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Abstract. The machine learning community has focused on confiden-
tiality problems associated with statistical analyses that “integrate” data
stored in multiple, distributed databases where there are barriers to sim-
ply integrating the databases. This paper discusses various techniques
which can be used to perform statistical analysis for categorical data,
especially in the form of log-linear analysis and logistic regression over
partitioned databases, while limiting confidentiality concerns. We show
how ideas from the current literature that focus on “secure” summa-
tions and secure regression analysis can be adapted or generalized to the
categorical data setting.

1 Introduction

There are many scientific or business settings which require statistical analysis
that “integrate” data stored in multiple, distributed databases. Unfortunately,
there can be barriers to simply integrating the databases. In many cases, the
owners of the distributed databases are bound by confidentiality to their data
subjects, and cannot allow outsiders access. This paper discusses various tech-
niques which can be used to perform statistical analysis for categorical data, es-
pecially in the form of log-linear analysis and logistic regression over partitioned
databases, while limiting confidentiality concerns. The technique used depends
on how the database is partitioned, either horizontally (with the same variables
but different cases) or vertically (with the same cases but different variables),
and also whether log-linear or logistic regression analysis is the goal. This paper
will focus primarily on horizontally partitioned databases, and especially on the
fully categorical data situation in which case the minimal sufficient statistics
are marginal totals and logistic regression is effectively equivalent to log-linear
model analysis (e.g., see [1,3,7]).

Much of the literature on privacy-preserving data mining and secure com-
putation has focused on regression problems. A subset of the technical issues
relevant to those problems are of interest in this paper. In the vertically parti-
tioned case the concern remains the same, that is specifying a full model based
on all of the variables. But in the the horizontally partitioned case there is a new



element, whether any single owner actually has enough data to get maximum
likelihood estimates (MLEs)! For regression problems this is primarily an issue
of identification and we usually require that the sample size n is greater that the
number of variables p, although as n increases we get greater accuracy for our
regression coefficients and our inferences. But for categorical data problems we
will often need to deal with a different form of degeneracy due to sparse data—
that associated with patterns of zero counts which yield MLEs on the boundary
of the parameter space and thus “do not exist” (for details on existence see es-
pecially [6,9,23]). Thus a very important reason for entering into arrangements
to do secure computation is that pooled sufficient statistics and tables may well
produce existence when no single party has sufficient data to assure the same.

While this paper will focus primarily on log-linear modeling and logistic re-
gression for horizontally partitioned databases, there has been a lot of recent
work on broader literature related to partitioned databases. The National Insti-
tute of Statistical Sciences (NISS) has produced much work for securely com-
bining a horizontally partitioned database and on performing linear regression
analysis on a horizontally partitioned database without actually integrating the
data (e.g., see [15,16,21]). Theory regarding performing linear regression on ver-
tically partitioned databases has also been devoloped (e.g., see [14]). There has
also been work exploring some broader issues of the privacy impact of data min-
ing methods and their work is related to the literature on secure multi-party
computation (e.g., see [27]). Specifically, Kantarcioglu and Clifton [13] discuss
mining of association rules on horizontally partitioned database, while the work
of Vaidya et al. [25] relates to mining for association rules on vertically parti-
tioned database.

The paper is organized in the following manner. In the next section we present
a formulation of the general problem. Then, in Section 3, we turn to the prob-
lem of secure computation for log-linear models (and logit models) over horizon-
tally partitioned databases and we relate some of the ideas to the literature on
disclosure limitation for single databases involving such data. In Section 4 we
present a technique for dealing with logistic regression over horizontally parti-
tioned databases and we contrast it with the approach from section 3 in the case
of categorical predictors. We conclude with a discussion of distributed database
techniques and other ongoing work.

