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Information flow policies are confidentiality policies that control information leakage

through program execution. A common means to enforce secure information flow is

through information flow type systems. Although type systems are compositional and

usually enjoy decidable type checking or inference, their extensibility is very poor: type

systems need to be redefined and proven sound for each new single variation of security

policy and programming language for which secure information flow verification is

desired.

In contrast, program logics offer a general mechanism to enforce a variety of safety

policies, and for this reason are favored in Proof Carrying Code, a promising security

architecture for mobile code. However, the encoding of information flow policies in

program logics is not straightforward, because they refer to a relation between two

program executions.

The purpose of this paper is to investigate logical formulations of secure information flow

based on the idea of self-composition, that reduces the problem of secure information

flow of a program P to a safety property for a program P̂ derived from P , by composing

P with a renaming of itself. Self-composition enables the use of standard techniques for

information flow policies verification, such as program logics and model checking,

suitable in Proof Carrying Code infrastructures.

We illustrate the applicability of self-composition in several settings, including different

security policies such as non-interference and controlled forms of declassification, and

programming languages such as an imperative language with parallel composition, a

non-deterministic language, and finally a language with shared mutable data structures.

1. Introduction

There is an increasing need to guarantee confidentiality of data in programming appli-

cations. In many cases, confidentiality is achieved through access control mechanisms

† The work was partially supported by ReSeCo. Gilles Barthe is partially supported by Spanish project

TIN2009-14599 DESAFIOS 10, and Madrid Regional project 2009STIC-1465 PROMETIDOS, Pe-

dro R. D’Argenio is partially supported by PICT 26135.



Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk 2

that regulate access to sensitive data. However, these mechanisms do not guarantee that

legitimately accessed data will not flow from authorized to unauthorized users. In order

to achieve stronger confidentiality guarantees that account for the flow of information

during program execution, an alternative is to use information flow policies, such as

non-interference, a baseline information flow policy that guarantees the absence of in-

formation leakage. Informally, non-interference considers a partitioning of the program

state into a public and a secret part, and requires that no information is leaked on the

secret part of the state by observing the execution of the program. In its simplest in-

stance, non-interference assumes that one can only observe the final value of the public

state, and that (non)termination is not observable. Hence a program P is non-interfering

if any two terminating executions of P starting from states that coincide on their pub-

lic part yields final states that coincide on their public part; a more formal definition

is given below. Non-interference and information flow policies have their roots in the

works of Cohen (1977, 1978), Denning and Denning (1977), and Goguen and Meseguer

(1982); recently, they have attracted substantial interest within the language-based secu-

rity, see (Sabelfeld and Myers 2003) for a survey. Other forms of information flow policies,

that are less strict and more appropriate than non-interference to be used in practice,

include declassification policies, see (Sabelfeld and Sands 2005) for a survey.

This paper is concerned with static enforcement of information flow policies in general.

Currently, the prevailing means to enforce such policies is via information flow type

systems (Sabelfeld and Myers 2003). Clearly, type systems are attractive because they

support automated, compositional verification. However, type systems are inherently not

extensible: every modification to the information flow policy or every new feature added

to the programming language, requires a non-trivial extension of the type system and its

soundness proof.

On the contrary, logical verification methods are flexible, and can be used to support

several policies, without the need to prove soundness repeatedly. It is precisely for the

ability of logic to support various policies that Proof Carrying Code (Necula 1997, 1998)

relies on logical verification to validate mobile code on the consumer side. Typically,

the consumer infrastructure consists of a verification condition generator, that operates

on programs annotated with safety annotations, and a certificate checker, that verifies

that the certificates validate the safety policy (from the soundness of the verification

method, the certificate only has to show the validity proof obligations generated by

the verification condition generator). On the other hand, certificate generation may be

automated by certifying analyzers, that use type systems or static analyzes to generate

the safety annotations, and generate automatically a proof of correctness of the program

with respect to these annotations. In such cases, the certifying compiler crucially relies

on the ability of the logic to express safety policies.

In order to extend the scope of Proof Carrying Code to expressive information flow

policies, it is therefore important to understand how such policies can be encoded into

traditional program logics. The encoding is not immediate, because information flow

properties are not safety properties (as it is proved e.g. (Mclean 1994)), but rather prop-

erties of two or more execution traces.

The first encoding of information flow policies in Hoare logic is due to Andrews and
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Reitman (Andrews and Reitman 1980b; Denning and Denning 1977). However, their

encoding requires extending the set of axioms of Hoare logic in order to account for

security properties. Therefore, such an encoding is impractical for our purposes, since

we aim to capture information flow policies without changing the verification logic every

time that the security property needs to be adapted. More recently, Darvas, Hähnle, and

Sands (2005) have shown how dynamic logic may be used to verify non-interference and

some declassification policies of (sequential) Java programs. As in Andrews and Reitman’s

encoding, non-interference of a program P is captured by a formula over P—in this case

a formula in dynamic logic. However, this encoding relies on dynamic logic, rather than

on more traditional Hoare logics, and its completeness has not been established.

In view of the difficulty of encoding an information flow policy for a program P as a

property of the same program, several works have taken a slightly different perspective

on the problem, and reduced non-interference of a program P to a property about single

program executions (universally quantified over all possible program inputs) of another

program P̂ constructed from P . This approach is taken for example in Pottier’s (2002)

work on non-interference for the pi-calculus, where the non-interference of two processes

P1 and P2 is reduced to a property about a single process P that captures the behaviours

of P1 and P2 while keeping track of their shared sub-processes. The process P is written

in an extension of the pi-calculus and allows for a simple proof of non-interference using

standard subject reduction techniques. It is not clear for us whether this kind of technique

easily extends to declassification policies.

In the conference article of this work (Barthe et al. 2004), we called “self-composition”

the reduction of information flow policies to a safety property: an information flow policy

of a program P reduces to a property about single program executions (universally

quantified over all possible program inputs) of the program P ;P ′, where P ′ is a renaming

of P .

The reduction was further generalized by Terauchi and Aiken (2005) to the class of

2-safety properties and by Clarkson and Schneider (2008) to a wider class of properties.

Thanks to self-composition, general-purpose logics such as Hoare-like logics or temporal

logics, which provide a standard means to specify and verify safety properties of programs,

can also be used to verify a wide range of information flow policies, and these policies

can be handled in Proof Carrying Code infrastructures.

The objective of this work is to build upon self-composition to provide characteriza-

tions of information flow policies in programming and temporal logics. Our characteri-

zations apply to many languages and different notions of security including some forms

of declassification.

In order to provide the reader with some intuition, let us first consider a simple de-

terministic imperative language featuring sequential composition and equipped with an

evaluation relation 〈P, µ〉 ⇓ ν, where P is a program and µ, ν are memories, i.e. maps

from the program variables of P to values. Further, assume that every program variable

in P is classified as either public or private and let ~x be the set of all public variables in

P and ~y the set of all its private variables. Termination-insensitive non-interference for
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P may be cast as for all memories µ, µ′, ν, ν′:

[〈P, µ1〉 ⇓ ν1 ∧ 〈P, µ2〉 ⇓ ν2 ∧ µ1 =L µ2] ⇒ ν1 =L ν2

where =L is the point-wise extension of equality on values to public parts of memories.

Let [~x′, ~y′/~x, ~y] be a renaming of the program variables ~x, ~y of P with fresh variables
~x′, ~y′, and let P ′ be as program P but with its variables renamed with fresh names, that

is P [~x′, ~y′/~x, ~y]. Then, using ⊎ to denote the disjoint union of two memories, we have

〈P, µ〉 ⇓ ν ∧ 〈P ′, µ′〉 ⇓ ν′ iff 〈P ;P ′, µ⊎µ′〉 ⇓ ν ⊎ν′. Hence we can recast non-interference

as for all memories µ, µ′, ν, ν′:

〈P ;P ′, µ ⊎ µ′〉 ⇓ ν ⊎ ν′ ∧ µ =~x µ
′ ◦ [~x/~x′])

⇒ ν =~x ν
′ ◦ [~x/~x′])

where ◦ represents function composition, and =~x is the point-wise extension of equality on

values to the restriction of memories to ~x. This new formulation reduces non-interference

for program P to a property of every single execution of the program P ;P ′. Hence, we can

use programming logics, which are sound and (relative) complete w.r.t. the operational

semantic, to provide an alternative characterization of non-interference. If we use Hoare

triples non-interference can be characterized as:

{~x = ~x′}P ;P ′{~x = ~x′}

Let us now instantiate our characterization to the program x:=y; x:=0. Taking x 7→ x′

and y 7→ y′ as the renaming function, the program is non-interferent iff

{x = x′} x := y; x := 0; x′ := y′; x′ := 0 {x = x′}

which is easy to show using the rules of Hoare logic. By replacing the =-relation by other

(partial) equivalence relation, we obtain characterizations of information flow policies

that include some forms of declassification. More generally, this kind of characterization

provides us with a means to resort to existing verification tools to prove, or disprove,

information flow policies for a program.

Further, the characterization may be extended in several directions: first, it can be

extended to any programming language that features an appropriate notion of “indepen-

dent composition” operator, and that is equipped with an appropriate logic. We illustrate

this point by considering a programming language with shared mutable data structures,

and by using separation logic (Reynolds 2000; Ishtiaq and O’Hearn 2001) to provide a

characterization of non-interference (see Section 8). Second, it can be extended to arbi-

trary relations between inputs and between outputs, as in e.g. (Giacobazzi and Mastroeni

2004a). This more general form of non-interference is useful for providing a characteri-

zation of some controlled forms of declassification, such as delimited information release,

a form of declassification introduced by Sabelfeld and Myers (2004).

Contributions. We conduct a detailed study of several logical frameworks for characteriz-

ing non-interference, both for sequential and concurrent non-deterministic programming

languages. Our work extends and systematizes previous characterizations or criteria for

secure information flow policies based on general purpose logics, and allows us to con-
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clude that such logics can be used in an appropriate fashion to provide a criterion for,

or even to characterize non-interference and other more general properties that can be

defined as a relation between two executions of a program. A minor contribution of our

work is to provide methods to establish non-interference for languages for which no in-

formation flow type system is known, see in particular Section 8. This article is based

on a paper by the authors, which was presented at the IEEE 17th Computer Security

Foundations Workshop in June, 2004 (Barthe et al. 2004). The conference version of this

work is subsumed by the present article in several ways:

— We provide a new characterization of termination sensitive secure information flow

using a weakest precondition calculus, in the new Section 7.

— We review our formal framework correcting some mistakes introduced in (Barthe

et al. 2004). In particular we review and formalize the assumptions on the framework

of self-composition in the Preliminaries section as well as Fact 1.

— We discuss LTL logic characterization in Section 9 in greater detail and provide an

example program with its characterization for termination sensitive and insensitive

non-interference.

— We present complete proofs for the main theorems in the paper. We also provide

proofs for programs in examples, that can be proved secure wrt information flow.

— We update the related work in order to account for the many works that appeared

subsequent to the publication of (Barthe et al. 2004).

2. Preliminaries

Let Lang be the set of programs specifiable in a given programming language, with a

distinguished program
√ ∈ Lang indicating successful termination, and let S, S′, S1, etc.

range over Lang. Further, let Var be the set of variables which may appear in programs,

and let x, x′, x1, y, z, etc. range over Var. We set var(S) to be the set of variable names

appearing in the text of S, and for y /∈ var(S), we define S[y/x] to be the same program

as S where all (free) occurrences of variable x are replaced by variable y.

Assume given a set M of all memories, and let µ, µ′, etc. range over M. Further, with

the purpose of defining security policies and properties on the programming languages

considered, we assume two given functions: var : M → Var and an abstraction function

v : (M × Var) ⇀ V with V being a set of values. var(µ) returns the set of all variables

whose values are stored in µ and we expect that if x ∈ var(µ) then v(µ, x) is defined. The

value of v(µ, x), depending on the language, may either represent just the value of the

variable in memory µ, that is µ(x), or it may be the value represented by a data structure

in the heap. (Notice that we will not use function v for expression evaluation semantics.)

For example, if x is a pointer that contains an address in the heap that points to a linked

list structure then v(µ, x) returns the values in the list, abstracting from addresses used

as links for the list (see Section 8 for a formal definition).

Our characterisations rely on the ability to update memories locally and to separate

a memory into two disjoint pieces of memories. Both operations are specified as follows.

First, if µ ∈ M, x ∈ Var and d ∈ V , then µ[x Z⇒ d] ∈ M is some memory s.t. for all

y ∈ Var v(µ[x Z⇒ d], y) = if x = y then d else v(µ, y). We remark that µ[x Z⇒ d] is one
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possible variation of µ —there might be more than one— such that v(µ[x Z⇒ d], x) = d.

Thus, if x is a pointer and d is a list, µ[x Z⇒ d] is a modification of maybe many positions

in the heap of µ and the assignation of the appropriate location (i.e. pointer value) to

variable x. Second, if µ1, µ2 ∈ M are two memories that verify that var(µ1)∩var(µ2) = ∅,
we define µ1⊕µ2 ∈ M such that if x ∈ var(µ1) then v(µ1⊕µ2, x) = v(µ1, x), if x ∈ var(µ2)

then v(µ1⊕µ2, x) = v(µ2, x) and undefined otherwise. Notice that ⊕ is commutative. We

also require that v(µ1[x Z⇒ d]⊕µ2, y) = v(µ2, y) for all x ∈ var(µ1), y ∈ var(µ2), and

d ∈ V .

