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Secure Massive MIMO Relaying Systems in a

Poisson Field of Eavesdroppers
Tiep M. Hoang, Student Member, IEEE, Trung Q. Duong, Senior Member, IEEE, Hoang Duong Tuan,

and H. Vincent Poor, Fellow, IEEE

Abstract—A cooperative relay network in the presence of
eavesdroppers, whose locations are distributed according to a
homogeneous Poisson point process, is considered. The relay
is equipped with a very large antenna array and can exploit
maximal ratio combing (MRC) in the uplink and maximal ratio
transmission (MRT) in the downlink. We consider a realistic
model that the channel state information of every eavesdropper
is not know as eavesdroppers tend to hide themselves in practice.
The destination is thus in a much weaker position than all the
eavesdroppers because it only receives the retransmitted signal
from the relay. Under such setting, we investigate the security
performance in two schemes for relaying operation: amplify-and-
forward (AF) and decode-and-forward (DF). The secrecy outage
probability, the connection outage probability, and the trade-off
problem which is controlled by the source power allocation are
examined. Finally, suitable solutions for the source power (such
that once the transmission occurs with high reliability, the secure
risk is below a given threshold) are proposed for a trade-off
between security and reliability issue.

Index terms—Security, massive MIMO, Poisson point pro-

cess, maximum-ratio combining, maximum-ratio transmission,

amplify-and-forward, decode-and-forward.

I. INTRODUCTION

Physical layer security (PLS) has attracted considerable

attention from both academia and industry in recent years

[1]. With the recent emergence of large antenna arrays [2],

PLS is a promising approach for massive multiple-input

multiple-output (MIMO) systems as countermeasures against

eavesdropping attacks. Noticeably, the desired characteristics

of massive MIMO systems are not present in conventional

systems with small antenna arrays, e.g. an inner product

of two random vectors can converge in distribution. Indeed,

massive MIMO systems have been demonstrated to improve

secure performance in several studies [3]–[12]. Having said
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that, the role of massive MIMO systems in preventing eaves-

droppers is not completely understood yet, mainly because

PLS contains relatively many distinct aspects such as artifi-

cial noise (AN) technique, antenna/relay/jammer/user selection

techniques, and strategies to deal with the leakage of informa-

tion. Besides, different combinations of secure and relaying

techniques also make security scenarios more diverse. Thus,

the issue of security in massive MIMO relaying systems is

still largely open.

Additionally, it is should be mentioned that the assumption

of presence of eavesdroppers is always of crucial importance.

Several works assumed that the information of eavesdroppers

is available at transmitters; however, that assumption is im-

practical in general. Since the location of eavesdroppers is

typically not known, many authors have taken into account

the spatial distribution of eavesdroppers by adopting a spatial

point process model. For example, in order to model the

spatial location of eavesdroppers, the authors in [13]–[15] used

a homogeneous Poisson point process (PPP) model because

of its mathematical tractability. It should also be noted that

in the context of stochastic geometry, the PPP is the most

widely used and important point process to describe spatially

distributed discrete nodes [16]–[18]. Thus, the PPP will be

adopted to model the spatial location of eavesdroppers in this

paper.

Among recent works on the security for massive MIMO

relaying systems [3]–[8], the authors in [3] and [4] consid-

ered cooperative relay systems and compared the security

improvement for both amplify-and-forward (AF) and decode-

and-forward (DF) relaying, while only the AF scheme (or

the DF scheme) was considered in [5] and [6] (or in [7]

and [8]). These works, however, did not consider any direct

link between source and eavesdropper. Note that in general,

eavesdroppers may possibly receive two versions of trans-

mitted messages from source and relay in cooperative relay

networks. The lack of direct links in [3]–[8] leads to the

fact that the way eavesdroppers benefit from the configuration

of cooperative relay networks is not sufficiently interpreted.

Meanwhile, the impact of a direct eavesdropping link on the

secure performance was presented in [19], but there was no

discussion on large antenna arrays. Finally, other recent papers

on secure massive MIMO networks (not necessarily relay-

aided networks) can be also found out in the literature (e.g.

[9]–[12]) with the discussion about the impact of the so-

called pilot contamination scheme in which an eavesdropper

can send a pilot sequence to attack massive MIMO systems,
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but this context is beyond the scope of our paper.1 Note that

none of the above papers (i.e. [3]–[12]) discussed the spatial

locations of eavesdroppers as a whole and the impact of direct

eavesdropping links in particular.

On the contrary, the works in [13]–[15] considered the same

assumption of the eavesdroppers’ spatial distribution as in

this work, but the topic of large antenna arrays was not dis-

cussed. For example, [13] analyzed the secure performance for

millimeter wave systems instead of massive MIMO systems.

While the authors in [14] and [15] used an artificial noise

instead of large antenna arrays, to deal with eavesdropping

attacks. Given that the artificial noise technique is also a

signal generation process, it may be not necessarily adopted

for large-scale antenna systems to reduce complexity, because

such systems themselves can provide considerable benefits in

terms of security [4]. Aiming to investigate the joint impact

of massive MIMO systems and the eavesdroppers’ geometric

locations on the secure performance, [20] analyzed the se-

crecy outage probability (SOP) with emphasis on the possible

areas of eavesdroppers. However, the geometric location of

eavesdroppers in [20] is assumed to be uniformly distributed

with a fixed number of eavesdroppers. Such an assumption is

likely to be unreasonable for the wireless systems which do

not have the knowledge of the number of stealthily working

eavesdroppers. It is clear that the assumption of PPP has not

yet adopted for secure massive MIMO systems as a whole,

and secure massive MIMO relaying systems in particular.

In short, the works on security (mentioned in the above

paragraphs) analyzed either massive MIMO system without

the use of PPP, or conventional MIMO systems with the

use of PPP. Thus, our work is to fill this gap by adopting

the practical assumption of PPP for the cooperative wireless

systems with large antenna arrays. In this paper, we consider a

secure wireless network with the aid of a large antenna array

at an intermediate relay. As for the relaying strategy at the

relay, we choose to discuss conventional relaying schemes like

the AF scheme and the DF scheme for comparison purposes,

instead of delving into recently-developed relaying schemes

(e.g. [21]). Around the relay, there exist many potential eaves-

droppers whose location information is assumed to follow the

PPP; thus, we take the direct links between source and eaves-

droppers into account. While the direct link between source

and destination is assumed to be impaired and neglected.

Intuitively, all potential eavesdroppers are taking advantage of

the physical setup model rather than the destination because

they receive two versions of confidential signals. To elucidate

how harmful the eavesdroppers can be, we evaluate the secure

performance by using the SOP. Then we use an ON-OFF

scheme for the transmission in which the source transmits its

messages only when the legitimate channels are strong enough

(i.e. reliable enough). To elucidate how reliable the secured

transmission can be, we evaluate the performance by using

the connection outage probability (COP). Finally, based on

the SOP and the COP, we examine the most secured state at

which our system is guaranteed at most, and show that this

1The context of pilot contamination can be ignored when considering a
single cell, and especially when the pilot training only accounts for a very
little portion of each coherence interval.
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Fig. 1. System model.

state can be achieved when the source power is just slightly

larger than a certain threshold (as long as the COP reaches 0).