2 Problem Formulation

Consider a “global” database that is partitioned among a number of parties
or “owners.” These owners could be thought of as companies or people who
have distinct parts of the global database. In a statistical context, these owners
are referred to as agencies. These agencies may want to perform log-linear or
logistic analysis on the global database, but are unable or unwilling to combine
the databases for confidentiality or other proprietary reasons. The goal is to
share the statistical analysis as if the global database existed, without actually
creating it in a form that any of the owners can identify and utilize.
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2.1 Partitioned Database Types

There are two types of partitioned databases discussed in this paper, horizon-
tally and vertically partitioned databases. We are going to assume there are K
agencies with K ≥ 2, but note that a case with K = 2 is often trivial for security
purposes. Horizontally partitioned data is the case such that agencies share the
same fields but not the same individuals, or subjects. Assume the data consist
of vectors X and Y, such that:

X′ = [X(1),X(2), · · · ,X(k)] and Y′ = [Y(1),Y(2), · · · ,Y(k)], (1)

and X(k) is the matrix of independent variables, Y(k) is the vector of responses,
and n(k) is the number of individuals, all that belong to agency k, k = 1, . . . ,K.
Let N =

∑K

k=1 n(k). Each X(k) is an n(k)×p matrix and we will assume that the
first column of each X(k) matrix is a column of 1’s. We will refer to X and Y

as the “global” predictor matrix and the “global” response vector respectively
([22]). For horizontally partitioned databases it is assumed that agencies all have
the same variables, and that no agencies share observations. Also, the attributes
need to be in the same order.

In vertically partitioned data, agencies all have the same subjects, but dif-
ferent attributes. Assume the data looks like the following:

[YX] =
[

Y X(1) . . . X(k−1)
]

, (2)

where X(k) is the matrix of a distinct number of independent variables on all
N subjects, Y is the vector of responses, and p(k) is the number of variables for
agency k, k = 1, . . . ,K. Note that each X(k) is an N × p(k) matrix and we will
assume that the first column of the X(1) matrix is a column of 1’s. For vertically
partitioned database it is assumed that agencies all have the same observations,
and that no agencies share variables. In order to match up a vertically parti-
tioned database, all agencies must have a global identifier, such as social security
number. We are currently working on the problem of vertically partitioned data
in the categorical data setting but do not report on any results here.

There is a third possible kind of partitioning which goes well beyond the
two special cases and corresponds more closely to real-world settings, namely
horizontally and vertically overlapping data, perhaps with measurement error.
Kohnen et al. [19] treat a special case of this in the form of vertically partitioned,
partially overlapping as an incomplete data regression problem, and use the EM
algorithm to estimate values of the “missing” data.

3 Secure Computation for Horizontally Partitioned

Categorical Databases

Karr et al. [16] outline an approach that allows for secure maximum likelihood
estimation for a density belonging to an exponential family. This technique can
be used for log-linear model analysis in fully categorical data situations, where
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the minimal sufficient statistics are sets of marginal totals. This secure maximum
likelihood technique uses a process called secure summation, which we describe
first and then point out how this fits with the exponential family formulation.
We then discuss the implementation for log-linear models as well as a possible
way to simply combine the tables securely.

Secure Summation Consider agencies which all have a single number, and
would like to know the sum of all their numbers. However, the agencies do not
want to reveal their individual number to any other agency. Secure summation is
a process where the sum of all the agencies can be securely computed. The basic
idea is that one agency adds a random number R to their number v1 and then
reports to the next agency in line R + v1. The second agency adds their number
v2 to the number received and sends R+v1 +v2 to the third agency. The pattern
continues until agency k has computed R + v1 + . . . + vk and gives the number
to agency 1. Agency 1 then subtracts R from the total, and shares the number
with all of the other agencies. As long as multiple agencies are not colluding,
secure summation is a very secure process. For a more detailed description of
this process, consult Karr et al. [16]. There are other techniques that have been
suggested to eliminate collusion but we do not consider them here.

