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Abstract

We present a fully secure identity based encryption scheme whose proof of security does not
rely on the random oracle heuristic. Security is based on the decisional bilinear Diffie-Hellman
assumption. Previous constructions of this type incurred a large penalty factor in the security
reduction from the underlying complexity assumption. The security reduction of the present
system is polynomial in all the parameters.

1 Introduction

Identity Based Encryption (IBE) provides a public key encryption mechanism where a public key
is an arbitrary string such as an email address or a telephone number. The corresponding private
key can only be generated by a Private Key Generator (PKG) who has knowledge of a master
secret. In an IBE system, users authenticate themselves to the PKG and obtain private keys
corresponding to their identities. Although the identity based encryption model was proposed two
decades ago [Sha84], and a few early precursors suggested over the years [Tan87, TI89, MY96], it
is only recently that the first working implementations were proposed. Boneh and Franklin [BF01,
BF03] defined a security model for identity based encryption and gave a construction based on
the Bilinear Diffie-Hellman (BDH) problem. Cocks [Coc01] describes another construction using
quadratic residues modulo a composite. The security of these systems requires cryptographic hash
functions that are modeled as random oracles, i.e., these systems are only proven secure in the
random oracle model [BR93]. The same holds for several other identity based systems featuring
signatures [CC03], key exchange [SOK00], hierarchical identities [GS02], and signcryption [Boy03].

It is natural to ask whether secure IBE systems can exist in the standard model, i.e., without
resorting to the random oracle heuristic. This question is especially relevant in light of several recent
uninstantiable random oracle cryptosystems [CGH98, BBP04], which are secure in the random
oracle model, but are provably insecure under any actual instantiation of the oracle. Towards this
goal, several recent results [CHK03, BB04a, HK04] construct IBE systems secure without random
oracles in weaker versions of the Boneh-Franklin model. In one such model, called “selective-ID”
IBE [CHK03], the adversary must commit ahead of time to the identity it wishes to attack.

It is easy to show that any selective-ID secure IBE is readily converted into a fully secure
IBE by artificially restricting the space of identities, but the proof uses an inefficient security
reduction [BB04b, §7]. For example, if all identities in the restricted scheme can be represented as
n-bit binary strings, then the reduction degrades security by a factor of 2n. Concretely, suppose
that identities in the system are encoded in 160 bits, the length of SHA-1 digests. Further, suppose
that one of the selective-ID IBE systems of [CHK03, BB04a] is instantiated with a sufficiently large
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security parameter that no t-time adversary has advantage 2−240 in a selective-ID attack. Then,
according to [BB04b, §7], no t-time adversary can have advantage 2−80 in a full adaptive identity
attack against the same system with the 160-bit restriction on identities. This restriction is not
limiting in any way since one can always hash long indentites with SHA-1. In other words, these
IBE systems are fully secure in the sense of Boneh-Franklin in the standard model, provided that a
sufficiently large bilinear group is used. Unfortunately, as mentioned above, the generic reduction
from selective-ID to full adaptive-ID security is not polynomial time.

In view of this, a natural question is whether a fully secure IBE can be built with a polynomially
bounded reduction from the underlying complexity assumption. In this paper we construct such a
cryptosystem. Security is based on the decisional version of the bilinear Diffie-Hellman assumption.
Our construction demonstrates that fully secure IBE systems with a polynomial time reduction can
exist in the absence of random oracles. The main shortcoming of the proposed system is that it is
impractical; consequently, we mostly view our construction as an existence proof. This contrasts
with the two selective identity constructions from [BB04a], which are very simple and practical
even when scaled for full IBE security.

2 Preliminaries

Before presenting our results we briefly review a definition of security for an IBE system. We also
review the definition for groups with a bilinear map. First, we introduce some notation.

2.1 Notation

For a finite set S we use x
R← S to define a random variable x that picks an element of S uniformly

at random. For a randomized algorithm A we use x
R← A(y) to define a random variable x that is

the output of algorithm A on input y. We let Pr[b(x) : x← A(y)] denote the probability that the
predicate b(x) is true where x is the random variable defined by x ← A(y). For a vector z ∈ Σn

we use z|i to denote the i-th component of z.

2.2 Secure IBE Systems

Recall that an Identity Based Encryption system (IBE) consists of four algorithms [Sha84, BF01]:
Setup, KeyGen, Encrypt, Decrypt. The Setup algorithm generates system parameters, denoted by
params, and a master secret master-key. The KeyGen algorithm uses the master secret to generate
the private key corresponding to a given identity. The encryption algorithm encrypts messages for
a given identity (using the system parameters) and the decryption algorithm decrypts ciphertexts
using the private key.

Boneh and Franklin [BF01] define chosen ciphertext security for IBE systems under a chosen
identity attack. In their model the adversary is allowed to adaptively chose the public key it wishes
to attack (the public key on which it will be challenged). More precisely, security for an IBE system
is defined using the following two probabilistic experiments CCA-ExpA(0) and CCA-ExpA(1).

Experiment CCA-ExpA(b). For an algorithm A and a bit b ∈ {0, 1} define the following game
between a challenger and A:

Setup: A challenger runs the Setup algorithm. It gives A the resulting system parameters
params. It keeps the corresponding master-key to itself.
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Phase 1: Algorithm A issues queries q1, . . . , qm where each query qi is either a private key
or a decryption query. These queries may be asked adaptively, that is, each query qi

may depend on the replies to q1, . . . , qi−1. The two types of queries are as follows:

Private key generation query for an identity IDi: The challenger responds by running algo-
rithm KeyGen to generate the private key di corresponding to the given public key IDi.
It transmits the resulting key di to A.

Decryption query on a ciphertext Ci for an identity IDi: The challenger responds by execut-
ing algorithm KeyGen to generate the private key di corresponding to IDi. It then runs
algorithm Decrypt to decrypt the ciphertext Ci using the private key di. It gives A the
resulting plaintext.

Challenge: Once A decides that Phase 1 is over it outputs an identity ID∗ and two equal
length plaintexts M0,M1 ∈ M that it wishes to be challenged on, under the constraint
that it had not previously asked for the private key of ID∗. In response, the challenger
assembles a ciphertext C∗ = Encrypt(params, ID∗,Mb). It submits the ciphertext C∗ as
challenge to A.

Phase 2: Algorithm A issues additional queries qm+1, . . . , qn, which can be asked adaptively
as in Phase 1. Each Phase 2 query qi is of one of two types:

Private key generation query for any identity IDi where IDi 6= ID∗: The challenger responds
as to a Phase 1 query to generate a private key for IDi.

Decryption query for identity ID∗ on a ciphertext Ci with Ci 6= C∗: The challenger responds
as to a Phase 1 query to decrypt Ci for identity ID∗.

Guess: Eventually, A concludes the game and outputs a guess b′ ∈ {0, 1}.

We call b′ the output of the game and define the random variable CCA-ExpA(b) as CCA-ExpA(b) = b′.
The probability is over the random bits used by the challenger and the adversary. We define
adversary A’s advantage in attacking the IBE system E as

AdvE,A = |Pr [CCA-ExpA(0) = 1]− Pr [CCA-ExpA(1) = 1] |.

Definition 2.1. We say that an IBE system E is (t, qID, qC , εIBE)-adaptive chosen ciphertext secure
under a chosen identity attack if for any t-time IND-ID-CCA adversary A that makes at most qID

chosen private key queries and at most qC chosen decryption queries we have that AdvE,A < εIBE.
As shorthand, we say that E is (t, qID, qC, εIBE)-IND-ID-CCA secure.

Semantic Security. As usual, we define chosen plaintext security for an IBE system as in the
game above, except that the adversary is not allowed to issue any decryption queries. The adversary
may still issue adaptive private key queries. The resulting system is semantically secure under an
adaptive chosen identity attack.

Definition 2.2. We say that an IBE system E is (t, qID, εIBE)-chosen plaintext secure under a chosen
identity attack if E is (t, qID, 0, εIBE)-chosen ciphertext secure under a chosen identity attack. As
shorthand, we say that E is (t, qID, εIBE)-IND-ID-CPA secure.

For b ∈ {0, 1} we use CPA-ExpA(b) to denote the experiment CCA-ExpA(b) where A cannot make
any decryption queries.
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2.3 Bilinear Groups

We briefly review the necessary facts about bilinear maps (or pairings) and bilinear map groups.
Throughout this paper, we let G, G1, g, e be such that:

– G and G1 are two (multiplicative) cyclic groups of prime order p;

– g is a generator of G;

– e is a bilinear pairing e : G×G→ G1.

Specifically, for two groups G and G1 as above, a bilinear pairing is a map e : G × G → G1 with
the following properties:

1. bilinearity: ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab;

2. non-degeneracy: e(g, g) 6= 1.

