
Homomorphic Encryption for Approximate Arithmetic

Homomorphic encryption is a cryptosystem that supports arithmetic operations between

ciphertexts. This technology has great potentials in real-world applications since it allows us to

securely outsource expensive computation on public (untrusted) server. The security of practical

homomorphic  encryption  schemes  is  based  on  the  hardness  of  ring  learning  with  errors

problem. The inherent limitation of these constructions is that they only support the arithmetic

operations over modular spaces so the required size of parameter for real number operations

(ie, no modular reduction over plaintext space) is too large to be practically implemented. On the

other hand, real-world applications such as statistical  testing, neural networks,  and machine

learning do not require absolute precision and they are all to a certain degree approximate. 

Recently, Cheon et al presented a new homomorphic encryption scheme which supports

an  approximate  arithmetic of  encrypted  messages  [18].  The  main  idea  is  to  consider  an

encryption noise (on the ciphertext for security) as a part of computation error occurring during

approximate arithmetic. In other words, given a secret key sk, an encryption ct of a plaintext m

satisfies the equation ct,sk = m+e (mod q) for some small error e.

We suppose that the underlying HE scheme is based on the RLWE assumption over the

cyclotomic ring R=Z[X]/(XN+1) for being a power of two. Let us denote by q the reduction mod

q into the interval  -q/2,q/2Z of the integer.  We write  Rq=  R/qR for the residue ring of  R

modulo an integer q. The following is a description of the homomorphic encryption scheme [18].

 ParamsGen():  Given the security parameter  ,  choose a power-of-two integer  N,  a

modulus Q=q2 and a discrete Gaussian distribution . The RLWE problem of parameter

(N, Q, ) should achieve at least  bits of security level of cryptosystem. Output params

 (N, q, ).

 KeyGen(params):  Generate a polynomial  s(X)   R by sampling its coefficient  vector

randomly from a sparse distribution on {0,1,-1}N and set the secret key as sk  (1, s(X)).

Sample a polynomial  a(X) uniformly at random from Rq and an error polynomial  e(X)

from  . Set the public key as  pk(b(X),  a(X))   RqRq where  b(X)   -a(X)s(X)+e(X)

(mod q). Let s'(X)  s(X)2. Sample a polynomial a'(X) uniformly at random from RQ and

e'(X) from  .  Set  the evaluation key as  evk  (b'(X),  a'(X)) RQRQ where  b'(X)  

-a'(X)s(X)+e'(X) +qs'(X) (mod Q).



 Encpk(m):  Sample  a  small  polynomial  v(X)  (with  0,1,-1  coefficients)  and  two  error

polynomials e0(X), e1(X) from . Output the ciphertext ct  v(X)  pk + (m+e0(X), e1(X)) 

RqRq.

 Decsk(ct): For ct = (c0(X), c1(X)), output m  c0(X) + c1(X)s(X) (mod q).

 Add(ct, ct'): Add two ciphertexts and output ctadd   ct + ct' (mod q).

 Mult(ct, ct'): For two ciphertexts ct = (c0(X), c1(X)) and ct'=(c0'(X), c1'(X)), let (d0(X), d1(X),

d2(X))  =  (c0(X)c0'(X),  c0(X)c1'(X)  +  c1(X)c0'(X), c1(X)c1'(X))  (mod  q). Output  the

ciphertext ctmult  (d0(X), d1(X)) + ⌊q-1d2(X)evk⌉ (mod q).

The  native  plaintext  space  is  simply  represented  as  the  set  of  polynomials  in  R  with

coefficient less than q, but it can be understood as a vector of (N/2)-dimensional complex vector

using the encoding/decoding method described in  [18] (each factor is called a  plaintext slot).

This  technique  enables  us  to  parallelize  both  space  and  computation  time.  Addition  and

multiplication in R correspond the component-wise addition and multiplication on plaintext slots.

In addition, we could get a shift of the plaintext slots, that is, if  ct encrypts a plaintext vector

(m1,m2,…,mk), we could obtain the encryption of the shifted vector (m2,…,mk,m1).

This  homomorphic  encryption  scheme  has  its  own  distinct  and  unique  characteristics

represented by the following rescaling procedure.

 RS(ct; r). For a ciphertext ct  RqRq and r>0, output the ciphertext ct'  ⌊r-1ct⌉  Rq'

Rq' for q'=r-1q. 