3.1 Secure Maximum Likelihood Estimation for Exponential

Families

Consider a global database {xi} modeled as independent samples from an un-
known density f(θ, ·) belonging to an exponential family:

log f(θ, x) =
L

∑

ℓ=1

cℓ(x)dℓ(θ). (3)

Here the {dℓ(θ)} are known as canonical parameters and the {cℓ(x)} are the
corresponding minimal sufficient statistics (MSSs). Then under the assumption
of independence of L rows, the global log-likelihood function is

log L(θ, x) =
L

∑

ℓ=1

dℓ(θ)

[

K
∑

k=1

∑

xi∈Dk

cℓ(xi)

]

, (4)

where Dk is the database of owner k.
If the database owners can agree in advance on the model (3), e.g., the log-

linear model with no second order interaction, they can use secure summation
to compute each of the L terms in (4). Then each agency can maximize the
likelihood function however they choose. There remains serious potential con-
fidentiality problems once L ≥ 2 since the MSSs are not independent of one
another and they jointly contain information about the full table. We thus need
to check the extent to which this information is sufficient to seriously compro-
mise the confidentiality of any individual in the database — i.e., if one party
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can identify with sufficiently high probability an individual in another party’s
database. In what follows we exploit the fact that log-linear models have a dis-
crete exponential family structure.

3.2 Secure Maximum Likelihood for Log-linear Models

The secure maximal likelihood technique can be used for fitting a log-linear
model. Consider a three-dimensional model coming from simple multinomial
sampling. We are therefore assuming that the total sample size n is fixed. In this
situation, the p.d.f. for the multinomial distribution of {nijk} is

n!
∏

i,j,k

nijk!

∏

i,j,k

(mijk

n

)nijk

, (5)

where {mijk} are the expected cell counts. The log-likelihood of the multinomial
is readily obtained from the p.d.f. (5) as

constant +
∑

i,j,k

nijk log(mijk)− n log(n). (6)

Since the first and third term do not depend on the expected cell counts
mijk, we need only to consider the remaining middle term, the kernel of this
function. The saturated log-linear model for the expected cell count mijk is

log(mijk) = u + u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk).(7)

Substituting for mijk from (7) into (6), we obtain for the kernel

∑

i,j,k

nijk log(mijk) = Nu +
∑

i

ni++u1(i) +
∑

j

n+j+u2(j) +
∑

k

n++ku3(k)

+
∑

i,j

nij+u12(ij) +
∑

i,k

ni+ku13(ik)

+
∑

jk

n+jku23(jk) +
∑

i,j,k

nijku123(ijk). (8)

Since the multinomial distribution belongs to the class of discrete exponen-
tial family densities, the minimal sufficient statistics (MSSs) are the observed
count n-terms adjacent to the unknown parameters, the u-terms. If we consider
an unsaturated model the nijk terms fall out of expression (8), and those terms
that remain give the MSSs. These marginal tables can then be used to estimate
the cell expectations {m̂ijk} under the model. In fact, it is in general multi-way
tables that the MSSs correspond to the highest order u-terms in the model and
the likelihood equations are found by setting them equal to their expectations
(e.g., see [1,3,8,12]). Further, since the multinomial distribution is in the expo-
nential family, working with log-linear models allows us to use the general secure

5



maximum likelihood equation (4). Similarly, if the sampling model was “Pois-
son” or product-multinomial, the MSSs are essentially the same once we add in
any margin fixed by the sampling scheme, and so the same secure computation
idea works. In the product-multinomial situation, the log-linear model can be
re-expressed as a logit model and this provides a way for dealing with the secure
logistic regression computation problem in the fully categorical data case.

