IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 3, JUNE 2006 793

Secure Internet Access to Gateway
Using Secure Socket Layer

Deep Vardhan Bhatt, Member, IEEE, Stefan Schulze, and Gerhard P. Hancke, Senior Member, IEEE

Abstract—The Internet is the most widely used medium to
access remote sites. Data sent and received using transmission
control protocol/Internet Protocol (TCP/IP) is in plain text format
and can be accessed and tampered with quite easily and, hence,
provides no data security. This is the case especially if the data
are confidential and access to the gateway server has to be strictly
controlled, although there are several protocols and mechanisms
that have been thoroughly scrutinized to tackle these problems.
This paper also intends to provide a model that uses secure
socket layer (SSL) to provide a secure channel between client and
gateway server. A smart card will be used for client authentication
and encryption/decryption of the data.

Index Terms—Cryptography, Internet, network, secure socket
layer (SSL), security, smart card, transmission control proto-
col/Internet Protocol (TCP/IP).

1. INTRODUCTION

HE PROBLEM of Internet security is nothing new; every

year, the Computer Emergency Response Team (CERT)
receives well over 2000 reports of security incidents, and almost
ten times as many e-mails regarding security problems. Since
the Internet can be viewed as a large network of interconnected
computers, almost every user on the Internet is at risk against a
security attack. More at risk are companies that transmit critical
data across the Internet to their corporate sites all over the
world. The need for reliable secure communication over the
Internet is as prevalent now as it ever was. This fact is very
much endorsed by several studies every year; Molva [2], [4]
reiterates these views in great depth and presents several sce-
narios to have better Internet security architecture.

This paper addresses the problem of providing a secure
means for a client to communicate with a server over an
insecure channel, the Internet. The project aims to develop
a proprietary Internet Protocol (IP) using the transport layer
security (TLS)/secure socket layer (SSL) protocols that use a
smart card as a client-authentication mechanism. More specif-
ically, the paper provides a cost-effective solution for field-
bus-related access where the data rate or high bandwidth is
not that critical. Some of the achievements of field bus and
their security concerns presented by Sauter and co-workers in
[25] and [26] are covered as well. In the paper, we provide a
practical solution to overcome the authenticity, integrity, and

Manuscript received November 29, 2004; revised October 13, 2005.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Pretoria, Pretoria 0002, South Africa (e-mail: dbhatt@
postino.up.ac.za).

Digital Object Identifier 10.1109/TIM.2006.862009

confidentiality issues when two clients need to communicate
securely.

This is how the rest of the paper is organized: Next, we
present a brief definition of smart card and SSL, Section II
outlines the paper contribution, Section III presents the func-
tional view of the system, Section IV presents design and
implementation choices made, Section V presents the results,
and last, the summary is presented in Section VI.

A. SSL

The SSL security protocol provides data encryption, server
authentication, message integrity check, and optional client au-
thentication for a transmission control protocol (TCP)/IP con-
nection. Simply installing a digital certificate turns on their SSL
capabilities. SSL supports the use of 40- and 128-bit symmetric
cipher keys. Implementation of public-key systems is slower
than symmetric ciphers. It is this fact that has led to the com-
bination of the two techniques to achieve security and speed.
SSL uses X.509 certificates for authentication, Rivest, Shamir,
Adelman (RSA), or Digital Signature Algorithm (DSA) as its
public-key cipher and one of ARCFOUR or Rivest Cipher
128bit (RC4-128), Data Encryption Standard (DES), Triple-
DES, or International Data Encryption Algorithm (IDEA) as
its bulk symmetric cipher.

B. Smart Card

A smart card contains a small computer, usually an 8-bit
microprocessor, RAM, ROM, and either erasable program-
mable ROM (EPROM) or electrically EPROM (EEPROM).
Smart cards can also have different cryptographic algorithms
and protocols programmed into them and can be used to sign
documents or unlock resources [5].

For smart cards to be used as an authentication mechanism,
they first need to carry some secret information that could
uniquely identify the user. This could either be a digital certifi-
cate, username—password pair, or a private key public key pair.
Early problems in the development of smart cards included the
fact that public-key cryptography required a lot more process-
ing and computations than symmetric cryptography. A low-
cost smart card would have difficulty in computing a 512-bit
digital signature on the card and sending the result to the host
application.