Example 1. Suppose a language which only manipulates integers, i.e. V = Z. Then M
is the set of all functions µ : Var → Z with var(µ) = dom(µ), v(µ, x) = µ(x), ⊕ is the

disjoint union of functions, and µ[x Z⇒ d](y) = if x = y then d else µ(y).

The operational semantics of the programming language is given by the transition sys-

tem (Conf, ) where Conf ⊆ Lang×M is the set of configurations and ⊆ Conf × Conf

is the transition relation. We write c c′ for (c, c′) ∈ and c 6 if there is no c′ ∈ Conf

such that c c′. (We assume standard expression evaluation semantics, and also assume

configurations consistency, that is if (S, µ) ∈ Conf then var(S) ⊆ var(µ)). Further, we let

 
∗ denote the reflexive and transitive closure of  .

Finally, we assume that (
√
, µ) indicates successful termination of the program with

memory µ, and hence that for all µ ∈ M, (
√
, µ) 6 . In contrast, we say that a configu-

ration (S, µ) does not terminate, denoted by (S, µ)⊥, if the execution of S on memory µ

does not terminate (either because of an infinite execution or an abnormal stop as, e.g.,

deadlock), i.e., ¬∃µ′ : (S, µ) ∗ (
√
, µ′).

Example 2. The non-deterministic language Par is defined by

S :: = x := e | if b0 → S0 8 . . . 8 bn → Sn fi

| S1 ; S2 | while b do S od | S1 || S2

where e is an arithmetic expression and b, b0, . . . , bn are boolean expressions. The transi-

tion relation of Par is defined by the following rules, where memories are the functions of

Example 1 and µ(e), the evaluation of a (boolean or arithmetic) expression e in memory

µ, is recursively defined in the usual manner.

(x := e, µ) (
√

, µ[x Z⇒ µ(e)])

(S1, µ) (S′
1, µ

′)
(S1 ; S2, µ) (S′

1 ; S2, µ
′)

(S1, µ) (
√

, µ′)
(S1 ; S2, µ) (S2, µ

′)

(Sj , µ) (S′
j , µ

′) µ(bj) holds
(if b0 → S0 8 . . . 8 bn → Sn fi, µ) (S′

j , µ
′)

0 ≤ j ≤ n

(S, µ) (S′, µ′) µ(b) holds
(while b do S od, µ) (S′ ; while b do S od, µ′)

¬µ(b) holds
(while b do S od, µ) (

√
, µ)

(S1, µ) (S′
1, µ

′)
(S1 || S2, µ) (S′

1 || S2, µ
′)

(S2, µ) (S′
2, µ

′)
(S1 || S2, µ) (S1 || S′

2, µ
′)
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(
√ || S2, µ) (S2, µ) (S1 || √, µ) (S1, µ)

We now turn to state three basic assumptions which define the scope of application

of our technique of self-composition. They impose some very general restrictions that

can be seen as “healthiness conditions”. Assumptions 1 and 3 are seemingly obvious and

satisfied by most of the languages. Nonetheless, we need to make them explicit to set

the ground of our general framework. Assumption 2 rules out some behaviour where

memories are objects more complex than functions. Depending on the definition of the

abstraction function v, it may rule out programs.

Assumption 1. Transitions preserve the set of variables of a program. Moreover, if the

part of the memory that is affected by the program is separated from the rest, transitions

do not affect the values of other variables than those appearing in the program.

Formally, for all S, S′, µ1, µ2, and µ′, if var(S) = var(µ1) and (S, µ1⊕µ2) (S′, µ′),

then var(S) ⊇ var(S′) and ∃µ′
1 : µ′ = µ′

1⊕µ2 ∧ var(µ′
1) = var(S). In addition, if

(S, µ1⊕µ2) (S′, µ′
1⊕µ2), then for all µ3 s.t. µ1⊕µ3 is defined, (S, µ1⊕µ3) (S′, µ′

1⊕µ3).

Notice that this assumption is not contradictory with object creation: a new object

may be created but it can only be (directly or indirectly) referred through some variable

in the text of the program.

Assumption 2. Apart from its syntax, the semantics of a program depends only on the

abstract value of its own variables.

Formally, we assume that for all configurations (S, µ1) and (S, µ2) such that ∀x ∈
var(S) : v(µ1, x) = v(µ2, x) then for all (S′, µ′

1), (S, µ1) 
∗ (S′, µ′

1) ⇒ ∃(S′, µ′
2) : (S, µ2) 

∗ (S′, µ′
2)

and ∀x ∈ var(S) : v(µ′
1, x) = v(µ′

2, x).

Assumption 2 imposes some restrictions on the memory manipulation. For example, if

x is a pointer to a list and v(µ, x) is considered to be the list represented by this pointer

(rather than its actual address value), the address value cannot affect the control flow of a

program. That is, for pointer variables x and y, program if (x=y) → S 8 (x6=y) → S′ fi

does not satisfy Assumption 2.

Assumption 3. The operational semantics of the language Lang is independent of vari-

able names. Formally, if y /∈ var(S) and (S, µ) ∗ (S′, µ′) then (S[y/x], µ[y Z⇒ v(µ, x)]) ∗

(S′[y/x], µ′[x Z⇒ d][y Z⇒ v(µ′, x)]) for some d.

This assumption allows to change variable names without altering the program be-

haviour.

The following facts follow from the assumptions above:

Fact 1 (After assumptions).

1 If var(S) = var(µ1) and (S, µ1⊕µ2)  
∗ (S′, µ′) then there exists µ′

1 such that µ′ =

µ′
1⊕µ2.

2 If var(S) = var(µ1) and (S, µ1⊕µ2)  
∗ (S′, µ′

1⊕µ2) then (S, µ1⊕µ3)  
∗ (S′, µ′

1⊕µ3)

for any µ3 such that var(µ1) ∩ var(µ3) = ∅.
3 If var(S) = var(µ1) and (S, µ1⊕µ2)⊥ then (S, µ1⊕µ3)⊥ for any µ3.
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4 If ∀x ∈ var(S) : v(µ1, x) = v(µ2, x) and (S, µ1)⊥, then (S, µ2)⊥.

5 If y /∈ var(S) and (S, µ)⊥ then (S[y/x], µ[y Z⇒ v(µ, x)])⊥.

Items 1 and 2 follows from Assumption 1 while item 3 is a consequence of item 2. Items 4

and 5 are consequence of Assumptions 2 and 3, respectively. It is not difficult to verify

that Par satisfies the three assumptions above and complies to Fact 1.

3. A Generalisation of Non-Interference

Let φ : Var ⇀ Var be a partial injective function intended to relate variables of two pro-

grams. Let dom(φ) = {x1, . . . , xn}† and let I ⊆ Vn×Vn be a binary relation on tuples of

values intended to determine the indistinguishability criterion. We say that memory µ is

(φ, I)-indistinguishable from µ′, denoted by µ ∼I
φ µ

′, if 〈(v(µ, x1),.., v(µ, xn)), (v(µ′, φ(x1)),.., v(µ
′, φ(xn)))〉 ∈ I,

that is if the values of variables in memory µ, and the values of corresponding (according

to φ) variables in memory µ′ are related by relation I.

Example 3. Let L ⊆ Var be the set of low (or public) variables of a program. Let idL :

Var → Var be the identity function on L and undefined otherwise. Then ∼=
idL

is the usual

indistinguishability relation used to characterize non-interference. It relates memories

whose public variables agree in their values meaning that these memories cannot be

distinguished one from each other.

However, our definition of indistinguishability is more flexible. Let H = {p} where

p is a pointer to a list, and let avrg be the function that computes the average of a

list, i.e. avrg([d1, . . . , dN ]) = d1+···+dN

N . Let idH : Var → Var be the identity function

on H and undefined otherwise and let A be the relation including pairs of list of values

〈[d1 . . . , dN ], [d′1 . . . , d
′
N ]〉 such that avrg([d1, . . . , dN ]) = avrg([d′1, . . . , d

′
N ]). Then ∼A

idH

cannot distinguish between memories µ and µ′ which agree on the average value of the

list to which p points, i.e. which verify avrg(v(µ, p)) = avrg(v(µ′, p)).

At this point, function φ may be seen as redundant since it can always be encoded in

I. For instance, ∼=
idL

is equivalently defined by ∼=L

id
, where id is the identity function

and =L is the set

{〈(d1, .., dm, em+1, .., en), (d1, .., dm, e
′
m+1, .., e

′
n)〉 | di, ej, e

′
j ∈ V}

provided L = {x1, .., xm}. The need for φ will become evident in Section 4 when security

is defined using composition and variable renaming.

The next proposition follows from definition of ∼ and it claims that relation ∼I
φ ∼φ

between memories depends only on the value of variables included in the domain of φ.

Proposition 1. For all µ1, µ2, µ
′′
1 , µ′′

2 , I, and φ : var(µ1) → var(µ2), µ1 ∼I
φ µ2 iff

µ1⊕µ′′
1 ∼I

φ µ2⊕µ′′
2 .

† We suppose variables can always be arranged in a particular order which we use to arrange set of

variables in tuples.
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We now turn to the definitions of generalised non-interference; unless otherwise spec-

ified, from now on we fix programs S1 and S2, functions φ, φ′ : var(S1) → var(S2), and

indistinguishability criteria I and I ′ which define relations ∼I
φ and ∼I′

φ′ .

Definition 1.

1. S1
∼≈φ,I

φ′,I′ S2 if for all µ1, µ2, µ
′
1 ∈ M,

`

µ1∼I
φµ2 ∧ (S1, µ1) 

∗ (
√

, µ′
1)

´

⇒ ∃µ′
2∈M : (S2, µ2) 

∗ (
√

, µ′
2) ∧ µ′

1∼I′

φ′µ′
2.

2. S1 ≈φ,I
φ′,I′ S2 if for all µ1, µ2, µ

′
1 ∈ M,

`

µ1∼I
φµ2 ∧ (S1, µ1) 

∗ (
√

, µ′
1)

´

⇒
`

(S2, µ2)⊥ ∨ ∃µ′
2∈M : (S2, µ2) 

∗ (
√

, µ′
2) ∧ µ′

1∼I′

φ′µ′
2

´

.

3. Let I, I ′ ⊆ Vn × Vn with n = # var(S).

(a) S is termination sensitive (TS) (I, I ′)-secure iff S ∼≈id ,I
id ,I′ S.

(b) S is termination insensitive (TI) (I, I ′)-secure iff S ≈id,I
id,I′ S.

Informally, S1
∼≈φ,I

φ′,I′ S2 holds (read “S1 is termination sensitive non-interferent with

S2”) if for any two input indistinguishable memories, ones successful execution of S1

from one of these memories, implies the existence of a successful execution of S2 from

the other memory, with both executions ending in output indistinguishable memories.

S1 ≈φ,I
φ′,I′ S2 (read “S1 is termination insensitive non interferent with program S2”) is

a weaker concept in the sense that S2 might diverge. Finally, a program is (TS or TI)

(I, I ′)-secure if, it is (TS or TI) non interferent with itself.

Traditional non-interference is characterized in our setting by (=L,=L)-security, with

=L as defined above. It is not difficult to check that our definitions agree with those

already defined in the literature (e.g. (Goguen and Meseguer 1982; Volpano et al. 1996;

Smith and Volpano 1998; Joshi and Leino 2000)).

However, our definitions are more flexible than the usual formulations of non-interference.

Indeed, the latter usually require that executions from indistinguishable memories ends at

indistinguishable memories with identical criteria of indistinguishability. In contrast, we

allow indistinguishability for initial memories (input indistinguishability) to differ from

indistinguishability for final memories (output indistinguishability). More precisely, Def-

inition 1 identifies input indistinguishability with (φ, I)-indistinguishability and output

indistinguishability with (φ′, I ′)−indistinguishability.

4. Information Flow using Composition and Renaming

Let ⊲ be an operation in Lang such that, for all S1, S2, µ1, µ2, µ
′
1, µ

′
2, with var(S1) ∩

var(S2) = ∅, var(S1) = var(µ1), var(S2) = var(µ2)

(a) (S1, µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ2) iff (S1 ⊲ S2, µ1⊕µ2) 
∗ (S2, µ

′
1⊕µ2); and

(b) (S1, µ1⊕µ)  ∗ (
√
, µ′

1⊕µ) and (S2, µ
′⊕µ2)  

∗ (
√
, µ′⊕µ′

2), for some µ and µ′, iff

(S1 ⊲S2, µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2).

