −15 dBm. Although the secrecy rate of the
nonrobust algorithm is higher than that of the robust algorithm
for ψ = −10 dBm, the proposed robust design algorithm
provides 100% feasible rate which is significantly better than
that of its nonrobust counterpart. It shows the effectiveness
of the proposed approach against the CSI uncertainties. The
improvement in feasible rate comes from the robust operation
which takes the CSI error into account.

In Fig. 4, we show the secrecy rate versus the transmit
power for the algorithms under comparison. It is seen that
the proposed ARS-aided robust joint HBF design algorithm
achieves the performance of the fully-digital robust BF algo-
rithm with reduced RF chains and energy consumption. More-
over, the proposed design algorithm significantly outperforms
the conventional separate HBF design algorithm and the HBF

algorithm without ARS. In particular, for a given secrecy rate
of 13 bits/s/Hz, the proposed algorithm can save almost 3
dBm in transmit power compared to the conventional separate
HBF design method. The secrecy rate of the HBF algorithm
without ARS is higher than that of the separate HBF design
algorithm for 30 dBm transmit power. That is because the
separate HBF design algorithm has to allocate more power to
serve the EH users in the case of low transmit power, which
degrades the secrecy rate performance. However, the HBF
algorithm without ARS does not consider the EH constraints.
Fig. 5 shows the secrecy rate performance versus the value of
EH target ψ. The proposed HBF design algorithm outperforms
the separate HBF design algorithm and almost achieves the
performance of the fully-digital BF algorithm. The difference
between the secrecy rate performance of the proposed ARS-
aided robust joint HBF design algorithm and that of the fully-
digital BF algorithm increases with the increase of the EH
target value, since more energy is used for wireless power
transfer in order to meet the EH constraint in the hybrid
beamforming structure. The number of RF chains can be
increased to guarantee the secrecy rate performance for large
values of EH target. Due to the heuristic design without the
consideration of EH users, the HBF algorithm without ARS
cannot satisfy the EH constraint and its performance does not
change with ψ.

Subsequently, we investigate the power consumption and
energy efficiency performance of the proposed and convention-
al algorithms. We assume that the levels of power consumption
for each low noise amplifier (LNA), RF chain and A/D con-
verter are given by 20mW , 40mW and 350mW , respectively
[56]. We also consider that the power consumption of the
baseband processing is given by 200mW . Thus, the power
consumption of the fully-digital BF is given by M×(20mW+
40mW+350mW )+200mW , while the one of the A/D HBF is
given by M×20mW+N×40mW+N×350mW+200mW .
By fixing the number of RF chains to N = 8, the results
in Table I show that the HBF structure can significantly
reduce the power consumption compared to the fully-digital
BF structure, especially as the number of transmit antennas
increases. Then, let us define the energy efficiency as R̃

P̃
,
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Fig. 3: Comparison of the proposed ARS-aided robust joint HBF design algorithm and its nonrobust counterpart: (a) Secrecy
rate versus ψ; (b) feasible rate versus ψ.
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Fig. 4: Comparison of the proposed ARS-aided robust joint
HBF design algorithm and the conventional algorithms: Se-
crecy rate versus transmit power.

where R̃ denotes the secrecy rate of the ID user and P̃
denotes the total power consumption. Fig. 6 shows the energy
efficiency for the various algorithms under study versus the
number of RF chains. It is seen that the energy efficiency
performance of all the HBF approaches decreases with the
number of RF chains, and that the proposed ARS-aided robust
joint HBF design algorithm outperforms the other compared
algorithms and provides the best performance. This is because
the proposed HBF design algorithm based on the innovative
optimization technique can achieve the same secrecy rate
performance as the fully-digital BF with greatly reduced power
consumption.