Authentication is a major issue for any online communica-
tion. Leach [1] proposed the low-cost dynamic authentication
schemes using smart card over RSA-based ones. Since then,

0018-9456/$20.00 © 2006 IEEE

794 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 3, JUNE 2006

several advanced and sophisticated proposals have been pre-
sented on numerous occasions; some of these schemes using
smart cards for authentication are available [8]-[15], especially
Kumar’s [8] proposed scheme that caters to attacks via the
registration phase and authentication phase of Hwang and Li’s
[9]. The design is based on digital certificates that are issued on
the smart card by an in-house certificate authority using public
key infrastructure (PKI); several important benefits using PKI
are presented in [16] and [17].

II. CONTRIBUTION

The project implementation aims to deliver the maximum
amount of security to the communications link of the Internet
gateway for unified automation network access (IGUANA)
system, while still being practical and effective in its use and
implementation. There is currently a lot of work going on in the
area of smart cards and using smart cards as user-authentication
mechanisms [8]-[15] and in the research area of a secure TLS
protocol as well.

Using a combination of certificates, for server authentication,
and smart cards, for client authentication, the project will bridge
the gap between the two technologies of smart cards and a
secure transport layer protocol.

This project satisfies one of the requirements of the
IGUANA project; a brief description is presented in Section III
[25]-[27].

The paper gives our findings, experiences, and observations
during the implementation of the IGUANA project. In an ap-
plication where the number of clients that have to be connected
via the Internet to a remote server is substantially low, the use
of the smart card for authentication, storage, easy handling,
and lower cost can be significant. The paper presents our
observations and results that are relevant to instrumentation
and measurement from the point of view of data capturing,
monitoring, and control of data nodes in the field area network
(FAN). Although our focus is not on data capturing and control,
other members of the IGUANA team have accomplished those
tasks. Specifically, the paper presents the performance of the
gateway server under various load conditions with PKI and
smart-card-based authentication; the performance issues are
discussed and presented in detail in Section V. In the summary
in Section VI, some suggestions are presented to enhance the
server performance.

III. SYSTEM AND FUNCTIONAL OVERVIEW

The IGUANA system provides access to a field-bus network
where data are collected from different nodes by the gateway.
Clients that connect to the gateway, through the TLS server
program, can then access these nodes over the Internet. Fig. 1
provides an overview of the IGUANA system.

The access-control (AC) server (Fig. 1) receives data from
the TLS server and sends these data to the Extended Service
Daemon (ESD) server program, which then passes these data
on to a specified node. The function of the AC server is to
provide authorization for each connected client. The function
of the ESD program is to interface with specific nodes and the

A 4
ESD
CI-_I-III_E?\IT DAEMON
TLS SETRLVSER PEENY SEQSER
CLIENT d
Fig. 1. System overview of the IGUANA system.

FAN. The client program has the same TLS interface as the
server. The client also has a Graphical User Interface (GUI)
for the user to interface with the client program. The client
authentication is provided by a smart card attached to the user
computer. Nodes are several data points that are attached to
the field bus for various types of data collection and control of
these nodes.

The functional diagram for the TLS server program can be
seen in Fig. 2, and the functional diagram for the TLS client
program can be seen in Fig. 3.

A socket is created through which data will be sent and
received between the client and the TLS server as well as
between the TLS server and the AC server. The socket created
will encapsulate the data packet within a TCP/IP packet. The
TCP/IP protocol will provide error detection, error correction,
and retransmission to the communications link between the
different entities. The TCP/IP Berkely stream sockets are used.
The connection-control unit is responsible for managing, cre-
ating, and closing connections between the TLS client and the
TLS server on the gateway as well as for managing, creating,
and closing connections from the TLS server to the AC server.
The handshake and authentication unit is to set up the security
parameters for the connection, as well as authenticate the
connecting client. The handshake and authentication unit for
the client TLS program has the added responsibility of also
authenticating the user to the smart card by using a personal
identification number (PIN) in addition to performing server au-
thentication. Public-key cryptography is used for client authen-
tication and X.509v3 certificates for server authentication. The
communication unit is to provide asynchronous input/output
(I/0) to the server and client programs. The communication
unit encrypts outgoing data and decrypts and verifies incoming
data. A symmetric-key algorithm is used for chipper block
chaining. The error control unit handles errors that occur during
the execution of the server and client TLS programs and/or
display error messages to the user, and in the case of the
server, writes the errors in an error log file. The GUI unit is
to provide a graphical interface to the user, which will display
the received data and connection settings as well as provide
interface controls to open a connection, close a connection,
send data, and set any other security-related options for the