It is not difficult to check that sequential composition and parallel composition in lan-

guage Par satisfy conditions of ⊲.
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Operation ⊲ is the first of the two ingredients on which our result builds up. Notice that

non-interference, as given in Definition 1, considers separately an execution of program

S1 and another of S2. By composing S1 ⊲S2, properties (a) and (b) above allows to put

these executions one after the other. Therefore we can find a different characterization

of security:

Definition 2. Let S1, S2 be two programs such that var(S1) ∩ var(S2) = ∅. We define

S1
⊲≈

φ,I

φ′,I′ S2 (and S1
⊲∼

φ,I
φ′,I′ S2 for the TI case) if for all µ1, µ2, µ

′
1, var(µ1) = var(µ′

1) =

var(S1) and var(µ2) = var(S2),
`

µ1⊕µ2 ∼I
φ µ1⊕µ2 ∧ (S1 ⊲ S2, µ1⊕µ2) 

∗ (S2, µ
′
1⊕µ2)

´

⇒
`

∃µ′
2 : var(µ′

2) = var(S2) : (S2, µ
′
1⊕µ2) 

∗ (
√

, µ′
1⊕µ′

2) ∧ µ′
1⊕µ′

2 ∼I′

φ′ µ′
1⊕µ′

2

´

`

∨ (S2, µ
′
1⊕µ2)⊥ for the TI case

´

.

Notice that this definition has the same shape as Definition 1. However, while S1
∼≈φ,I

φ′,I′

S2 considers executions of two different programs (S1 and S2), S1
⊲≈

φ,I

φ′,I′ S2 considers the

execution of only one program (S1 ⊲S2): the execution until the middle (that is, until

S2 is about to start) in the antecedent of the implication, and the continuation of the

execution until the end in the consequent.

The next theorem states that Definitions 1 and 2 are equivalent. That is, non-interference

of two programs can be seen as non-interference of one program (namely, the composition

of those two programs).

Theorem 1. Let S1 and S2 such that var(S1)∩var(S2) = ∅ and let φ : var(S1) → var(S2).

Then

(a) S1
∼≈φ,I

φ′,I′ S2 if and only if S1
⊲≈

φ,I

φ′,I′ S2, and

(b) S1 ≈φ,I
φ′,I′ S2 if and only if S1

⊲∼
φ,I
φ′,I′ S2.

Proof. (a) Termination sensitive case. By Proposition 1 and commutativity of ⊕, we

conclude that µ1∼I
φµ2 iff µ1⊕µ2 ∼I

φ µ1⊕µ2. By Fact 1.2, we have that (S1, µ1) 
∗ (

√
, µ′

1)

iff (S1, µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ2) and by definition of ⊲, (S1, µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ2) iff (S1 ⊲S2, µ1⊕µ2) 
∗ (S2, µ

′
1⊕µ2).

Using similar arguments, we can conclude that

∃µ′
2 : (S2, µ2) 

∗ (
√
, µ′

2) ∧ µ′
1∼I′

φ′µ′
2

iff ∃µ′
2 : (S2, µ

′
1⊕µ2) 

∗ (
√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I′

φ′ µ′
1⊕µ′

2

(1)

from which (a) follows.

(b) Termination insensitive case. It follows by (1) and Fact 1.3 that
(

∃µ′
2 : (S2, µ2) 

∗ (
√
, µ′

2) ∧ µ′
1∼I′

φ′µ′
2

)

∨ (S2, µ
′
1)⊥

iff
(

∃µ′
2 : (S2, µ

′
1⊕µ2) 

∗ (
√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I′

φ′ µ′
1⊕µ′

2

)

∨ (S2, µ
′
1⊕µ2)⊥

Using equivalence of hypothesis shown in case (a), we can conclude.

Programs sharing variable names are not handled by Definition 2 (and Theorem 1).

Using variable renaming —the second ingredient— conflicting variables can be renamed

to fresh names and hence the definition can be adapted to a more general setting. For
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this, we need to ensure that the behaviour of the renamed program is the same (which is

guaranteed by Assumption 3), and that non-interference is preserved by renaming. This

is stated in Theorem 2 below.

Before presenting Theorem 2, we prove an auxiliary lemma that is a weak version of

the theorem in which only one variable is renamed. This lemma is used in the induction

step of the proof of Theorem 2.

Lemma 1. Let y /∈ (S2), and let [y/x] : var(S2) → V be defined by [y/x](z) =

if z 6= x then z else y. Then

(a) S1
∼≈φ,I

φ′,I′ S2 iff S1
∼≈[y/x]φ,I

[y/x]φ′,I′ S2[y/x], and

(b) S1 ≈φ,I
φ′,I′ S2 iff S1 ≈[y/x]φ,I

[y/x]φ′,I′ S2[y/x].

where S2[y/x] is program S2 where variable x has been renamed by y, and [y/x]φ is a

shorthand for [y/x] ◦ φ.

Proof.

Case (a).

Subcase (⇒). Let µ1 ∼I
[y/x]φ µ2 and (S1, µ1)  

∗ (
√
, µ′

1). Notice that ∀z ∈ dom(φ) :

v(µ2, [y/x]φ(z)) = v(µ2[x Z⇒ v(µ2, y)], φ(z)), and hence µ1 ∼I
φ µ2[x Z⇒ v(µ2, y)]. As a

consequence, since S1
∼≈φ,I

φ′,I′ S2, there is µ′
2 ∈ M, such that,

(S2, µ2[x Z⇒ v(µ2, y)]) 
∗ (

√
, µ′

2) and µ′
1 ∼I′

φ′ µ′
2 (2)

By Assumption 3, there is some d such that

(S2[y/x], µ2[x Z⇒ v(µ2, y)][y Z⇒ v(µ2[x Z⇒ v(µ2, y)], x)]) 
∗

(
√
, µ′

2[x Z⇒ d][y Z⇒ v(µ′
2, x)]).

Since x /∈ var(S2[y/x]), notice that for all w ∈ var(S2[y/x]),

v(µ2[x Z⇒ v(µ2, y)][y Z⇒ v(µ2[x Z⇒ v(µ2, y)], x)], w) = v(µ2, w). (3)

Hence, by Assumption 2,

(S2[y/x], µ2) 
∗ (

√
, µ′′

2 ).

for some µ′′
2 such that ∀w ∈ var(S2[y/x]) : v(µ′

2[x Z⇒ d][y Z⇒ v(µ′
2, x)], w) = v(µ′′

2 , w).

Observe that ∀z ∈ dom(φ′) : v(µ′
2, φ

′(z)) = v(µ′′
2 , [y/x]φ

′(z)). In particular y /∈ dom(φ′)

and for z such that φ′(z) = x,

v(µ′′
2 , [y/x]φ

′(z)) = v(µ′′
2 , y)

= v(µ′
2[x Z⇒ d][y Z⇒ v(µ′

2, x)], y)

= v(µ′
2, x)

As a consequence, and since µ′
1 ∼I′

φ′ µ′
2, we finally have that, µ′

1 ∼I′

[y/x]φ′ µ′′
2 .

Subcase (⇐). Clearly x/∈ var(S2[y/x]) and, for all z ∈ dom(φ) (recall dom(φ) = dom([y/x]φ)),

φ(z) = if (([y/x]φ)(z)=y) then x else φ(z) (and similarly for φ′). Using the previous

case, where we take S2[y/x], [y/x]φ and [y/x]φ′ instead of S2, φ and φ′, respectively, we

have that S1
∼≈[y/x]φ,I

[y/x]φ′,I S2[y/x] implies S1
∼≈φ,I

φ′,I′ S2[y/x][x/y]. Hence S1
∼≈φ,I

φ′,I′ S2.
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Case (b). For the case of TI non-interference, we take over (2) and suppose, instead

that (S2, µ2[x Z⇒ v(µ2, y)])⊥. By Fact 1.5, (S2[y/x], µ2[x Z⇒ v(µ2, y)][y Z⇒ v(µ2[x Z⇒
v(µ2, y)], x)])⊥. Taking into account equation (3) above, by Fact 1.4, (S2[y/x], µ2)⊥,

which, together with the previous case, proves (⇒). (⇐) follows reasoning as in subcase

(⇐) of case (a).

Theorem 2. Let ξ : var(S2) → V be a bijective function on a set of variables V . Then

(a) S1
∼≈φ,I

φ′,I′ S2 iff S1
∼≈ξ◦φ,I

ξ◦φ′,I′ S2[ξ], and

(b) S1 ≈φ,I
φ′,I′ S2 iff S1 ≈ξ◦φ,I

ξ◦φ′,I′ S2[ξ].

where S2[ξ] is program S2 whose variables have been renamed according to function ξ.

Proof.

By induction on the number of variables x s.t. ξ(x) 6= x. Case n = 0 corresponds to

the identity and it is trivial. Case n ≥ 1 proceeds by induction using Lemma 1. In this

case, we report only the proof of part (a). The induction proof of part (b) follows in the

same manner. Let x ∈ var(S2) and let ξ s.t. ξ(x) = x. Let y be a fresh variable not in the

image of ξ. Notice that the number of variables z s.t. [y/x]ξ(z) = z is exactly one more

than those such that ξ(z) = z. Now we have

S1
∼≈[y/x]ξ◦φ,I

[y/x]ξ◦φ′,I′
S2[[y/x]ξ] iff S1

∼≈[y/x](ξ◦φ),I
[y/x](ξ◦φ′),I′

S2[ξ][y/x] (By calculations)

iff S1
∼≈ξ◦φ,I

ξ◦φ′,I′ S2[ξ] (By applying Lemma 1)

iff S1
∼≈φ,I

φ′,I′ S2 (By induction hypothesis)

Putting together Theorems 1 and 2 we have the following corollary:

Corollary 1. Let ξ : var(S) → Var. Define var(S)′ = {ξ(x) | x ∈ var(S)}, so that

var(S)∩var(S)′ = ∅ and x 7→ ξ(x) is a bijection from varS to var(S)′. Then, the following

statements are equivalent

1 S is TS (resp. TI) (I, I ′)-secure.

2 S ∼≈ξ,I
ξ,I′ S[ξ] (resp. S ≈ξ,I

ξ,I′ S[ξ])

3 S ⊲≈
ξ,I

ξ,I′ S[ξ] (resp. S ⊲∼
ξ,I
ξ,I′ S[ξ])

Corollary 1 allows to check whether a program S is secure by analyzing single ex-

ecutions of the program S ⊲S[ξ]. But this is what verification logics are used for. We

characterize (I, I ′)-security in some of such logics.

5. Deterministic Programs

Simpler definitions for non-interference can be obtained if the program S under study

is deterministic. We say that a program S is deterministic if for every memory µ and

configurations c, c′1, and c′2, if (S, µ)  ∗ c, c  c′1 and c  c′2, then c′1 = c′2. From here,
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it should not be difficult to verify that if S is deterministic, for all µ, either (S, µ)⊥ or

there is a unique memory µ′ such that (S, µ) ∗ (
√
, µ′).

Assuming determinism, the definition of security is simpler than Definition 2 since we

do not need to reference to intermediate points in the program and instead consider only

complete executions. This allows to check security by simply analyzing the I/O behaviour

of the self-composed program S;S[ξ]. This intuition is captured in the following theorem.

Theorem 3. Let S be a deterministic program and ξ : var(S) → Var and var(S)′ as in

Corollary 1.

1. S is TS (I1, I2)-secure if and only if

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ ∃µ′
1 : (S, µ1⊕µ2) 

∗ (
√

, µ′
1⊕µ2)

⇒ ∃µ′′
1 , µ′′

2 : var(µ′′
1 ) = var(S) ∧ var(µ′′

2 ) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′′

1⊕µ′′
2 ) ∧ µ′′

1⊕µ′′
2 ∼I2

ξ µ′′
1⊕µ′′

2

2. S is TI (I1, I2)-secure if and only if

∀µ1, µ2, µ
′
1, µ

′
2 : var(µ1) = var(µ′

1) = var(S) ∧ var(µ2) = var(µ′
2) = var(S)′ :

`

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2)

´

⇒ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

The proof of Theorem 3 can be found in Appendix A.

This theorem can be extended to programs that are deterministic only for the observed

value of the variables (and not necessarily in the internal representation). We say that a

program S is observationally deterministic if for all programs S′, S′
1, and S′

2 and memories

µ, µ1, µ2, µ
′
1 and µ′

2 with v(µ1, x) = v(µ2, x) for all x ∈ Var, if (S, µ)  ∗ (S′, µ1),

(S, µ)  ∗ (S′, µ2), (S′, µ1)  (S′
1, µ

′
1), and (S′, µ2)  (S′

2, µ
′
2), then S′

1 = S′
2 and

v(µ′
1, x) = v(µ′

2, x) for all x ∈ Var. Notice, in particular, that if (S, µ)  (S1, µ1) and

(S, µ) (S2, µ2) then S′
1 = S′

2 and v(µ′
1, x) = v(µ′

2, x) for all x ∈ Var. Moreover, it can be

proved that either (S, µ)⊥ or for all µ1, µ2 ∈ {µ′ | (S, µ) ∗ (
√
, µ′)}, v(µ1, x) = v(µ2, x)

for every x ∈ Var.

The proof of the next theorem follows closely the proof of Theorem 3 (see Appendix A

for the proof).

Theorem 4. Let S be an observationally deterministic program and let ξ : var(S) → Var

and var(S)′ as in Corollary 1. Then equivalences 1. and 2. in Theorem 3 hold.

The following example shows that the alternative definition given by Theorem 3 for

deterministic program does not extend to non-deterministic programs in general.

Example 4. Recall the non-deterministic language Par. The non-deterministic program

if x = 1 → x := 2 8 x = 1 → x := 1 fi, where x is public, is TI and TS (=L,=L)-secure

according to Definition 2. However it does not satisfy conditions of Theorem 3 since

starting from indistinguishable states with x = 1, the self-composed program will not

always terminate in states where x has the same value.

