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Abstract— Until recently, the problem of localization

in wireless networks has been mainly studied in a non-

adversarial setting. Only recently, a number of solutions

have been proposed that aim to detect and prevent attacks

on localization systems. In this work, we propose a new

approach to secure localization based on hidden and

mobile base stations. Our approach enables secure local-

ization with a broad spectrum of localization techniques:

ultrasonic or radio, based on received signal strength

or signal time of flight. Through several examples we

show how this approach can be used to secure node-

centric and infrastructure-centric localization schemes. We

further show how this approach can be applied to secure

localization in sensor networks.

I. INTRODUCTION

In the last decade, researchers have proposed a num-

ber of positioning and ranging techniques for wireless

networks [43], [44], [35], [3], [20], [7]. The use of these

techniques is broad and ranges from enabling network-

ing functions (i.e., position-based routing) to enabling

location-related applications (e.g., access control, data

harvesting).

The proposed techniques were mainly studied in non-

adversarial settings. Ranging and positioning techniques

are, however, highly vulnerable to attacks from dis-

honest nodes and external attackers; dishonest nodes

can report false position and distance information in

order to cheat on their locations; external attackers can

spoof measured positions of honest nodes. Positioning

and ranging techniques in wireless networks mainly

rely on measurements of the times of flight of radio

(RF ToF) or ultrasound signals (US ToF), and on the

measurements of received strengths of radio signals of

devices (RF RSS). An attacker can generally influence

all these measurements by jamming and delaying signals,

and by modifying their signal strengths. Positioning

systems based on ultrasound time of flight (US ToF) and

those based on measurements of signal strength of radio

signals (RF RSS) are particulary vulnerable to position

spoofing attacks. Systems based on radio time of flight

measurements are less vulnerable to attacks because of

the high speed of signal propagation,

Recently, a number of secure positioning techniques

were proposed [25], [26], [10], [28], [29] to cope

with these problems. These mechanisms rely on GPS,

high speed hardware, directional antennas, or on robust

statistics.

In this paper, we propose a different approach to

secure positioning that relies on a set of covert base

stations used for secure positioning. By covert base

stations (CBS), we mean base stations whose positions

are not known to the attacker at the time of the execution

of secure positioning. In our system, positions of covert

base stations represent a secret input (a key) to the

system. Covert base stations can be realized by hiding

or disguising static base station or by the random motion

of mobile base stations. Typically, covert base stations

are passive.

We show through three example protocols how covert

base stations can be used to secure node-centric and

infrastructure-centric positioning, as well as positioning

in sensor networks. We discuss how security of the

proposed protocols depends on the precision of the

positioning and ranging techniques, and on the number

of the covert base stations. We capture this analytically.

The organization of the rest of the paper is as follows.



In Section II, we present our system model. In Sec-

tions III and IV we present protocols for secure position-

ing in infrastructure-centric and node-centric systems,

respectively. In Section V, we show how mobile base

stations can be applied to secure positioning in sensor

networks. In Section VI, we analyze our schemes. In

Section VII, we overview the related work. We conclude

the paper in Section VIII.

II. MODEL

In this section, we describe our system and attacker

models.

A. System model

Our system consists of a set of covert base stations

(CBS) and a set of public base stations (PBS) forming

a positioning infrastructure. Here, by covert base sta-

tions we mean those base stations whose positions are

known only to the authority controlling the verification

infrastructure. To prevent that their positions are discov-

ered through radio signal analysis, covert base stations

are silent on the wireless channel; they only listen to the

on-going communication.

In our system covert and public base stations know

their positions or can obtain their positions securely

(e.g., through secure GPS [25]). Here, we assume that

the attackers cannot tamper with these positions nor

compromise the base stations.

We also assume that every legitimate node shares a

secret key with the base stations, or that base stations

hold an authentic public key of the node. This key is

established/obtained through the authority controlling the

verification infrastructure prior to position verification.

Here, all communication between the authority and a

node is performed through a public base station, whereas

the hidden stations remain passive.

We further assume that covert base stations can mea-

sure received signal strength or have an ultrasound

interfaces through which they perform ranging.

In most of this work, we assume that covert base

stations are static. Thus, their mutual communication

and their communication to the verification authority is

performed through a channel that preserves their location

privacy; this communication channel is typically wired

(or infrared), such that they cannot be detected by the

attackers. In Section V, we modify our assumptions and

we assume that the base stations are mobile, and that

their mutual communication is wireless.

B. Attacker model

We observe two types of attacks: internal and ex-

ternal. Internal attacks are those in which a dishonest

or compromised node (internal attacker) reports a false

position or convinces the positioning infrastructure that it

is at a false position. External attacks are those in which

an external attacker convinces an honest node and the

positioning infrastructure that the node is at a different

position from its true position (i.e. the attacker spoofs

node’s position).