BHATT et al.: SECURE INTERNET ACCESS TO GATEWAY USING SECURE SOCKET LAYER

795

TLS SERVER
Client AC
 Connection | ™ E57p CONNECTION TCP/IP Connection
- SOCKET |g¢—p CONTROL <«—p| SOCKET g
A
v v v
HANDSHAKE COMMUNICATION ERROR
AND CONTROL
AUTHENTICATION
Fig. 2. Functional diagram of the TLS server program.
TLS CLIENT
Connection
GUI CONNECTION TCP/IP to Server
< > CONTROL < p» SOCKET >
HANDSHAKE AND | [COMMUNICATION ERROR SMARTCARD
AUTHENTICATION CONTROL

Fig. 3. Functional diagram of the client TLS program.

Certificate Authentication.

[

Check client x509
certificate

'

type

Authentication

Only implemented for the client
Authentication using digital signatures.

R’

Connect to SmartCard

No client
Authentication.

Does CN
match Cert

Yes

v

Fig. 4. Software flow diagram for the handshake and authentication unit.

connection to the server. The smart-card unit is to keep secret
information secure and to perform cryptographic computations
when requested to do so by the client program.

IV. DESIGN AND IMPLEMENTATION

OpenSSL appears to be most versatile SSL application pro-
gramming interface (API) software library and is used to pro-
vide a secure SSL communication channel between the client
and the server. The server program is programmed in American
National Standard Institute (ANSI) C using the gcc compiler on
a Linux system. The client is programmed in C on a Windows
system using the Visual C++ 6 development environment. The
smart-card system is simulated and tested using a software sim-

PIN Incorrect

PIN Correct

IAuthenticate client
to server

ulator (debugger) of the smart card. The Certification Authority
(CA) is implemented using the OpenSSL command-line tools
to issue certificates, and the BasicCard basic compiler is used
to implement a terminal issuer program to initialize and issue
smart cards.

A. Handshake and Authentication Unit

The flow diagram for the handshake and authentication unit
is given in Fig. 4. The unit will implement three different types
of authentication methods. These three methods are

1) no authentication;

2) client authentication with x509 certificates;

3) or client authentication using digital signatures.

796 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 3, JUNE 2006
START
T 1
[
v Set up TCP/IP
ﬁuthenticate ___________ Initialize SSL Sett|ngs
Client t(.) smart connection settings
card using PIN v
. Set up SSL settings
No wait for "~ For gient 3
incoming v
connection Make connection to
server
i
i
\4
New incoming Accept client Server/Client
connection > connection > Authentication
7'y Handshake Unit
Send/Receive
Handle concurrent P! > data to AC
> connection <—l
_ : Encapsulate
Decode incoming outgoing data
data
Yes D
Communication | ata sent to Error control unit
control unit other units
Fig. 5. Flow diagram of the connection-control unit.

For the client program, the handshake and authentication unit
will also need to implement user authentication to the smart
card by using a four-digit PIN that the user will need to know
in order to activate certain functions on the card.

B. Connection Control and TCP/IP Socket

The conceptual flow diagram for the connection-control unit
is shown in Fig. 5.