Now consider a horizontally partitioned categorical database. Since (4) is
satisfied for log-linear models, it is possible to use secure summation to find the
global sufficient statistics, which are marginals that correspond to the highest
order u-terms in the model. The agencies will use multiple secure summation
processes to create the global marginal statistics. The first agency adds a random
number to each marginal value agreed to be summed, and then passes the values
to the next agency. The second agency adds their numbers to the marginals, and
passes them along. Once the first agency receives these it removes the random
values and shares the marginals with all the agencies. If only necessary marginals
for a specific model are computed through secure summation, the downside of
this process is limited model comparison. If we wish to assess the fit of the
model, then we can compare it to a larger log-linear model with additional u-
terms. Thus we need to compute additional marginal tables in order to estimate
the expected values under the larger model. The two models could be compared
to see whether the more parsimonious provides an adequate fit to the data.

As we noted above, the MSSs, i.e., the marginal tables, carry information
about the full table. This can come in the form of bounds for cell counts, or actual
distributions over possible tables, for example see [5,8,10,11,24]. Computing and
thus revealing additional combined marginal totals increases the information
known about the individual cell in the overall combined table, possibly to an
unacceptable level. Thus to protect individual level confidentiality in this setting
we need to go beyond secure computation to incorporate methods from the more
traditional disclosure limitation literature. There is also related literature on
association rule mining, e.g., see [13,27], but it either focuses on the release of
a single marginal or the form of the rule without the relevant data which turns
out to be marginal totals [11]. Since using the association rule requires data to
allow one to make predictions, releasing just the rule is rarely ”useful.”

3.3 Secure Contingency Table Analysis

Depending on the level of confidentiality, agencies may be willing to create a
global contingency table, as long as the sources of data elements remain pro-
tected. Once a global contingency table is created, statistical analysis can be
performed normally on the full database. A secure contingency table of counts
or sums can be created using multiple secure summations. The general process
is as described earlier in the paper, but instead of the first agency creating just
one random number, the agency will create a random number for each cell in
the table. Then the secure summation pattern applied to every cell in the table
continues until the first agency gets the table back, removes all of the random
cell values, and reports the full contingency table to the other agencies.
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Often a categorical database is too large and sparse for this secure summation
process to be efficient enough to use. If that is the case, then a secure data
integration process can be used to get a list of cells which have non-zero cell
counts, c.f., see discussion in [4] on issues with large sparse contingency tables.
This general process is summarized later in this paper. The only adjustment
for secure contingency table analysis is that the “data” being inserted into the
growing database is really a list of non-zero cell counts. Once a list of non-zero
cell counts is created, the multiple secure summation process can be used to get
the complete table. This way, the agencies only need to use secure summation
for a possibly very small subset of cells in a given table.

The secure contingency table process is only effective if the data elements
themselves do not reveal from which party they come. This problem of the
data revealing their source is one faced by other methodologies on secure data
integration, e.g., see [17,27].

Secure Data Integration Secure data integration is the process of securely
combining observations of horizontally distributed databases into one data set.
The basic secure data integration process consists of agencies incrementally con-
tributing data into a growing database until the full database is complete. The
goal of SDI is to combine these databases in a way so that the agencies will not
be able to tell which agency a particular observation came from, except of course
for the agency which originally had that observation. Karr et al. [16] lay out the
secure data integration process in a reasonably complete fashion.

The growing database is passed from agency to agency in a round robin
order, but in an order unknown to the agencies. Therefore, a trusted third party
must be used, but the data can be encrypted so that only agencies can read the
data. As the growing database is passed around, the agencies input a random
number of observations into the database. This pattern continues until all the
observations are into the growing database. Using this secure data integration
process, a database can be securely combined.

4 Logistic Regression Over Horizontally Partitioned Data

In this setting, logistic regression over a horizontally partitioned database is de-
sired. We first explain that logistic regression can be considered as a specific form
of the log-linear modeling. Later in the section we explain a specific technique
for performing logistic regression over a horizontally partitioned database, which
is not related to log-linear modeling.

4.1 Logistic Regression From Log-Linear Modeling

It is possible to use the approach above for log-linear models to do secure logistic
analysis if all the explanatory variables are categorical. Consider simple logistic
regression case with a single binary response variable. We can represent the data
in contingency table form. The linear logistic regression model for this problem is
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essentially identical to the logit model found by differencing the log expectations
for the two levels of the response variable, c.f. [3,7].