We observe two types of positioning systems: node-

centric and infrastructure-centric. By a node-centric po-

sitioning system, we mean that a node computes its

position by observing signals received from public base

stations with known locations. If the positioning system

is node-centric, internal attacks are generally straight-

forward; a the attacker simply lies about the position

that it computed. Infrastructure-centric positioning sys-

tems are those in which the infrastructure computes

positions of nodes based on their mutual communi-

cation. In multilateration-based approaches, an internal

attacker can cheat on its position by cheating on ranging

mechanisms (i.e. by reporting false signal strengths and

times of signal sending/reception). In time difference

of arrival (TDOA) systems, an attacker can cheat by

sending signals to base stations at different times (in

some cases, the attacker would need to have directional

antennas).

Attacks by external attackers are similar to those

performed by internal attackers. An external attacker can

perform timing attacks by delaying (through jamming) or

speeding-up (wormhole attacks [22]) the signals, or can

performs power level modification attacks by changing

the power levels at which nodes and the base stations

transmit.

In this attacker model, we assume that the attackers

know the positions of the public base stations and thus

can modify computed ranges and time differences such

that they are consistent with the false position.

III. INFRASTRUCTURE-CENTRIC POSITIONING WITH

HIDDEN BASE STATIONS

In this section, we describe a simple solution for se-

curing infrastructure-centric positioning systems, based

on time difference of arrival (TDOA) and covert base

stations.

TDOA is the process of positioning a source of signal

in two (respectively three) dimensions by finding the

intersection of multiple hyperbolas (or hyperboloids)

based on the time difference of arrival between the



signal reception at multiple base stations. An hyperboloid

is defined as a surface, that has a constant distance

difference from two points (in our case two base sta-

tions). Using two hyperbolas (three base stations) we

can obtain two dimensional device positions, and using

three hyperboloids (four receivers) we can determine

three dimensional positions. The operation of the TDOA

technique is shown on Figure 1. Node A sends a radio

signal, and the verifiers measure the difference between

the times t1, t2, t3, t4 of the signal reception at each

verifier and determine the position of A.

One of the main advantages of TDOA is that node

positioning does not require communication from the

base stations to the mobile nodes: the base stations locate

mobile nodes measuring signal reception times at each

base station. This is why TDOA is well suited for secure

positioning with hidden base stations.

In our protocol, the base stations are hidden, and

only listen to the beacons sent by the nodes. Upon

receiving the beacons, the base stations compute node’s

location with TDOA, and check if this location is well

consistent with the time differences. By well consistent

we mean that the computed position is not to far from the

hyperbolas constructed with measured time differences

(Figure 1). TDOA with hidden base stations is designed

to detect both internal and external attacks, and relies on

the assumption that the attackers can guess the positions

of base stations only with a very low probability. The

protocol is executed as follows.

TDOA with hidden base stations

1 PBS(ts) → A : N

2 A → ∗ : m = {A,N, sigKA
(A,N)}

3 CBSn : receive m at tnr
: with t1r, ..., t

n
r , compute p with TDOA

: if
∑

i>j(|tir − tjr| − h(p, i, j))2 ≤ ∆ and

maxi(t
i
r − ts) ≤ T

then pA = p; else reject p

Here, p is a position of node A computed from the

measured time differences and it is the solution to the

following least-square problem:

p = arg min
p∗

∑

i>j

(|tir − tjr| − h(p∗, i, j))2

where h(i, j, p∗) is the difference of signal reception

times at CBSi and CBSj , if the signal is sent from

position p∗. ∆ is the maximal expected inconsistency

between the computed position and the measured time

differences. This inconsistency is caused by the errors in

measurements of reception times and by pair-wise clock

CBS

CBS

A

CBS

CBS

3

1

2

4

t1

t2r

r

r

r

t3
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Fig. 1. An example of positioning with Time Difference Of Arrival.

The base stations CBS measure the differences of signal arrival

times, and compute the position of node A.

drifts of the base stations. T is the time within which a

node needs to reply to a challenge issued by a public base

station; this response time is important for the prevention

of some replay attacks and to ensure message freshness.

N is a fresh nonce. Note that the covert base stations

know which nonce is sent by the public station.

A. Security analysis

Conventional TDOA schemes are vulnerable to both

internal and external attacks. An internal attacker can

send messages to base stations, with appropriate delays

(potentially using directional antennas) and thus cheat on

its location; external attackers can jam and delay node’s

original messages and thus spoof its location.

With covert base stations, these attacks are prevented;

to successfully cheat, the attackers need to know where

the base stations are located. Otherwise, the attacker

needs to guess the locations of the base stations, and per-

form appropriate timing attacks. The attacker’s cheating

success depends on the system precision ∆. Essentially,

∆ defines the size of attacker’s guessing space. Simply, if

∆ is large, a false position will be more likely accepted,

as the tolerance to inconsistencies will be higher. In

Section VI, we investigate in more detail the dependence

of attacker’s success on ∆.