C. Client-Authentication Protocol

Public-key cryptography was chosen to implement the client
authentication, and its implementation policies are presented
and discussed in [17]-[20]. Symmetric-key cryptography re-
lies on both the client and server having to share some sort
of secret information before authentication can take place. It
also relies on the server to securely store the client secret
information in some sort of database. Here, the process of
registering new clients means that new client information will
need to be entered for each new client in the database itself.
If IGUANA has a number of distributed IGUANA gateways,
this will be a considerable implementation burden, especially
when a new administrator’s information will need to be entered
at each IGUANA gateway server. Certain secret symmetric
keys could possibly be given to a specific group of users. The
downside is that if even one of those users were compromised,

all users would be compromised. The problem of users that
are compromised and have to be removed has not been solved,
however. This is because the system still needs a secure means
for specifying which user smart cards are no longer valid. The
implementation does not consider compromised users and has
effectively shifted the responsibility for this to the AC server.
Username—password authentication is not secure enough for the
system.

D. Communications Unit

The conceptual flow diagram for the communications unit is
given in Fig. 6.

E. Error Control Unit

The conceptual flow diagram for the error control unit is
given in Fig. 7.

V. RESULTS AND DISCUSSION
A. Cost of Handshaking

A very common complaint from a lot of network adminis-
trators is that SSL is very slow. The primary reason for this
is that the cryptography, particularly public-key cryptography,
is extremely CPU intensive. There are two phases in the SSL
connection: the handshake phase and the data-transfer phase.

BHATT et al.: SECURE INTERNET ACCESS TO GATEWAY USING SECURE SOCKET LAYER

Set up connection
information

A

Listen for new data
from client or AC
server

From
Client

From
AC

Receive data form
client. Send data to
AC server

Receive data from
AC server
Send data to client

797

Data on
socket.

Fig. 6. Conceptual flow diagram for the communications unit.

‘ Decode error cause |

Display warning Display fatal
message. message.

Fig. 7. Conceptual flow diagram for the error control unit.

The handshake phase only takes place once during a connection
and is, compared with the data-transfer stage, expensive. The
cipher suite used for encryption, authentication, and message
integrity for each of the connections is 168-bit 3DES, with
1024-bit RSA authentication and Secure Hash Algorithm 1
(SHA-1) Message Authentication Code (MAC).

For the server, more than half of the CPU time is spent on the
RSA decryption operation with the private key. The RSA de-
cryption operation performed by the server is between the time
when the client has sent the Finished message and the server
replies with ChangeCipherSpec message. The client spends
most of its time waiting for the server. The most expensive
operation that the client needs to perform is verifying the server
certificate and encrypting the pre-master-secret [3].

If client authentication were used, the client would perform
an RSA private-key operation equivalent to the operation per-
formed by the server. This RSA operation would thus become
the dominant performance cost operation that the client would
need to perform. Using client authentication with certificates
adds almost 0.0071 s to the authentication process. The per-
formance of public-key algorithms declines with key size. The
RSA operation with a 1024-bit key is almost four times slower

than RSA with a 512-bit key [3]. Thus, using RSA with a key
size of 512 bits will decrease the time needed for handshaking.

The results of client authentication with a smart card provide
an indication of the minimum time that would be required
for handshaking and authentication when using the client-
authentication protocol. The result does not take network la-
tency or the smart-card interface to the client computer into
account. The client-authentication protocol used with a smart
card almost doubles the time needed for handshaking. The
server program spends almost 0.0402 s to set the connec-
tion information, create a thread to handle the new client,
and decrypt the authentication string. The server spends an-
other 0.0020 s to generate a random value. The client spends
0.0102 s to RSA private encrypt the random value.

The handshake time is doubled because the server now has
two extra RSA operations to perform. One operation is to
decrypt the authentication string from the client with its CA
public key, and the other is to decrypt the encrypted response
from the client with the public key from the authentication
string. The client performance is now dominated by the RSA
private-key encryption operation that is performed on the
smart card.

Nagle’s algorithm [28] is intended to reduce small TCP pack-
ets. Nagle’s algorithm requires that the network interface does
not immediately send out TCP data but buffers it and only sends
the data when the algorithm times out or receives an Acknowl-
edgment (ACK). The Berkley socket option TCP_NODELAY
is used to disable the algorithm. Results with a disabled Nagle
algorithm have reduced the time needed for handshaking by an
average of 0.0101 s for ten simulated clients.