We also note that the asymptotic expressions are derived for

the SOP and the COP in each distinct relaying strategy. We

observe that if the ratio of the average transmit power at the

source to the average noise power at the destination is high,

the security aspect of the proposed system seems to depend on

only the eavesdroppers’ working range as well as the intensity

of their presence. We also observe that when the source power

increases, the SOP reaches its largest limit, while the COP

equals 0. Besides, in both cases of relaying, the reliability of

the system is demonstrated to gain from the increased number

of antennas. Finally, our numerical results show the agreement

between analysis and simulation.

The remainder of this paper is organized as follows: Section

II describes the network configuration and restricts the case

study to the worst case. In Section III, we provide the

approximate characterization of the received signal-to-noise

ratios (SNRs) under the influence of large antenna array.

Sections IV and V derive the exact and asymptotic expressions

for the SOP and the COP, respectively. In Section VI, two

optimization problems are suggested for the AF scheme and

the DF scheme to improve the secure performance. Numerical

results are shown in Section VII and finally, conclusions are

provided in Section VIII.

Notation: [·]T , [·]∗, and [·]† denote the transpose opera-

tor, conjugate operator, and Hermitian operator, respectively.

Vectors and matrices are represented with lowercase boldface

and uppercase boldface, respectively. In is the n× n identity

matrix. ‖ · ‖ denotes the Euclidean norm. ❊ {·} denotes

expectation. z ∼ CNn (Σ) denotes a complex Gaussian vector

z ∈ Cn×1 with zero-mean and covariance matrix Σ ∈ Cn×n.

Exp (r) denotes the exponential distribution with rate r.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a cooperative relay network

in which there is a single source (S), a trusted relay (R), a

destination (D), and multiple passive eavesdroppers (Ei with

i = 1, 2, . . .).2 The distance between S and D is very far so that

2We consider a practical scenario in which each Ei tends to hide itself,
thus all eavesdroppers are referred to as passive.
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R is invoked to help convey messages from S to D. As such,

it is rational to consider that there is no direct link between

S and D. However, the direct link between S and Ei is taken

into account since Ei is likely to be present around S and/or R

to overhear some confidential messages. We assume that R is

equipped with a very large receive antenna array to decode

its received signal in the uplink and a very large transmit

antenna array to forward its decoded signal in the downlink;

meanwhile, each of the remaining nodes (i.e. S, D and Ei)
has only one antenna. It should be noted that both the number

of transmit antennas and the number of receive antennas at R

are equal to N ≫ 2. The eavesdroppers are assumed to be

spatially distributed according to a homogeneous PPP Ψ with

intensity λ > 0, and yet they are only present within a circle

B(RΨR0), which is centered at the origin R with the radius

RΨR0.3 By keeping silent to steer clear of being detected,

eavesdroppers do not get involved in actions like attacking

pilot sequences.

Regarding propagation model, we discuss both small-scale

and large-scale fading factors. The small-scale fading is char-

acterized by hXY ∈ Cn×1
(
or hT

XY ∈ Cn×1
)

with its signal

magnitude being Rayleigh distributed. We assume that the

column vector hXY

(
or hT

XY

)
obeys CNn (In). The large-scale

fading is characterized by l
−α/2
XY with α > 2 being the path-

loss exponent and lXYR0 being the distance of the X−Y link.

In path loss models [22]–[24], lXY is understood as the ratio

of the real distance to R0. For example, R0 is often taken to

be 100 m for microcells [24], then lXY = 2 means that the

real distance between X and Y is 2R0 = 200 m.

To facilitate the analysis, we use polar coordinates with R

being the origin (as aforementioned) and φ being the angle

ŜREi. Then we have lSE =
√

L2
SR + l2 − 2LSRl cosφ with

LSR ≡ lSR, LRD ≡ lRD and l ≡ lRE. Obviously, lSE is a function

of l and φ due to the random spatial distribution of Ei.
Regarding transmission, we use two equal time slots. In the

first time slot, S transmits the source signal s ∈ C to R. In the

second time slot, S keeps silent while R forwards the relaying

signal r ∈ CN×1 to D. In these two phases, both the signal

transmitted from S (i.e. s) and the signal retransmitted from

R (i.e. r) are overheard by Ei.

• We normalize s such that ❊
{
|s|2
}
= 1, then the signals

received at R and Ei in the first time slot are, respectively,

written as

yR =
√
γSL

−α/2
SR hSRs+ nR, (1)

yE,1 =
√
γSl

−α/2
SE hSEs+ nE,1 (2)

where nR ∼ CNN (IN ) and nE,1 ∼ CN1 (1) are the

additive white Gaussian noises (AWGNs) at R and Ei,
respectively; L

−α/2
SR hSR ∈ CN×1 and l

−α/2
SE hSE ∈ C are

the complex channel coefficients for the S-R and S-Ei
links.

3It is of crucial important that if λ is measured by the average number of
eavesdroppers over the area of R2

0
, then average number of eavesdroppers

within the circle B(RΨR0) is calculated as λ
∫RΨ
0

∫
2π
0

ldldφ but not

λ
∫RΨR0
0

∫
2π
0

ldldφ. Herein, R0 is referred to as a reference distance, while
RΨ is the ratio of the real radius to R0. For example, if we have R0 = 1
km and RΨ = 2, the radius of the considered circle will be 2 km.

• We normalize r such that ❊
{
rr†
}

= IN , then the

signals received at D and Ei in the second time slot are,

respectively, written as

yD =
√

γR/NL
−α/2
RD hT

RDr+ nD, (3)

yE,2 =
√

γR/Nl−α/2hT
REr+ nE,2 (4)

where nD ∼ CN1 (1) and nE,2 ∼ CN1 (1) are AWGNs

at D and Ei, respectively; L
−α/2
RD hRD ∈ C1×N and

l−α/2hRE ∈ C1×N are the complex channel coefficients

the R-D and R-Ei links.

We note that for simplification purpose, the average noise

power at each receive antenna is assumed to be the same.

This leads to the fact that both (1) and (2) contain the same

γS, while both (3) and (4) contain the same γR. With the

noise normalization, γS is both the average received SNR per

antenna at R and the average received SNR at Ei, while γR

is the average received SNR at D as well as Ei. It should

also be noted that the subscript [·]E is implicitly related to Ei
with i ∈ Ψ; however, the index i is dropped for notational

simplicity.

A. MRC/MRT at Relay

After being received at R, the signal yR is then multiplied by

a weighting vector w† ∈ C1×N through a process called MRC

to combine N received signals in (1). Moreover, in the uplink,

w is designed only based on hSR because the instantaneous

hSE is not known (i.e. there is no the CSI of Ei). 4 Hence,

according to MRC principle, we have w = hSR/‖hSR‖. The

obtained signal after this process can be written as

r0 = w†yR =
√
γSL

−α/2
SR ‖hSR‖s+

h
†
SR

‖hSR‖
nR. (5)

The MRC output signal r0 is then processed by R according to

relaying operation (AF scheme or DF scheme). Consequently,

the obtained signal posterior to relaying operation is r̂0 which

is then multiplied by another weighting vector v ∈ CN×1

to form the retransmitted signal r. In the same way as the

design of w, the weighting vector v is designed only based

on hRD. As such, applying MRT to the downlink, we have

v = h∗
RD/‖hRD‖. Hence, the relation between the decoded

signal r̂0 and the retransmitted signal r can be given by

r = vr̂0 =
h∗

RD

‖hRD‖
r̂0. (6)

In the following, the expressions for r̂0 will be discussed based

on two different relaying operations, namely, AF scheme and

DF scheme.