In addition, we need to consider one more external

attack to TDOA. This attack is performed as follows:

(1) Attacker jams the original positioning message (m)

sent by node A; (2) Attacker replays m from a location

p′A. As a result, the base stations will be convinced that

the node A is located at p′A, whereas its true position is

pA. In order to mount this attack, an attacker needs to

be able to jam all hidden base stations, which without

knowing where they are located requires a lot of power



and resources. Furthermore, the attacker needs to have

faster processing at nodes than regular mobile nodes.

Finally, in order to show that the node A is at p′A, the

attacker needs to have access to this location. Still, this

attack is feasible for a resourceful attacker.

Using covert base stations, this attack is partially

prevented by the challenge-response scheme. In our

protocol, the node is expected to reply to a challenge

nonce N within a period T , which limits the time during

which the attacker can mount the attack. Here, T is

estimated based on the expected signal propagation times

and node processing time. We note that if our simple

challenge-response scheme is replaced by a more effi-

cient distance-bounding protocol, this and similar attacks

can be completely prevented. In some implementations,

this will require some specialized hardware at the side of

nodes and base stations [5]. The same attacks can also

be prevented through precise time synchronization.

In our protocol, node location privacy is not preserved.

However, this protocol can be enhanced to include public

base station authentication which prevents an attacker

from challenging the node and from requesting from it

to send positioning signals disclosing its location. Other

attacks are possible on node’s location privacy [36], [19],

[37], [40], [23], [24], but coping with these attacks is out

of the scope of this paper.

IV. NODE-CENTRIC POSITIONING WITH HIDDEN

BASE STATIONS

In this section, we present a protocol for secure

positioning in node-centric positioning systems. Here,

we assume that the node computed its position through

a non-secure positioning system. This position is then

reported to the infrastructure comprised of covert base

stations, which then verifies if the position is correct. In

this context, internal attacks are related to nodes lying

about their locations, whereas external attacks are more

complex, and assume that the attacker spoofs node’s

position and then cheats on the position verification

mechanisms.

To cope with these attacks, we propose a position ver-

ification protocol that relies on hidden base stations. In

this protocol, node A reports a position pF to CBS. CBS

then measures its distance dm
F to the node (passively) and

verifies if the reported position pF corresponds to the

measured distance. Our protocol is executed as follows

(assuming that the distance between the CBS and the

node is measured using ultrasound):

CBSdF

m

dF

c

dA

pF

pCBSpA

A

Fig. 2. False position report by node A to the covert base station.

pA is the true node position, pF is the fake node position (reported

by A to CBS), pCBS is the position of CBS. dc

F = d(pF , pCBS) is

the (false) distance between CBS and A, computed by CBS, dm

F is

the (false) distance between A to CBS measured passively by CBS.

If |dc

F − dm

F | ≤ ∆, then pA = pF .

Position verification with hidden base stations

1 PBS(ts) → A : N

2 A → (rf)∗ : mrf = pF , sigKA
(rf, pF , N)

(us) : mus = pF , sigKA
(us, pF , N)

3 CBS : receive mrf at trf and mus at tus

: dc
F = d(pF , pCBS)

: dm
F = (tus − trf )s

: if |dc
F − dm

F | ≤ ∆ and (trf − ts) ≤ T

then pA = pF ; else reject pA

Here, N is a nonce generated by the public base station,

∆ is a combined positioning and ranging error and T
is the time within which a node needs to reply to a

challenge issued by a public base station.

In this protocol, the infrastructure uses a public base

station to communicate with the node, and a single

covert base station to verify the reported position. PBS

sends a challenge to the node A, which then replies by

sending a radio and an ultrasound messages, containing

the alleged node position pF . CBS then measures the

time difference between the time at which it received

the radio signal (trf ) and the time at which it received

the ultrasound signal (tus), and computes the distance

dc
F = d(pF , pCBS) to A. If the reported (possibly fake)

position corresponds to the measured (possibly fake)

distance, CBS concludes that pF is the position of A.

To do this, CBS simply computes the distance dc
F =

d(pF , pCBS) between its own position pCBS (which is

unknown to the node) and the reported position pF and

compares it with the measured distance dm
F (which A can

enlarge or reduce). If two distances differ by more than

the expected combined positioning and ranging error ∆,

then the position is rejected; else, the position is accepted

as true node position. An additional verification is made
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Fig. 3. Position spoofing attack. Attacker spoofs node A and CBS

into believing that it (the node) is at its (attacker’s) position pF . The

attacker then replays node’s message from pF to fool the position

verification mechanism.

by measuring the node response time T , in order to

prevent replay attacks.