Theorem 3 can be further enhanced for languages featuring simple functional memories

like the one defined in Example 1 and that will be central in the next two sections. Notice
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that Theorem 3 requires that memory should be separable by operation ⊕ (µ is separable

by ⊕ if there are µ1 and µ2 such that µ = µ1⊕µ2). Functions can always be separated

(this is not the case with more complex memories like those in Section 8). Consequently,

we have the following corollary:

Corollary 2. Let S ⊲S[ξ] be a deterministic program with memory as defined in Exam-

ple 1. Let ξ : var(S) → Var and var(S)′ as in Corollary 1.

1. S is TS (I1, I2)-secure if and only if

∀µ :
(

µ ∼I1

ξ µ ∧ ∃µ′. (S, µ) ∗ (
√
, µ′)

)

⇒
(

∃µ′′. (S ⊲S[ξ], µ) ∗ (
√
, µ′′) ∧ µ′′ ∼I2

ξ µ′′
)

2. S is TI (I1, I2)-secure if and only if

∀µ, µ′ :
(

µ ∼I1

ξ µ ∧ (S ⊲S[ξ], µ) ∗ (
√
, µ′)

)

⇒ µ′ ∼I2

ξ µ′

6. Hoare Logic

In this section we use the results of self composition to characterize (I1, I2)-security in

Hoare logic.

Let While be the subset of Par not containing parallel composition and limiting the if

construction to be binary and deterministic: if b then S1 else S2 fi = if b→ S1 8 ¬b→ S2 fi.

Memories are the functions of Example 1.

Let P and Q be first order predicates and S a While program. A Hoare triple (Hoare

1969) {P}S {Q} means that whenever S starts to execute in a state in which P holds,

if it terminates, it does so in a state satisfying Q. An assertion {P}S {Q} holds if it is

provable with the following rules:

{P [e/x]}x := e {P} P ′ ⇒ P {P}S {Q} Q ⇒ Q′

{P ′}S {Q′}
{P ∧ b}S1 {Q} {P ∧ ¬b}S2 {Q}

{P} if b then S1 else S2 fi {Q}
{P}S1 {R} {R}S2 {Q}

{P}S1 ; S2 {Q}
{P ∧ b}S {P}

{P}while b do S od {P ∧ ¬b}
Hoare logic is sound and (relatively) complete w.r.t. operational semantics (Cook 1978).

That is, for all program S and predicates P and Q, {P}S {Q} is provable iff for all µ, µ′,

µ |= P and (S, µ)  ∗ (
√
, µ′) imply µ′ |= Q. µ |= P means that P holds whenever every

program variable x appearing in P is replaced by the value v(µ, x).

Suppose I(I) is a first order predicate representing the indistinguishability criterion I
on the values of the program, that is,

µ |= I(I) iff µ ∼I
ξ µ

(

iff (v(µ, ~x), v(µ, ~x′)) ∈ I
)

.

where v(µ, (x1, .., xn)) = (v(µ, x1), .., v(µ, xn)) and var(S) = {x1, .., xn}. We expect that

I(I) is definable in the assertion language embedded in Hoare logic. For instance, predi-

cate I(=L) for relation ∼=L

ξ (which is the renaming version of ∼=
idL

in Example 3), can

be defined by
∧

x∈L x = x′.
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Proposition 2. Termination insensitive (I1, I2)-security can be characterized in Hoare

logic as follows:

S is TI (I1, I2)-secure iff {I(I1)}S ; S[ξ] {I(I2)} is provable.

Proof. We remark that the language above has semantics on memories like in Exam-

ple 1. Moreover the language is deterministic and we take the sequential composition to

be operator ⊲. Therefore, we are under the conditions of Corollary 2, which is central to

this proof.

S is TI (I1, I2)-secure

iff {Corollary 2.2}
∀µ, µ′ :

`

µ ∼I1

ξ µ ∧ (S ; S[ξ], µ) ∗ (
√

, µ′)
´

⇒ µ′ ∼I2

ξ µ′

iff {Def. of I}
∀µ, µ′ :

`

µ |= I(I1) ∧ (S ; S[ξ], µ) ∗ (
√

, µ′)
´

⇒ µ′ |= I(I2)

iff {Soundness and completeness, provided I is definable}
{I(I1)}S ; S[ξ] {I(I2)} is provable

Example 5. Let xl and yh be respectively a public and a confidential variable in the

program xl := xl + yh ; xl := xl − yh. We show that it is non-interferent. Indistinguisha-

bility in this case is characterized by predicate I(={xl}) ≡ (xl = x′l). The proof is given

in Figure 1(a).

The generality of our definition is useful for providing a characterization of some forms

of controlled declassification. Declassification allows to leak some confidential informa-

tion without being too revealing. A semantic characterization of this kind of properties

has been given in (Sabelfeld and Myers 2004) and coined delimited release. A typical

example is a program S that informs the average salary of the employees of a company

without revealing any other information that may give any further indications of partic-

ular salaries (which is confidential information), see Example 8. Another typical example

is given by access control procedures such as the following instance.

Example 6. This example —the PIN access control— deals with declassification. In the

program

if (in = pin) then acc := true else acc := false fi

variable pin , which stores the actual PIN number, is supposed to be confidential, whereas

in , containing the attempted number, is a public input variable and acc, conceding or

not the access to the system, is a public output variable. The declassified information

only should reveal whether the input number (in) agrees with the PIN number (pin) or

not, and such information is revealed by granting the access or not (indicated in acc).

We, therefore, require that the program is (I,={acc})-secure, where I is such that ∼I
id

iff (µ(in) = µ(pin)) ⇔ (µ′(in) = µ′(pin)). Hence, I(I) ≡ ((in = pin) ↔ (in ′ = pin ′))

and I(={acc}) ≡ (acc = acc′). The proof is outlined in Figure 1(b).
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{xl = x′
l}

{xl + yh − yh = x′
l}

xl := xl + yh ;

{xl − yh = x′
l}

xl := xl − yh ;

{xl = x′
l}

{xl = x′
l + y′

h − y′
h}

x′
l := x′

l + y′
h ;

{xl = x′
l − y′

h}
x′

l := x′
l − y′

h

{xl = x′
l}

{(in = pin) ↔ (in ′ = pin ′)}
if (in = pin) then

{in ′ = pin ′}
acc := true

else

{in ′ 6= pin ′}
acc := false

fi ;

{(acc = true) ↔ (in′ = pin′)}
if (in ′ = pin′) then acc′ := true

else acc′ := false fi

{(acc = true) ↔ (acc′ = true)}
{acc = acc′}

(a) (b)

Fig. 1. Security proof in Hoare logic

7. Weakest precondition

Partial correctness is not enough to formulate a characterization of termination sensitive

(I, I ′)-security for deterministic programs, where one needs to ensure that if S terminates

for some memory µ1, S[ξ] terminates for indistinguishable memory µ2 (Theorem 3).

However by using total correctness specifications and self-composition, it is possible to

specify TS security using the weakest conservative precondition (Dijkstra 1997) (wp).

Given two predicates P,Q and a program S, predicate transformer wp is sound and

complete in the following sense:

P ⇒ wp(S,Q) iff ∀µ : µ |= P ⇒ ∃µ′ : (S, µ) ∗ (
√
, µ′) ∧ µ′ |= Q (4)

In particular,

µ |= wp(S, true) iff ∃µ′ : (S, µ) ∗ (
√
, µ′) (5)

Therefore, wp(S, true) characterizes the set of memories in which the execution of S

terminates.

The equations for the calculus of wp(S,Q) are the following:

wp(x := e,Q) = Q[e/x]

wp(if b then S1 else S2 fi, Q) = b⇒ wp(S1, Q) ∧ ¬b⇒ wp(S2, Q)

wp(S1 ; S2, Q) = wp(S1, wp(S2, Q))

wp(while b do S od, Q) = ∃k : k ≥ 0 : Hk(Q)

where

H0(Q) = ¬b ∧Q
Hk+1(Q) = (b ∧ wp(S,Hk(Q))) ∨H0(Q)

Proposition 3. Termination sensitive (I1, I2)-security can be characterized using wp

as follows:
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S is TS (I1, I2)-secure iff I(I1) ∧ wp(S, true) ⇒ wp(S ; S[ξ], I(I2)).

Proof.

S is TS (I1, I2)-secure

iff {Corollary 2.1}
∀µ :

`

( µ ∼I1

ξ µ ∧ ∃µ′ : (S, µ) ∗ (
√

, µ′) )

⇒ ( ∃µ′′ : (S; S[ξ], µ) ∗ (
√

, µ′′) ∧ µ′′ ∼I2

ξ µ′′ )
´

iff {Def. of I}
∀µ :

`

( µ |= I(I1) ∧ ∃µ′ : (S,µ) ∗ (
√

, µ′) )

⇒ ( ∃µ′′ : (S; S[ξ], µ) ∗ (
√

, µ′′) ∧ µ′′ |= I(I2) )
´

iff {By (5)}
∀µ :

`

( µ |= I(I1) ∧ µ |= wp(S, true) )

⇒ ( ∃µ′′ : (S; S[ξ]), µ) ∗ (
√

, µ′′) ∧ µ′′ |= I(I2) )
´

iff {By (4)}
( I(I1) ∧ wp(S, true) ) ⇒ wp(S; S[ξ], I(I2))

The following example shows a program that is termination insensitive secure but

it is not termination sensitive secure. Thus, the program can be proved secure using

the characterization of Hoare logic with partial correctness, but verification fail using

characterization of wp.

Example 7. Consider program S where y is a high variable:

while y < 3 do

if y < 1 then

y := y − 1

else

y := y + 1

fi

od

Since there are no low variables in S, indistinguishability criteria are trivially true.

Using equations for wp, we calculate wp(S, true):

∃k : k ≥ 0 : y ≥ 3 ∨ (y ≤ 3 ∧ y ≥ 1 ∧ y ≥ 3 − k)

what is equivalent to y ≥ 1.

If we calculate wp(S ; S[y′/y], true) we obtain y ≥ 1 ∧ y′ ≥ 1, which is not implied by

wp(S, true) that is y ≥ 1. Hence, program S (that is trivially TI secure since there are

no low variables) is not TS secure.

Hoare-logic with total correctness and wp relates by P ⇒ wp(S,Q) iff [P ]S [Q ], where

[P ]S [Q ] denotes the Hoare triple for total correctness. Following Proposition 3, a first

attempt to characterize (I1, I2)-security using Hoare-logic with total correctness yields

[ I(I1) ∧ wp(S, true) ]S ; S[ξ] [ I(I2) ].

However this characterization is impure in the sense that it mixes the calculus of

weakest precondition and Hoare logic triples for total correctness. Since wp(S, true) is
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the weakest predicate P such that [P ]S [ true ], it turns out that the characterization

using Hoare-logic with total correctness is, not only impossible in its pure form, but also

requires a second order quantification. In fact, the characterization should be written as

follows:

∀P : [P ]S [ true ] : [ I(I1) ∧ P ]S ; S[ξ] [ I(I2) ]

This justifies our choice to use wp rather than Hoare logic for total correctness to char-

acterize (I1, I2)-security.

8. Separation Logic

Separation logic is an extension of Hoare logic to reason about shared mutable data

structures (Ishtiaq and O’Hearn 2001; Reynolds 2002). Whilep extends the While language

with the following commands:

S :: = · · · | x := e.i | x.i := e | x := cons(e1, e2) | dispose(e) (6)

where i ∈ {1, 2} and e is a pure expression (not containing a dot or cons). x := cons(e1, e2)

creates a cell in the heap where the tuple (e1, e2) is stored and allows x to point to that

cell, and dispose(e) deallocates a cell from the heap. Furthermore e.i returns the value

of the ith position of the tuple pointed by e. (Binary tuples suffice for our purposes

although arbitrary n-tuples appear in the literature and can also be considered here.)

Then, x := e.i and x.i := e allow to read and update the heap respectively. Values in

Whilep may be integers or locations (including nil).

A memory contains two components: a store, mapping variables into values, and a heap,

mapping locations (or addresses) into values. Thus, if V = Z∪ Loc, then S = Var → V is

the set of stores and H = Loc − {nil} → (V × Loc) is the set of heaps. As a consequence

variables can have type Z or type Loc. Finally M = S ×H.