Note that e(·, ·) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga). Henceforth, for a prime order
group G we denote by G∗ the set G \ {1G} where 1G is the identity element in G; this is the set of
generators of G.

We say that G is a bilinear group if the group operation in G can be computed efficiently, and
there exists a group G1 and an efficiently computable bilinear pairing e : G×G→ G1 as above.

3 Complexity Assumptions

Let G be a bilinear group of prime order p and g be a generator of G. We review the standard Bi-
linear Diffie-Hellman (BDH) assumption as well as the definition for binary biased Pseudo Random
Functions (PRF’s) and collision resistant functions.

3.1 Bilinear Diffie-Hellman Assumption

The BDH problem [Jou00, BF01] in G is as follows: given a tuple g, ga, gb, gc ∈ G as input, output
e(g, g)abc ∈ G1. An algorithm A has advantage εBDH in solving the BDH problem in G if

Pr
[
A(g, ga, gb, gc) = e(g, g)abc

]
≥ εBDH

where the probability space is defined over the random choice of generator g ∈ G∗, the random
choice of exponents a, b, c ∈ Zp, and the random bits consumed by A.

Similarly, we say that an algorithm B that outputs b ∈ {0, 1} has advantage εBDH in solving the
decision BDH problem in G if∣∣∣Pr

[
B(g, ga, gb, gc, e(g, g)abc) = 0

]
− Pr

[
B(g, ga, gb, gc, T ) = 0

]∣∣∣ ≥ εBDH (1)

where the probability is over the random choice of generator g ∈ G∗, the random choice of a, b, c ∈
Zp, the random choice of T ∈ G1, and the random bits used by B. We use the following notation:

– PBDH for the distribution over the 5-tuples 〈g, ga, gb, gc, e(g, g)abc〉 in the left term of (1);

– RBDH for the distribution over the 5-tuples 〈g, ga, gb, gc, T 〉 in the right term of (1).

Definition 3.1. We say that the (t, εBDH)-(Decision) BDH assumption holds in G if no t-time
algorithm has advantage at least εBDH in solving the (decision) BDH problem in G.

Occasionally we drop the t and εBDH and refer to the BDH and Decision BDH assumptions in G.
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3.2 Biased Binary Pseudo Random Functions

Next we review the definition of a Pseudo Random Function (PRF) with bias δ. Let F be a function
F : {0, 1}w → {0, 1}. We say that F has bias δ ∈ [0, 1] if the expectation of F over all inputs in
{0, 1}w is δ, i.e., (1/2w)

∑
x∈{0,1}w F (x) = δ.

We let Ωδ denote the set of all functions F : {0, 1}w → {0, 1} with bias δ. We also let K1 denote
a set of keys. For an algorithm A we define the following value:

ExpΩδ
A = Pr

[
AF (k1) = 1 : F

R← Ωδ, k1
R← K1

]
Here AF (k1) denotes the output of algorithm A when it is given oracle access to the function F
and input k1. The input k1 is a dummy input needed only so that A takes the same input as the
A below.

The biased Pseudo Random Functions that we will be using are parameterized by two random
values, say k0 ∈ K0 and k1 ∈ K1. The parameter k0 is kept secret while k1 is public. To capture
this concept we consider a set of functions F = {Fk0,k1 : {0, 1}w → {0, 1}}k0∈K0,k1∈K1

. For such a
family of functions F and an algorithm A we define the following value:

ExpFA = Pr
[
AFk0,k1 (k1) = 1 : k0

R← K0, k1
R← K1

]
Note that A is given k1 but is not given k0.

Definition 3.2. Let F = {Fk0,k1 : {0, 1}w → {0, 1}}k0∈K0,k1∈K1
be a set of functions. We say that

F is a (δ, t, εPRF, q)-biased-PRF if for any t-time oracle algorithm A making at most q queries to
its oracle we have ∣∣∣ExpΩδ

A − ExpFA

∣∣∣ < εPRF

We say that the parameter k0 is kept secret while k1 is public.

3.3 Collision Resistance

We briefly review the definition of collision resistant hash functions.

Definition 3.3. Let Σ be an alphabet of size s and let n be some positive integer. We say that
a family of functions H = {Hk : {0, 1}w → Σn}k∈K is (t, εH)-collision resistant if for any t-time
algorithm A we have

Pr
[
Hk(x) = Hk(y) and x 6= y : k

R← K; (x, y) R← A(k)
]

< εH

It is well known that collision resistant hash functions can be constructed from a finite cyclic
group for which the discrete log problem is intractable. Since the Decision BDH assumption in
G implies that discrete-log in G is intractable it follows that the existence of collision resistant
hash functions is implied by the Decision BDH assumption. Consequently, rather than saying
that our construction depends on both Decision BDH and collision-resistance we can say that our
construction depends on Decision BDH alone for security. Nevertheless, in our security theorems
we state collision resistance as an explicit assumption so that one can use any cryptographic hash
function such as SHA-1, if so desired.
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4 Secure IBE Construction

Before presenting our secure IBE system we first introduce a specific construction for a biased
binary PRF from any collision resistant hash function. Later, in Section 5, we prove that it is
indeed a PRF with overwhelming probability.

4.1 A Special Biased Binary PRF

Let Σ be an alphabet of size s, and let Σ⊥ = Σ ∪ {⊥}. For 0 ≤ m ≤ n, denote by Σ(n,m) the set of
vectors in Σn

⊥ that have exactly m components in Σ. For any vector K ∈ Σ(n,m) with n ≥ m > 0,
and any function H : {0, 1}w → Σn with w > 0, we define the bias map FK,H : {0, 1}w → {0, 1} as

FK,H(x) =

{
0 if ∃i ∈ {1, . . . , n} : H(x)|i = K|i
1 if ∀i ∈ {1, . . . , n} : H(x)|i 6= K|i

Observe that when H is a random function, the bias map FK,H has an expectation of (1 − 1/s)m

over the inputs x ∈ {0, 1}w.

Definition 4.1. Let n, m,w be positive integers with m ≤ n. Let Σ be an alphabet of size s and
set δ = (1 − 1/s)m. We say that a hash function family {Hk : {0, 1}w → Σn}k∈K is (t, εPRF, q,m)-
admissible if the function family {FK,Hk

}K∈Σ(n,m),k∈K is a (δ, t, εPRF, q)-biased PRF. Here k is public
and K is secret.

In Section 5 we show how an admissible hash function family can be constructed given a
collision resistant hash function family. In the rest of this section, we show how to use admissible
hash functions to construct a secure IBE in the standard model.

4.2 Secure IBE Using Admissible Hash Functions

We are now ready to present our secure IBE system. It is inspired from a recent hierarchical
IBE construction by Boneh and Boyen [BB04a] with two desirable properties: (i) a tight security
reduction without random oracles in the selective-ID attack model; and (ii) a natural indifference
to the hierarchical order—which needed to be countered in [BB04a] but that we will now exploit.

The system makes use of a collision resistant hash function and security is based on the Decision
BDH assumption. Let G be a bilinear group of prime order p, where the security parameter
determines the size of G. Let e : G×G→ G1 be the bilinear map. We assume that the messages
to be encrypted are elements of G1.

Throughout the section we let Σ = {1, . . . , s} be an alphabet of size s, although later we restrict
our attention to the binary case s = 2. We also let {Hk : {0, 1}w → Σn}k∈K be a family of hash
functions. For now, we assume that public keys (ID) are elements in {0, 1}w. We later extend
the construction to public keys over {0, 1}∗ by first hashing ID using a collision resistant hash
H̃ : {0, 1}∗ → {0, 1}w. The IBE system works as follows:

Setup(G, G1, e): To generate system parameters, the algorithm selects a random generator g ∈ G∗,
picks a random α ∈ Zp, and sets g1 = gα. Next, it picks a random element g2 ∈ G and
constructs a random n× s matrix U = (ui,j) ∈ Gn×s where each ui,j is uniform in G. Finally,
the algorithm picks a random k ∈ K as a hash function key. The system parameters params
and the master secret master-key are given by

params =
(
g, g1, g2, U, k

)
master-key = gα

2
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KeyGen(params, ID,master-key): To generate the private key for an identity ID ∈ {0, 1}w, the
algorithm lets ~a = Hk(ID) = a1 . . . an ∈ Σn and picks random r1, . . . , rn ∈ Zp. The private
key dID is

dID =

(
gα
2 ·

n∏
i=1

uri
i,ai

, gr1 , . . . , grn

)
∈ Gn+1

Encrypt(params, ID,M): To encrypt a message M ∈ G1 under the public key ID ∈ {0, 1}w, set
~a = Hk(ID) = a1 . . . an ∈ Σn, pick a random t ∈ Zp, and output

C =
(

e(g1, g2)t ·M, gt, ut
1,a1

, . . . , ut
n,an

)
∈ G1 ×Gn+1

Note that e(g1, g2) can be precomputed once and for all, or included in the system parameters,
so that encryption does not require any pairing computations.