1) AF Scheme at R: In this case, the signal r̂0 is simply a

scaled version of the signal r0, i.e.

r̂0 = cAF r0 (7)

where cAF is a constant subject to the following transmit

power constraint

tr
(
❊
{
rr†
})

= tr (IN ) = N. (8)

4Since the design of w does not take hSE into account due to the lack of
the CSI of Ei, the design of w according to MRC principle is not the optimal
solution in terms of security.
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Using (5)–(8) yields

cAF =

√
N

γSL
−α
SR ‖hSR‖2 + 1

. (9)

Substituting (5) and (9) into (6)–(7), we obtain a new expres-

sion of r and then again substituting this new expression into

(3)–(4), we can rewrite (3)–(4) as

yAF
D =

√
γSγRL

−α
SR L−α

RD ‖hSR‖2
γSL

−α
SR ‖hSR‖2 + 1

‖hRD‖s+ nAF
D , (10)

yAF
E,2 =

√
γSγRL

−α
SR l−α‖hSR‖2

γSL
−α
SR ‖hSR‖2 + 1

hT
REh

∗
RD

‖hRD‖
s+ nAF

E,2 (11)

where

nAF
D ,

√
γRL

−α
RD ‖hRD‖2

γSL
−α
SR ‖hSR‖2 + 1

h
†
SR

‖hSR‖
nR + nD, (12)

nAF
E,2 ,

√
γRl−α

γSL
−α
SR ‖hSR‖2 + 1

hT
REh

∗
RDh

†
SR

‖hRD‖‖hSR‖
nR + nE,2. (13)

2) DF Scheme at R: In this case, we consider the case that

both the source and the relay use the same codeword for their

transmission [25]. The signal r̂0 is successfully decoded from

the signal r0, thus we have the following relation

r̂0 = cDF s, (14)

where cDF is a constant subject to the constraint (8). From

(6), (8) and (14), we have cDF =
√
N whereby (6) can be

given by

r =
h∗

RD

‖hRD‖
√
Ns. (15)

Substituting the above expression into (3)–(4), we can rewrite

(3)–(4) as

yDF
D =

√
γRL

−α/2
RD ‖hRD‖s+ nD, (16)

yDF
E,2 =

√
γRl

−α/2h
T
REh

∗
RD

‖hRD‖
s+ nE,2. (17)

B. Signal-to-Noise Ratios in the Worst Case

A wise Ei can be capable of exploiting the best possible

decoding strategy to maximize its received signals. Herein, we

suppose that Ei is able to use MRC process to combine one

signal from S and N signals from R. Obviously, the strategy

of malicious eavesdroppers in AF scheme is different from

that in DF scheme.

1) AF Scheme at R: From (2) and (11), the overall received

signals at Ei can be written as

yAF
E =




√
γSl

−α/2
SE hSE√

γSγRL
−α
SR

l−α‖hSR‖2

γSL
−α
SR

‖hSR‖2+1

hT
REh

∗

RD

‖hRD‖




︸ ︷︷ ︸
,gAF

s+

[
nE,1

nAF
E,2

]

︸ ︷︷ ︸
,ñAF

. (18)

Then using MRC receiver with the weighting vector fAF , we

can write the combined output at Ei as

zAF
E =

(
fAF

)†
gAF s+

(
fAF

)†
ñAF . (19)

From (19), the instantaneous SNR at Ei can be generally

written as [26]5

ŜNRE(f
AF ) =

(
fAF

)† (
gAF

(
gAF

)†)
fAF

(fAF )
†
R̃AF fAF

≤
(
gAF

)† (
R̃AF

)−1

gAF (20)

where R̃AF is the covariance matrix of ñAF . The equality

in (20) holds for

fAF = τ
(
R̃AF

)−1

gAF , fAF
opt (21)

with τ being an arbitrary constant. It is apparent that in

practice, a wise Ei is likely to design fAF = fAF
opt to maximize

its received SNR. Taking this into account, we assume that the

received SNR at Ei is

ŜNRE ≡ ŜNRE(f
AF
opt ) =

(
gAF

)† (
R̃AF

)−1

gAF . (22)

As such, we will only discuss this practical scenario through-

out the rest of this paper.

The covariance matrix of ñAF in (18) can be expressed as

R̃AF = ❊

{
ñAF

(
ñAF

)†}

=

[
1 0

0
γRl

−α|hT
RDh

∗

RE|2

(γSL
−α
SR

‖hSR‖2+1)‖hRD‖2
+ 1

]
. (23)

Substituting gAF in (18) and R̃AF in (23) into (22), we can

write the instantaneous SNR at Ei in the case of AF as

ŜNR
AF

E =
γSL

−α
SR γRl

−α‖hSR‖2|hT
RDh

∗
RE|2(

γSL
−α
SR ‖hSR‖2 + 1

)
‖hRD‖2 + γRl−α|hT

RDh
∗
RE|2

+ γSl
−α
SE |hSE|2. (24)

From (10), the instantaneous SNR at D can be given by

ŜNR
AF

D =
γSL

−α
SR γRL

−α
RD ‖hSR‖2‖hRD‖2

γSL
−α
SR ‖hSR‖2 + γRL

−α
RD ‖hRD‖2 + 1

. (25)

2) DF Scheme at R: Unlike the AF scheme, the expressions

of SNRs for the DF scheme are formulated in a different way.

When only considering the indirect transmission from S to D

through R, we can infer the instantaneous SNR at Ei from (1)

and (17) as follows [29]:

ŜNR
DF

E, indirect = min

{
γSL

−α
SR ‖hSR‖2, γRl

−α |hT
RDh

∗
RE|2

‖hRD‖2
}
.

(26)

5Since the term R̃AF in (20) is positive definite, we can factorize it into
U†U by using Cholesky decomposition. The left hand side of (20) can be

rewritten as ŜNRE(f0) =
[
f
†
0

(
g0g

†
0

)
f0

]/(
f
†
0
f0

)
where f0 , UfAF ∈

C2×1 and g0 ,
(
U†

)−1
gAF ∈ C2×1. Obviously, the new expression of

the instantaneous SNR at Ei with respect to f0 is now a Rayleigh quotient

[27]– [28], therefore we have maxf0 ŜNRE(f0) = λmax

(
g0g

†
0

)
= ‖g0‖2

where λmax is the maximum eigenvalue of g0g
†
0

, and the last equality follows

from that g0g
†
0

is of one rank. Then the right hand side of (20) is obtained

by substituting g0 =
(
U†

)−1
gAF and U†U = R̃AF .
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Similarly, when only considering the direct S-Ei link, we can

infer the instantaneous SNR at Ei from (2), i.e.

ŜNR
DF

E, direct = γSl
−α
SE |hSE|2. (27)

Finally, with the assumption that Ei uses MRC technique to

combine signals from direct and indirect links, the instanta-

neous SNR at Ei can be given by [26]:

ŜNR
DF

E = ŜNR
DF

E, indirect + ŜNR
DF

E, direct

= min

{
γSL

−α
SR ‖hSR‖2, γRl

−α |hT
RDh

∗
RE|2

‖hRD‖2
}
+ γSl

−α
SE |hSE|2.