Too much time is needed to perform client authentication
using a smart card. If a server were ever bombarded with a large
number of clients, the handshaking and authentication would
create a huge bottleneck and limit the server performance in
terms of throughput and response time. There are a number of
ways to improve performance. The first method would be to use
smaller keys, but this would limit the security of the authenti-
cation protocol. The system should always disable Nagle’s al-
gorithm to increase throughput and prevent temporary deadlock

798 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 3, JUNE 2006

TABLE 1
PERFORMANCE RESULTS OF THE SERVER UNDER LOAD CONDITIONS

0%
0 1272 27 3 016%
20 918 896 2 246%
30 508 856 52 573%
40 918 828 90 0.80%
50 932 812 120 12.88%
60 1299 1118 181 13.93%
70 173 996 77 15.09%
80 1174 1602 7 13.65%
30 1097 920 168 531%
100 1202 1022 180 14.97%

between the server and the client. The third method to increase
performance is to decrease the time needed to perform an RSA
operation. This can be accomplished by using dedicated RSA
processing hardware or cryptographic accelerators.

B. Performance of Server Under Load

SSL/TLS can very easily become a huge part of the process-
ing overhead of an application, especially server applications.
The cryptographic primitives used in the protocol (most notice-
ably the session handshaking) can consume a lot of processing
time and resources, and the result is that an application running
at its SSL/TLS processing capacity can drag a system to its
knees. Servers running SSL/TLS are therefore at the mercy of
the demands placed. Listed below are some questions that are
asked by this experiment.

1) How much traffic can a given server sustain if it is
saturated to capacity?

2) If a given simulation of “client use” is thrown at the
server, how does it behave?

Thorpe created a benchmarking tool named “sslswamp” [6],
which simulates the SSL/TLS client(s) so that the speed, ca-
pacity, throughput, and behavior of an SSL/TLS server can
be tested. Each run of the swamp program lasted for 60 s.
The results of the load generator can be seen in Table 1. The
cipher suite used for generating the results was 3DES in Cipher
Block Chaining (CBC) mode, with SHA MAC and RSA as the
authentication algorithm.

Fig. 8 shows the comparison of the client connections ac-
cepted by the server and those clients that were queued due
to the fact that the server was not able to process all the
incoming clients. This was done by first increasing the number

Server Performance under load
200

/—’*’A“\.__.
[

100 [\-\\- \
50 \
L

Time

150

Client Connection

\
\\

\'w+++>.

—e— Queued Clients —=— Accepted Clients ‘

Fig. 8. TLS server performance under load.

of concurrent incoming clients and then reducing the number of
incoming clients. The results were generated by saving the val-
ues of the number of connecting clients from the load generator
and the number of accepted clients in a file. A connecting client
is a client that has not yet been authenticated. As the number
of concurrent client connections increases, the percentage of
failed connections also increases. The connection failures are
caused by handshaking errors during the client and server SSL
handshaking phase.

Under heavy-load conditions, the cryptographic computa-
tions necessary for SSL become a bottleneck to server perfor-
mance. When the number of client connections is relatively low,
the server will serve each request as it comes in. As the number
of concurrent client connections increases, the server will have
to queue connecting clients while it is still busy handshaking
with others (Fig. 8). Thus, the server is being saturated by the
SSL handshakes that it is busy performing. The result is that the
server is keeping a number of clients in queue. As the number
of new connections decreases, the server is able to serve the
clients in the queue. The average connection time for a client
is between 1 and 2 s. From the results, the optimal number of
clients that can connect to the server without being queued is
between 90 and 120 clients.

C. Throughput and Response Time of Server

Latency is the time it takes between making a request and
seeing a result. Throughput is the number of total transactions
that can be maintained over a period of time. The result of
the experiment to determine the throughput and response time
for the TLS server using the siege load-generator program by
Fulmer [7] is given in Table II. The simulation was repeated ten
times for a certain number of concurrent client connections. The
average HTML page size sent to the client by the web server
was 370 B. The average over the ten runs was taken as the final
result. Network latency between the TLS server on computer 1
and the web server on computer 2 will have an effect on the
results. Running the traceroute command between computer 1
and computer 2 gives the following latency result:

b121pcl42.up.AC.za (137.215.121.142)
0.962 ms 0.617 ms 0.156 ms.