We note that this protocol could be similarly designed

with RF RSS-based ranging techniques.

A. Security analysis

An internal attack in node-centric positioning schemes

is simply a false position report from the node to the

infrastructure. Our protocol detects false position reports

through checking the consistency of the reported position

and of the measured distance. This detection mechanism

relies on the fact that the attacker can guess the distance

of pF to the hidden base station only with a low

probability. We analyze this in detail in Section VI.

External attacks against position verification are more

complex and include position spoofing, jamming and

message replays. Figure 3 shows an external attack on

position verification. Node A is positioned at pA, the

attacker at position pF . The attacker first spoofs the

position of A such that A believes that it is positioned

at pF . Then, by replaying A’s positioning signals (radio

and ultrasound) from pF , the attacker fools the position

verification mechanism. This attack enables the attacker

to convince the device A that it (A) is positioned at pF

and then convinces the covert base station that A is at

pF . One limitation of this attack is that an attacker needs

to have a device at the position where it wants to falsely

place A and that the attacker nodes need to be fairly

synchronized to perform it.

Our position verification protocol partially prevents

this attack by the same technique used in the TDOA

protocol with hidden base stations; the base stations

request that the node replies with the RF message to

the PBS challenge within a time bound T . This limits

the time within which the attacker can mount the attack.

With distance-bounding techniques [5], this attack can

be entirely prevented, as the value of T can be reduced

to nanoseconds.

Similarly to our TDOA-based protocol, the position

verification protocol is also vulnerable to location pri-

vacy threats. Here, the most obvious privacy problem

is that the node discloses its position to any station

that issues a position verification request (step 2 in the

protocol). An attacker can simply listen to the node’s

messages and learn where the node is located. Similarly,

an attacker could send a position verification request

to the node to keep track of the nodes position. These

attacks can be prevented by simply requiring a public

base station to authenticate itself to the node, and by

having a node encrypt the position information that it

sends to the base stations.

V. SECURE POSITIONING IN SENSOR NETWORKS

WITH MOBILE BASE STATIONS

The use of mobile base stations has already been

proposed for data collection, energy preservation, lo-

calization and security in wireless networks [39], [11],

[21]. Many mobile platforms have emerged as a result:

Amigobot [1], Cotsbot [4], Millibot [31], Robomote [12],

and Ragobot [17].

In this section, we describe the use of mobile base

stations for secure positioning in static sensor networks.

A. Motivation

Knowing positions of sensors is essential for bind-

ing the measured data with the place at which it was

measured. Without the position information, most sensor

networks would be made useless. Because of this, a

number of positioning systems have been proposed for

sensor networks (see Section VII). However, most of

these positioning systems were not designed with secu-

rity in mind and are therefore vulnerable to attacks that

can render the information that sensors measure useless.

Recently, a number of secure positioning systems for

sensor networks were proposed, based on robust statis-

tics [28], [29], directional antennas [26] and/or distance

bounding [10]. Here, we take a different approach and

we rely on mobile base stations. We show how mobile

base stations can be used to secure positioning and to

verify the positions of sensor nodes.

B. Scenario

In our scenario, we assume that the sensors compute

their positions through one of the non-secure positioning

algorithms [13], [6], [9], [33], [32], [42], [30], [14], [8].

We further assume that the authority has a number of

mobile base stations (similar to data mules), that know

securely their locations (e.g., through secure GPS [25]).



These mobile base stations can be single-purpose or

multi-purpose, and therefore can be used for only po-

sition verification or also for data collection and other

tasks.

We assume that the mobile base stations share a secret

key with each sensor.

C. Position verification with mobile base stations

The protocol presented in this section is similar to the

position verification protocol presented in Section IV.

That protocol relied on the assumption that the covert

base station is hidden, whereas all communication be-

tween the node and the positioning infrastructure is

performed through the public base station.

Here, position verification is performed through mo-

bile base stations. This is realized such that the base

station sends a verification request to the node from one

location, and then waits for the response at a different

location. Therefore, at the time of position verification,

the node does not know the position of the mobile base

station. In this protocol, the role of a public base station

is thus replaced with base station mobility.

Our protocol is executed as follows:

Position verification with mobile base stations

1 (t1) MBS → A : MBS, N, TR

2 (t2) S → ∗ (rf) : p, MACK(rf, p,MBS, N)

(us) : p, MACK(us, p,MBS, N)

3 MBS : receive (rf) at trf and (us) at tus

: dc
S = d(p, pMBS)

: dm
S = (tus − trf )s

: if |dc
1
− dm

1
| ≤ ∆ and (trf − t1) ≤ TR

: then pS = p; else reject pS

Here, K is the secret key shared between the mobile

station MBS and the sensor S; TR is the time after

which the sensor is suppose to send its reply (ideally,

TR = t2−t1). TR is also an estimated time within which

MBS will move to a location different from the one at

which it was at t1.