Separation logic requires additional predicates to make assertions about pointers. In

addition to formulas of the classical predicate calculus, the logic has the following forms

of assertions: e 7→ (e1, e2) which holds in a singleton heap with location satisfying e and

the cell values satisfying e1 and e2 respectively; emp that holds if the heap is empty; and

P ∗ Q, named separating conjunction, holds if the heap can be split in two parts, one

satisfying P and the other Q. There exists a calculus for these operations including also

the separating implication P −∗Q, see (Ishtiaq and O’Hearn 2001; Reynolds 2000). The

meaning of an assertion depends upon both the store and the heap:

(s, h) |= emp iff dom(h) = ∅
(s, h) |= e 7→ (e1, e2) iff dom(h) = {s(e)} and h(s(e)) = (s(e1), s(e2))

(s, h) |= P ∗ Q iff ∃h0, h1 : h0⊕h1 = h, (s, h0) |= P , and (s, h1) |= Q

where s(e) is the standard meaning of an expression given the store s. Separation logic

extends Hoare logic with rules to handle pointers. The so-called frame rule, that allows

to extend local specification, is given by
{P}S {Q}

{P ∗ R}S {Q ∗ R}
where no variable occurring free in R is modified by S. The (local version) rules for heap

manipulation commands are the following (we omit symmetric rules):
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— Let e 7→ ( , e2) abbreviate “∃e′ : e 7→ (e′, e2) and variables occurring in e′ are not free in e

neither e2”, then

{e 7→ ( , e2)} e.1 := e1 {e 7→ (e1, e2)}
— If x does not occur in e1 or in e2 then

{emp} x := cons(e1, e2) {x 7→ (e1, e2)}

— If x, x′ and x′′ are different and x does not occur in e neither e2, then
˘

x=x′ ∧ (e 7→ (x′′, e2))
¯

x := e.1
˘

x=x′′ ∧ (e 7→ (x′′, e2))
¯

— Finally,

{∃e1, e2 : e 7→ (e1, e2)} dispose(e) {emp}
Using separation logic we can define inductive predicates to make reference to struc-

tures in the heap (see Reynolds 2000; Ishtiaq and O’Hearn 2001). For simplicity we only

consider predicate list which is defined by:

list.[ ].p = (p = nil) ∧ emp

list.(x:xs).p = (∃r : (p 7→ (x, r)) ∗ list.xs.r)

For instance, predicate list.[x0, . . . , xn].p is valid only in the heap represented below:

p // x0 • // x1 • // · · · // xn •

As we mentioned, a memory is a tuple containing a store and a heap. We need to define

var, v, and ⊕ in this domain. Therefore, for all s, s1, s2 ∈ S, h, h1, h2 ∈ H, and x ∈ Var,

we define var(s, h) = dom(s),

v((s, h), x) =

{

s(x) if s(x) ∈ Z

v(h, s(x)) if s(x) ∈ Loc

where v(h, l) returns the list pointed by l, i.e.,

v(h, l) = if l=nil then [ ] else fst(h(l)):v(h−{(l, h(l))}, snd(h(l)))

and

(s1, h1)⊕(s2, h2) = (s1⊕s2, h1⊕h2) (7)

is defined only if all locations reachable from store si are defined in the heap hi, i = 1, 2.

Formally, a location l′ is reached from a location l in a heap h if l′ ∈ reach(l, h) =

{(snd ◦h)k(l) | k ≥ 0} Then, the set of all locations reachable from store s in h is

defined by reach(s, h) =
⋃{reach(l, h) | l ∈ ran(s) ∩ Loc − {nil}}. Then, (7) is defined

if reach(si, hi) ⊆ dom(hi) for all i = 1, 2. If this restriction does not hold, then, for

x ∈ var(s1, h1), v((s1⊕s2, h1⊕h2), x) may be defined when v((s1, h1), x) is not (hence not

satisfying the requirement of ⊕ in Section 2).

Now that v and v are defined, notice that

(s, h) |= list.xs.x ∗ true iff v(h, s(x)) = xs iff v((s, h), x) = xs (8)

Let {x1, .., xn} be all variables in S that have type Loc (the pointer variables) and
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{y1, .., ym} all variables in S of type Z (the integer variables). Let ~x = (x1, .., xn) and ~x′ =

(x′1, .., x
′
n) and similarly for ~y and ~y′. Denote ~xs = (xs1, .., xsn) and ~xs′ = (xs′1, .., xs

′
n).

Fix this notation for the rest of this section.

Let I be the indistinguishability criterion. Notice that, in this setting, I deals with

values in Z and also with lists, which are the interpretation of pointer variables. Assume

there are m integer variables and n pointer variables, then I ⊆ (Zm × L
n) × (Zm × L

n)

with L being the set of all possible lists.

Let Isl(I) be predicate

∃ ~xs, ~xs′ :
( (

∧

1≤i≤n(list.xsi.xi ∗ true)
)

∗
(

∧

1≤i≤n(list.xs′i.x
′
i ∗ true)

) )

∧ Iv( ~xs, ~xs
′, I)

where we suppose the existence of Iv such that

µ |= Iv( ~ds, ~ds′, I) iff (〈v(µ, ~y), ~ds〉, 〈v(µ, ~y′), ~ds′〉) ∈ I

where v(µ, ~y) is defined as in Section 6, and ~ds and ~ds′ are actual list values. Notice that

the following holds:

µ |= Iv(v(µ, ~x), v(µ, ~x′), I) iff (〈v(µ, ~y), v(µ, ~x)〉, 〈v(µ, ~y′), v(µ, ~x′)〉) ∈ I
iff µ∼I

ξµ.

Yet, µ needs to be separable so that we are in the setting of Theorem 4. That is why we

also require that

µ |= ∃ ~xs, ~xs′ :
( (

∧

1≤i≤n(list.xsi.xi ∗ true)
)

∗
(

∧

1≤i≤n(list.xs′i.x
′
i ∗ true)

) )

.

Therefore, Isl(I) has two parts: the first part states the separation of the heap identifying

the list values represented by the pointer variables, and the second one, the proper

indistinguishability of the values (including also the values of the integer variables).

Separation logic is (relatively) complete for the language we are using (Ishtiaq and

O’Hearn 2001). As a consequence, security in separation logic can be completely charac-

terized as follows:

Proposition 4. S is TI (I1, I2)-secure iff {Isl(I1)}S ; S[ξ] {Isl(I2)} is provable.

Before continuing with the proof we state the following properties:

Property 1. Every Whilep program is observationally deterministic.

Notice that, even if we assume that the heap allocator is non-deterministic (the heap

allocator is used for the semantics of cons to create a fresh address in the heap), the

semantics of the Whilep language is still deterministic in the sense that the same pro-

gram with the same inputs produces the same outputs. This is due to the fact that the

language disallows comparisons between addresses in the heap (tests on pointer values

are disallowed).

Notice that if tests on pointers were allowed (that is, Property 1 would not be valid),

new leaks can arise throughout address values. Consider for example program pl :=

cons(1, nil) ; ql := cons(1, nil) ; if pl < ql then xl := 1 else xl := 2 fi with pl, ql, xl
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being public variables. Assume that the allocator depends on secret information being

allocated before this public command. Then this program is insecure, since at the end of

the program, depending on the location assigned by the allocator to pl and ql, value of

xl will be 0 or 1, revealing whether secret information has been allocated before.

Properties 1 follows by structural induction using the operational rules defined in (Ish-

tiaq and O’Hearn 2001). Using previous observations, we finally proceed to prove cor-

rectness and completeness of the characterization in Separation Logic.

Proof.

We prove first that Isl(I) characterizes indistinguishability in a separable memory, i.e.,

a memory µ such that ∃µ1, µ2 : µ = µ1⊕µ2 with var(µ1) = var(S) and var(µ2) = var(S)′.

First, observe that v(h, l) is defined iff reach(l, h) ⊆ dom(h).

Let v(h1, s(~x)) = (v(h1, s(x1)), .., v(h1, s(xn))) and similarly for v(h2, s(~x
′)). As a con-

sequence, if dom(s) = var(S) ∪ var(S)′,

∃h1, h2 : h = h1⊕h2 : v(h1, s(~x)) and v(h2, s(~x
′)) are defined

iff {s is a function with dom(s) = var(S) ∪ var(S)′}
∃s1, s2, h1, h2 : h = h1⊕h2 ∧ s = s1⊕s2

∧ dom(s1) = var(S) ∧ dom(s2) = var(S)′

∧ v(h1, s(~x)) and v(h2, s(~x
′)) are defined

iff {Observation above}
∃s1, s2, h1, h2 : h = h1⊕h2 ∧ s = s1⊕s2

∧ dom(s1) = var(S) ∧ dom(s2) = var(S)′

∧ reach(si, hi) ⊆ dom(hi) for i ∈ {1, 2}
iff {Def. of ⊕ and var(si, hi) = dom(si)}
∃s1, s2, h1, h2 : (s, h) = (s1, h1)⊕(s2, h2)

∧ var(s1, h1) = var(S) ∧ var(s2, h2) = var(S)′ (9)

We now prove the correctness of Isl(I):

(s, h) |= Isl(I)

iff {unfolding of Isl(I)}

(s, h) |= ∃ ~ds, ~ds
′
:

“

V

1≤i≤n
(list.dsi.xi ∗ true)

”

∗
“

V

1≤i≤n
list.ds′i.x

′
i ∗ true)

”

∧ Iv( ~xs, ~xs′, I)

iff {By semantics (equation 8 ) }
∃ ~ds, ~ds

′
: ∃h1, h2 : h = h1⊕h2 :

(∀i : 1 ≤ i ≤ n : dsi = v(h1, s(xi)) ∧ ds′i = v(h2, s(x
′
i)))

∧ (s, h) |= Iv( ~ds, ~ds
′
, I)

iff {Def. of Iv and equality on vectors}
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∃ ~ds, ~ds
′
: ∃h1, h2 : h = h1⊕h2 : ~ds = v((s, h1), ~x) ∧ ~ds′ = v((s, h′

2), ~x
′)

∧ (〈v(µ, ~y), ~ds〉, 〈v(µ, ~y′), ~ds
′〉) ∈ I

iff { v(h1, s(xi))=v((s, h), xi)=dsi and

v(h2, s(x
′
i))=v((s, h), x′

i) = ds′i, for 1 ≤ i ≤ n}
∃ ~ds, ~ds

′
: ∃h1, h2 : h = h1⊕h2 : ~ds = v((s, h1), ~x) ∧ ~ds′ = v((s, h′

2), ~x
′)

∧ (〈v(µ, ~y), v(µ, ~x)〉, 〈v(µ, ~y′), v(µ, ~x′)〉) ∈ I
iff {∃v : f(z) = v iff f(z) is defined, and Def. of ∼I

ξ }
∃h1, h2 : h = h1⊕h2 : v(h1, s(~x)) and v(h2, s(~x

′)) are defined ∧ (s, h) ∼I
ξ (s, h)

iff { Remark (9) }
∃s1, s2, h1, h2 : (s, h) = (s1, h1)⊕(s2, h2)

∧ var(s1, h1) = var(S) ∧ var(s2, h2) = var(S)′

∧ (s, h) ∼I
ξ (s, h) (10)

S is TI (I1, I2)-secure

iff {Property 1 and Theorem 4}
∀µ1, µ2, µ

′
1, µ

′
2 : var(µ1) = var(µ′

1) = var(S) ∧ var(µ2) = var(µ′
2) = var(S)′ :

`

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S; S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2)

´

⇒ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

iff {Logic}
∀µ, µ′ :

`

∃µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ ∧ µ = µ1⊕µ2

´

∧
`

∃µ′
1, µ

′
2 : var(µ′

1) = var(S) ∧ var(µ′
2) = var(S)′ ∧ µ′ = µ′

1⊕µ′
2

´

:
`

µ ∼I1

ξ µ ∧ (S; S[ξ], µ) ∗ (
√

, µ′)
´

⇒ µ′ ∼I2

ξ µ′

iff {Logic and Remark (10) }
∀µ, µ′ :

`

µ |= Isl(I1) ∧ (S; S[ξ], µ) ∗ (
√

, µ′)
´

⇒ µ′ |= Isl(I2)

iff {Separation Logic is sound and complete}
{Isl(I1)}S ; S[ξ] {Isl(I2)} is provable

Example 8.

The following program receives a list lsalaries with employees salaries and returns in

al the average of the salaries. We use projections .salary and .next as syntactic sugar for

projections .1 and .2 on lists.

p := lsalaries ; s := 0 ; n := 0 ;

while p 6= nil do

n := n+ 1 ; saux := p.salary ; s := s+ saux ;

paux := p.next ; p := paux ;

od

al := s/n

Variables saux and paux are specially included to meet the syntax restrictions imposed

to the language. Call this program AV SAL (for “AVerage SALary”).

The security requirement is to reveal only the average of the employee salaries without

revealing any information about individual salaries. In this sense, the only public variable
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in AV SAL is al, which is intended to store the average salary resulting from the calcula-

tion. If A is defined as in Example 3 (except that the length of the list of salaries is not

fixed as in Example 3), we expect AV SAL to be (A,={al})-secure. Thus, precondition

Isl(A) and postcondition Isl(={al}) are respectively the following predicates:

∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧
P

ps
|ps| =

P

ps′

|ps′|

∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧ al = a′l

Here, we use notation |ps| for the length of list ps, and
∑

ps for the sum of all numbers

in ps with
∑

[ ] = 0. We suppose that the heap contains exactly the lists pointed by

lsalaries and lsalaries′, so we can omit writing “ ∗ true” in these definitions.

The proof of {Isl(A)}AV SAL ; AV SAL[ξ]
{

Isl(={al})
}

is not too difficult to work out

(and can be found in Appendix B).

Close to Separation Logic is the Relational Separation Logic (Yang 2007). Relational

separation logic is a logic to specify relations between two pointer programs and prove

their specifications. We remark that is also possible to express TS-(I1, I2)-security using

this logic. As relational separation logic deals simultaneously with two programs in tuples

of the form {P} S

S′ {Q}, there is no need to use self-composition since the “quadruple”

can hold separately the program an its renamed copy.