In Fig. 7, we show the secrecy rate performance of the pro-
posed joint hybrid beamforming design algorithm and existing
beamforming algorithms versus the number of EH users. From
the results, the performance of all the analyzed algorithms
degrades with the increase of the number of EH users. The
proposed ARS-aided robust joint hybrid beamforming design
algorithm outperforms the existing hybrid beamforming al-
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Fig. 5: Comparison of the proposed ARS-aided robust joint
HBF design algorithm and the conventional algorithms: Se-
crecy rate versus the EH target.

gorithms and approaches the performance of the fully-digital
beamforming algorithm.

Finally, we investigate the impact of finite resolution phase
shifters on the proposed algorithm. Specifically, in Fig. 8, we
plot its secrecy rate versus the transmit power for different
number Nb of phase shifter quantization bits, in the case of
N = 4 RF chains and K = 2 EH users. It is seen that
the performance of the proposed algorithm improves with the
number of quantization bits Nb as expected. In particular, the
performance with Nb = 8 can approach the performance with
infinite resolution phase shifters.

V. CONCLUSION

We have designed ARS-aided robust joint hybrid A/D BF
for the secrecy rate maximization of a large-scale multiple-
antenna assisted SWIPT system. To tackle this challenging
multi-dimensional optimization problem, featuring nonlinear
objective and nonconvex constraints, we first transformed it
into a more tractable, yet equivalent form. We then proposed
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TABLE I: Power consumption for fully-digital and hybrid beamforming structures (N = 8)

M = 32 M = 64 M = 128 M = 256
Fully Digital 13.32W 26.44W 52.68W 105.16W
Hybrid A/D 3.96W 4.60W 5.88W 8.44W
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Fig. 6: Comparison of the proposed ARS-aided robust joint
HBF design algorithm and the conventional algorithms: Ener-
gy efficiency versus number of RF chains.
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Fig. 7: Comparison of the proposed ARS-aided robust joint
HBF design algorithm and the conventional algorithms: Se-
crecy rate versus number of EH users.

a penalty-CCCP based twin-loop joint iterative algorithm to
solve the resultant problem. Specifically, the penalty coeffi-
cient is adjusted in the outer loop, while in the inner loop
the optimization variables are updated in a block coordinate
descent fashion, where the subproblems within each block
can be solved in parallel. We discussed the convergence
and computational complexity of the proposed algorithm.
Our simulation results have shown that the proposed ARS-
aided robust joint HBF design algorithm can outperform the
existing HBF benchmark algorithms and efficiently achieves
the performance of the fully-digital BF with reduced RF chains
and energy consumption.
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Fig. 8: Secrecy rate of the proposed ARS-aided robust joint
HBF design versus the transmit power with finite resolution
phase shifters (N = 4 and K = 2).

APPENDIX A
PROOF OF LEMMA 1

For any d , [d̃, d̄T ]T ∈ CL×1, where d̄ ∈ C(L−1)×1, we
have

dH

[
x x̄H

x̄ Ḡ

]
d = x|d̃|2 + d̃d̄H x̄+ d̃∗x̄H d̄+ d̄HḠd̄ ≥ 0.

(43)
Hence, by using d = [0, d̄T ]T , we obtain Ḡ ≽ 0. Next, we
show that when x = 0 we have x̄ = 0 by contradiction.

Assume that when x = 0 we have x̄ ̸= 0, then for any d
with x̄H d̄ ̸= 0 (43) can be recast as

d̃d̄H x̄+ d̃∗x̄H d̄+ d̄HḠd̄ ≥ 0. (44)

However, using d̃ = − d̄HḠd̄x̄H d̄
|x̄H d̄|2 we have

d̃d̄H x̄+ d̃∗x̄H d̄+ d̄HḠd̄ < 0. (45)

This contradicts (43). Therefore, when x = 0 we have x̄ = 0.
Lemma 1 is thus proved.