The operation of our protocol is illustrated on Fig-

ure 4. At time t1 a mobile base station (MBS) is at

position pMBS(t1) and sends a message to the neigh-

boring sensors containing a challenge nonce N and a

time delay TR after which the sensors needs to reply

to the message. Within the time TR, MBS moves to

a different position pMBS(t2) within the circle defined

by its power range when it was at position pMBS(t1).
When at position pMBS(t2), MBS receives a reply from

those sensors which are still in its power range. Based

on received replies, MBS computes the distances to the

S2 S2

S1
S1

S3
S3

S4
S4

N,TR

p (t )MBS 2

p (t )MBS 1
p (t )MBS 1

ra
ng

in
g

sig
na

l

(a) (b)

Fig. 4. Position verification in sensor networks. A mobile base

station (MBS) verifies positions of nodes; (a) at time t1 MBS

challenges sensor nodes; (b) at time t2 > t1 the sensors reply to

the challenge and their positions are verified by MBS.

sensors and verifies their positions (this procedure is the

same as in the position verification protocol presented in

Section IV.

Typically, the MBS can perform simultaneous verifi-

cation of positions of multiple sensors. If MBS moves

within the circle defined by its power range at time t1,

it will hear at least 39% of the sensors that were in its

power range at time t1, provided that the sensors are

uniformly distributed over MBSs power range. This is

because the intersection of MBSs power ranges at t1
and at t2 will be at least 39% of the circle surface, given

that MBS moved within its previous power range. At

time t1 MBS broadcasted a challenge to the nodes, and

at time t2, the nodes replied. After position verification,

MBS issues another challenge for the nodes in its power

range whose positions were not verified; then, MBS

moves again and waits for their reply. Hence, as MBS

moves through the network, it will verify only positions

of those sensors which were in the intersections of the

two subsequent power ranges of MBS. This is illustrated

on Figure 5. The trajectory of MBS needs to be unpre-

dictable for the sensor nodes, even if the sensors collude.

One way how to ensure this is to have MBSs move

according to random walk. Given this, if the sensors are

placed on a grid, the time in which the MBS covers the

network can be estimated as O(N log N), where N is

the number of sensors. In [39], [2], the authors provide

a set of analytical and simulation results for coverage

times of mobile stations on sensor grids.

Security and location privacy analysis of this protocol

is very similar to the one of the position verification

protocol presented in Section IV, and thus we do not

repeat it here.



t1
t2

t3

Fig. 5. Progress of position verification in sensor networks with mo-

bile base stations. MBS moves from position pMBS(t1) to pMBS(t2)
and pMBS(t3).

VI. ANALYSIS

In this section, we analyze the likeliness that the at-

tacker succeeds in cheating our secure position schemes

by guessing the positions of the covert base stations.

This probability will notably depend on the size of

attacker’s search space (which depends on base station

power ranges) and on the precision of the positioning

system.

Here, we focus on the position verification protocol

described in Section IV. We define the attacker’s success

as an event when the attacker A reports a position pF

different from its true position (pF �= pA), and the CBS

concludes that pA = pF . This event will realize only if

|dc
F −dm

F | ≤ ∆. This essentially means that for a chosen

position pF an attacker needs to guess the distance to the

covert base station. The probability of attackers success

is therefore

Pr(|dc
F − dm

F | ≤ ∆|pF �= pA) (1)

In our analysis we assume that the positioning takes

place on a disk (2D), and in a ball (3D). The position

of the hidden base station and the reported position of

the attacker are therefore on a disk (or in the ball). We

assume that the position of the base station is uniformly

chosen on the disk (in the ball). Other geometries can

be observed, but we have chosen the circles as they best

reflect the power ranges of the devices.

A. Attacker’s average success probability

To compute the average probability of attacker’s suc-

cess, we assume that the attacker chooses its fake po-

sition pF uniformly over the disk/ball. In this case, the

probability distribution function (pdf) of its distance to
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Fig. 6. Probability distribution function of the distance dc

F =
d(pF , pCBS) on a disk (PrD) and in a ball (PrS), when pCBS

and pF are chosen uniformly over the disk and ball, respectively.

the uniformly chosen position of the hidden base station

is given by [38]:

PrD(dc
F = d) =

4d

πR2
cos−1(

d

2R
)

− 2d2

πR3

√

1 − d2

4R2
(2)

for a disk and by

PrS(dc
F = d) =

3d2

R3
− 9d3

4R4
+

3d5

16R6
(3)

for a ball, where R is the radius of the disk/ball. PrD

and PrS are shown on Figure 6. The maximum values

of these functions are PrD(dc
F = 0.84R) = 0.809 and

PrS(dc
F = 1.05R) = 0.942. This means that when the

attacker guesses what is the length of d(pF , pCBS , it will

have the highest chance of success if it guesses that it

is 0.84R, and hence sets dm
F = 0.84R. In this case, the

probability of attacker’s success will be:

PrD,uni =

∫ 0.84R+∆

0.84R−∆

PrDdd ≈ 0.809 × 2∆

R
(4)

PrS,uni =

∫ 1.05R+∆

1.05R−∆

PrSdd ≈ 0.942 × 2∆

R
(5)

These approximations hold for ∆ << R. These results

are important as they show that the the probability of

attacker’s success grows linearly with the positioning and

ranging error ∆ and inversely proportional to radius of

the region in which the hidden base station is places.

This means that the probability of attackers success is

inversely proportional to the square root of the space

in which positioning is taking place. Simply, the more

precise the positioning and distance measurement is,



and the larger the space is, the more secure is position

verification.

The probability of attacker’s success can be signifi-

cantly reduced if multiple covert base stations are used

for position verification. In that case, the probability of

attacker’s success is simply

Prn
D,uni ≈ (0.809 × 2∆

R
)n (6)

Prn
S,uni ≈ (0.942 × 2∆

R
)n (7)

The probability of attacker’s success in both disk and

ball can therefore be upper-bounded by Prn
uni = (2∆

R
)n.

B. Attacker’s maximum success probability

So far, we have assumed that the attacker chooses

pF uniformly, meaning that we have assumed that the

position at which the attacker wishes to pretend to be

can be anywhere within the disk/ball. Here, we observe

what is position pF , for which the attacker will have

the highest probability of success. We show that the

attacker has the highest probability of success (Pmax)

if it chooses its fake position pF at the center of the

disk/ball and if it chooses dm
F = R as its fake measured

distance to CBS. This probability is as follows (for disk):

PrD(dc
F < d) =

d2π

R2π

PrD(dc
F = d) =

δ

δd
PrD(dc

F < d)

=
2dπ

R2π

PmaxD = PrD(dc
F = R) =

2

R
(8)

Similarly for the ball, we obtain that PrS(dc
F = R) = 3

R
.

From this it follows that the maximum probabilities of

the attacker’s success Pmaxn
D ≈ (4∆

R
)n and Pmaxn

S ≈
(6∆

R
)n. This analysis shows that in the worst-case sce-

nario, the maximum probability of attacker’s success is

approx 2.5 times (disk, 2D) and 3 times (ball, 3D) the

average probability of attacker’s success (when n = 1).

Intuitive proof: It is sufficient to observe that the set

with the highest number of points equidistant from a

single point p in a disc/ball is the set of points on a

circle (sphere) of radius R, when p is at the center of a

disk/ball.

C. Further reducing the probability of attacker’s success

Attacker’s success can be further reduced by increas-

ing the space in which the covert base stations can be

positioned. So far we have assumed that the region in

CBS
positioning
region

detection region
(where CBSs can be
placed)

R'

R

pA

Fig. 7. Positioning and detection region. If the base stations can be

positioned outside of the positioning zone, that the probability of the

attacker’s success can be further decreased.

which the device proves its position (positioning region)

is the same as the region within which the covert base

stations are positioned. However, the covert base stations

can be placed also outside of the positioning region

(around the positioning region). The maximal distance

of the covert base stations to the positioning region

will depend on the power range of the attacker’s device

and on the antenna sensitivity of the base stations. This

is illustrated on Figure 7. In this case, the maximum

probability of attacker’s success is further reduced from

PmaxD ≈ 4∆
R

and PmaxS ≈ 6∆
R

to Pmax′

D ≈ 4∆
R′

and Pmax′

S ≈ 6∆
R′ , respectively, as R′ > R.

This example further shows that regardless of the size

of the positioning region (which can be arbitrarily small),

the probability of attacker’s success can be small if the

detection region is sufficiently large.

D. Sensitivity

In this subsection, we analyze the frequency of false

positives and false negatives as a function of the expected

positioning and ranging error ∆. If the authority sets ∆
to 0, the probability of the attacker’s success will be 0,

but due to the positioning and ranging errors the system

will reject all reported positions, even if the device is not

faking its position. In this case, the frequency of false

negatives will therefore be 1. Similarly, if ∆ is set to 2R

(maximal distance in the positioning region of radius R),

then the probability of the attacker’s success will be 1
(if the reported position is in the center of the disk/ball).