9. Temporal Logics

Computation Tree Logic (CTL for short) (Clarke et al. 1986) is a temporal logic that

extends propositional logic with modalities to express properties on the branching struc-

ture of a nondeterministic execution. That is, CTL temporal operators allow to quantify

over execution paths (i.e., maximal transition sequences leaving a particular state). Apart

from the usual propositional operations (atomic propositions, ¬, ∨, ∧, →,. . . ), CTL pro-

vides (unary) temporal operators EF, AF, EG, and AG. Formula EFφ states that exists

an execution path that leads to a future state in which φ holds, while AFφ states that

all execution paths lead to a future state in which φ holds. Dually, EGφ states that

exists an execution path in which φ globally holds (i.e., it holds in every state along this

execution), and AGφ says that for all paths, φ holds globally. CTL includes other (more

expressive) operators which we omit in this discussion.

Formally, a transition system (Conf, ) is extended with a function Prop that to each

configuration in Conf assigns a set of atomic propositions. Prop(c) is the set of all atomic

propositions valid in c. An execution is a maximal (finite or infinite) sequence of configu-

rations ρ = c0c1c2 . . . such that ci  ci+1 and if it ends in a configuration cn then cn 6 .

For i ≥ 0, let ρi = ci be the i-th state in ρ (if ρ is finite, i+1 must not exceed ρ’s length).

Let c |= φ denote that CTL formula φ holds in configuration c. The semantics of CTL

is defined by

c |= EFφ iff ∃ρ : ρ0 = c : ∃i : ρi |= φ

c |= AFφ iff ∀ρ : ρ0 = c : ∃i : ρi |= φ
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AG and EG are the dual of EF and AF respectively, that is, AGφ ≡ ¬EF¬φ and EGφ ≡
¬AF¬φ. For an atomic proposition p, c |= p iff p ∈ Prop(c). The semantics of the

propositional operators ¬, ∧, ∨, → are as usual (e.g., c |= φ ∧ ψ iff c |= φ and c |= ψ).

In this section we impose an extra requirement on the composition S1 ⊲S2 that allows to

syntactically identify the moment of the execution in which S1 has just finished executing

but S2 has not yet started:

(c) (S1 ⊲S2, µ) ∗ (S2, µ
′) implies (S1, µ) ∗ (

√
, µ′).

Though this requirement is not strictly necessary, it is nonetheless convenient to keep

simple the CTL formulas that characterize security.

Let end be the atomic proposition that indicates that the execution reaches a success-

fully terminating state, i.e., end ∈ Prop(S, µ) iff S =
√

. Let mid indicate that program

S[ξ] is about to be executed, i.e., mid ∈ Prop(S′, µ) iff S′ = S[ξ]. Let Ind[I] be an atomic

proposition indicating indistinguishability in a state. Thus Ind[I] ∈ Prop(S, µ) iff µ ∼I
ξ µ.

We let S |= Φ denotes ∀µ : (S, µ) |= Φ. For the sake of simplicity, we consider simple

memories as in Example 1. (More complex states are possible, but it will be necessary to

introduce additional atomic propositions to characterize separable memories like we did

in Section 8.)

In the following we give characterisations of non-interference in CTL.

Proposition 5. A program S is TS (I1, I2)-secure if and only if S ⊲S[ξ] satisfies

Ind[I1] → AG(mid → EF(end ∧ Ind[I2])). (11)

Property (11) states that “whenever the initial state is indistinguishable, every time

S[ξ] is reached (and hence S terminates), there is an execution that leads to a terminating

indistinguishable state”. The CTL characterization of TS security given by Proposition 5

can be proven using Corollary 1 (see Appendix C).

Requirement (c) is necessary so that formula (11) is not confounded with the satisfac-

tion of mid on several states along a single execution. For instance, this confusion appears

in the case of program SW , defined below, if it is self composed using only sequential

composition.

while x < 2 do

if 8 x = 0 → x := 2

8 true → x := 1 fi

od

Notice that, for instance, (SW ;SW [ξ], [x7→0, x′ 7→0]) ∗ (SW [ξ], [x7→2, x′ 7→1]) with (SW [ξ], [x7→2, x′ 7→1]) |=
mid, but configuration (SW [ξ], [x7→2, x′ 7→1]) has already execute program SW for a while.

This contradicts the spirit of proposition mid. To avoid this situation the composition

SW ⊲ SW [ξ] may be defined using, for example, the skip instruction (or a trivial assign-

ment) in between: SW ; skip;SW [ξ]. Then mid is defined to hold only in configurations of

the form (skip;SW [ξ], µ) for some memory µ.

For the termination insensitive case, first notice that a program does not terminate if

no execution reaches a terminating state. That is, ¬∃µ′ : (S, µ) ∗ (
√
, µ′), or equivalently

∀S′, µ′ : (S, µ) ∗ (S′, µ′) : S′ 6= √
. Therefore, program S does not terminate in µ if and
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(a)
(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0) end

mid

(0, 1)

(0, 1) (0, 1)

(0, 0)

mid

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(b)

(0, 1)

(0, 1)

(0, 1)

(0, 1) end

mid

(1, 1)

(1, 1)

(1, 1) end

mid

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0) end

mid

(1, 0)

(1, 0)

(1, 0) (1, 0) end

mid

Fig. 2. Automata for programs of Example 9

only if (S, µ) |= AG¬end. The TI security characterization in CTL is obtained from (11)

by allowing non-termination as follows.

Proposition 6. A program S is TI (I1, I2)-secure if and only if S ⊲S[ξ] satisfies

Ind[I1] → AG(mid → ((AG¬end) ∨ EF(end ∧ Ind[I2]))), (12)

Property (12) says that “if the initial state is indistinguishable then, every time S[ξ]

is reached, the program does not terminate or there is an execution that leads to a

terminating indistinguishable state”. The proof of Proposition 6 is similar to that of

Proposition 5.

Example 9. Let yh be a confidential variable in the following programs (borrowed from

Joshi and Leino 2000):

(a)

if 8 yh=0 →
yh := yh

8 true →
while true do yh := 0 od

fi

(b)

if 8 yh=0 →
while true do yh := 0 od

8 true →
yh := yh

fi

We check whether they are non-interferent (Smith and Volpano 1998; Joshi and Leino

2000), that is, whether they are (=L,=L)-secure. We use CTL and for this we set

Ind[=∅] ≡ true. The automaton of the (self-composed) programs (a) and (b) are de-

picted in Figure 2. In the picture, variables take only value 0 or 1. Besides, a state is

depicted with a tuple (d, d′) containing the values of yh and y′h respectively. Labels mid

and end next to a state indicate that they hold in this state. Initial states are indicated

with a small incoming arrow.

Observe that both programs satisfy the TI formula true → AG(mid → ((AG¬end) ∨
EF(end∧ true))). As observed in (Joshi and Leino 2000), program (a) does leak informa-

tion: if it terminates, yh must be equal to 0 at the beginning of the program. The TS

formula true → AG(mid → EF(true ∧ end)) detects such leakage. Notice that the second
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end

(0, 0) (0, 1) (1, 0)

(1, 0) (1, 1)

(1, 1)

(1, 1)

mid mid

Fig. 3. Automata for program of Example 10

automaton from the left has an execution that completes its “first phase” but never

terminates. Instead, the formula is valid in program (b).

Linear Temporal Logic characterization of security. A similar characterization can be

given for Linear Temporal Logic (LTL) (Manna and Pnueli 1992) but limited to deter-

ministic programs. Like CTL, LTL extends propositional logic with modal operations.

However these modalities refer only to properties of single executions disregarding path

quantification. LTL provides (unary) temporal operators F and G. Fφ holds in a pro-

gram execution if φ holds in the future, i.e. in some suffix of this execution. Gφ holds in

a program execution if φ holds globally, i.e. in all suffixes of this execution.

In a deterministic setting, the semantics of F and G can be characterized in terms of

reachability: c |= Fφ iff (∃c′ : c  ∗ c′ : c′ |= φ), and c |= Gφ iff (∀c′ : c  ∗ c′ : c′ |= φ).

Using Corollary 2, TS and TI (I1, I2)-security can be characterized in LTL respectively

by formulas Ind[I1] → ((Fmid) → F(end ∧ Ind[I2])), and Ind[I1] → G(end → Ind[I2]).

It is known that CTL and LTL are incomparable on expressiveness. AG(φ → EFψ) is

a typical CTL formula which is not expressible in LTL. It can be shown that AG(φ →
(AGψ ∨ EFψ)) is neither. These formulas occur as nontrivial subformulas of the CTL

characterisations of security. As a consequence, security in a non-deterministic setting

cannot be characterized with LTL (at least using our technique).

Example 10. Let yh be a confidential variable in program while yh=0 do yh := 0 od. We

check non-interference, that is, (=L,=L)-security. Then Ind(=∅) ≡ true because there are

no low variables. Figure 3 depicts the automaton for while yh=0 do yh := 0 od; while y′h=0 do y′h := 0 od

where variables take only value 0 or 1. Like before, a state is depicted with a tuple

(d, d′) containing the values of yh and y′h respectively, and the validity of mid and

end is indicated next to the state. Notice that while the TI formula holds (in fact

true → G(end → true) ≡ true), the TS formula true → ((Fmid) → (F(end ∧ true)), does

not hold if yh=1 and y′h=0 (third automaton from the left).

Termination. Example 9 anticipates certain subtleties arising from termination. It has

been argued that program (b) still leaks information (Joshi and Leino 2000). A sharp

adversary that can observe possibilistic non-termination may detect that a possible exe-

cution of the same instance of a program (i.e. running with the same starting memory)

stalls indefinitely. Such adversary can observe a difference between program (b) under

yh = 0 (which sometimes terminates and some others does not) or under yh = 1 (which

always terminates). To this extent, our characterization of TS (I1, I2)-security fails.
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So far, we have considered strict non-termination: (S, µ)⊥ states that S does not ter-

minate in µ. A notion of possibilistic non-termination can also be given: let (S, µ)ր state

that there is an execution of S from memory µ which does not terminate. I.e., (S, µ)ր
iff there exists ρ such that (S, µ)=ρ0 and ∀i : i ≥ 0 : ¬∃µ′ : ρi=(

√
, µ′).

From Definition 1, S is (TS) (I1, I2)-secure if for all µ1, µ2 such that µ1 ∼I1

id
µ2,

(o) ∀µ′
1 : (S, µ1) 

∗ (
√

, µ′
1) ⇒ (∃µ′

2 : (S, µ2) 
∗ (

√
, µ′

2) ∧ µ′
1 ∼I2

id
µ′

2).

In addition to this, one of the following termination conditions can be also required:

(i) (S, µ1)⊥ ⇒ (S, µ2)⊥ (iii) (S, µ1)ր ⇒ (S, µ2)⊥
(ii) (S, µ1)⊥ ⇒ (S, µ2)ր (iv) (S, µ1)ր ⇒ (S, µ2)ր

Since ¬(S, µ)⊥ iff ∃µ′ : (S, µ)  ∗ (
√
, µ′), and provided that I1 is symmetric, (i) can

be deduced from (o). Since (o) implies (i), and (S, µ)⊥ implies (S, µ)ր, then (ii) is

redundant as well.

Condition (iii) states that if a program may not terminate then it must not terminate

in any indistinguishable state. As a consequence it considers insecure any program that

sometimes terminates and some other does not. In particular, program (b) in Example 9

is insecure under this condition. But so is

if 8 true → while true do h := h od 8 true → h := h fi (13)

which evidently does not reveal any information assuming an scheduler that makes non-

deterministic choices without accessing high information.

Condition (iv) states that a program that may not terminate in a given state, should

be able to reach a non-termination situation in any indistinguishable state. Provided that

I1 is symmetric, this also means that a secure program that surely terminates in a state,

surely terminates in any indistinguishable state. This definition rules out Example 9(b)

as insecure, but considers (13) to be secure.

The following CTL formulas characterize these restrictions:

(iii) Ind[I1] →
`

(EG¬mid) → AG¬end
´

(iv) Ind[I1] →
`

(EG¬mid) → AG(mid → EG¬end)
´

(ivs) Ind[I1] →
`

(AF mid) → AF end
´

where (ivs) is the restriction of (iv) to the case in which I1 is symmetric. Notice that

(iii) is not satisfied in any automaton of Figure 2(b), (iv) is not satisfied by the second

automaton from the left, and (ivs), by the third.

10. Related work

Type-based analyzes are by far the most common form of enforcing information-flow

policies of programs, see e.g. (Sabelfeld and Myers 2003). There is a however a growing

body of work that pursues similar goals to ours, namely to enforce non-interference using

logical methods.

Works using self-composition Our work is inspired from earlier results of Joshi and Leino

(2000), who provide a characterization of non-interference using weakest precondition

calculi. Like ours, their characterization can be applied to a variety of programming
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constructs, including non-deterministic constructs, and can handle termination sensitive

non-interference. Their use of cylinders eliminates the need to resort to self-composition;

on the other hand, their approach is circumscribed to weakest precondition calculi.