Decrypt(params, dID, C): To decrypt a ciphertext C = (A,B, C1, . . . , Cn) using the private key
dID = (d0, d1, . . . , dn), output

A ·
∏n

j=1 e(Cj , dj)
e(B, d0)

= M

Let ~a = Hk(ID) = a1 . . . an ∈ Σn. Then, indeed, for a valid ciphertext we have∏n
j=1 e(Cj , dj)
e(B, d0)

=

∏n
j=1 e(uj,aj , g)trj

e(g, g2)tα
∏n

j=1 e(g, uj,aj )trk
=

1
e(g1, g2)t

This completes the description of the system.

4.3 Security

We now turn to proving security of the IBE above. The system makes use of an admissible hash
function family and security is based on the Decision BDH assumption. We prove security in the
standard model, i.e., without random oracles.

Theorem 4.2. Let |Σ| = s. Suppose the (t, εBDH)-Decision BDH assumption holds in G. Further-
more, suppose {Hk : {0, 1}w → Σn}k∈K is a (t, εPRF, q + 1,m)-admissible family of hash functions.
Set δ = (1 − 1/s)m and ∆ = δ(1 − δ)q. Assume that ∆ > εPRF. Then the IBE system above is
(t, q, εIBE)-chosen plaintext (IND-ID-CPA) secure for any εIBE ≥ 2εBDH/(∆− εPRF).

We note that taking m = Θ(s log q) leads to ∆ = Θ(1/q). Then, ignoring εPRF, we have that
εIBE = Θ(qεBDH). Hence, in groups where (t, εBDH)-Decision BDH holds we obtain a (t, q,Θ(qεBDH))
secure IBE system without random oracles.

To prove the theorem we need to show that for any t-time algorithm A that makes at most q
private key queries we have∣∣Pr [CPA-ExpA(0) = 1]− Pr [CPA-ExpA(1) = 1]

∣∣ < εIBE

To do so we first define two additional experiments.
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Experiment 1: BDH-ExpA(b, (g, g1, g2, g3, T )). Let A be an algorithm, b be a bit in {0, 1}, and
(g, g1, g2, g3, T ) be a 5-tuple where g ∈ G∗, g1, g2, g3 ∈ G, and T ∈ G1. Define the following game
between a simulator and A:

Setup: To start, the simulator generates system parameters by first picking a random vector
V = v1 . . . vn ∈ Σ(n,m). It then generates an n × s matrix U = (ui,j) as follows. For each
i = 1, . . . , n and j = 1, . . . , s it picks a random αi,j ∈ Zp and sets

ui,j =
{

g2 · gαi,j if vi = j, and
gαi,j otherwise

Next, the simulator picks a random k ∈ K as a hash function key. It gives A the system
parameters params = (g, g1, g2, U, k). Note that the corresponding (unknown) master secret
is master-key = gα

2 where α = logg g1.

Phase 1. A issues up to q private key queries. Consider a query for the private key ID ∈ {0, 1}w.
Let ~a = Hk(ID) = a1 . . . an ∈ Σn. If ai 6= vi for all i = 1, . . . , n then the simulator terminates
the experiment and outputs abort.

Otherwise, there exists an i such that ai = vi ∈ Σ. The simulator derives the private key for
ID by first picking random elements r1, . . . , rn ∈ Zp and then setting

d0 = g
−αi,vi
1

n∏
j=1

u
rj

j,aj
, d1 = gr1 , . . . , di = gri/g1, . . . , dn = grn (2)

We note that (d0, d1, . . . , dn) ∈ Gn+1 is a valid random private key for ID. To see this, let
r̃i = ri − α. Then we have that

g
−αi,vi
1

n∏
j=1

u
rj

j,aj
= gα

2 · (g2 gαi,vi )−α ·
n∏

j=1

u
rj

j,aj
= gα

2 · u
r̃i
i,ai
·

n∏
j=1,j 6=i

u
rj

j,aj

It follows that the key (d0, d1, . . . , dn) defined in (2) satisfies

d0 = gα
2 · (u

r̃i
i,ai
·

n∏
j=1,j 6=i

uri
j,aj

), d1 = gr1 , . . . , di = gr̃i , . . . , dn = grn

where r1, . . . , r̃i, . . . , rn are uniform in Zp. This matches the definition for a private key for
ID and hence (d0, d1, . . . , dn) is a valid private key for ID. The simulator gives this key to A.

Challenge. A outputs an identity ID∗ and two messages M0,M1 ∈ G1. Let ~a = Hk(ID∗) =
a1 . . . an ∈ Σn. If there exists an i such ai = vi then the simulator terminates the experiment
and outputs abort. Otherwise, the simulator responds with the challenge ciphertext

C = (Mb · T, g3, g
α1,a1
3 , . . . , g

αn,an
3 )

Suppose that g3 = gc. Then, since ui,ai = gαi,ai for all i, we have that

C =
(
Mb · T, gc, uc

1,a1
, . . . , uc

n,an

)
Hence, if the tuple (g, g1, g2, g3, T ) was sampled from PBDH, then T = e(g, g)abc = e(g1, g2)c

and C is a valid encryption of Mb under ID∗. If on the other hand (g, g1, g2, g3, T ) was sampled
from RBDH, then T is random in G1 and C is independent of b in A’s view.
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Phase 2. A issues more private key queries for identities ID 6= ID∗, for a total of at most q queries
between Phases 1 and 2. The simulator responds as before (aborting as necessary).

Guess. A outputs a guess b′ ∈ {0, 1}. The simulator returns b′ as the result of the experiment.

We define BDH-ExpA(b, (g, g1, g2, g3, T )) to be the random variable denoting the simulator’s output
in the above experiment. It takes one of three values: 0, 1, or abort.

Experiment 2: PRF-ExpA(b, F, k). Let A be an algorithm, b be a bit in {0, 1}, F be a function
F : {0, 1}w → {0, 1}, and k ∈ K. Define the following game between a simulator and A:

Setup: To generate system parameters the simulator selects a random generator g ∈ G∗, picks
a random α ∈ Zp, and sets g1 = gα. Next, it picks a random element g2 ∈ G and a
random n × s matrix U = (ui,j) where each ui,j ∈ G. It gives A the system parameters
params = (g, g1, g2, U, k) and keeps to itself the master secret master-key = gα

2 .

Phase 1: A issues up to q adaptive private key queries. Consider a query for the private key
ID ∈ {0, 1}w. If F (ID) = 1 the simulator terminates the experiment and outputs abort.
Otherwise, the simulator uses master-key to generate the private key for ID and gives the
result to A.

Challenge. A outputs an identity ID∗ and two messages M0,M1 ∈ G1. If F (ID∗) = 0 then the
simulator terminates the experiment and outputs abort. Otherwise, the simulator creates the
encryption of Mb and gives the resulting challenge ciphertext to A.

Phase 2. A issues more private key queries for identities ID 6= ID∗, for a total of at most q queries
between Phases 1 and 2. The simulator responds as before (aborting as necessary).

Guess. A outputs a guess b′ ∈ {0, 1}. The simulator returns b′ as the result of the experiment.

We define PRF-ExpA(b, F ) to be the random variable denoting the simulator’s output in the above
experiment. It takes one of three values: 0, 1, or abort.

Next, we state four facts about these experiments, which we prove in Appendix A. The proof
of Theorem 4.2 will follow immediately from these facts. We define the following notation:

1. Define the random variable Z = (g, g1, g2, g3, T ) R← PBDH.

2. For b = 0, 1 define the random variable Tb = BDH-ExpA(b, Z).

3. For b = 0, 1 define the value tb = Pr[Tb = 1 | Tb 6= abort].

4. We let {FK,Hk
} denote the distribution sampled by the following algorithm: pick a random

k ∈ K and a random K ∈ Σ(n,m), and output the (function, key) pair (FK,Hk
, k).

5. We set δ = (1− 1/s)m and ∆ = δ(1− δ)q.

Claim 1. Consider (F, k) R← {FK,Hk
}. Then for b = 0, 1 the random variable Tb = BDH-ExpA(b, Z)

is identical to the random variable PRF-ExpA(b, F, k).

Claim 2. For b = 0, 1 we have that tb is equal to Pr[CPA-ExpA(b) = 1].

9



Claim 3. Let (F, k) R← {FK,Hk
}. Then for b = 0, 1 we have

Pr[PRF-ExpA(b, F, k) = abort] < 1−∆ + εPRF

Claim 4. We have that |t0 − t1| < 2εBDH/(∆− εPRF).

The proofs of these claims are given in Appendix A. The main theorem follows easily.

Proof of Theorem 4.2. The theorem follows directly from Claims 2 and 4. The two claims together
show that for any t-time algorithm A that makes at most q private key queries, we have∣∣Pr[CPA-ExpA(0) = 1]− Pr[CPA-ExpA(1) = 1]

∣∣ = |t0 − t1| < 2εBDH/(∆− εPRF)

as required.