(28)

From (1) and (16), the instantaneous SNR at D can be given

by [29]

ŜNR
DF

D = min
{
γSL

−α
SR ‖hSR‖2, γRL

−α
RD ‖hRD‖2

}
. (29)

Observation: From (24)–(25) we can see that both ŜNR
AF

E

and ŜNR
DF

D are increasing functions of γS. Thus, there will

be a need to find out a suitable value of γS in making the

trade-off between these SNRs. In contrast, the same does not

hold for ŜNR
DF

E and ŜNR
DF

D . In both relaying operations, γR

will not be examined for our trade-off problem. With the large

number of antennas configured at R, it is plausible to remain

the average total relay power (i.e. γR) constant such that the

consumed power per-antenna unit at R is reduced.

III. THE SNR APPROXIMATION UNDER THE IMPACT OF

LARGE ANTENNA ARRAYS

In this section, we will evaluate the secure performance of

the proposed system under the assumption that the number of

transmit and receive antennas at R is very large. Recall the

following well-known properties:6

• Property ✭P✶✮: Let p ∈ CN×1 and q ∈ CN×1 be

complex-valued column vectors whose elements are i.i.d.

random variables with zero mean and variances of σ2
p

and σ2
q . Then (1/

√
N)pTq

dist→ CN
(
0, σ2

pσ
2
q

)
where

dist→
denotes convergence in distribution as N → ∞.

• Property ✭P✷✮: With p and q as in ✭P✶✮, we have
1
N ‖p‖2 N→∞−−−−→ σ2

p as well as 1
N ‖q‖2 N→∞−−−−→ σ2

q where
N→∞−−−−→ denotes convergence as N → ∞.

To proceed, we first rewrite (24)–(25) as

ŜNR
AF

D = N
γSL

−α
SR γRL

−α
RD

‖hSR‖2

N
‖hRD‖2

N

γSL
−α
SR

‖hSR‖2

N + γRL
−α
RD

‖hRD‖2

N + 1
N

, (30)

ŜNR
AF

E = γSl
−α
SE |hSE|2

+N
γSL

−α
SR γRl

−α ‖hSR‖2

N
|hT

RDh
∗

RE|2
N

N
(
γSL

−α
SR

‖hSR‖2

N + 1
N

)
‖hRD‖2

N + γRl−α |hT
RD

h∗

RE
|2

N

(31)

6These properties are derived from the Lindeberg-Levy theorem and law
of large numbers (see [2], [30], [31] and references therein).

and (28)–(29) as

ŜNR
DF

D = N min

{
γSL

−α
SR

‖hSR‖2
N

, γRL
−α
RD

‖hRD‖2
N

}
, (32)

ŜNR
DF

E = γSl
−α
SE |hSE|2

+N min

{
γSL

−α
SR

‖hSR‖2
N

, γRl
−α |hT

RDh
∗
RE|2

N

1
N

‖hRD‖2

N

}
.

(33)

Then, respectively applying Property ✭P✶✮ to the term
hT

RDh
∗

RE√
N

and applying Property ✭P✷✮ to the terms
‖hSR‖2

N and
‖hRD‖2

N ,

we can arrive at the following approximate expressions:

ŜNR
AF

D

N→∞−−−−→ γSL
−α
SR γRL

−α
RD N2

γSL
−α
SR N + γRL

−α
RD N + 1

, snrAF
D , (34)

ŜNR
AF

E

N→∞−−−−→ γSL
−α
SR γRl

−αNΘ(
γSL

−α
SR N + 1

)
+ γRl−αΘ

+ γSl
−α
SE |hSE|2

, snrAF
E , (35)

ŜNR
DF

D

N→∞−−−−→ min
{
γSL

−α
SR N, γRL

−α
RD N

}
, snrDF

D , (36)

ŜNR
DF

E

N→∞−−−−→ min
{
γSL

−α
SR N, γRl

−αΘ
}
+ γSl

−α
SE |hSE|2

, snrDF
E (37)

where Θ , 1
N

∣∣∣hRDh
†
RE

∣∣∣
2

. Note that we have

1√
N
hRDh

†
RE

dist→ CN (0, 1) by using Property (P1) and

thus, Θ ∼ Exp (1).7 In (34)–(37), snrAF
D , snrAF

E , snrDF
D and

snrDF
E are defined as functions in N .

Let Emax denote the strongest eavesdropper that is receiv-

ing the largest instantaneous SNR among all eavesdroppers

Ei ∈ Ψ. Then the instantaneous SNRs at Emax in the AF

scheme (ŜNR
AF

Emax) and in the DF scheme (ŜNR
DF

Emax) are

approximated as

ŜNR
AF

Emax ≡ max
Ei∈Ψ

ŜNR
AF

E

N→∞−−−−→ max
Ei∈Ψ

snrAF
E , (38)

ŜNR
DF

Emax ≡ max
Ei∈Ψ

ŜNR
DF

E

N→∞−−−−→ max
Ei∈Ψ

snrDF
E . (39)

To facilitate the general analysis which can be ap-

plied to both schemes, we use the following notations:

ŜNRD =
{

ŜNR
AF

D , ŜNR
DF

D

}
, ŜNRE =

{
ŜNR

AF

E , ŜNR
DF

E

}
,

snrD =
{

snrAF
D , snrDF

D

}
, snrE =

{
snrAF

E , snrDF
E

}
, and

maxEi∈Ψ snrE =
{
maxEi∈Ψ snrAF

E ,maxEi∈Ψ snrDF
E

}
.

Proposition 1. The cumulative distribution function (CDF) of

snrAF
E is given by

FsnrAF
E

(µ) = 1− Tµm(l)✶(µm < γSL
−α
SR N)

− γSL
−α
SR N(1 + γSL

−α
SR N)

γRl−α
Jµm

(l, lSE) (40)

where

µm , min{µ, γSL
−α
SR N},

7Exp (r) denotes the exponential distribution with rate r. If z ∼
CN

(
0, σ2

)
, then |z|2 ∼ Exp

(
1/σ2

)
.
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✶(C) =

{
1, if C is true

0, otherwise
, (41)

Tµm
(l) , exp

{
(1 + γSL

−α
SR N)µm

γRl−α(µm − γSL
−α
SR N)

}
(42)

and

Jµm(l, lSE) , e
− µ

γSl
−α
SE

∫ µm

0

e

x

γSl
−α
SE

+
(1+γSL

−α
SR

N)x
γRl−α(x−γSL

−α
SR

N)

(x− γSL
−α
SR N)2

dx.

(43)

Proof. See Appendix A.

Proposition 2. The CDF of snrDF
E is given by

FsnrDF
E

(µ) = 1− e
− µm

γRl−α

+
γSl

−α
SE

γRl−α − γSl
−α
SE

e
− µ

γSl
−α
SE

[
1− e

µm

(
1

γSl
−α
SE

− 1

γRl−α

)]

+ e
− γSL

−α
SR

N

γRl−α

[
1− e

− (µ−µm)

γSl
−α
SE

]
✶(µ > γSL

−α
SR N). (44)

Proof. See Appendix B.

IV. SECRECY OUTAGE PROBABILITY (SOP)

In this section, we evaluate the secure performance of the

proposed system through the SOP. We first suppose that each

Ei succeeds in partially decoding the received signal if its

instantaneous SNR is large than or equal to a certain threshold

µ at the receiver of Ei. When eavesdroppers are non-colluding,

we can define an outage event as the event in which “there

is at least a certain Ei which can partially decode its received

signal.” Based on this definition, the SOP is referred to as the

probability of the occurrence of the outage event, i.e.