However, then, all the false positions of the attacker will

be accepted and the frequency of false negatives will be

1. It is therefore important to set ∆ such that it minimizes

the false negatives and false positives. This means that

∆ should be chosen as a minimum value that properly

reflects positioning and ranging errors.
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Fig. 8. The frequency of false positives and false negatives, and a crossover error rate for σ = 0.005R, n = 10 (a), σ = 0.005R, n = 5
(b), σ = 0.01R, n = 10 (c), σ = 0.01R, n = 5 (d). s = 1/k is the sensitivity. ∆ = kσ is the tolerated positioning and ranging error. σ is

the standard deviation of the positioning and ranging error.

As we have already noted, CBSs accept the position

of the node if |dc
F − dm

F | ≤ ∆. There are two sources

of error in this system. The first error is the positioning

error errorP , which is contained in the reported position

pF . The second error is the ranging error errorR and it is

contained in the distance measurement of dm
F . The total

error in |dc
F −dm

F | is therefore error = errorP +errorR.

If positioning and ranging errors are already known and

if we can assume that they are gaussian errorP ∼
N(0, σ2

P ) and errorR ∼ N(0, σ2
R) the the total error

of |dc
F − dm

F | is error ∼ N(0, σ2 = σ2
P + σ2

R). If the

errors are non-gaussian or even not independent, then we

do assume that the joint distribution of the error can be

obtained experimentally.

Without any loss of generality, we can express ∆ in

terms of σ as follows:

∆ = kσ (9)

where k is a positive real number and σ is the standard

deviation of error (σ =
√

σP + σR) for independent

gaussian errors). In the case that error is gaussian,

the probability that dc
F − dm

F falls within the interval

[−kσ, kσ] is given by [34]:

Pr(−kσ < dc
F − dm

F < kσ) =
2√
π

∫ k√
2

0

e−u2

du

= erf(
k√
2
) (10)

Here, interval [−kσ, kσ] is called the confidence interval.

The frequency of false positives can be than computed

as:

PrFP = 1 − Pr(−kσ < dc
F − dm

F < kσ) (11)

i.e., as the probability that dc
F − dm

F does not fall within

the interval [−kσ, kσ].

The frequency of false negatives is simply the proba-

bility of attacker’s success given by (in 2D):

PrFN =
4∆

R
=

4kσ

R
(12)



For n covert base stations, these probabilities are

defined as follows. The frequency of false positives is

defined as a probability that at least one of the covert

base stations rejects the reported position, even if the

position is correct. This probability is given by

Prn
FP = 1 − (Pr(−kσ < dc

F − dm
F < kσ))n (13)

The frequency of false negatives is defined as the prob-

ability that all the base stations accept the reported

position even if this position is false. This probability

is given simply as a probability of attacker’s success for

n covert base stations:

Prn
FN = (

4kσ

R
)n (14)

Figure 8 shows the the frequency of false positives

and false negatives as a function sensitivity s. Here,

s is defined as 1/k. Sensitivity s is thus inversely

proportional to the expected error ∆ and is a measure

of how sensitive is the position verification to errors; if

s = ∞, this means that the system is very sensitive, and

that positioning and ranging errors will are not tolerated,

if s = 0, this means that the system tolerates any error.

Consequently, the frequencies of false positives and false

negatives depend on s.

Figure 8 shows the frequencies of false positives and

false negatives for 10 and 5 covert base stations, and for

σ = 0.005R (0.5% of R) and σ = 0.01R (1% of R).

The emphasis in these figures is on the crossover error

rate. The crossover error rate is the error rate at which

the false positive frequency equals the frequency of false

negatives. From these figures we observe, as expected,

that with the increase in the number of covert base

stations, and with the reduction of the standard deviation

of the positioning and ranging error σ, the crossover

error rate can significantly reduced. If the number of

covert base stations is 5 and if σ = 0.01, the crossover

error rate will be 0.0002. This error rate is significantly

reduced to 2 × 10−9 if the σ is reduced to 0.005 and if

the number of covert base stations is increased to 10.

Even if the crossover error rate is a good indicator of

system performance, we emphasize that the security of

the system can be significantly improved if the system

can allow for a higher false positive frequency. We show

on Figure 9 the frequency of false negatives (probability

of attacker’s success) as a function of the number of

covert base stations, given that the frequency of false

negatives is set to 1%. This figure shows that with the

frequency of false negatives set to 1%, the probability

of attacker’s success is significantly lower than the

crossover error rate. We therefore observe that with 5 or

more covert base stations, the probability of attacker’s

success is lower than 10−5 with standard deviation of

error smaller than 0.03R.

We can also observe that with positioning systems that

exhibit high standard deviation of error (up to 30% or the

region radius R), the probability of attacker’s success can

still be significantly reduced by increasing the number

of covert base stations. For example, with σ = 0.2R and

20 hidden stations, the probability of attacker’s success

is only 2 × 10−6.

E. Integration with existing positioning systems

A number of systems for positioning and ranging of

wireless devices have already been proposed, based on

the propagation of RF, ultrasound and infrared signals.