The idea of self-composition also appears in the work of Darvas, Hähnle, and Sands

(2005), who suggest that dynamic logic can be used to verify non-interference policies

(termination sensitive and termination insensitive, and modulo declassification) for im-

perative programs. Their work shares many motivations with ours, but they focus on

a specific programming language and program logic; furthermore, they do not discuss

completeness issues.

The idea of self-composition has been explored further in a series of recent works.

For example, Terauchi and Aiken (2005) have used this idea to formulate a notion of

relaxed non-interference. They also propose a type-directed transformation as a solution

for some safety analysis tools that try to solve problems semantically, and whose analysis

will eventually not terminate in presence of certain predicates, e.g. predicates including

complex arithmetic. In a nutshell, the type-directed transformation of programs does

not self-compose branching statements depending on public variables, and makes a kind

of copy propagation optimization to self-composed assignments with low expressions

to variables. For example, if the following program has public variables x and z and

confidential variable y,

if (x > z) then x := z else x := y fi

the program is transformed into

if (x > z) then x := z ; x′ := z′ else x := y ; x′ := y′ fi

In addition, Terauchi and Aiken introduce the class of 2-safety properties, which can be

reduced to safety properties by composing the program with itself, and show that non-

interference is an instance of a 2-safety property. More recently, Clarkson and Schneider

(2008) have generalized this work to consider hyperproperties, that cover both liveness

and safety, and that generalize 2-safety to n-safety.

Moving towards realistic programming languages, Jacobs and Warnier (2003) provide a

method to verify non-interference for (sequential) Java programs. Their method relies on

a relational Hoare logic for JML programs, and is applied to an example involving logging

in a cash register. However there lacks a precise analysis of the form of non-interference

enforced by their method. More recently, Dufay et al. (2005) have experimented with

verification of information flow for Java programs using self-composition and JML speci-

fications (Leavens et al. 1998); more precisely, they have used the Krakatoa tool (Marché

et al. 2004) to validate data mining algorithms. Their work is more oriented towards

applications and does not justify formally self-composition. However, Naumann (2006)

has recently systematized and formally justified the modeling of information flow policies

for Java programs using JML specifications. The work of Naumann is heavily inspired

from earlier work by Benton (2004), who develops a relational Hoare logic for a simple

imperative language.

In a concurrent setting, Huisman et al. (2006) have recently proposed a characterization

of observational determinism (Zdancewic and Myers 2003) using self-composition. Their
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characterization uses temporal logics and is thus amenable to model-checking after a

suitable program abstraction has been constructed. On a negative side, Alur et al. (2006)

establish that a more general notion of confidentiality than non-interference cannot be

characterized using self-composition.

More recently, a number of works have explored self-composition in connection with

quantitative analysis of information flow. For example, Backes, Köpf, and Rybalchenko

(2009) use ideas of self-composition to automatically discover paths that yield infor-

mation leaks, and use this information to quantify the amount of information leakage.

More recently, Yasuoka and Terauchi (2010) have explored the possibility of expressing

quantitative information flow policies as k-safety properties.

Dedicated logics and decision procedures Andrews and Reitman (1980a) were among the

first to develop proof rules to reason about information flow for a concurrent impera-

tive language. More recently, there have been several works that use specific logics for

enforcing non-interference.

Using the framework of abstract interpretation, Giacobazzi and Mastroeni (2004b)

provide a proof method to prove abstract non-interference. This line of work has been

extended more recently to Java bytecode by Zanardini (2006).

Using a dedicated logic based on the notion of independence, Amtoft et al. (2006)

propose a logic for information flow analysis for object-oriented programs. Their logic

deals with pointer analysis using region analysis and employs independence assertions

to describe non-interference. This approach has been recently extended to declassifica-

tion (Banerjee et al. 2007), and to conditional information flow (Amtoft and Banerjee

2007).

Dam (2006) provides a sound and complete proof procedure to verify a notion of non-

interference based on strong bisimulation for the While language with parallel compo-

sition of Section 2. In addition, he shows the decidability of non-interference under the

assumption that the set of values is finite.

Certifying compilation for information flow Motivated by the possibility to automate

parts of proofs of non-interference based on self-composition, our conference paper briefly

discussed the relationship between type systems and program logics, and established the

validity of hybrid rules that could be used to embed type derivations into logic derivations.

For example, consider the simple imperative language of the introduction and let P be

a program with low variables ~x and with high variables ~y, and let [~x′, ~y′/~x, ~y] be a

renaming of the program variables of P with fresh variables; it follows immediately from

the soundness of the type system of (Volpano et al. 1996) and from our characterization

of non-interference that the following rule is valid:

~y : high, ~x : low ⊢ P : τ cmd

{~x = ~x′} P ; (P [~x′, ~y′/~x, ~y]) {~x = ~x′}
More recently, several authors have explored the interplay between type systems and

program logics further, and provided a systematic method to derive logical proofs of non-

interference from type derivations. In particular, Beringer and Hofmann have explored a
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semantical notion of self-composition, that dispenses from reasoning on a self-composed

program, and showed how to generate automatically formal proofs of non-interference

from valid typing derivations in several information flow type systems, including flow-

sensitive type systems and type systems for fragments of Java. In a similar spirit, Hähnle

et al. (2007) encode the flow sensitive type system of Hunt and Sands (2006) into an

extension of dynamic logic with updates.

11. Conclusion

We have developed a general theory of self-composition to prove that programs are non-

interfering. Being based on logic, self-composition is expressive and does not require to

prove the soundness of type systems. One natural direction for further research is to

provide similar characterizations for other notions of non-interference, and perhaps for

other security properties such as anonymity.
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Appendix A. Appendix

A. Proof of Theorem 3

A.1. Termination Sensitive Case We first calculate:

S is TS (I1, I2)-secure

iff {Cor. 1}
S ⊲≈

ξ,I1

ξ,I2
S[ξ]

iff {Def. 2}
∀µ1, µ2, µ

′
1 : var(µ1) = var(µ′

1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (S[ξ], µ′

1⊕µ2)

⇒ ∃µ′
2 : var(µ′

2) = var(S)′ :

(S[ξ], µ′
1⊕µ2) 

∗ (
√

, µ′
1⊕µ′

2) ∧ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

iff {Prop. (a) and (b) of ⊲ and Fact 1.2 for implication ⇐}
∀µ1, µ2, µ

′
1 : var(µ1) = var(µ′

1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S, µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ2)

⇒ ∃µ′
2 : var(µ′

2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I2

ξ µ′
1⊕µ′

2

iff {Logic}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2

⇒ ∀µ′
1 : var(µ′

1) = var(S) :

¬( (S, µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ2) ) ∨
∃µ′

2 : var(µ′
2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I2

ξ µ′
1⊕µ′

2

9

>

>

>

=

>

>

>

;

(14)
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Starting in the other direction of the implication, we calculate

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ ∃µ′′
1 : (S, µ1⊕µ2) 

∗ (
√

, µ′′
1⊕µ2)

⇒ ∃µ′
1, µ

′
2 : var(µ′

1) = var(S) ∧ var(µ′
2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I2

ξ µ′
1⊕µ′

2

iff {Logic}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2

⇒ (S, µ1⊕µ2)⊥ ∨
∃µ′

1, µ
′
2 : var(µ′

1) = var(S) ∧ var(µ′
2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I2

ξ µ′
1⊕µ′

2

9

>

=

>

;

(15)

We now show that (14) and (15) are equivalent considering two different cases. For the

first case suppose (S, µ1⊕µ2)⊥. It is easy to check that both (14) and (15) hold under

this hypothesis.

Now suppose ¬((S, µ1⊕µ2)⊥). Because S is deterministic, there must exist a unique

memory µ such that (S, µ1⊕µ2)  
∗ (

√
, µ). Moreover, because of Fact 1.1, there is a

unique µ′′
1 with var(µ′′

1 ) = var(S) such that (S, µ1⊕µ2)  
∗ (

√
, µ′′

1⊕µ2). Under this hy-

pothesis, we then calculate:

(15)

iff {¬((S, µ1⊕µ2)⊥), Prop. (a) and (b) of ⊲ and uniqueness of µ′′
1}

(S,µ1⊕µ2) 
∗ (

√
, µ′′

1⊕µ2)

∧ ∃µ′
2 : var(µ′

2) = var(S)′ : (S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′′

1⊕µ′
2) ∧ µ′′

1⊕µ′
2 ∼I2

ξ µ′′
1⊕µ′

2

iff {First conjunct holds because uniqueness of µ′′
1}

∀µ′
1 : var(µ′

1) = var(S) ∧ µ′
1 6= µ′′

1 : ¬( (S, µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ2) )

∧ (S, µ1⊕µ2) 
∗ (

√
, µ′′

1⊕µ2)

∧ ∃µ′
2 : var(µ′

2) = var(S)′ : (S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′′

1⊕µ′
2) ∧ µ′′

1⊕µ′
2 ∼I2

ξ µ′′
1⊕µ′

2

iff {Logic and determinism for implication ⇐}
(14)

We can adapt this proof to work as well for the termination sensitive case of Theo-

rem 4. First observe that if S is an observationally deterministic program, then either

(S, µ1⊕µ2)⊥ or for all µ′
1, µ

′′
1 ∈ Θ, v(µ′

1, x) = v(µ′′
1 , x) for every x ∈ var(S), where

Θ = {µ | (S, µ1⊕µ2) 
∗ (

√
, µ⊕µ2)}. Moreover, notice that for all µ′

1, µ
′′
1 ∈ Θ,

µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2 iff µ′′
1⊕µ′

2 ∼I2

ξ µ′′
1⊕µ′

2 (16)
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Then, the only difference with the previous proof happens in the last case, in which

¬((S, µ1⊕µ2)⊥). For this case we proceed as follows.

(15)

iff {¬((S, µ1⊕µ2)⊥)}
∃µ′

1, µ
′
2 : var(µ′

1) = var(S) ∧ var(µ′
2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I2

ξ µ′
1⊕µ′

2

iff {Prop. (b) of ⊲ and Fact 1.2}
∃µ′

1, µ
′
2 : var(µ′

1) = var(S) ∧ var(µ′
2) = var(S)′ :

(S, µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ2) ∧
(S ⊲ S[ξ], µ1⊕µ2) 

∗ (
√

, µ′
1⊕µ′

2) ∧ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

iff {Θ 6= ∅, observation (16) and logic}
∀µ′

1 : var(µ′
1) = var(S) ∧ µ′

1 ∈ Θ :

(S, µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ2) ∧
∃µ′

2 : var(µ′
2) = var(S)′ : (S ⊲ S[ξ], µ1⊕µ2) 

∗ (
√

, µ′
1⊕µ′

2) ∧ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

iff {First conjunct holds by definition of Θ}
∀µ′

1 : var(µ′
1) = var(S) ∧ µ′

1 /∈ Θ : ¬( (S,µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ2) ) ∧
∀µ′

1 : var(µ′
1) = var(S) ∧ µ′

1 ∈ Θ : (S, µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ2) ∧
∃µ′

2 : var(µ′
2) = var(S)′ : (S ⊲ S[ξ], µ1⊕µ2) 

∗ (
√

, µ′
1⊕µ′

2) ∧ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

iff {Logic and definition of Θ for implication ⇐}
(14)
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A.2. Termination Insensitive Case

S is TI (I1, I2)-secure

iff {Corollary 1}
S ⊲∼

I1

I2
S[ξ]

iff {Def. 2}
∀µ1, µ2, µ

′
1 : var(µ1) = var(µ′

1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (S[ξ], µ′

1⊕µ2)

⇒ ∃µ′
2 : var(µ′

2) = var(S)′ :
`

(S[ξ], µ′
1⊕µ2) 

∗ (
√

, µ′
1⊕µ′

2) ∧ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

´

∨ (S[ξ], µ′
1⊕µ2)⊥

iff {Prop. (a) and (b) of ⊲ and Fact 1.2 for implication ⇐}
∀µ1, µ2, µ

′
1 : var(µ1) = var(µ′

1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (S[ξ], µ′

1⊕µ2)

⇒ ∃µ′
2 : var(µ′

2) = var(S)′ :
`

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I2

ξ µ′
1⊕µ′

2

´

∨ (S[ξ], µ′
1⊕µ2)⊥

iff {Claim 1 below}
∀µ1, µ2, µ

′
1 : var(µ1) = var(µ′

1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (S[ξ], µ′

1⊕µ2)

⇒ ∃µ′
2 : var(µ′

2) = var(S)′ :
`

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I2

ξ µ′
1⊕µ′

2

´

∨ ∀µ′′
2 : var(µ′′

2 ) = var(S)′ : ¬( (S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′′
2 ) )

iff {Logic}
∀µ1, µ2, µ

′
1, µ

′′
2 : var(µ1) = var(µ′

1) = var(S) ∧ var(µ2) = var(µ′′
2 ) = var(S)′ :

`

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (S[ξ], µ′

1⊕µ2)

∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′′
2 )

´

⇒ ∃µ′
2 : var(µ′

2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I2

ξ µ′
1⊕µ′

2

iff {Prop. (a) and (b) of ⊲ and Fact 1.2}
∀µ1, µ2, µ

′
1, µ

′′
2 : var(µ1) = var(µ′

1) = var(S) ∧ var(µ2) = var(µ′′
2 ) = var(S)′ :

`

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′′
2 )

´

⇒ ∃µ′
2 : var(µ′

2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I2

ξ µ′
1⊕µ′

2

iff {Logic}
∀µ1, µ2, µ

′
1, µ

′′
2 : var(µ1) = var(µ′

1) = var(S) ∧ var(µ2) = var(µ′′
2 ) = var(S)′ :

`

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′′
2 )

´

⇒ ∃µ′
2 : var(µ′

2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′′
2 ) ∧

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I2

ξ µ′
1⊕µ′

2

iff {Determinism (µ′
2 = µ′′

2 ) and logic} (17)

∀µ1, µ2, µ
′
1, µ

′
2 : var(µ1) = var(µ′

1) = var(S) ∧ var(µ2) = var(µ′
2) = var(S)′ :

`

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′
2)

´

⇒ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

Step (17) can equally be justified by observational equivalence, in this case taking into

account that v(µ′
2, x) = v(µ′′

2 , x) for every x ∈ var(S)′, and hence µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2 iff

µ′
1⊕µ′′

2 ∼I2

ξ µ′
1⊕µ′′

2 . This proves the termination insensitive case of Theorem 4.
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Claim 1. Let µ1, µ2, µ
′
1 such that var(µ1) = var(µ′

1) = var(S) and var(µ2) = var(S)′.