ŜOPµ , P {outage event}
= P

{
∃ Ei ∈ Ψ

∣∣∣ŜNRE ≥ µ
}

= P

{
max
Ei∈Ψ

ŜNRE ≥ µ

}
(45)

in which maxEi∈Ψ ŜNRE ≥ µ implies that among existing

eavesdroppers, the eavesdropper with the maximum received

SNR can decode signals.8

A. Analysis with large N

Under the assumption of (very) large N , we can use (45),

(38) and (39) to arrive at the following approximation

ŜOPµ
N→∞−−−−→ SOPµ = P

{
max
Ei∈Ψ

snrE ≥ µ

}

= 1− ❊Ψ

{∏

Ei∈Ψ

P
{

snrE < µ
∣∣Ψ
}
}

(a)
= 1− exp

{
−λ

∫ 2π

0

∫ RΨ

0

(1− FsnrE
(µ)) ldldφ

}
(46)

8For the colluding eavesdroppers scenario, the outage event should be

defined as the event of the occurrence
∑

Ei∈Ψ
ŜNRE ≥ µ. This interesting

scenario might not be mathematically tractable and will be considered in the
future.

where the equality (a) follows from the probability generating

functional (PGF) [16]. Herein, P{snrE < µ
∣∣Ψ} = FsnrE

(µ) is

the probability that a certain Ei cannot decode the received

signal. In the following, we evaluate the SOP for two schemes

of interest. Note that SOPµ ≡ SOPAF
µ and SOPµ ≡ SOPDF

µ

for the two different relaying cases.

1) AF scheme: The SOP in the AF case is given by

SOPAF
µ = 1− exp




−λ

∫ 2π

0

∫ RΨ

0

(
1− FsnrAF

E
(µ)
)

︸ ︷︷ ︸
a function of l and φ

ldldφ





.

(47)

By substituting (40) into (47), we have

SOPAF
µ = 1− exp

{
−λ

∫ 2π

0

∫ RΨ

0

[
Tµm

(l)✶(µm < γSL
−α
SR N)

+
γSL

−α
SR N(1 + γSL

−α
SR N)

γRl−α
Jµm

(l, lSE)

]
ldldφ

}

(48)

which can also be explicitly presented as in (49) at the top of

the next page.

2) DF scheme: The SOP in the DF case is given by

SOPDF
µ = 1− exp




−λ

∫ 2π

0

∫ RΨ

0

(
1− FsnrDF

E
(µ)
)

︸ ︷︷ ︸
a function of l and φ

ldldφ





(50)

by repeating the same steps as in the derivation of (47).

Substituting (44) into the above equation, we arrive at the

final exact expression for (50) as shown in (55) at the top of

the next page.

B. Analysis with large N and high γS

With very large N , we proceed to consider the performance

at high γS (i.e. γS → ∞). With finite µ, we nearly have µm =
min{µ, γSL

−α
SR N} = µ. Herein, we do not consider the case

of high γR because the instantaneous increase in N and γR

is obviously costly and impractical. Once N is large, γR had

better be low to reduce the power consumption per antenna at

R.

1) AF scheme: We consider the following terms:

T(l) , lim
γS→∞ Tµm(l)✶

(
µm < γSL

−α
SR N

)

= lim
γS→∞

exp

{
(1 + γSL

−α
SR N)µ

γRl−α(µ− γSL
−α
SR N)

}

= exp
{
−µ/(γRl

−α)
}

(51)

and

J(l) , lim
γS→∞

γSL
−α
SR N(1 + γSL

−α
SR N)

γRl−α
Jµm(l, lSE)

=
(γSL

−α
SR N)2

γRl−α

∫ µ

0

e

γSL
−α
SR

Nx

γRl−α(−γSL
−α
SR

N)

(γSL
−α
SR N)2

dx

= 1− exp
{
−µ/(γRl

−α)
}
. (52)
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SOPAF
µ = 1− exp

{
−λ

∫ 2π

0

∫ RΨ

0

[
exp

{
(1 + γSL

−α
SR N)µm

γRl−α(µm − γSL
−α
SR N)

}
✶(µm < γSL

−α
SR N)

+
γSL

−α
SR N(1 + γSL

−α
SR N)

γRl−α
exp

{ −µ

γS(L2
SR + l2 − 2LSRl cosφ)−α/2

}

×
∫ µm

0

exp
{

x
γS(L2

SR
+l2−2LSRl cosφ)−α/2 +

(1+γSL
−α
SR

N)x

γRl−α(x−γSL
−α
SR

N)

}

(x− γSL
−α
SR N)2

dx

]
ldldφ

}
(49)

SOPDF
µ = 1− exp

{
−λ

∫ 2π

0

∫ RΨ

0

[
e
− µm

γRl−α − e
− γSL

−α
SR

N

γRl−α

(
1− e

µm−µ

γS(L2
SR

+l2−2LSRl cosφ)
−α/2

)
✶(µ > γSL

−α
SR N)

− γS

(
L2

SR + l2 − 2LSRl cosφ
)−α/2

γRl−α − γS (L2
SR + l2 − 2LSRl cosφ)

−α/2
exp

{
− µ

γS (L2
SR + l2 − 2LSRl cosφ)

−α/2

}

×
(
1− exp

{
µm

(
1

γS (L2
SR + l2 − 2LSRl cosφ)

−α/2
− 1

γRl−α

)})]
ldldφ

}
(55)

Taking limit (40) at γS → ∞, we have

lim
γS→∞

FsnrAF
E

(µ) = 1− T(l)− J(l) = 0. (53)

Then using the two above-calculated limits, we reach the limit

of P
{
ΛAF

E

}
in (48) at γS → ∞ as follows:

SOPAF
µ,asym = lim

γS→∞
SOPAF

µ

= 1− exp

{
−λ

∫ 2π

0

∫ RΨ

0

(1− 0) ldldφ

}

= 1− exp
{
−πλR2

Ψ

}
. (54)

2) DF scheme: Taking limit (44) at γS → ∞, we have

lim
γS→∞

FsnrDF
E

(µ) = 1− e
− µm

γRl−α +
γSl

−α
SE(

−γSl
−α
SE

)
(
1− e

− µm
γRl−α

)

= 0. (56)

Then, the limitation of (50) is given by

SOPDF
µ,asym = lim

γS→∞ SOPDF
µ

= 1− exp

{
−λ

∫ 2π

0

∫ RΨ

0

(1− 0) ldldφ

}

= 1− exp
{
−πλR2

Ψ

}
. (57)

Remark 1. We observe from (54) and (57) that when γS

increases, the role of the considered relaying operations comes

to be indistinguishable since both AF and DF cases give the

same value at high γS. Indeed, this observation can also be

realized in a more intuitive manner: First, we take the limit

of (35), i.e,

lim
γS→∞

snrAF
E = lim

γS→∞

{
γSL

−α
SR γRl

−αNΘ

γSL
−α
SR N

}
+ γSl

−α
SE |hSE|2

= γRl
−αΘ+ γSl

−α
SE |hSE|2,

lim
γS→∞

snrDF
E = lim

γS→∞

{
min

{
γSL

−α
SR N, γRl

−αΘ
}
+ γSl

−α
SE |hSE|2

}

= γRl
−αΘ+ γSl

−α
SE |hSE|2. (58)

Then taking the limit of SOPAF
µ in (49) and SOPDF

µ in (55),

we arrive at the same conclusion, i.e. limγS→∞ SOPAF
µ =

limγS→∞ SOPDF
µ .