Most of these systems can be adapted to work with

covert base stations. Here, we present a short overview

of the precision and area sizes of existing positioning

and ranging systems and we discuss how they can be

integrated with secure positioning based on covert base.

If positioning is based on GPS, the accuracy of the

positioning will be in 95% of cases better than 1m. RF

time of flight techniques being developed for positioning

GSM and CDMA Position aim to provide accuracy

of 50-100m and 10m, in the case of UL-TOA, GSM

and AGPS, CDMA, respectively. Note here that these

systems are designed for area and cell sizes which can

have radiuses of 500m (in highly dense urban areas) to

35km (in countryside). Indoor, positioning with WiFi

based on signal strength measurements with location

fingerprinting can achieve positioning accuracy of 2-

3m, whereas ultrasound-based ranging and positioning

systems can be accurate up to several centimeters. Ultra

wide band (UWB) time-of-flight based systems work

both indoor and outdoor. Indoor they can achieve rang-

ing precision better than 1m for ranges of up to 50m

and positioning accuracy of up to 15cm. Outdoor the

accuracy of UWB positioning and ranging systems can

be also very high, approx. 1m for distances of up to

2km [16]. All the numbers presented in this paragraph

are rough approximations of accuracies of these systems;

each of these systems can perform better or worse, if one

or more of system parameters change.

Here, we use the term accuracy very loosely as the

measures of accuracy vary from one system to another.

For example, if GPS positioning is used for providing

position reference to a device, and UWB ranging is used

for position verification, the standard deviation of the

error can be estimated at up to 4 meters. Given that
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Fig. 9. The frequency of false negatives (probability of attacker’s

success) if the frequency of false positives is set to 0.01R.

the range of UWB positioning can be up to 2km than

σ < 0.005R. Indoor, if ultrasound is used for positioning

and ultrasonic ranging for verification, we can assume

the standard deviation of error to be of the order of

20 centimeters and ranges up to 20m, meaning that

σ = 0.01R. As we have shown in Figures 8 and 9, the

probability of attacker’s success in these scenarios will

can then be as low as 10−35 (in best case).

VII. RELATED WORK

In the last decade, a number of indoor positioning

systems were proposed, based notably on infrared [43],

ultrasound [44], [35], received radio signal strength [3],

[20], [7] and time-of-flight radio signal propagation

techniques [27], [15]. These positioning techniques were

then extended and used for positioning in sensor and ad

hoc networks [13], [6], [9], [33], [32], [42], [30], [14].

Recently, a number of secure distance and location

verification have been proposed. Brands and Chaum [5]

proposed a distance bounding protocol that can be used

to verify the proximity of two devices connected by a

wired link. Sastry, Shankar and Wagner [41] proposed a

new distance bounding protocol, based on ultrasound and

radio wireless communication. In that work, the authors

also propose to make use of multiple base stations to

narrow down the area in which the nodes lie. However,

as this proposal is based on ultrasound distance bound-

ing, it can therefore be used only for the verification

of nodes’ positions, and only if external nodes have

no access to the area of interest. In [22], the authors

propose a mechanism called “packet leashes” that aims

at preventing wormhole attacks by making use of the

geographic location of the nodes (geographic leashes),

or of the transmission time of the packet between

the nodes (temporal leashes). Kuhn [25] proposed an

asymmetric security mechanism for navigation signals.

That proposal aims at securing systems like GPS [18].

Capkun and Hubaux [10] propose a technique called

verifiable multilateration, based on distance-bounding,

which enables a local infrastructure to verify positions of

the nodes. They further show how that technique can be

extended for secure positioning of a network of sensors.

Lazos et al. [26] proposed a set of techniques for secure

positioning of a network of sensors based on directional

antennas and distance bounding. Li et al. [28] propose

statistical methods for securing localization in wireless

sensor networks. Liu et al. [29] propose techniques

for the detection of malicious attacks against beacon-

based location discovery in sensor networks, based on

consistency of received beacons.

Recently, a number of proposals have been made to

protect the anonymity and location privacy of wireless

devices [36], [19], [37], [40], [23], [24].

VIII. CONCLUSION

In this work, we proposed a novel approach to secure

positioning based on covert (hidden and mobile) base

stations. This approach enables secure positioning with

a broad spectrum of positioning techniques: ultrasonic or

RF, based on received signal strength or on time of signal

flight. We have demonstrated that that this approach can

be easily integrated with several existing node-centric

and infrastructure-centric positioning schemes. We have

shown how security of this approach depends on the

precision of the positioning systems and on the number

of covert base stations.

Our future work includes implementations of our

schemes and their evaluation in various indoor and out-

door scenarios. We furthermore intend to investigate the

applicability of position verification to secure positioning

in mobile ad hoc networks. We also intend to investigate

in more detail the privacy implications of our approach.
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