
Homomorphic Encryption for Approximate Arithmetic

Homomorphic encryption is a cryptosystem that supports arithmetic operations between

ciphertexts. This technology has great potentials in real-world applications since it allows us to

securely outsource expensive computation on public (untrusted) server. The security of practical

homomorphic encryption schemes is based on the hardness of ring learning with errors

problem. The inherent limitation of these constructions is that they only support the arithmetic

operations over modular spaces so the required size of parameter for real number operations

(ie, no modular reduction over plaintext space) is too large to be practically implemented. On the

other hand, real-world applications such as statistical testing, neural networks, and machine

learning do not require absolute precision and they are all to a certain degree approximate.

Recently, Cheon et al presented a new homomorphic encryption scheme which supports

an approximate arithmetic of encrypted messages [18]. The main idea is to consider an

encryption noise (on the ciphertext for security) as a part of computation error occurring during

approximate arithmetic. In other words, given a secret key sk, an encryption ct of a plaintext m

satisfies the equation ct,sk = m+e (mod q) for some small error e.

We suppose that the underlying HE scheme is based on the RLWE assumption over the

cyclotomic ring R=Z[X]/(XN+1) for being a power of two. Let us denote by q the reduction mod

q into the interval -q/2,q/2Z of the integer. We write Rq= R/qR for the residue ring of R

modulo an integer q. The following is a description of the homomorphic encryption scheme [18].

 ParamsGen(): Given the security parameter , choose a power-of-two integer N, a

modulus Q=q2 and a discrete Gaussian distribution . The RLWE problem of parameter

(N, Q, ) should achieve at least  bits of security level of cryptosystem. Output params

 (N, q, ).

 KeyGen(params): Generate a polynomial s(X)  R by sampling its coefficient vector

randomly from a sparse distribution on {0,1,-1}N and set the secret key as sk  (1, s(X)).

Sample a polynomial a(X) uniformly at random from Rq and an error polynomial e(X)

from . Set the public key as pk(b(X), a(X))  RqRq where b(X)  -a(X)s(X)+e(X)

(mod q). Let s'(X)  s(X)2. Sample a polynomial a'(X) uniformly at random from RQ and

e'(X) from . Set the evaluation key as evk  (b'(X), a'(X)) RQRQ where b'(X) 

-a'(X)s(X)+e'(X) +qs'(X) (mod Q).

 Encpk(m): Sample a small polynomial v(X) (with 0,1,-1 coefficients) and two error

polynomials e0(X), e1(X) from . Output the ciphertext ct  v(X)  pk + (m+e0(X), e1(X)) 

RqRq.

 Decsk(ct): For ct = (c0(X), c1(X)), output m  c0(X) + c1(X)s(X) (mod q).

 Add(ct, ct'): Add two ciphertexts and output ctadd  ct + ct' (mod q).

 Mult(ct, ct'): For two ciphertexts ct = (c0(X), c1(X)) and ct'=(c0'(X), c1'(X)), let (d0(X), d1(X),

d2(X)) = (c0(X)c0'(X), c0(X)c1'(X) + c1(X)c0'(X), c1(X)c1'(X)) (mod q). Output the

ciphertext ctmult  (d0(X), d1(X)) + ⌊q-1d2(X)evk⌉ (mod q).

The native plaintext space is simply represented as the set of polynomials in R with

coefficient less than q, but it can be understood as a vector of (N/2)-dimensional complex vector

using the encoding/decoding method described in [18] (each factor is called a plaintext slot).

This technique enables us to parallelize both space and computation time. Addition and

multiplication in R correspond the component-wise addition and multiplication on plaintext slots.

In addition, we could get a shift of the plaintext slots, that is, if ct encrypts a plaintext vector

(m1,m2,…,mk), we could obtain the encryption of the shifted vector (m2,…,mk,m1).

This homomorphic encryption scheme has its own distinct and unique characteristics

represented by the following rescaling procedure.

 RS(ct; r). For a ciphertext ct  RqRq and r>0, output the ciphertext ct'  ⌊r-1ct⌉  Rq'

Rq' for q'=r-1q.