We illustrate for a logistic regression model with two binary explanatory
variables (variables 1 and 2) and a binary response variable (variable 3). The
data form a 2×2×2 table. We work with the no second-order interaction model
and construct the logit, i.e.,

logitij = log

(

mij1

mij2

)

= log(mij1)− log(mij2)

=
[

u + u1(i) + u2(j) + u3(1) + u12(ij) + u13(i1) + u23(j1)

]

−
[

u + u1(i) + u2(j) + u3(2) + u12(ij) + u13(i2) + u23(j2)

]

= (u3(1) − u3(2)) + (u13(i1) − u13(i2)) + (u23(j1) − u23(j2)). (9)

Since we may place zero-sum constraints over the k index, the logit model in
equation (9) simplifies to

log

(

mij1

mij2

)

= 2u3(1) + 2u13(i1) + 2u23(j1) = β0 + β1x1 + β2x2, (10)

where x1 = 1 for log(m1j1/m1j2) and x1 = 0 for log(m2j1/m2j2) and similarly
for x2. Therefore, performing logistic regression over a horizontally partitioned
database can be acheived through the techniques discussed in Section 3.

4.2 Secure Logistic Regression Approach

We now turn to a more general approach for logistic regression over a horizontally
partitioned databases using ideas from secure regression (e.g. see [15],[16],[22]).
In ordinary linear regression, the estimate of the vector of coefficients is

β̂ = (XtX)−1XtY. (11)

To find the global β̂ vector, agency k calculates their own ((X(k))tX(k)) and
(X(k))tY(k) matrices. The sum of these respective matrices are the global XtX

and XtY matrices. Since the direct sharing of these matrices results in a full
disclosure, the agencies need to employ some other method such as secure sum-
mation described earlier in the paper. In this secure summation process, the
first agency adds a random matrix to its data matrix. The remaining agencies
add their raw data to the updated matrix until in the last step the first agency
subtracts off their added random values and shares the global matrices. Reiter
[22] discusses some possibilities of a disclosure with this method.

We are suggesting to use the developed secure matrix sharing techniques and
apply them to the logistic regression setting. We wish to fit a logistic regression

log(
π

1− π
) = Xβ (12)

model to the global data, X and Y. In logistic regression, the vector of coeffi-
cients, or β, is of interest, but since the estimate of β cannot be found in closed
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form, we use Newton-Raphson or a related iterative method. At each iteration
of Newton-Raphson, we calculate the new estimate of β̂ by

β̂(s+1) = β̂(s) + (XtW(s)X)−1Xt(Y − µ(s)) (13)

where W(s) = Diag(njπ
(s)
j (1 − π

(s)
j )), µ(s) = njπ

(s)
j and π

(s)
j is the probability

of a ”success” for the jth observation in the iteration s, j = 1, · · · , N . The
algorithm stops when the estimate converges. Note that we require an initial
estimate of β̂ (e.g., see [1] for more details).

Now we can apply the secure summation approach to our logistic regression
analysis. We can choose an initial estimate for the Newton-Raphson procedure
in two ways: (i) the parties can discuss and share an initial estimate of the coef-
ficients, or (ii) we can compute initial estimates using ordinary linear regression
of the responses and predictors using secure regression computations. In order
to update β, we need the parts shown in (13). We can break the last term on the
right-hand side up into two parts: the (XtW(s)X)−1 matrix and the Xt(Y−µ(s))
matrix. At each iteration of Newton-Raphson, we update the π vector, and thus
update the W matrix and the vector µ. We can easily show that

XtW(s)X = (X(1))t(W(1))(s)X(1) + (X(2))t(W(2))(s)X(2)