Proposition 3. For given µ, both SOPAF
µ and SOPDF

µ in-

crease with γS. Furthermore, they are upper bounded by the

limit 1−exp{−πλR2
Ψ}, which increases with λ as well as RΨ.

In this respect, we can conclude that when the eavesdroppers’

density λ becomes denser or their working range RΨ becomes

wider, the upper limit of the SOP in two relaying cases will

be higher accordingly.

Proof. Please see Appendix C.

V. CONNECTION OUTAGE PROBABILITY (COP)

To deal with the attacks from eavesdroppers as well as

restrict information leakage to a certain extent, we consider

an on-off transmission strategy (a recent paper [32] as an

example). As for this strategy, some threshold η is compared

to the instantaneous SNR at D before the transmission is

performed. More precisely, if ŜNRD ≤ η, then S had better

keep silent (OFF-state); in contrast, S will transmit confidential

signals (ON-state). As such, the transmission will be in the

OFF-state with the probability P
{

ŜNRD ≤ η
}

which can be

named as the COP, i.e.

ĈOPη ≡ P {OFF-state} , P

{
ŜNRD ≤ η

}
. (59)

A. Analysis with large N

Under the assumption of (very) large N , we can use (59),

(34) and (36) to arrive at the following approximation

ĈOPη
N→∞−−−−→ COPη = P {snrD ≤ η} . (60)

In the following, we analyze the COP for the AF scheme and

the DF scheme, repesctively.
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1) AF scheme: We replace snrD with snrAF
D into the above

expression to obtain the COP for the AF case, i.e.

COPAF
η = P

{
snrAF

D ≤ η
}

= P

{
γSL

−α
SR γRL

−α
RD N2

γSL
−α
SR N + γRL

−α
RD N + 1

≤ η

}

= P
{
γSL

−α
SR N

(
γRL

−α
RD N − η

)
≤ η

(
γRL

−α
RD N + 1

)}

=





1, if γR ≤ Ωη

P

{
γS ≤ η(γRL

−α
RD

N+1)
L−α

SR
N(γRL

−α
RD

N−η)

}
, if γR > Ωη

=





1, if γR ≤ Ωη

1, if γR > Ωη and γS ≤ Υη

0, if γR > Ωη and γS > Υη

(61)

where

Ωη , η/
(
NL−α

RD

)
, (62)

Υη ,
η
(
γRL

−α
RD N + 1

)

L−α
SR L−α

RD N2 (γR − Ωη)
. (63)

There is no surprise that the COP takes only two values, either

1 or 0, due to the fact that all parameters γS, γR, N , α, LSR,

LRD, and η are predetermined. From the design perspective,

we want COPη = 0 because it implies that the confidential

transmission can occur (in the ON-state). As such, considering

the on-off transmission strategy, designers must make sure that

the two following conditions hold true:
{

γR > Ωη

γS > Υη
. (64)

2) DF scheme: With snrDF
D substituted for snrD in (60),

the COP for the DF case can be calculated as

COPDF
η = P

{
snrDF

D ≤ η
}

= P
{
min

{
γSL

−α
SR N, γRL

−α
RD N

}
≤ η

}

=





1, if γS ≤ ωη and γS ≤ γR (LRD/LSR)
−α

0, if γS > ωη and γS ≤ γR (LRD/LSR)
−α

1, if γR ≤ Ωη and γS > γR (LRD/LSR)
−α

0, if γR > Ωη and γS > γR (LRD/LSR)
−α

(65)

where

ωη , η/
(
NL−α

SR

)
. (66)

Similarly to the AF case, we wish to have COPη = 0, then
{

either Ωη < γR < γS (LSR/LRD)
−α

or ωη < γS ≤ γR (LRD/LSR)
−α

,
(67)

needs to be satisfied.

B. Analysis with large N and high γS

As analyzed in the last subsection, we need to set the

values of γS, γR and N such that the COP is equal to 0
for each relaying strategy at R. With high γS (i.e. γS → ∞)

the second condition in (64) is almost surely true, because

limγS→∞P {γS > Υη} = 1; thus, the COP in the AF case

will approach 0 (i.e. the OFF-state does not occur) at high γS

given that the first condition in (64) is satisfied. Meanwhile, the
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Fig. 2. Possible insecured/secured states of the proposed system versus
corresponding ranges of (snrD, snrEmax).

second condition in (67) does not seem to be achievable at high

γS; thus, the COP can reach 0 as long as the first condition in

(67) is satisfied. In short, the OFF-state occurs at high γS when

Ωη < γR for AF scheme and Ωη < γR < γS (LSR/LRD)
−α

for

DF scheme.

VI. SECURITY-RELIABILITY TRADEOFF

In this section, we evaluate the interactions of the important

secure metrics including the SOP, the COP and the end-to-

end (e2e) SR. It is of importance that the SOP and the COP

will be jointly evaluated in another probabilistic metric, i.e.

the probability of achieving the most secured transmission

state P{Â}. With (very) large N , we have P{Â} N→∞−−−−→
P {A}; while the e2e SR (in nats/s/Hz) can be expressed as

Cs =
1
2 max

{
ln
(

1+snrD

1+snrEmax

)
, 0
}

where 1/2 is due to the fact

that the transmission is divided into two equal time slots. All

metrics Cs, SOPµ and COPη involve the same parameter γS;

thus, we respectively rewrite Cs, SOPµ and COPη as Cs(γS),
SOPµ(γS) and COPη(γS) to emphasize the role of γS in our

analysis for the rest of this paper.

Now, let us look at Fig. 2 which is provided for illustration.

In the figure, there are two regions for the e2e SR, the region

y0z corresponds to Cs(γS) = 0 (i.e. snrD ≤ snrEmax), the

region x0z corresponds to Cs(γS) > 0 (i.e. snrD > snrEmax).

Still in Fig. 2, we consider the two scenarios of η as follows:

• With η > µ, the transmission only occurs in the ON-

state (COPη(γS) = 0) if a pair of (snrD, snrEmax) lies

in the region uA1x. In this case, there are 3 subcases

corresponding to 3 regions:

– uA3z has Cs(γS) = 0 and snrEmax ≥ µ.

– zA3A2v has Cs(γS) > 0 and snrEmax ≥ µ.

– vA2A1x has Cs(γS) > 0 and snrEmax < µ.
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Fig. 3. SOPAF
µ in (49) and SOPDF

µ in (55) versus γS. For each relaying
scheme, two subcases are considered: LSR = 1 and LSR = 4. Other
parameters: N = 50, λ = 0.25, RΨ = 1, α = 2.5, γR = 10 dB, µ = 16.02
dB.

• With η ≤ µ, the transmission only occurs (in the ON-

state) if the considered pair of instantaneous SNRs lies

in the region uA4x. In this case, there are 4 subcases:

– uA6A7z has Cs(γS) = 0 and snrEmax ≥ µ.

– zA7v has Cs(γS) > 0 and snrEmax ≥ µ.

– A5A6A7 has Cs(γS) = 0 and snrEmax < µ.

– vA7A5A4x has Cs(γS) > 0 and snrEmax < µ.