5 Constructing Admissible Hash Functions

It remains to show how an admissible hash function family can be constructed given a collision
resistant hash function family. We do this in two steps: we first present some idealized sufficient
conditions for a hash function family to be admissible, then show how these conditions can be
achieved in the case of a binary alphabet given a family of collision resistant hash functions. As
previously mentioned, the Decision BDH assumption can be used to realize collision resistance,
although we are free to use more practical hash functions.

For simplicity, we define the following shorthand notation. We let Σ(n,m) be the universe of the
possible values of the secret index K. For a hash function H, we respectively define the H-null-set
and the H-kernel of any x ∈ {0, 1}w as

ZH(x) = {K ∈ Σ(n,m) : FK,H(x) = 0}, YH(x) = {K ∈ Σ(n,m) : FK,H(x) = 1}

Clearly, for any x the sets ZH(x) and YH(x) form a partition of Σ(n,m) such that |ZH(x)| =(
n
m

)
(sm − (s− 1)m) and |YH(x)| =

(
n
m

)
(s− 1)m. For binary alphabets, we have

|Σ(n,m)| =
(

n

m

)
2m, |ZH(x)| =

(
n

m

)
(2m − 1), |YH(x)| =

(
n

m

)
(for s = 2)

Before delving into the construction, we need to precise the following notions.

Adversarial Uncertainty. We formalize the information made available to the adversary using
the notion of knowledge state. At any time during the interaction of an algorithm AF with a bias
map oracle FK,H where H is public and K is secret, the algorithm’s available knowledge about the
oracle is captured by a distribution of the secret K. Initially the distribution is uniform over Σ(n,m)

since K is chosen uniformly in this set. Now, suppose that prior to the next interaction with the
oracle the distribution is uniform over some set S, then the distribution after the next oracle query
FK,H(xi) is uniform over a subset S′ ⊆ S such that

S′ =

{
S ∩ ZH(x) if FK,H(xi) = 0
S ∩ YH(x) if FK,H(xi) = 1

10



It follows that after learning the responses {FK,H(xi) : i = 1, . . . , j} to any set of queries {xi :
i = 1, . . . , j}, the algorithm’s knowledge state regarding K is completely captured by the uniform
distribution over the set Sj given by

Sj =
(
Σ(n,m)

)
∩

⋂
i∈{1,...,j}

FK,H (xi)=0

ZH(xi)

︸ ︷︷ ︸
SZ

j

∩
⋂

i∈{1,...,j}
FK,H (xi)=1

YH(xi)

︸ ︷︷ ︸
SY

j

Here, SZ
j and SY

j are respectively defined as the sets of values of K ∈ Σ(n,m) that are compatible
with the “negative” and the “positive” responses from the set of oracle responses {FK,H(xi) : i =
1, . . . , j}. Notice that reordering the queries has no effect on the knowledge state.

Hamming Separation Property. For two vectors x, y ∈ Σn, we write d(x, y) for the Hamming
distance between x and y. We say that a hash function family {Hk : {0, 1}w → Σn}k∈K satisfies
the v-Hamming separation property if ∀k ∈ K and ∀x, y ∈ {0, 1}w such that Hk(x) 6= Hk(y), it also
holds that d(Hk(x),Hk(y)) ≥ v. In other words, any distinct Hk(x) and Hk(y) must take differing
values in at least v coordinates (and thus have at most n− v coordinates in common).

In Section 5.2, we show how to achieve the Hamming separation property from collision resis-
tance using coding theory.

5.1 Sufficient Conditions For Admissibility

The following theorem gives a set of sufficient conditions for a hash family to be admissible as
defined in Definition 4.1. We focus on binary alphabets (s = 2).

Theorem 5.1. Let n, m, v, w be positive integers such that m ≤ n and v ≤ n. Let Σ be an alphabet
of size s = 2, and let δ = (1 − 1/s)m = 2−m. Assume that H = {Hk : {0, 1}w → Σn}k∈K is some
(t, εH)-collision resistant hash function family that satisfies the v-Hamming separation property.
Pose θ = (1− v/n)m. If θ ≤ κ δ for some arbitrary κ ∈ (1,∞) then the family H is (t, εPRF, q,m)-
admissible provided that εPRF ≥ εH + 13

2 γ2/κ and q ≤ γ/κ δ for some arbitrary γ ∈ (0, 1
2).

It suffices to show that, in the view of any algorithm A interacting with a bias map oracle
FK,Hk

for random k ∈ K and K ∈ Σ(n,m) where K is secret, the first q outputs of the oracle are
distributed identically to the first q outcomes of a binomial random process of expectation δ, with
probability at least 1− εPRF.

We henceforth omit the subscripts K and Hk since there is no ambiguity, and write F (x) for
FK,Hk

(x). We use the abbreviations Yi = YHk
(xi), Zi = ZHk

(xi), hi = Hk(xi), and Fi = F (xi).
We compute the distribution of the first q oracle answers under the stated assumptions, treating

the algorithm A as an adversary that adaptively selects the q points x1, . . . , xq at which F is queried.
For now, we assume that ∀i 6= j : xi 6= xj ⇒ hi 6= hj (and by the v-Hamming separation property,
d(hi, hj) ≥ v). By the (t, εH)-collision resistance assumption on H, this is true with probability at
least 1− εH. We correct for this assumption at the end.

Conditional Probability Bounds. Suppose that before step j ∈ {1, . . . , q} the adversary has
learned the j−1 values respectively taken by F (x) at arbitrary query points x = x1, . . . , xj−1. Our
goal is to find lower and upper bounds on the conditional probability that F (xj) = 1 given the
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history of past queries and answers, in the adversary’s view, uniformly for all choices of the next
query point xj 6∈ {x1, . . . , xj−1).

Let Xi = {x1, . . . , xi} = Xneg
i ∪ Xpos

i where Xneg
i = {x ∈ Xi : F (x) = 0} and Xpos

i = {x ∈
Xi : F (x) = 1}, and write Pj = Pr[F (xj) = 1 | Xneg

j−1, X
pos
j−1] for the probability we seek to bound.

Observe that the two sets Xneg
j−1 and Xpos

j−1 together capture all relevant information about the query
history just before the j-th query, since the order of the queries is irrelevant. We have

Pj = Pr[F (xj) = 1 | Xneg
j−1, X

pos
j−1] =

|Yj ∩ Sj−1|
|Sj−1|

=
|Yj ∩ SY

j−1 ∩ SZ
j−1|

|SY
j−1 ∩ SZ

j−1|

=

∣∣∣Yj ∩
(⋂

x∈Xpos
j−1

Y (x)
)
∩
(⋂

x∈Xneg
j−1

Z(x)
)∣∣∣∣∣∣(⋂x∈Xpos

j−1
Y (x)

)
∩
(⋂

x∈Xneg
j−1

Z(x)
)∣∣∣ =

∣∣∣Yj ∩ Y pos
∩,j−1 \ Y neg

∪,j−1

∣∣∣∣∣∣Y pos
∩,j−1 \ Y neg

∪,j−1

∣∣∣
where we have posed Y pos

∩,j−1 =
(
∩x∈Xpos

j−1
Y (x)

)
and Y neg

∪,j−1 =
(
∪x∈Xneg

j−1
Y (x)

)
, or, as expressed in

our previous, simpler but less explicit notation, Y pos
∩,j−1 = SY

j−1 and Y neg
∪,j−1 = Σ(n,m) \ SZ

j−1.
In Appendix B.1 we use this general expression and the v-Hamming separation property to

bound Pj for query histories that contain either zero or one positive answer. We later show that
the other cases are together very unlikely. Namely, we seek:

– A uniform bounding interval on Pj for all query histories with |Xpos
j−1| = 0 (i.e., containing

only negative answers);

– A uniform upper bound on Pj for all query histories such that |Xpos
j−1| = 1 (i.e., containing

one positive answer).

We obtain non-trivial uniform bounds of three different kinds, given by

∀Xneg
j−1, X

pos
j−1 s.t. |Xpos

j−1| = 0 : (1− γ)δ ≤ Pj ≤ (1 + 2γ)δ
∀Xneg

j−1, X
pos
j−1 s.t. |Xpos

j−1| = 1 : Pj ≤ 2κ δ

Detailed calculations for these bounds are given in Appendix B.1.

Statistical Process Discrepancy. Subject to the above inequalities, we set out to bound the
probability that the biased PRF oracle F deviates from a sequence of q outcomes from a genuine
memoryless binomial process of expectation δ over a sequence of length q.