APPENDIX B
PENALTY-CCCP METHOD

In this appendix, we briefly introduce the proposed penalty-
CCCP method in a general framework. Let us consider a
general problem:

(P ) min
x∈X

f(x)

s.t. h(x) = 0,

g(x) ≤ 0

(46)

where X ⊆ Rn denotes a closed convex set, f(x) is a scalar
continuously differentiable function, h(x) ∈ Rp is a vector of
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TABLE II: Penalty-CCCP method for problem (46)

0. initialize x0 ∈ X , ϱ0 > 0, and set c > 1, k = 0

1. repeat
2. xk+1 = CCCP (Pϱk ,x

k)

3. ϱk+1 = cϱk
4. k = k + 1

5. until some termination criterion is met

p continuously differentiable functions, and g(x) ∈ Rq is a
vector of differentiable but possibly nonconvex functions.

We can tackle problem (P ) by using a penalty method [57],
i.e., by solving the penalized problem:

(Pϱ) min
x∈X

fρ(x) , f(x) +
ϱ

2
∥h(x)∥2

s.t. g(x) ≤ 0
(47)

where ϱ > 0 is a scalar penalty parameter that prescribes
a high cost for the violation of the equality constraints. In
particular, when ϱ → ∞, solving the above problem yields
an identical solution to problem (P ) [57]. However, it is
still difficult to globally solve problem (Pϱ) when it is a
nonconvex problem. Thus, we propose the penalty-CCCP
method summarized in Table II to solve problem (P ), where
in each iteration problem (Pϱ) is approximately solved using
the CCCP method. The resulting solution is denoted simply
as xk+1 = CCCP (Pϱk

,xk) in Step 2 of Table II.
Regarding the convergence of penalty-CCCP, this method

converges to the KKT solution of the original problem (P ).
The detailed proof is available from [49].

APPENDIX C
DERIVATION OF UPDATING STEPS FOR THE INNER-LOOP

ALGORITHM

A. Variables Updating in Block 1

In this block, problem (41) can be decomposed into a
number of independent subproblems, which can be solved in
parallel.

1) Subproblems with respect to {τk,j ,Sk,j , B̃k,j , β̃k,j},
∀k ∈ K, ∀j ∈ J : Each subproblem can
be expressed as (48), where Wk,j , Sk,j −(

B̃k,jΩ̄jΩ̄
H
j B̃iH

k,j+B̃i
k,jΩ̄jΩ̄

H
j B̃H

k,j

β̃i
k,j

− β̃k,j
B̃i

k,jΩ̄jΩ̄
H
j B̃iH

k,j

(β̃i
k,j)

2

)
.

This is a standard SDP problem, which can be solved by
using the convex programming toolbox CVX [58].

2) Subproblems with respect to {τ̃k, B̄k, tk}, ∀k ∈ K: Each
subproblem can be expressed as

min
τ̃k≥0,B̄k,tk

∥B− B̄k∥2

s.t.
[

Πk + τ̃kI Πkĝk

ĝH
k Πk −tk + σ2

E,k + ĝH
k Πkĝk − τ̃kε

2
k

]
≽ 0,

(49)

where Πk , B̄i
kB̄

H
k + B̄kB̄

iH
k − B̄i

kB̄
iH
k . This SDP problem

can be solved by using the toolbox CVX.

3) Subproblems with respect to {τ̄j , S̄j ,Pj , γj}: This sub-
problem can be expressed as

min
τ̄j≥0,S̄j ,Pj ,γj

ρ∥B−Pj∥2 − log (1 + γj)

s.t.
[

−W̄j + τ̄jI −W̄jĥj

−ĥH
j W̄j −σ2

D,j − ĥH
j W̄jĥj − τ̄jη

2
j

]
≽ 0,[

S̄j PjΩ̄j

Ω̄H
j PH

j I

]
≽ 0,

(50)

where W̄j , S̄j − (
PjΩ1ωjω

H
j ΩH

1 PiH
j +Pi

jΩ1ωjω
H
j ΩH

1 PH
j

γi

− γj
Pi

jΩ1ωjω
H
j ΩH

1 PiH
j

γi2
j

). This SDP problem can be solved by
using the toolbox CVX.