BHATT et al.: SECURE INTERNET ACCESS TO GATEWAY USING SECURE SOCKET LAYER 799

TABLE II
THROUGHPUT AND RESPONSE-TIME RESULTS FOR THE
SSL SERVER UNDER CERTAIN LOAD CONDITIONS
(TCP MAXIMUM SEGMENT SIZE = 4096 B)

1 3765.41 100% 1637.50 0.08 100%
10 4457.44 100% 5523.32 0.08 100%
20 6451.85 100% 6745.45 0.11 100%
BO 8975.61 100% 8772.23 0.12 100%
1o 12517.01 |100% 022221 0.12 100%
50 13757.01 |100% 9919.79 0.14 100%
60 13886.79 [100% 10357.14 [0.15 100%
70 14553.67 |100% 9988.46 0.17 100%
80 14360.98 |100% 1039326 [0.19 100%
0 13301.20 |100% 10701.92 [0.21 100%
100 12390.57 |100% 9003.48 0.20 100%

In the data-transfer phase of an SSL connection, there are two
relevant cryptographic operations. These two operations are
the record encryption and decryption with a symmetric cipher
and the MAC calculations and verification operation. The
choice of the MAC and encryption algorithm affects the per-
formance of the data-transfer phase.

Choosing a proper MAC chipper is also very useful, as can
be seen from Table III, where RC4 with MDS5 is almost eight
times faster than 3DES with SHA. The results in Table II are
obtained using 3DES—-SHA. Table III presents only the record
generation cost and not network overhead. Significant server
response time can be improved using RC4-MDS5.

The throughput of the normal HyperText Transfer Protocol
(HTTP) transaction between the client and the web server
increases as the number of concurrent connected clients in-
creases. The throughput reaches a maximum when there are
between 60 and 80 connected clients. The response time for
all the number of concurrent connected clients is thus lower
than 0.01 s.

The throughput for the SSL v3 connections reaches a maxi-
mum value at around 60 concurrent clients. The throughput is
initially higher than for the normal HTTP connections, but as
soon as more than 20 concurrent clients connect to the TLS
implementation server, the throughput remains lower than the
HTTP throughput. The SSLv3 throughput is almost one and a
half times the HTTP throughput.

The response time of the SSLv3 connections is much higher
than the HTTP connections and increases as the number of
concurrent client connections increases. The SSLv3 response
times are much higher than the HTTP connections because of

TABLE III
SSL RECORD PROCESSING SPEED FOR A CERTAIN SYMMETRIC
CIPHER AND A CERTAIN MAC ALGORITHM [3]

RC4-MD3 15034
RC4-SHA 10831
3DES-CBC-SHA | 2068

the cryptographic computations that the TLS server needs to
perform for each client connection.

Using the RC4 symmetric algorithm along with the MD35, as
seen in Table III, the MAC algorithm can decrease the response
times. Another possibility is by using dedicated cryptographic
accelerators to perform all cryptographic calculations, which
will also decrease response time.

VI. SUMMARY

The project achieved the goal of securing the Internet com-
munication for the IGUANA gateway by developing a server
TLS program capable of implementing the SSL v3 and TLS v1
protocols. Securing the communication means that the server
is capable of implementing the security services of confiden-
tiality, integrity, and authentication for a connection between
a client and the server. The confidentiality and integrity were
implemented using the OpenSSL toolkit, which provides an
interface to the SSL protocol. Authentication was implemented
using certificates, on the server side, and smart card, on the
client side; a PKI-based procedure that is mentioned in [17]
can also be investigated to improve the server performance. A
client-authentication protocol was developed to run on top of
SSL, taking advantage of all the security features of SSL, in-
cluding authentication, confidentiality, and integrity. The client-
authentication protocol is a challenge-response-type protocol,
where a private key stored on a smart card is used to encrypt a
random value sent by the server.