If (S ⊲S[ξ], µ1⊕µ2)  
∗ (S[ξ], µ′

1⊕µ2), then (S[ξ], µ′
1⊕µ2)⊥ iff ∀µ′′

2 : var(µ′′
2 ) = var(S)′ :

¬( (S ⊲S[ξ], µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ′′
2) ).

Proof. First notice that (S, µ1⊕µ2)  
∗ (

√
, µ′

1⊕µ2) because of Prop. (b) of ⊲ and

Fact 1.2. Then we have:

(S[ξ], µ′
1⊕µ2)⊥

iff {Fact 1.1}
¬∃µ′′

2 : var(µ′′
2 ) = var(S)′ : (S[ξ], µ′

1⊕µ2) 
∗ (

√
, µ′

1⊕µ′′
2 )

iff {By previous observation after hypothesis of the claim and logic}
(S,µ1⊕µ2) 

∗ (
√

, µ′
1⊕µ2)

⇒ ∀µ′′
2 : var(µ′′

2 ) = var(S)′ : ¬( (S[ξ], µ′
1⊕µ2) 

∗ (
√

, µ′
1⊕µ′′

2 ) )

iff {Logic}
∀µ′′

2 : var(µ′′
2 ) = var(S)′ :

¬( (S, µ1⊕µ2) 
∗ (

√
, µ′

1⊕µ2) ∧ (S[ξ], µ′
1⊕µ2) 

∗ (
√

, µ′
1⊕µ′′

2 ) )

iff {Prop. (b) of ⊲ and Fact 1.2 for implication ⇐}
∀µ′′

2 : var(µ′′
2 ) = var(S)′ : ¬( (S ⊲ S[ξ], µ1⊕µ2) 

∗ (
√

, µ′
1⊕µ′′

2 ) )

B. Proof for Example 8

The invariant for the while do in AV SAL is

∃ps, ps′ : list.ps′.lsalaries′

∗ ( list.ps.lsalaries

∧ ∃psmis, psprev : (ps = psprev ++ psmis) ∧ (list.psmis.p ∗ true)

∧ (s =
P

psprev) ∧ (n = |psprev|) )

∧
`

P

ps

|ps|
=

P

ps′

|ps′|

´

where ++ denotes concatenation.

The intuition behind the invariant is as follows. First, the general indistinguishability

invariant has to hold (last line in the equation). Then, it splits the memory in two parts

and it basically focus on the “non-primed” part of the memory (the one confined to

AV SAL). This part states that the original salary list (represented here by list ps) can be

split in two salary lists, psprev and psmis. psprev contains the elements that have already

been accounted while psmis contains those still to be accounted. This (partial) accounting

of the salaries involve two operations: a summation, which is stored in variable s, and

an element counting, which is stored in variable n. In this way, at the end of the loop,

p is nil implying that psmis = [ ] and hence psprev = ps. Therefore s will be equal the

sum of all the salaries and n the length of the original list, i.e. the quantities of summed

salaries.

For the verification of {Isl(A)} AV SAL ; AV SAL[ξ] {Isl(={al})} we focus on the second

part of the algorithm. The first part basically repeats the same proof, which we left for

the interested reader. We only omit some few proof obligations.
(

∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′

∧
P

ps

|ps|
=

P

ps′

|ps′|

)
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// AV SAL: the program itself as a first part

// of the composed program

p := lsalaries

s := 0

n := 0
8

>

>

>

>

>

<

>

>

>

>

>

:

∃ps, ps′ : list.ps′.lsalaries′

∗ ( list.ps.lsalaries

∧ ∃psmis, psprev : (ps = psprev ++ psmis) ∧ (list.psmis.p ∗ true)

∧ (s =
P

psprev) ∧ (n = |psprev|) )

∧
`

P

ps

|ps|
=

P

ps′

|ps′|

´

9

>

>

>

>

>

=

>

>

>

>

>

;

while p 6= nil do

n := n + 1

saux := p.salary

s := s + saux

paux := p.next

p := paux

od

al := s/n
n

∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧
`

al =
P

ps′

|ps′|

´

o

// AV SAL[ξ]: the renamed part of the program

p′ := lsalaries′
n

∃ps, ps′ : list.ps.lsalaries ∗ ( list.ps′.lsalaries′ ∧ list.ps′.p′ ) ∧
`

al =
P

ps′

|ps′|

´

o

s′ := 0
8

>

<

>

:

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′ ∧ list.ps′.p′ ∧ s′ = 0 )

∧
`

al =
P

ps′

|ps′|

´

9

>

=

>

;

n′ := 0
8

>

<

>

:

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′ ∧ list.ps′.p′ ∧ s′ = 0 ∧ n′ = 0 )

∧
`

al =
P

ps′

|ps′|

´

9

>

=

>

;

// take ps′prev = [ ] and ps′mis = ps′, we obtain the invariant
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev : (ps′ = ps′prev ++ ps′mis) ∧ (list.ps′mis.p
′ ∗ true)

∧ (s′ =
P

ps′prev) ∧ (n′ = |ps′prev|)
)

∧
`

al =
P

ps′

|ps′|

´

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

while p′ 6= nil do
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

p′ 6= nil

∧ ∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev : (ps′ = ps′prev ++ ps′mis) ∧ (list.ps′mis.p
′ ∗ true)

∧ (s′ =
P

ps′prev) ∧ (n′ = |ps′prev|)
)

∧
`

al =
P

ps′

|ps′|

´

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

// p′ 6= nil allows to change ps′mis by [a] ++ ps′mis
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8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev, a, q : (ps′ = ps′prev ++ [a] ++ ps′mis)

∧ p′ 7→ (a, q) ∧ list.ps′mis.q

∧ (s′ =
P

ps′prev) ∧ (n′ = |ps′prev|)
)

∧
`

al =
P

ps′

|ps′|

´

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

n′ := n′ + 1
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev, a, q : (ps′ = ps′prev ++ [a] ++ ps′mis)

∧ p′ 7→ (a, q) ∧ list.ps′mis.q

∧ (s′ =
P

ps′prev) ∧ (n′ = |ps′prev| + 1)

)

∧
`

al =
P

ps′

|ps′|

´

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

s′aux := p′.salary
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev, a, q : (ps′ = ps′prev ++ [a] ++ ps′mis)

∧ p′ 7→ (a, q) ∧ list.ps′mis.q ∧ saux = a

∧ (s′ =
P

ps′prev) ∧ (n′ = |ps′prev| + 1)

)

∧
`

al =
P

ps′

|ps′|

´

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

s′ := s′ + s′aux
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev, a, q : (ps′ = ps′prev ++ [a] ++ ps′mis)

∧ p′ 7→ (a, q) ∧ list.ps′mis.q

∧ (s′ =
P

ps′prev + a) ∧ (n′ = |ps′prev| + 1)

)

∧
`

al =
P

ps′

|ps′|

´

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

p′
aux := p′.next

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev, a, q : (ps′ = ps′prev ++ [a] ++ ps′mis)

∧ p′ 7→ (a, q) ∧ list.ps′mis.q ∧ q = p′
aux

∧ (s′ =
P

ps′prev + a) ∧ (n′ = |ps′prev| + 1)

)

∧
`

al =
P

ps′

|ps′|

´

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

// take ps′prev = ps′prev ++ [a]
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev : (ps′ = ps′prev ++ ps′mis) ∧ (list.ps′mis.p
′
aux ∗ true)

∧ (s′ =
P

ps′prev) ∧ (n′ = |ps′prev|)
)

∧
`

al =
P

ps′

|ps′|

´

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

p′ := p′
aux
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8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev : (ps′ = ps′prev ++ ps′mis) ∧ (list.ps′mis.p
′ ∗ true)

∧ (s′ =
P

ps′prev) ∧ (n′ = |ps′prev|)
)

∧
`

al =
P

ps′

|ps′|

´

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

od
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

p′ = nil

∧ ∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev : (ps′ = ps′prev ++ ps′mis) ∧ (list.ps′mis.p
′ ∗ true)

∧ (s′ =
P

ps′prev) ∧ (n′ = |ps′prev|)
)

∧
`

al =
P

ps′

|ps′|

´

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

// p′ = nil implies ps′mis = [ ] and ps′prev = ps′
8

>

<

>

:

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′ ∧ (s′ =
P

ps′) ∧ (n′ = |ps′|) )

∧
`

al =
P

ps′

|ps′|

´

9

>

=

>

;

n

∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧ al = s′

n′

o

a′
l := s′/n′

{∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧ al = a′
l}
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C. Proofs for characterization of security in CTL – TS Case

S is TS (I1, I2)-secure

iff {Cor. 1}
S ⊲≈

id,I1

id,I2
S[ξ]

iff {Def. 2}
∀µ1, µ2, µ

′
1 : var(µ1)= var(µ′

1)= var(S) ∧ var(µ2)= var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (S[ξ], µ′

1⊕µ2)

⇒ ∃µ′
2 : var(µ′

2) = var(S)′ :

(S[ξ], µ′
1⊕µ2) 

∗ (
√

, µ′
1⊕µ′

2) ∧ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

iff {Satisfaction of Ind, end, and Fact 1. 1}
∀µ1, µ2, µ

′
1 : var(µ1)= var(µ′

1)= var(S) ∧ var(µ2)= var(S)′ :
`

(S ⊲ S[ξ], µ1⊕µ2) |= Ind[I1] ∧ (S ⊲ S[ξ], µ1⊕µ2) 
∗ (S[ξ], µ′

1⊕µ2)
´

⇒ ∃c : (S[ξ], µ′
1⊕µ2) 

∗ c ∧ c |= Ind[I2] ∧ end

iff {Semantics of EF and logic}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀µ′
1 : var(µ′

1) = var(S) :

(S ⊲ S[ξ], µ1⊕µ2) 
∗ (S[ξ], µ′

1⊕µ2) ⇒ (S[ξ], µ′
1⊕µ2) |= EF(Ind[I2] ∧ end)

iff {Logic}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀µ : ( ∃µ′
1 : var(µ′

1) = var(S) : µ = µ′
1⊕µ2 ∧ (S ⊲ S[ξ], µ1⊕µ2) 

∗ (S[ξ], µ′
1⊕µ2) )

⇒ (S[ξ], µ) |= EF(Ind[I2] ∧ end)

iff {Prop. (a) of ⊲}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀µ : ( ∃µ′
1 : var(µ′

1) = var(S) : µ = µ′
1⊕µ2 ∧ (S, µ1⊕µ2) 

∗ (
√

, µ′
1⊕µ2) )

⇒ (S[ξ], µ) |= EF(Ind[I2] ∧ end)

iff {Logic and Fact 1.1}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀µ : (S, µ1⊕µ2) 
∗ (

√
, µ) ⇒ (S[ξ], µ) |= EF(Ind[I2] ∧ end)

iff {Prop. (c) of ⊲ (for ⇒) and Prop. (a) of ⊲ (for ⇐)}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀µ : (S ⊲ S[ξ], µ1⊕µ2) 
∗ (S[ξ], µ) ⇒ (S[ξ], µ) |= EF(Ind[I2] ∧ end)

iff {Logic and Satisfaction of mid}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀c :
`

(S ⊲ S[ξ], µ1⊕µ2) 
∗ c ∧ c |= mid

´

⇒ c |= EF(Ind[I2] ∧ end)
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iff {Semantics of →, and logic}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀c : (S ⊲ S[ξ], µ1⊕µ2) 
∗ c ⇒ c |= ( mid → EF(Ind[I2] ∧ end) )

iff {Semantics of AG and →}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S ⊲ S[ξ], µ1⊕µ2) |= Ind[I1] → AG( mid → EF(Ind[I2] ∧ end) )

iff

(

S |= Φ iff ∀µ : (S, µ) |= Φ by definition and, since here memory are func-

tions, ∀µ : ∃µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ ∧ µ = µ1⊕µ2

)

S ⊲ S[ξ] |= Ind[I1] → AG( mid → EF(Ind[I2] ∧ end) )