Consider R, a binomial process of expectation δ. We construct a modified process R′ whose i-th
outcome is defined as R′

i = Ri ⊕Mi. Here, M is a control process whose purpose is to randomly
decide whether R′

i should assume the value of Ri or its opposite, with a probability that depends
on the previous outcomes R′

1, . . . , R
′
i−1 and the current drawing Ri. By properly choosing M , we

can make R′ behave exactly as F , i.e., have the q-prefixes of R′ achieve the same joint distribution
as the q-prefix of F . In particular, this means that the event that the processes R and F behave
similarly over a sequence of length q is at least as likely as the event that Mi = 0 for all i = 1, . . . , q,
since in this case R and R′ have the same first q outcomes. It remains to construct such an M
and bound the probability of discrepancy. Here is the gist of the argument, which we formalize in
Appendix B.2.

The goal is to devise an R′ that perfectly simulates any q-prefix of F = FK,H for (unknown)
random K, and bound the influence of M needed to do so. Suppose that for some query history
Xneg

j−1, X
pos
j−1, the conditional expectation Pj = Pr[Fj = 1 | Xneg

j−1, X
pos
j−1] of Fj as viewed by the
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adversary exceeds the expectation Pr[Rj = 1] = δ of the binomial process Rj . One can make the
simulated process R′

j assume the expected law of Fj conditionally on this specific history by letting
the control process take Mj ← 1 with conditional probability (Pj − δ)/(1 − δ) when Ri = 0, and
with probability 0 when Ri = 1. More generally, in Appendix B.2 we show that for the process R′

to perfectly simulate F , it suffices that for j = 1, . . . , q, the conditional law of Mj | R′
1, . . . , R

′
j−1, Rj

satisfies

Pr[Mj = 1, Rj = 0 | Xneg
j−1, X

pos
j−1] = max{ 0, Pj − δ }

Pr[Mj = 1, Rj = 1 | Xneg
j−1, X

pos
j−1] = max{ 0, δ − Pj }

Let us write Ej for the event [∃i ≤ j,Mi 6= 0]. We outline how to use the above results to
upper bound the unconditional probability Pr[Ej ] for j ≤ q. First, from the law of M we get
Pr[Mj = 1 | Xneg

j−1, X
pos
j−1] ≤ |Pj − δ| ≤ 1, which we can bound further using our previous bounds on

Pj in the cases where |Xpos
j−1| = 0, 1. Next, we need to bound the probabilities Pr[Xneg

j−1, X
pos
j−1] of the

conditioning events. The difficultly here is that the random variables Xneg
j−1, X

pos
j−1 derive from the

complicated process R′. Fortunately, conditionally on the event ¬Ej−1, the process R′ identifies
with the binomial process R so that these probabilities have nice expressions in function of j and
|Xpos

j−1|. Note that these probabilities vanish quickly as |Xpos
j−1| increases, which is why we previously

sought bounds for Pj in the cases |Xpos
j−1| = 0, 1 only.

Thus, we have just reduced the upper bound computation of Pr[Ej ] to that of Pr[Ej−1]. Carrying
this idea through, after some calculations we obtain

Pr[Eq] = Pr[∃i ≤ j, Mi 6= 0] =
q∑

j=1

Pr[Mj = 1,¬Ej−1] ≤
13
2

γ2/κ

A direct derivation of this inequality may be found in Appendix B.2.

Proof of Theorem 5.1. The theorem now follows easily from the previous bound on the total dis-
crepancy between the PRF oracle F = FK,H and the binomial stochastic process R.

We correct for the probability εH of finding a hash collision in the allotted time t, which in
the worst scenario could yield an infallible discriminator between F and R. It follows that the
probability that the F and R oracles can be distinguished admits the upper bound εH + 13

2 γ2/κ ≤
εPRF, as required.

5.2 Admissibility From Collision Resistance

We now show how to construct an admissible hash function family H = {Hk : {0, 1}w → Σn}k∈K
in the sense of Theorem 5.1, given an “ordinary” family of (t, εH)-collision resistant hash functions
H̄ = {H̄k : {0, 1}w → {0, 1}β}k∈K. We give an explicit construction for the specific case of a binary
alphabet (s = 2).

Theorem 5.2. Let H̄ = {H̄k : {0, 1}w → {0, 1}β}k∈K be an efficiently computable (t, εH)-collision
resistant hash function family. Then for any r ∈ (0, 1

2) there exists an efficiently computable
function family H = {Hk : {0, 1}w → {0, 1}n}k∈K that satisfies both the (t, εH)-collision resistance
property and the bitwise v-Hamming separation property, where β ≤ n ≤ 2 β2/(1−2r)2 and v/n > r.

Proof. Let t be the smallest positive integer such that 2t ≥ dβ/te/(1−2r)+1, and define ` = dβ/te.
Let µ′ : {0, 1}t → F2t be any bijection. Define the injection µ : {0, 1}β → F`

2t that, on input
z ∈ {0, 1}β, partitions z in ` fragments of t bits each (padding the last fragment as necessary),
applies the map µ′ to each fragment, and concatenates all the outputs.
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Let ρ : F`
2t → F2t−1

2t be a Reed-Solomon error correcting code with parameters [2t − 1, `, 2t − `],
i.e., a linear code that takes input words of size ` over the alphabet F2t and produces codewords of
length 2t − 1 with minimum pairwise Hamming distance 2t − `.

Let η′ : F2t → {0, 1}2t
be the injection that maps any field element i ∈ {0, . . . , 2t − 1} to the

2t-bit vector given by the i-th row of a 2t × 2t Hadamard matrix. Recall that a binary d × d
Hadamard matrix is such that any two distinct rows or columns agree on exactly d/2 coordinates;
it is well known that a 2t×2t Hadamard matrix exists and is easy to construct for all t ≥ 1. Define
the function η : F2t−1

2t → {0, 1}2t(2t−1) that applies η′ individually to each coordinate of its input
word and concatenates the resulting Hadamard vectors.

The desired hash family is then given by H = {Hk : {0, 1}w → Σn}k∈K where Hk = η◦ρ◦µ◦H̄k.

It remains to show that H has the desired properties.
First, since η ◦ ρ ◦µ is an injection, the (t, εH)-collision resistance of H̄k entails the same for Hk.
Next, by the stated properties of the Reed-Solomon code, ρ produces codewords of size 2t − 1

with minimum pairwise Hamming distance 2t − ` in F2t . Since η turns any two distinct elements
of F2t into 2t-bit vectors that differ in 2t−1 positions, it follows that η ◦ ρ produces binary vectors
of size n = 2t(2t − 1) with minimum pairwise Hamming distance v = 2t−1(2t − `) in F2. The
corresponding ratio v/n is bounded as follows. Since t is chosen such that (2t − 1)(1− 2r) ≥ `, we
have 2t − ` ≥ 2r(2t − 1) + 1, hence (2t − `)/(2t − 1) > 2r. It follows that v/n > r, as claimed.

Last, we have that β ≤ n = 2t(2t − 1) ≤ 2dβ/te2/(1− 2r)2 ≤ 2 β2/(1− 2r)2, as required.

5.3 Putting It All Together—Concrete Bounds

For the sake of concreteness, and to show the feasibility of the construction, we briefly illustrate
how to instantiate the various parameters intervening in Theorems 5.1 and 5.2. We assume to be
given a bilinear group G and a hash function family H̄ characterized by:

– βH, the native output length in bits of the collision resistant hash functions;

– εH, the adversarial advantage against the collision resistance assumption on H̄;

– εBDH, the adversarial advantage against the Decision BDH assumption in G.

We are also given q, the maximum number of allowable oracle queries, under the “birthday paradox”
guideline that 1 ≤ q �

√
2βH . Our task is to find a suitable set of parameters so that:

1. the security εIBE of the IBE system of Section 4.2 is within a polynomial factor of εBDH;

2. the time complexity of the four IBE operations is polynomial in the security parameters.

For s = 2, we require that (εIBE/εBDH) ≤ O
(
poly

(
q
))

and n ≤ O
(
poly

(
βH, log(q), log(1/εIBE)

))
.

We describe two suboptimal but illustrative settings of the parameters; one favoring security,
the other favoring performance. For simplicity, we fix κ← 2 without trying to optimize for κ.