Obviously, if we have (snrD, snrEmax) ∈ vA2A1x in the

case of η > µ and/or (snrD, snrEmax) ∈ vA7A5A4x in the case

of η ≤ µ, the proposed system will attain the most secured

state with Cs(γS) > 0, COPµ(γS) = 0 and snrEmax < µ. We

only focus on the case of η > µ in this paper and evaluate the

probability of the event A = {(snrD, snrEmax) ∈ vA2A1x}.

Of course, this event is the expected one because the security

state of our system is guaranteed at most. The probability of

the occurrence of the event A is given by

P {A} = P {(snrD, snrEmax) ∈ vA2A1x |η > µ}
= P {η < snrD, snrEmax < µ}

= P

{
max
Ei∈Ψ

snrE < µ

}
P {η < snrD}

= [1− SOPµ(γS)] [1− COPη(γS)] . (68)

We will denote P {A} as P {A}AF
and P {A}DF

for the AF

case and DF case, respectively.

A. AF case

In order to maximize the probability P {A}AF
, we aim to

solve the following optimization problem:

(PAF ) minimize
γS

SOPAF
µ (γS)

subject to COPAF
η (γS) = 0.

Using (64), the constraint turns out to be γR > Ωη and γS >
Υη . Once the constraint γR > Ωη is satisfied, (PAF ) has the

optimal solution

γS,opt → Υ+
η (69)
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Fig. 4. SOPAF
µ in (49) versus γS. For each relaying scheme, two subcases

are considered: (case 1) RΨ = 2; (case 2) RΨ = 1; and (case 3) RΨ = 0.5.
Other parameters: N = 50, λ = 0.25, LSR = 2, α = 2.5, γR = 10 dB,
µ = 16.02 dB.

because SOPAF
µ (γS) > SOPAF

µ (Υη) for all γS > Υη (accord-

ing to Proposition 3). In contrast, if the constraint γR > Ωη

is not satisfied, the event A does not occur regardless of any

value of γS. As such, we have

max
γS

P {A}AF
=

{
1− SOPAF

µ (Υ+
η ), if γR > Ωη

0, if γR ≤ Ωη
. (70)

B. DF case

In the same way as the AF case, we suggest the optimization

problem for the DF case as follows:

(PDF ) minimize
γS

SOPDF
µ (γS)

subject to COPDF
η (γS) = 0.

Using (67), the constraint becomes Ωη < γR <
γS (LSR/LRD)

−α
or ωη < γS ≤ γR (LRD/LSR)

−α
. Moreover,

SOPµ(γS) increases with γS, then the problem (PDF ) has two

optimal solutions:

γS,opt =

{
γ+

R (LRD/LSR)
−α

, if γR > Ωη

ω+
η , if γR ≥ ω+

η (LSR/LRD)
−α

, ̟
.

(71)

Finally, the maximal value of P {A}DF
can be readily de-

duced from (71) as follows:

max
γS

P {A}DF

=





max
{
P {A}DF

opt,1 ,P {A}DF
opt,1

}
, if Ωη < ̟ ≤ γR

or γR > Ωη ≥ ̟,

P {A}DF
opt,1 , if Ωη < γR < ̟,

P {A}DF
opt,2 , if Ωη ≥ γR ≥ ̟,

0, if γR ≤ Ωη < ̟
or Ωη ≥ ̟ > γR

(72)
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Fig. 5. SOPDF
µ in (55) versus γS. For each relaying scheme, two subcases

are considered: (case 1) RΨ = 2; (case 2) RΨ = 0.5. Other parameters:
N = 50, λ = 0.25, LSR = 2, α = 2.5, γR = 10 dB, µ = 16.02 dB.

where P {A}DF
opt,1 , 1 − SOPDF

µ (γS)
∣∣∣
γS=ω+

η

and

P {A}DF
opt,2 , 1− SOPDF

µ (γS)
∣∣∣
γS=γ+

R
(LRD/LSR)

−α
.

Remark 2. Both cases require the cooperation between S and

R such that γS and γR meet the requirement for quality of

service (i.e. P {A} is maximized). When the parameter γR

is beforehand chosen, we only need to set up the parameter

γS to reach the goal. Hence, we choose γR > Ωη in the AF

case; meanwhile, γR should satisfy either Ωη < ̟ ≤ γR or

γR > Ωη ≥ ̟ in the DF case.

VII. NUMERICAL RESULTS

This section provides several numerical examples to verify

the correctness of our analysis and show secure characteristics

of the proposed system. Relating to distance parameters, the

distance reference R0 is traditionally selected from 100 m to 1
km for large cellular systems [22]–[24]. With the selection of

R0 within [100m, 1000m], the measurement unit of λ will be

implicitly understood as the average number of eavesdroppers

over R0×R0 m2. Note that the selected value of R0 does not

change our numerical results, which depend on the distance

ratios LSR, LRD and RΨ. Furthermore, a suitable value of the

path loss exponent α should be from 2 to 3. Thus, we choose to

set α = 2.5 for all numerical examples. Finally, it is of crucial

importance that all simulation results have been performed for

ŜOPµ, ĈOPη and P{Â}; whereas, all analytical results have

been performed for SOPµ, COPη and P {A}.

In Figs. 3–5, we present the SOPs versus γS in the AF

and DF scheme. The analytical expressions for the SOP are

verified through simulation, i.e. ŜOPµ
N→∞−−−−→ SOPµ and

ŜOPµ
N,γS→∞−−−−−−→ SOPµ,asym are confirmed. As seen from the

figures, the simulated values of ŜOPµ and the analytical values

of SOPµ match each other at large N (i.e. N = 50) through

the range [0, 40] dB of γS. Besides, these values increase with

γS and converges to SOPµ,asym at high γS (for example, at

40 dB).
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Fig. 6. SOPAF
µ in (49) and SOPDF

µ in (55) versus λ. Parameters: N = 50,
RΨ = 2, LSR = 2, α = 2.5, γS = 10 dB, γR = 10 dB, µ = 16.02 dB.

In Fig. 3, two subcases of LSR are considered, i.e. LSR =
{1, 4}. We can see that the security performance in AF

case is better than DF case for each considered value of

LSR. However, when γS exceeds over 15 dB for the case of

LSR = 1, the security performance in the AF scheme and

that in the DF scheme is the same and thereby, the role of the

relaying protocols becomes indistinguishable. Interestingly, the

decrease in LSR (i.e. S comes closer to R) does not ensure that

the secure performance will be improved.

Regarding Figs. 4–5, we fix the distance ratio LSR and

change the radius ratio RΨ. We observe that the secure

performance inversely decreases with the increase in RΨ. This

observation can also be recorded from the practice that with

the working range extension, the eavesdroppers will become

more dangerous. In Fig. 6, we depict the SOPs versus λ.

Again, the results confirm again that the AF scheme gives

better secure performance. Moreover, the difference in perfor-

mance between two schemes becomes less with the increase

in γS. Besides, the increasing density of eavesdroppers also

causes a worse situation for the proposed system (as can be

observed intuitively).