+ · · · + (X(1))t(W(k))(s)X(k) (14)

and

Xt(Y − µ(s)) = X(1)(Y(1)
− (µ(1))(s)) + X(2)(Y(2)

− (µ(2))(s))

+ · · · + X(k)(Y(k)
− (µ(k))(s)) (15)

where (µ(k))(s) is the vector of n
(k)
l π̂

(k)
l values and (W(k))(s) = Diag(n

(k)
l π̂

(k)
l (1−

π̂
(k)
l ) for agency k, k = 1, · · · ,K, l = 1, · · · , n(k) and for iteration, s. This means

that for one iteration of Newton-Raphson, we can find the new estimate of β by
using secure summation as suggested by Reiter [22].

One major drawback of this method is that we have to perform secure matrix
sharing for every iteration of the algorithm; every time it runs, we have to share
the old β̂ vector with all of the agencies so they may calculate their individual
pieces. When all variables are categorical, this method involves more computa-
tion than using the log-linear model approach to logistic regression, where only
the relevant marginal totals must be shared among the agencies. In the more
general setting, we also have no simple way to check on potential disclosure of
individual level data and thus we are providing security only for the parties and
not necessarily for the individuals in their databases, e.g., see discussion in [22]
for the linear regression secure computation problem.

Diagnostics Finding the coefficients of a regression equation is not sufficient;
we need to know whether the model has a reasonable fit to the data. One way to
assess the fit is to use various forms of model diagnostics such as residuals, but

9



this can potentially increase the risk of disclosure. As with the log-linear model
approach we can compare log-likelihood functions of the larger model and the
more parsimonious model. The log-likelihood for the logistic regression is:

N
∑

j=1

yj{log(πj) + (1− yj) log(1− πj)}. (16)

We can rewrite the equation in terms of the K agencies and use secure summation
to find this value

K
∑

k=1

n(k)
∑

j=1

{y
(k)
j log(π

(k)
j ) + (1− y

(k)
j ) log(1− π

(k)
j )}, (17)

as well Pearson’s χ2 statistic or the deviance:

X2 =
K

∑

k=1

n(k)
∑

j=1





y
(k)
j − n

(k)
j π

(k)
j

√

n
(k)
j π

(k)
j (1− π

(k)
j )





2

(18)

G2 = 2
K

∑

k=1

n(k)
∑

j=1

{

y
(k)
j log

(

y
(k)
j

µ̂
(k)
j

)

+ (n
(k)
j − y

(k)
j ) log

(

n
(k)
j − y

(k)
j

n
(k)
j − µ̂

(k)
j

)}

. (19)

If the change in the likelihood is large with respect to a chi-square statistic with
(d.f.) degrees of freedom, we can reject the null hypothesis and conclude that
the simpler model provides a better fit to the data.

4.3 Comparison of “Secure” Log-Linear Regression Methods

To demonstrate the difference in computation between the log-linear method for
logistic regression and the secure logistic regression method, we will go through a
simple example. The example is not intended to show how secure the processes
are, but only to demonstrate the difference between computation in the two
methods. Any use of secure summation between just two agencies is useless,
because both agencies can simply subtract their number from the final result to
find the other agency’s data.

The data in Table 1 come from a randomized clinical trial on the effectiveness
of an analgesic drug for patients in two different centers and with two different
statuses reported on in [18], c.f. Fienberg and Slavkovic [11]. Treatment has 2
levels: Active=1 and Placebo=2. The original response had 3 levels: Poor=1,
Moderate=2, and Excellent=3, but for the purposes of this example we combine
the last two levels so the response variable is binary: Poor=1 and Not Poor=2.

The data from the first center correspond to Agency 1 and those from the
second center to Agency 2 (see Table 1). Consider the possibility that the two
centers would like to do statistical analysis over their combined data (see Table
2), but are unwilling to share their individual cell values.
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Agency 1 Data Agency 2 Data

Response Response
Status Treatment 1 2 Status Treatment 1 2

1 1 3 25 1 1 12 12
1 2 11 22 1 2 11 10
2 1 3 26 2 1 3 13
2 2 6 18 2 2 6 12

Table 1. Clinical trial data by Agency.