Favoring Security. We first show how to satisfy the requirements for the PRF construction with
a binary alphabet (s = 2) when the intrinsic PRF error bound (defined as ε′PRF = εPRF − εH in the
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notation of Theorem 5.1) is pegged to ε′PRF = εH or a fraction thereof. We successively assign

κ ← 2 an arbitrary and suboptimal choice to satisfy κ ∈ (1,∞)
γ ←

√
εH/2 so that ε′PRF = 13 γ2/2 κ > 4 γ2 = εH in order to meet the designated target

m ← dlog2(2 q/γ)e so that q ≤ 2m γ/2 = (1− 1/s)−m γ/κ as required by Thm 5.1
δ ← 2−m so that δ > γ/2 q = γ/κ q with δ = (1− 1/s)m as required by Thm 5.1
r ← 1/2− 1/3 m an easy target for v/n such that 1/2 > r ? 1− m

√
2/2 = 1− m

√
κ δ

β ← max{βH,m} i.e., the hash output is padded so that m ≤ β ≤ n by Thm 5.2
t ← min{t ∈ Z+ : 2t ≥ dβ/te/(1− 2 r) + 1} according to the proof of Thm 5.2
` ← dβ/te the Reed-Solomon codeword size intervening in the proof of Thm 5.2
n ← 2t (2t − 1) the total binary size resulting from the construction of Thm 5.2
v ← 2t−1 (2l − `) the Hamming separation achieved by the construction of Thm 5.2
θ ← (1− v/n)m where v/n > r by Thm 5.2 so that θ < (1− r)m ≤ κ δ for Thm 5.1

Since t > 1 and 2t−1 − 1 < dβ/(t − 1)e/(1 − 2 r) ≤ 2 dβ/te/(1 − 2 r) we have 2t < 6 m ` + 2.
Substituting in the appropriate expressions, we find—in first rough approximation—that

n = 2t (2t − 1) < (6 m ` + 2)2 � (20 + 6 log2(q/
√

εH))2 β2 = O
(
log2(q/

√
εH))2 β2

)
Evidently, the total PRF loss εPRF = εH + ε′PRF > 2 εH is negligible. Since m is independent of βH, in
the asymptote β = βH, and thus the bandwidth coefficient n = O

(
log2

2(q/
√

εPRF) β2
H

)
is polynomial

in log q and βH, as required. The price to pay for such a low value of εPRF is a fairly large n.

Favoring Performance. We can attain better bounds by adjusting the PRF loss to best match
the intrinsic loss incurred by the IBE construction itself, in function of q. Suppose for simplicity
that the loss εH due to hash collisions is negligible, which in practice also requires that βH ≥ 128.
Under the (t, εBDH)-Decision BDH assumption Theorem 4.2 gives us a (t, q, εIBE)-secure IBE where

εIBE = 2 εBDH/(δ (1− δ)q − εPRF) ≈ 2 εBDH/(
√

εPRF/4 q − εPRF)

We can easily minimize the value of εIBE for a prescribed value of q by seeking εPRF ← (1/8 q)2.
This results in the overall IBE security loss parameter

εIBE ≈ 64 q2 εBDH = Θ
(
q2 εBDH

)
For the same arbitrary choice κ← 2 as before, using analogous calculations we find that

γ ← 1/16 q so that εPRF ≈ ε′PRF = 13 γ2/2 κ > 4 γ2 = 1/64 q2

m ← dlog2(2 q/γ)e = dlog2(32 q2)e so that q ≤ (1− 1/s)−m γ/κ

δ ← (1− 1/s)m = 2−m so that δ > 1/32 q2 = γ/κ q

r ← 1/2− 1/3 m so that 1/2 > r ? 1− m
√

2/2 = 1− m
√

κ δ

β ← max{βH,m} padding the hash so that m ≤ β ≤ n

t ← min{t ∈ Z+ : 2t ≥ dβ/te/(1− 2 r) + 1}
` ← dβ/te , n ← 2t (2t − 1) , v ← 2t−1 (2l − `)
θ ← (1− v/n)m so that θ < (1− r)m ≤ κ δ
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and thus, for β ≥ 128 and non-zero q, we successively bound

m ≥ 5 , r ≥ 13/30 , t ≥ 8 , 2t < 1.026 + 0.385 m β

n < (1.026 + 0.385 m β)2 � (3.34 + 0.77 log2 q)2 β2 = O
(
(log2 q)2 β2

)
The bandwidth coefficient n = O((log2 q)2 β2

H) remains large, but is an improvement over the
previous case.

We note that the optimal value of κ varies and is tied to the particular coding construction.
We defer to the full paper the question of optimizing for all parameters.

6 Extensions

We very briefly outline a few simple extensions of the IBE system of Section 4.2.

Hierarchical IBE. Hierarchical identities were introduced by Horwitz and Lynn [HL02], and a
Hierarchical IBE (HIBE) was first constructed by Gentry and Silverberg [GS02] in the random oracle
model. The IBE system of Section 4.2 generalizes naturally to give a semantically secure HIBE
under an adaptive chosen identity attack (IND-ID-CPA) without random oracles. For a hierarchy
of depth `, both the ciphertext and private key contain ` blocks where each block contains n
components. Thus, a private key at depth ` is an element of G`n+1. As our IBE, the HIBE
uses collision resistant hash functions and is provably secure without random oracles whenever the
Decision BDH assumption holds. The construction is similar to the construction of a (selective
identity secure) HIBE without random oracles based on Decision BDH recently proposed by Boneh
and Boyen [BB04a]. The details are deferred to the full paper.

Chosen Ciphertext Security. A recent result of Canetti et al. [CHK04] gives an efficient way to
build a chosen ciphertext IBE (IND-ID-CCA) from a chosen plaintext 2-HIBE (IND-ID-CPA). Thus,
by the previous paragraph, we obtain a full chosen identity, chosen ciphertext IBE (IND-ID-CCA)
that is provably secure without random oracles. More generally, by starting from an (` + 1)-HIBE,
a fully secure `-HIBE can be similarly constructed without random oracles.

Arbitrary Identities. We can extend our IBE system to handle identities ID ∈ {0, 1}∗ (as
opposed to ID ∈ {0, 1}w) by first hashing ID using a collision resistant hash function H̃ : {0, 1}∗ →
{0, 1}w prior to key generation and encryption. A standard argument shows that if the scheme of
Section 4.2 is IND-ID-CPA secure then so is the scheme with the additional hash. This holds for
the HIBE and the chosen ciphertext secure system as well.

7 Conclusions

We presented an identity based cryptosystem and proved its security without using the random
oracle heuristic under the decisional bilinear Diffie-Hellman assumption. Our results prove that
secure IBE systems with a polynomial time security reduction exist in the standard model. This
resolves an open problem posed by Boneh and Franklin in 2001. However, the present system is
not very practical and mostly serves as an existence proof. It is still a wonderful problem to find
a practical IBE system with a tight security reduction without random oracles, based on Decision
BDH or a comparable assumption.
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A Proving Theorem 4.2

We now prove the four claims used in Section 4.3 to establish Theorem 4.2.

Proof of Claim 1

Proof. The IBE system of Section 4.2 essentially instantiates the selective-ID secure, Decision BDH
based, Hierarchical IBE (HIBE) of Boneh and Boyen [BB04a, BB04b, §4] into an n-level HIBE,
whose k-th level now corresponds to the k-th symbol of the hashed identity string.

By the same argument as in the Boneh-Boyen HIBE proof of security, it can be shown that
when (g, g1, g2, g3, T ) R← PBDH the simulation provided by Experiment 1 is perfect when it does not
abort. (The main difference between the present simulator and that of the Boneh-Boyen HIBE is
that here the “hierarchy” of private key components is “reshuffled” on the fly depending on the
available components; this does not affect the applicability of the simulation argument.)

Since by design Experiment 2 aborts with the prescribed probability and is perfect when it
does not abort, it follows that the system parameters in both experiments are generated from
the same distribution. Similarly, the responses to all private key queries as well as the challenge
ciphertext in both experiments are generated from the same distribution. Therefore, A’s output is
both experiments is sampled from the same distribution.

Proof of Claim 2

Proof. Let (F, k) R← {FK,Hk
}. By Claim 1 it suffices to show that Pr[CPA-ExpA(b) = 1] is equal to

Pr[PRF-ExpA(b, F, k) = 1 | PRF-ExpA(b, F, k) 6= abort]. Observe that experiment PRF-ExpA(b, F, k)
is identical to CPA-ExpA(b) except that we add an artificial abort condition before responding to
private key queries and before generating the challenge ciphertext. If the abort condition never
happens, then, from A’s view, the two experiments are identical. The claim now follows.

Proof of Claim 3

Proof. Let δ = (1− 1/s)m and let Fr
R← Ωδ be a random function with bias δ. Let kr

R← K. Then,
it easy to see that

Pr[PRF-ExpA(b, Fr, kr) = abort] = 1− δ(1− δ)q = 1−∆

Recall that {Hk : {0, 1}w → Σn}k∈K is a (t, εPRF, q,m)-admissible family of hash functions. It now
follows that for (F, k) R← {FK,Hk

} we have

Pr[PRF-ExpA(b, F, k) = abort] ≤ 1−∆ + εPRF

as required.

Proof of Claim 4

Proof. We construct an algorithm that has advantage at least (∆−εPRF)|t0−t1|/2 in distinguishing
a 5-tuple (g, g1, g2, g3, T ) drawn from PBDH from a 5-tuple drawn from RBDH. This will prove that
(∆− εPRF)|t0 − t1|/2 must be less than εBDH as required.