In Fig. 7, we depict the COPs versus γS in the AF case and

verify ĈOP
AF

µ
N→∞−−−−→ COPAF

µ . The results show that when N
increases, our analysis becomes more precise because the gap

between simulation curve (i.e. ĈOP
AF

η ) and analytical curve

(i.e. COPAF
η ) is narrowed. In the case of N = 40, the first

constraint γR > Ωη is satisfied, i.e. γR = 10 dB > 8.38 dB,

then the COP theoretically reaches 0 at any γR > Υη ≈ 16.6
dB. Likewise, in the case of N = 70, the constraint γR ≈
13.01 dB > 5.95 dB, then the COP is expected to be 0 at any

γR > Υη ≈ 11.26 dB. In comparison between two cases, we

can see that the increase in N helps to enhance the reliability.

For example, if the secure transmission occurs at γS = 15
dB, then N = 70 will be selected because the theoretical

COP equals 0; in contrast, N = 40 will lead to an unsecured

transmission as the theoretical SOP is 1.

In Fig. 8, we depict the COPs versus γS in the DF case.

Similar to the AF case, the gap between the analysis and
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Fig. 7. COPAF
η versus γS. Parameters: N = {40, 70}, LSR = 2, LRD = 1.5,

α = 2.5, γR = 10 dB, η = 20 dB.
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Fig. 8. COPDF
η versus γS. Parameters: N = {40, 70}, LSR = 2, LRD = 1.5,

α = 2.5, γR = 10 dB, η = 20 dB.

simulation becomes more precise when N increases. More-

over, if one of the two conditions in (67) is satisfied, the COP

reaches 0. For example, in the case of N = 40, the condition

Ωη ≈ 108.38/10 < γR = 1010/10 dB < γS (2/1.5)
−2.5

can be

attained if γS > 13.12 dB. In the case N = 70, the condition

ωη ≈ 109.07/10 < γS ≤ 1010/10 (1.5/2)
−2.5 ⇔ 9.07 dB <

γS ≤ 13.12 dB will lead to COPDF
η = 0.

In Fig. 9, the probability of the most secured state P {A}AF

is shown with respect to γS. The results show that the

agreement between the analytical curves and the simulation

curves can be obtained with N increased. We can see that

with N = 50, we have P {A}AF
> 0 at any γS > 21 dB. In

contrast, to have P {A}AF
> 0 in the case of N = 70, we

have to set γS > 19 dB. As such, the increase in N helps

ensure P {A}AF
> 0 when γS decreases. As analyzed in

Section VI, P {A}AF
reaches its maximum when γS → Υ+

η .

For example, in theoretical perspective, with N = 70 we

have maxγS
P {A}AF

= P {A}AF ∣∣
γS=Υη+ǫ ≈ 0.811 where

ǫ is a very small positive number. Likewise, in Fig. 10,

the probability of the most secured state P {A}DF
is also

illustrated with γS. The behaviour of P {A}DF
is similar to

P {A}AF
. The increase in N makes the secure performance

more guaranteed as long as the transmission state is in the

ON-state.

VIII. CONCLUSIONS

In this paper, we have considered a relay-aided wireless

system with the large antenna array equipped at the relay. In

the presence of many potential eavesdroppers, we assume that

they follow a homogeneous PPP. Furthermore, compared to

the destination, all eavesdroppers have much more advantages

when direct links between them and the source are discussed.

Under such assumptions, we have employed the ON-OFF

strategy and evaluated the security as well as the reliability

of the system through probabilistic metrics. Analysis and

simulation results show that the increase in γS reduces the

secure performance in both AF and DF case. The increase

in γS, however, helps enhance the reliability in both the AF

case and the DF case. Finally, two appropriate optimization

problems have been proposed for each relaying scheme such

that the probability of achieving the most secured state in

each transmission is optimal. On the other side, a large value

of N makes the COP reach 0, which means that a secured

transmission can occur thanks to the increase in N .

APPENDIX

A. The CDF of snrAF
E

Let us define X =
γSL

−α
SR

γRl
−αNΘ

(γSL
−α
SR

N+1)+γRl−αΘ
. The CDF and PDF

of X can be, respectively, calculated as

FX (x) = P
{
(γSL

−α
SR N − x)γRl

−αΘ ≤ (γSL
−α
SR N + 1)x

}

= 1− exp

{
(1 + γSL

−α
SR N)x

γRl−α(x− γSL
−α
SR N)

}
✶(x < γSL

−α
SR N)

(73)

and

fX (x) = exp

{
(1 + γSL

−α
SR N)x

γRl−α(x− γSL
−α
SR N)

}

× γSL
−α
SR N(1 + γSL

−α
SR N)

γRl−α(x− γSL
−α
SR N)2

✶(x < γSL
−α
SR N). (74)

As such, snrAF
E in (35) is rewritten as snrAF

E =
γSl

−α
SE |hSE|2 + X . The CDF of snrAF

E is given by

FsnrAF
E

(µ) =

∫ µm

0

F|hSE|2

(
µ− x

γSl
−α
SE

)
fX (x)dx (75)

where µm , min{µ, γSL
−α
SR N}. After some manipulations,

(75) is expressed in the form of (40).

B. The CDF of snrDF
E

Let us define Y = min
{
γSL

−α
SR N, γRl

−αΘ
}

. The CDF and

PDF of Y can be, respectively, calculated as

FY(y) = 1− exp

{
− y

γRl−α

}
✶(y < γSL

−α
SR N). (76)
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Fig. 9. P {A}AF versus γS. Parameters: N = {50, 70}, λ = 0.25, RΨ = 1,
LSR = 4, LRD = 1.5, α = 2.5, µ = 16.02 dB, η = 20 dB, γR = 10 dB.

and

fY(y) =
1

γRl−α
exp

{
− y

γRl−α

}

+ exp

{
−γSL

−α
SR N

γRl−α

}
δ
(
y − γSL

−α
SR N

)
(77)

for y ≤ γSL
−α
SR N , where δ

(
y − γSL

−α
SR N

)
is a Dirac delta

function in y.

Now we can rewrite snrDF
E in (37) as snrAF

E =
γSl

−α
SE |hSE|2 + Y . The CDF of snrDF

E is given by

FsnrDF
E

(µ) =

∫ µm

0

F|hSE|2

(
µ− y

γSl
−α
SE

)
fY(y)dy. (78)

After some manipulations, (78) is expressed in the form of

(44).

C. Proof of Proposition 3

First, we note that both snrE and SOPµ are functions of γS.

To emphasize this, we rewrite snrE and SOPµ as snrE(γS)
and SOPµ(γS), respectively. It is straightforward to show

snrE(p2) − snrE(p1) ≥ 0 for p2 > p1, thus snrE(γS) is an

increasing function of γS. For p2 > p1, we have

P {snrE(p2) < µ|Ψ} < P {snrE(p1) < µ|Ψ}

⇒ 1− ❊Ψ

{∏

Ei∈Ψ

P {snrE(p2) < µ|Ψ}
}

︸ ︷︷ ︸
SOPµ(p2)

> 1− ❊Ψ

{∏

Ei∈Ψ

P {snrE(p1) < z|Ψ}
}

︸ ︷︷ ︸
SOPµ(p1)

(79)

which demonstrates that SOPµ(γS) increases with γS. More-

over, limγS→∞ SOPµ = 1 − exp{−πλR2
Ψ} as calculated in

(54) and (57) for each considered case, thus this limit value

is also the upper bound of SOPµ at high γS.
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Fig. 10. P {A}DF versus γS. Parameters: N = {50, 70}, λ = 0.25, RΨ =
1, LSR = 4, LRD = 1.5, α = 2.5, µ = 16.02 dB, η = 20 dB, γR = 10 dB.
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