B. Variables Updating in Block 2

In this block, by fixing the other variables, problem (41)
with respect to B, {αj , βj} and {t̄k}, ∀k ∈ K, ∀j ∈ J , can
be decomposed into several independent subproblems, so that
the variables can be optimized in parallel.

1) Subproblems with respect to {αj , βj}: Each subproblem
is given by

min
αj ,βj

(αj − αi
j)

(1 + αi
j)

+ ρ

K∑
k=1

|βj − β̃k,j |2 (51a)

s.t.

√
1 +

(αj − βj)2

4
≤ αj + βj

2
. (51b)

By attaching a Lagrange multiplier µ to the constraint, we
obtain the following Lagrange function

L(αj , βj , µ) ,
(αj − αi

j)

(1 + αi
j)

+ ρ

K∑
k=1

|βj − β̃k,j |2

+ µ

(√
1 +

(αj − βj)2

4
− αj + βj

2

)
.

By examining the first order optimality condition of
L(αj , βj , µ) with respect to αj , we obtain

αj(µ) =
(1 + αi

j)µ− 2√
(1 + αi

j)µ− 1
+

2ρ
∑K

k=1 β̃k,j −
1

1+αi
j
+ µ

2ρK
.

(52)
Similarly, by examining the first order optimality condition of
L(αj , βj , µ) with respect to βj , we have

βj(µ) =
2ρ
∑K

k=1 β̃k,j −
1

1+αi
j
+ µ

2ρK
. (53)

The value of the multiplier µ must be chosen to ensure the
complementarity slackness condition of the constraint (51b).
In this regard, it is convenient to define the function

C(αj , βj) ,
√
1 +

(αj − βj)2

4
− αj + βj

2
.
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min
τk,j≥0,Sk,j ,B̃k,j ,β̃k,j

|βj − β̃k,j |2 + ∥B− B̃k,j∥2

s.t.

[ −Wk,j + τk,jI −Wk,j ĝk

−ĝH
k Wk,j

2σ2
E,k

β̃i
k,j

− β̃k,j
σ2
E,k

β̃i2
k,j

− ĝH
k Wk,j ĝk − τk,jε

2
k

]
≽ 0,[

Sk,j B̃k,jΩ1ωj

ωH
j ΩH

1 B̃H
k,j 1

]
≽ 0.

(48)

The optimal µ should be positive and satisfy
C(αj(µ), βj(µ)) = 0, which is equivalent to

1√
(1 + αi

j)µ− 1
−

2ρ
∑K

k=1 β̃k,j −
1

1+αi
j
+ µ

2ρK

 = 0.

(54)
We can obtain the optimal µ by using a one dimensional search
to solve (54). By substituting the resulting value of µ in (52)
and (53), we can obtain the optimal values of αj and βj .

2) Subproblem with respect to B: The subproblem is given
by

min
B

∥ΨH
1 DΨ2 −B∥2 + ∥ΨH

2 DΨ1 −BH∥2 +
J∑

j=1

∥Pj −B∥2

+
J∑

j=1

K∑
k=1

∥B− B̃k,j∥2 +
K∑

k=1

∥B− B̄k∥2

s.t. ∥B∥2 ≤ Pt.
(55)

The objective function can be reformulated as (2K +3)∥B−
B0∥2 + Z, where

B0 =
1

JK +K + J + 2
(ΨH

1 DΨ2 +ΨH
1 DHΨ2 +

J∑
j=1

Pj

+

J∑
j=1

K∑
k=1

B̃k,j +

K∑
k=1

B̄k),

(56)

and

Z = ∥ΨH
1 DΨ2∥2 + ∥ΨH

1 DHΨ2∥2 +
J∑

j=1

∥Pj∥2

+

J∑
j=1

K∑
k=1

∥B̃k,j∥2 +
K∑

k=1

∥B̄k∥2 − (JK +K + J + 2)∥B0∥2.