On input Z = (g, g1, g2, g3, T ) the distinguishing algorithm works as follows:

1. Pick a random b ∈ {0, 1}.
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2. Run experiment BDH-ExpA(b, (g, g1, g2, g3, T )). Denote the output by OutA ∈ {0, 1, abort}.

3. If OutA = abort then output a random c ∈ {0, 1} and stop.

4. Otherwise, OutA ∈ {0, 1}. if OutA = b output 0, else output 1.

Denote the output of this algorithm by B(Z). First, when Z is sampled from PBDH we have

Pr[B(Z) = 0] = Pr[B(Z) = 0 | OutA 6= abort] · Pr[OutA 6= abort]+
Pr[B(Z) = 0 | OutA = abort] · Pr[OutA = abort]

= Pr[OutA = b | OutA 6= abort] · Pr[OutA 6= abort] +
1
2

Pr[OutA = abort]

=
1
2
(1− t0 + t1) Pr[OutA 6= abort] +

1
2

Pr[OutA = abort]

=
1
2

+
1
2
(t1 − t0) Pr[OutA 6= abort]

Next, observe that Pr[B(Z) = 0 : Z
R← RBDH] = 1/2. Indeed, when Z

R← RBDH we have that the bit
b used to create the challenge ciphertext in the experiment is independent of A’s view. Therefore,
Pr[OutA = b | OutA 6= abort] = 1/2. As above, it follows that Pr[B(Z) = 0 : Z

R← RBDH] = 1/2.
Putting these equalities together, we obtain

εBDH >
∣∣∣Pr
[
B(Z) = 0 : Z

R← PBDH

]
− Pr

[
B(Z) = 0 : Z

R← RBDH

]∣∣∣
=

1
2
|t0 − t1| Pr

[
OutA 6= abort : Z

R← PBDH

]
> (∆− εPRF)|t0 − t1|/2

where the last inequality follows from Claims 1 and 3.

B Proving Theorem 5.1

We now establish the various bounds intervening in the proof of Theorem 5.1. We start by showing
the following general inequality in the setting of Section 5.1, which will serve us in Section B.1.

Lemma B.1. In the conditions of Theorem 5.1, |Yi ∩ Yj | ≤ θ |Yi|.
Proof. In virtue of the Hamming separation property, we know that for any xi, xj , the corresponding
hashes hi, hj will disagree at a minimum of v coordinates. Suppose that hi, hj disagree at coordinate
`. Then for each K ∈ Yi ∩ Yj such that K|` 6= ⊥, it must be the case that K|` 6∈ {hi|`, hj |`}. Thus,
for each such K we have eliminated two possible choices for the value of K|`. If on the other hand
hi, hj agree at coordinate `, then we know that K|` 6∈ {hi|`}, eliminating only one of the possible
values for K|`. Carrying out this reasoning for all

(
n
m

)
possible choices for the support of K, we

deduce that

|Yi ∩ Yj | ≤
min{m,v}∑

i=max{0,m+v−n}

(s− 1)m−i(s− 2)i

(
n− v

m− i

)(
v

i

)
= θ̄ |Yi|

where we have defined θ̄ =
∑min{m,v}

i=max{0,m+v−n}

(
s−2
s−1

)i (
n−v
m−i

)(
v
i

)
/
(

n
m

)
. In the case of a binary alphabet,

the above simplifies greatly to yield

|Yi ∩ Yj | ≤
(

n− v

m

)
·
{

1 if m ≤ n− v
0 otherwise

}
≤

(
n

m

)
(1− v/n)m = θ |Yi| (for s = 2)

where θ = (1− v/n)m as in Theorem 5.1.
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B.1 Probability Bounds

We now derive the uniform bounds on the conditional probabilities Pj = Pr[F (xj) = 1 | Xneg
j−1, X

pos
j−1]

in function of |Xneg
j−1|, as stated in Section 5.1.

Claim: Pj ≤ (1 + 2γ)δ for all Xneg
j−1, X

pos
j−1 such that |Xpos

j−1| = 0

Proof. Since Xpos
j−1 = ∅, by a simple counting argument that only depends on the sizes of the

alphabet and the hash vectors, we obtain

Pj =
∣∣∣Yj \ Y neg

∪,j−1

∣∣∣ / ∣∣∣Σn \ Y neg
∪,j−1

∣∣∣ ≤ |Yj |
/ (
|Σn| −

j−1∑
i=1

|Yi|

)

≤
(

n
m

)
(s− 1)m(

n
m

)
sm − (j − 1) ·

(
n
m

)
(s− 1)m

≤ δ/(1− q δ) ≤ (1− γ)−1 δ ≤ (1 + 2γ) δ

where the last two inequalities stems from the constraints q ≤ γ/κ δ ≤ γ/δ and γ < 1/2.

Claim: Pj ≥ (1− γ)δ for all Xneg
j−1, X

pos
j−1 such that |Xpos

j−1| = 0

Proof. Since Xpos
j−1 = ∅, we appeal to the following counting argument, using Lemma B.1, to obtain

Pj =
∣∣∣Yj \ Y neg

∪,j−1

∣∣∣ / ∣∣∣Σn \ Y neg
∪,j−1

∣∣∣ ≥ (
|Yj | −

j−1∑
i=1

|Yj ∩ Yi|

) /
|Σn|

≥ (1− (j − 1) · θ) δ ≥ (1− q · θ) δ ≥ (1− γ) δ

where the last inequality stems from the constraint q ≤ γ/κ δ ≤ γ/θ, in the case s = 2.

Claim: Pj ≤ 2κδ for all Xneg
j−1, X

pos
j−1 such that |Xpos

j−1| = 1

Proof. We can assume without loss of generality that Xpos
j−1 = {xi∗} and Xneg

j−1 = {xi1 , . . . , xij−2}.
We modify our counting argument accordingly, again using Lemma B.1, to obtain

Pj =
∣∣∣Yj ∩ Yi∗ \ Y neg

∪,j−1

∣∣∣ / ∣∣∣Yi∗ \ Y neg
∪,j−1

∣∣∣ ≤ |Yj ∩ Yi∗ |
/ (
|Yi∗ | −

j−2∑
i=1

|Yi∗ ∩ Yii |

)

≤ θ

1− (j − 2) · θ
≤ θ

1− q · θ
≤ κ δ

1− q · κ δ
≤ κ(1− γ)−1 δ ≤ 2 κ δ

where the last three steps stem from the constraints θ ≤ κ δ and q ≤ γ/κ δ ≤ (2 κ δ)−1, for s = 2.

B.2 Process Discrepancy

We now bound the statistical distance D(〈F1, . . . , Fq〉, 〈R1, . . . , Rq〉) between an interactively sam-
pled q-prefix of the bias map oracle F with uniform random key K ∈ Σ(n,m) and a q-prefix of the
binomial stochastic process oracle R from Section 5.1.

Recall that the statistical distance between two random variables A and B taking values in the
same discrete domain Ω is the quantity D(A,B) ∈ [0, 1] given by

D(A,B) =
1
2

∑
ω∈Ω

∣∣Pr[A = ω]− Pr[B = ω]
∣∣
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Hence, D(A,B) is the fraction of the distributions of A and B that disagree with each other, and is
thus the maximum probability or advantage with which the two distributions can be distinguished
from two respective samples a

R← A and b
R← B. In other words, for any algorithm A we have∣∣∣Pr[A(a) = 1 : a

R← A]− Pr[A(b) = 1 : b
R← B]

∣∣∣ ≤ D(A,B)

We show that D(〈F1, . . . , Fq〉, 〈R1, . . . , Rq〉) ≤ 13
2 γ2/κ where F = FH,K for random K ∈ Σ(n,m)

when the samples F1, . . . , Fq can be queried adaptively.

Let thus R be the reference binomial process, M the control process, R′ the simulated process,
and F = FH,K : {0, 1}w → {0, 1} the bias map oracle with public hash function H and secret key K.
Recall that Ej for any j ≤ q denotes the event [∃i ≤ j : Mi = 1]. We specify M so that R′ perfectly
simulates F for some K ∈ Σ(n,m) chosen uniformly at random (albeit unknown to the simulator).
The simulation shows that the distributions of 〈F1, . . . , Fq〉 and 〈R1, . . . , Rq〉 have at least Pr[¬Eq]
probability mass in common, so that necessarily D(〈F1, . . . , Fq〉, 〈R1, . . . , Rq〉) ≤ Pr[Eq]. We then
find an upper bound on the probability of Eq for our specific construction, which gives us the
desired result.