The client-authentication protocol effectively doubles the
handshaking time needed between a client and a server before
both client and server are authenticated to each other, and a
secure connection is set up. This has a dramatic impact on
performance, as handshaking is the most costly operation of
an SSL or TLS connection. The server is capable of han-
dling a moderate client load, but performance will decrease
dramatically with an increasing number of client connections.
The server-performance issues presented can be dramatically
improved with the hardware-based server module, e.g., field-
programmable gate array (FPGA), application-specified inte-
grated circuit (ASIC), or DSP, instead of the smart-card-based
one, but this will add the additional cost for these hardware-
accelerator modules; some of these modules are discussed in
[18]-[24].

800 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 3, JUNE 2006

REFERENCES

[1] J. Leach, “Dynamic authentication for smart cards,” Comput. Secur.,
vol. 14, no. 5, pp. 385-389, 1995.

[2] R. Molva, “Internet security architecture,” Comput. Netw., vol. 31, no. 8,
pp- 787-804, Apr. 23, 1999.

[3] E. Rescorla, SSL and TLS: Designing and Building Secure Networks.
Indianapolis, IN: Addison-Wesley, 2001, pp. 175-217.

[4] W. Stallings, Network Security Essentials: Applications and Standards.
New York: Prentice-Hall, 1999, ch. 2.

[5] P. Urien, “Internet card, a smart card as a true internet node,” Comput.
Commun., vol. 23, no. 17, pp. 1655-1666, 2000.

[6] G. Thorpe, “Distcache: Distributed session caching tools and APIs, pri-
marily for SSL/TLS servers, and the sslswamp SSL/TLS benchmark/test
utility,” 2006, [Online]. Available: http://distcache.sourceforge.net/

[7] J. Fulmer, “Siege: a http regression testing and benchmarking utility,
that can stress a single or many URL into memory with a user defined
number of simulated users simultaneously,” 2006, [Online]. Available:
www.joedog.org/siege/

[8] M. Kumar, “New remote user authentication scheme using smart cards,”
IEEE Trans. Consum. Electron., vol. 50, no. 2, pp. 597-600, May 2004.

[9] M.-S. Hwang and L.-H. Li, “A new remote user authentication
scheme using smart cards,” IEEE Trans. Consum. Electron., vol. 46, no. 1,
pp- 28-30, Feb. 2000.

[10] W.-S.Jaung, “Efficient three-party key exchange using smart cards,” IEEE
Trans. Consum. Electron., vol. 50, no. 2, pp. 619-624, May 2004.

[11] N.-Y. Lee and Y.-C. Chiu, “Improved remote authentication scheme with
smart card,” Comput. Stand. Interfaces, vol. 27, no. 2, pp. 177-180,
Jan. 2005.

[12] W.-]J. Tsaur, C.-C. Wu, and W.-B. Lee, “A smart card-based remote
scheme for password authentication in multi-server Internet service,”
Comput. Stand. Interfaces, vol. 27, no. 1, pp. 39-51, Nov. 2004.

[13] C.-C. Yang and R.-C. Wang, “Cryptanalysis of a user friendly remote
authentication scheme with smart cards,” Comput. Secur., vol. 23, no. 5,
pp- 425427, Jul. 2004.

[14] W.-S.Juang, “Efficient password authenticated key agreement using smart
cards,” Comput. Secur., vol. 23, no. 2, pp. 167-173, Mar. 2004.

[15] S.-T. Wu and B.-C. Chieu, “A user friendly remote authentication scheme
with smart cards,” Comput. Secur., vol. 22, no. 6, pp. 547-550, Sep. 2003.

[16] S. Lancaster, D. C. Yen, and S.-M. Huang, “Public key infrastructure:
A micro and macro analysis,” Comput. Stand. Interfaces, vol. 25, no. 5,
pp. 437446, Sep. 2003.

[17] A. F. Gémez, G. Martinez, and 0. Cénovas, “New security services
based on PKL,” Future Gener. Comput. Syst., vol. 19, no. 2, pp. 251-262,
Feb. 2003.