(57)

Therefore, the subproblem (55) is equivalent to

min
B

∥B−B0∥2

s.t. ∥B∥2 ≤ Pt.
(58)

It is readily seen that (58) is equivalent to the projection of
B0 onto a hypersphere ∥B∥2 ≤ Pt. Thus, the solution is

B = Pt
B0

∥B0∥+max(0, Pt − ∥B0∥)
. (59)

3) Subproblems with respect to {t̄k}: Each subproblem is
given by

min
t̄k

|tk − t̄k|2 + |ϕk(t̄k)− ϕ̄k|2. (60)

According to the first order optimality condition and the
piecewise nature of the function ϕk(t̄k), the solution for t̄k
is given by

t̄k =

{
tk ϕ̄k > ξPsat,k
ξϕ̄k+tk
1+ξ2 ϕ̄k ≤ ξPsat,k.

(61)

C. Variables Updating in Block 3
In this block, by fixing the other variables, problem (41)

with respect to A, U, X, C can be decomposed into four
independent subproblems, so that the variables in this block
can be optimized in parallel.

1) Subproblem 1 with respect to A: The subproblem is
formulated as

min
A

∥ΨH
1 DΨ1 −A∥2

s.t. A(m,m) ≥ N, ∀m.
Based on the first order optimality condition, we obtain A0 =
ΨH

1 DΨ1. For the diagonal elements in A, we set

A(m,m) = max(A0(m,m), N), ∀m.

For the elements that are not on the diagonal, we set

A(m,n) = A0(m,n), ∀m ̸= n.

2) Subproblem 2 with respect to C: The subproblem is
given by

min
C

∥ΨH
2 DΨ2 −C∥2.

By applying the first order optimality condition, the optimal
C can be obtained as

C = ΨH
2 DΨ2.

3) Subproblem 3 with respect to U: The subproblem is
given as

min
U

∥U−U0∥2

s.t. |U(m,n)| ≤ 1, ∀m,n,
(62)

where we define U0 , Φ1Y. The subproblem (62) can
be further divided into MN parallel subproblems. For each
element U(m,n), we have the following subproblem:

min
U(m,n)

∥U(m,n)−U0(m,n)∥2

s.t. |U(m,n)| ≤ 1.
(63)
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Similar to subproblem (55), the subproblem (63) is equivalent
to a projection. Therefore, we can obtain

U(m,n) =
U0(m,n)

|U0(m,n)|+max(0, 1− |U0(m,n)|)
, ∀m,n.

4) Subproblem 4 with respect to X: The subproblem is
given as

min
X

∥Φ2Y −XH∥2.

By applying the first order optimality condition, the optimal
X can be obtained as

X = YHΦH
2 .

D. Variables Updating in Block 4

In this block, problem (41) can be decomposed into the
following subproblems, which can be solved in parallel.

1) Subproblem with respect to (Y,D): This subproblem is
given by

min
Y,D

∥Φ1Y −U∥2 + ∥Φ2Y −XH∥2 + ∥ΨH
1 DΨ1 −A∥2

+ ∥ΨH
1 DΨ2 −B∥2 + ∥ΨH

2 DΨ1 −BH∥2

+ ∥ΨH
2 DΨ2 −C∥2

s.t. YYiH +YiYH −YiYiH ≽ D.
(64)

This is a standard SDP problem, which can be solved by using
the toolbox CVX.

2) Subproblems with respect to {ϕ̄k}: Each subproblem is
given by

min
ϕ̄k

|ϕk(t̄k)− ϕ̄k|2

s.t. ψk ≤ ϕ̄k ≤ ξPsat,k.
(65)

By applying the first order optimality condition, the optimal
ϕ̄k can be obtained as

ϕ̄k = min(ξPsat,k,max(ψk, ϕk(t̄k))). (66)
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