Response
Status Treatment 1 2

1 1 15 37
1 2 22 32
2 1 6 39
2 2 12 30

Table 2. Combined clinical trial data over the clinical center.

Log-Linear Approach for Logistic Regression We first consider logistic regression
from log-linear modeling. We fit the log-linear model with no second order in-
teraction which corresponds to the logistic regression model with no interaction
(c.f. Section 4.1, and equation (10)). Note the i index relates to variable Status,
the j to Treatment, and the k to Response. The two agencies first use secure
summation to compute the 12 marginal totals, i.e., MSSs, nij+, ni+k, and n+jk.
For example, to find n11+, Agency 1 adds some random number to its n11+ value
of 28, and sends the number to Agency 2. Agency 2 adds their n11+ value of 24
and sends the updated value to Agency 1, who subtracts the random number
and reveals the total n11+ value of 52 (see Table 3 for the relevant marginals.)

ind val nij+ ni+k n+jk

11 52 37 21
12 54 69 76
21 45 18 34
22 42 69 62

Table 3. Relevant marginal values computed through secure summation.

Next, we fit the desired log-linear model in Splus via loglin function that uses
iterative proportion fitting (IPF); it converged in 3 iterations. Table 4 reports 4
relevant log odds values.

Secure Logistic Regression Approach In the secure logistic regression approach,
we consider the data in a database form instead of a contingency table. We use
the Newton-Raphson algorithm to fit the logistic regression model presented in
Equation (12). We used 0s for the initial β̂(0) values. Since we know the response

variable must be 0 or 1, we would not expect the β̂ values to be very far from the
(−1, 1) interval. The algorithm converged in 4 iterations, and Table 4 reports 4
relevant log odds values.
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Log-Linear Model Logistic Regression

log
n

m̂111
m̂112

o

= −0.989228 log
n

π̂11
1−π̂11

o

= −0.989230

log
n

m̂121
m̂122

o

= −0.305730 log
n

π̂12
1−π̂12

o

= −0.305717

log
n

m̂211
m̂212

o

= −1.707879 log
n

π̂21
1−π̂21

o

= −1.707895

log
n

m̂221
m̂222

o

= −1.024381 log
n

π̂22
1−π̂22

o

= −1.024382

Table 4. The estimated log odd ratios from the two different models.

Comparison of the Two Approaches The results for the two approaches as re-
ported in Table 4 agree as expected, but there is a significant computational
difference. In the log-linear approach to logistic regression the agencies only
need to perform one round of secure summation during this entire process to
compute the relevant marginal values. After the relevant marginals have been
revealed, the agencies can perform the analysis with them, and do not need to
share any information again, thus reducing computations.

The secure logistic regression approach is computationally more intensive
than the log-linear method since the agencies need to do secure summation at
each iteration of the Newton-Raphson algorithm. Also, in real life settings, the
data are likely to be more complex, meaning more iterations needed. This would
make the secure logistic regression approach relatively even slower.

5 Conclusion

We have outlined a pair of approaches to carry out “valid” statistical analysis
for log-linear model logistic regression of horizontally partitioned databases that
does not require actually integrating the data. This allows parties (e.g., statis-
tical agencies) to perform analyses on the global database while not revealing
to one another details of the global database beyond those used for the joint
computation. For the fully categorical data case we noted that log-linear mod-
els provided an alternative approach to logistic regression and one which also
allowed us to respect the confidentiality of the data subjects. We also outlined a
possible way to securely create a contingency table for horizontally partitioned
categorical databases.

We are still developing ideas for logistic regression and log-linear models
for strictly vertically partitioned databases and we would like to move towards
problems involving partially overlapping data bases with measurement error.
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