For j = 0, . . . , q, we define the random variables (or statistics) ΣRj =
∑j

i=1 Ri, ΣR′
j =

∑j
i=1 R′

i,
and ΣMj =

∑j
i=1 Mi. Notice that Ej and [ΣMj 6= 0] denote the same event. Since the adversary

interacts with a simulated oracle R′ instead of the actual oracle F , the adversary’s information is
determined by the simulated outcomes (R′)1,...,q. Specifically, the knowledge state before step j is
captured by the partition X̄neg

j−1 ∪ X̄pos
j−1 = Xj−1 of the query history Xj−1 = {xi : i = 1, . . . , j − 1},

where membership of xi to either X̄neg
j−1 or X̄pos

j−1 depends on the value of R′
i. In particular, we have

that |X̄pos
j | = ΣR′

j . In the adversary’s view, the conditional expectation of the process at step j of
the interaction is given by P ′

j = Pr[R′
j = 1 | X̄neg

j−1, X̄
pos
j−1]. Thus, the simulation is perfect if P ′

j = Pj

given the same knowledge state, i.e., if we have Pr[R′
j = 1 | X̄neg

j−1, X̄
pos
j−1] = Pr[Fj = 1 | Xneg

j−1, X
pos
j−1]

whenever 〈X̄neg
j−1, X̄

pos
j−1〉 = 〈Xneg

j−1, X
pos
j−1〉 for j = 1, . . . , q. For clarity, in the sequel we drop the

notation X̄neg
j−1, X̄

pos
j−1 and rewrite the adversary’s knowledge state in the simulation as Xneg

j−1, X
pos
j−1.

We assume the values of Pj and P ′
j to be defined in reference to that knowledge state.

Claim: (R′)1,...,q simulates (FH,K)1,...,q for uniform random K ∈ Σ(n,m)

Proof. We construct M by specifying the conditional law of Mj given Xneg
j−1, X

pos
j−1, Rj , which we

express as follows

Pr[Mj = 1, Rj = 0 | Xneg
j−1, X

pos
j−1] = max{ 0, Pj − δ }

Pr[Mj = 1, Rj = 1 | Xneg
j−1, X

pos
j−1] = max{ 0, δ − Pj }

We need to show that this specification causes R′ to be distributed as F = FH,K for uniform random
secret K in the adversary’s view. First, we note that the conditional law of Mj | R′

1, . . . , R
′
j−1, Rj

is well defined. Next, we show by induction that it leads to the correct distribution. Initially, the
distribution of K in the adversary’s view is uniform over S0 = Σ(n,m). Now, assume that after
the completion of step j − 1 the distribution of K in the adversary’s view is uniform over the set
Sj−1 (where Sj−1 is defined given the query history represented by Xneg

j−1, X
pos
j−1 as in Section 5).

The expectation of Fj conditionally on the adversary’s knowledge state is thus given by Pj . By

22



construction of Mj , it is easy to see that R′
j has the same conditional expectation, to wit

P ′
j = Pr[Rj = 1,Mj = 0 | Xneg

j−1, X
pos
j−1]

+Pr[Rj = 0,Mj = 1 | Xneg
j−1, X

pos
j−1]

= Pr[Rj = 1 | Xneg
j−1, X

pos
j−1]− Pr[Rj = 1,Mj = 1 | Xneg

j−1, X
pos
j−1]

+Pr[Rj = 0,Mj = 1 | Xneg
j−1, X

pos
j−1]

= δ −max{0, δ − Pj}+ max{0, Pj − δ} = Pj

It follows that R′
j | R′

1, . . . , R
′
j−1 has the same conditional expectation as an oracle F = FH,K for

uniform random K ∈ Sj−1. Therefore, the adversary gains the same information in either scenario,
and thus, after R′

j is revealed, K appears uniformly distributed in the subset Sj ⊆ Sj−1. By
induction, we conclude that the successive outcomes R′

j for j = 1, . . . , q have the same conditional
expectations as FH,Kj−1 for uniform random Kj−1 ∈ Sj−1, where Sq−1 ⊆ . . . ⊆ S1 ⊆ S0 = Σ(n,m).
Consequently, in the adversary’s view, the sequence 〈R′

1, . . . , R
′
q〉 from the interactive simulation

is distributed as a sequence 〈F1, . . . , Fq〉 from an oracle F = FH,K for some unknown K initially
uniform in Σ(n,m), as required.

Claim: Pr[Eq] ≤ 13
2 γ2/κ for this construction of M and R′

Proof. It remains to bound the unconditional probability of the event Eq. Unfortunately, Pr[Eq]
depends on the law of M , which is problematic in two respects. First, it depends on the adversary’s
knowledge state; second, it is function of Pj which is difficult to compute even given the query
history.

However, for any k such that there exists P
(k)
j and P

(k)
j for which it holds that P

(k)
j ≤ Pj ≤ P

(k)
j

uniformly over all histories Xneg
j−1, X

pos
j−1 satisfying ΣR′

j−1 = k, we can write

∀Xneg
j−1, X

pos
j−1 s.t. ΣR′

j−1 = k : Pr[Mj = 1, Rj = 0 | Xneg
j−1, X

pos
j−1] ≤ max{ 0, P

(k)
j − δ }

∀Xneg
j−1, X

pos
j−1 s.t. ΣR′

j−1 = k : Pr[Mj = 1, Rj = 1 | Xneg
j−1, X

pos
j−1] ≤ max{ 0, δ − P

(k)
j }

On the one hand, in particular, using our previously computed bounds for k = 0, we already know

∀Xneg
j−1, X

pos
j−1 s.t. ΣR′

j−1 = 0 :
{

Pr[Mj = 1, Rj = 0 | Xneg
j−1, X

pos
j−1] ≤ 2γδ

Pr[Mj = 1, Rj = 1 | Xneg
j−1, X

pos
j−1] ≤ γδ

and thus, as any finite convex combination is enclosed in the convex hull of the combinants,

Pr[Mj = 1, Rj = 0 | ΣR′
j−1 = 0] ≤ 2γδ

Pr[Mj = 1, Rj = 1 | ΣR′
j−1 = 0] ≤ γδ

Also, using our upper bound for k = 1 and the fact that Pr[Rj = 1 | AnyEventtime<j ] = δ, we have

∀Xneg
j−1, X

pos
j−1 s.t. ΣR′

j−1 = 1 :
{

Pr[Mj = 1, Rj = 0 | Xneg
j−1, X

pos
j−1] ≤ 2κδ

Pr[Mj = 1, Rj = 1 | Xneg
j−1, X

pos
j−1] ≤ δ

and thus, again using the fact that a finite convex combination lies within the convex hull,

Pr[Mj = 1, Rj = 0 | ΣR′
j−1 = 1] ≤ 2κδ

Pr[Mj = 1, Rj = 1 | ΣR′
j−1 = 1] ≤ δ
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On the other hand, since when ΣMi = 0 the sequence 〈R′
1, . . . , R

′
i〉 identifies with 〈R1, . . . , Ri〉, it

follows that for any suitable predicate f : {0, 1}j−1 → {⊥,>} we have

Pr[Mj = 1, ΣMj−1 = 0 | f(R1, . . . , Rj−1)] = Pr[Mj = 1, ΣMj−1 = 0 | f(R′
1, . . . , R

′
j−1)] (3)

Therefore, by decomposing the probability of interest Pr[Eq] over disjoint events, and manipu-
lating the summands using the preceding results, we easily find that

Pr[Eq] = Pr[ΣMq 6= 0] =
q∑

j=1

(Pr[Mj = 1,ΣMj−1 = 0])

=
q∑

j=1

1∑
r=0

Pr[Mj = 1,ΣMj−1 = 0,ΣRj−1 = r] +
q∑

j=1

q−1∑
r=2

Pr[Mj = 1,ΣMj−1 = 0,ΣRj−1 = r]

≤

 q∑
j=1

1∑
r=0

Pr[Mj = 1,ΣMj−1 = 0 | ΣRj−1 = r] · Pr[ΣRj−1 = r]

+ Pr[ΣRq ≥ 2]

(?)
=

 q∑
j=1

1∑
r=0

Pr[Mj = 1,ΣMj−1 = 0 | ΣR′
j−1 = r] · Pr[ΣRj−1 = r]

+ Pr[ΣRq ≥ 2]

≤

 q∑
j=1

1∑
r=0

(
Pr[Mj = 1, Rj = 0 | ΣR′

j−1 = r]
+Pr[Mj = 1, Rj = 1 | ΣR′

j−1 = r]

)
· Pr[ΣRq ≥ r]

+ Pr[ΣRq ≥ 2]

≤ q(2γδ + γδ) + q(2κδ + δ)qδ +
1
2
q2δ2 ≤ 3γ2/κ + γ2(2/κ + 1/κ2) +

1
2
γ2/κ2 ≤ 13

2
γ2/κ

where at step (?) we have used (3) with the predicate f(r1, . . . , rj−1) instantiated as
∑j−1

i=1 ri
?= r.

We conclude that D(〈F1, . . . , Fq〉, 〈R1, . . . , Rq〉) ≤ 13
2 γ2/κ, as required.
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