[18] G. P. Saggese, L. Romano, N. Mazzocca, and A. Mazzeo, “A tam-
per resistant hardware accelerator for RSA cryptographic applications,”
J. Syst. Archit., vol. 50, no. 12, pp. 711-727, Dec. 2004.

[19] L. Batina, S. B. Ors, B. Preneel, and J. Vandewalle, “Hardware archi-
tectures for public key cryptography,” Integr. VLSI J., vol. 34, no. 1-2,
pp. 1-64, May 2003.

[20] H.-Y. Chien and J.-K. Jan, “An integrated user authentication and access
control scheme without public key cryptography,” in Proc. IEEE 37th
Annu. Int. Carnahan Conf. Security Technology, Taipei, Taiwan, R.O.C.,
Oct. 14-16, 2003, pp. 137-143.

[21] J. Goodman and A. P. Chandrakasan, “An energy-efficient reconfigurable
public-key cryptography processor,” IEEE J. Solid-State Circuits, vol. 36,
no. 11, pp. 1808-1820, Nov. 2001.

[22] X. Zeng, C. Chen, and Q. Zhang, “A reconfigurable public-key cryptog-
raphy coprocessor,” in Proc IEEE Asia-Pacific Conf. Advanced System
Integrated Circuits, Fukuoka, Japan, Aug. 4-5, 2004, pp. 172-175.

[23] S. S. Raghuram and C. Chakrabarti, “A programmable processor for
cryptography,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS),
Geneva, Switzerland, May 28-31, 2000, vol. 5, pp. 685-688.

[24] A. Royo, J. Moran, and J. C. Lopez, “Design and implementation of
a coprocessor for cryptography applications,” in Proc. ED&TC, Paris,
France, Mar. 17-20, 1997, pp. 213-217.

[25] T. Sauter and C. Schwaiger, “Achievement of secure internet access to
fieldbus systems,” Microprocess. Microsyst., vol. 26, no. 7, pp. 331-339,
Sep. 10, 2002.

[26] P. Palensky and T. Sauter, “Security Considerations for FAN-Internet
Connections,” in Proc. IEEE International Workshop on Factory Com-
munication Syst., Porto, Portugal, Sep. 6-8, 2000, pp. 27-35.

[27] T. Sauter and C. Schwaiger, “A secure architecture for Fieldbus/Internet
gateways,” in Proc. 8th IEEE Int. Conf. ETFA, Oct. 15-18, 2001, vol. 1,
pp- 279-286.

[28] J. Nagel, “Congestion control in IP/TCP internetworks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 25, no. 1, pp. 61-65, Jan. 1995.

Deep Vardhan Bhatt (M’01-A’02-M’04) received
the B.Eng. degree in electrical and electronic en-
gineering from Abubakar Tafawa Belewa Univer-
sity (ATBU), Nigeria, in 1992. He is currently
working towards the M.Eng. degree in computer
engineering at the University of Pretoria, Pretoria,
South Africa.

He has been a Lecturer at the Department of Elec-
trical Electronic and Computer Engineering, Univer-
sity of Pretoria, since 2001. In 1995, he joined C.
N. Mahlangu Technical College, South Africa, as a
Lecturer and Network Administrator. In 1997, he developed and introduced
a computer-literacy program for the disadvantaged community. His current
research interests are in data security, wireless-network security, and new
protocols and algorithms for security.

Stefan Schulze received the B.Eng. degree with
honors in computer engineering from the University
of Pretoria, Pretoria, South Africa, in 2002 and 2003,
respectively.

Currently, he is working in a private firm as Secu-
rity Consultant.

Gerhard P. Hancke (M’88-SM’00) received the
B.Sc., B.Eng., and M.Eng. degrees from the Univer-
sity of Stellenbosch, Stellenbosch, South Africa, and
the D.Eng. degree from the University of Pretoria,
Pretoria, South Africa, in 1983.

He is currently the Chair of the Computer En-
gineering Program in the Department of Electrical,
Electronic, and Computer Engineering, University of
Pretoria. He is responsible for curriculum develop-
ment and research activities within this program. He
partakes extensively in collaborative research pro-
grams with research institutions internationally. He is a Professional Engineer
and held offices in various national and international scientific and professional
bodies.

