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In the healthcare industry, where concerns are frequently and appropriately focused on saving someone’s life, access to interfaces
and computer systems storing sensitive data, such asmedical records, is crucial to take into account. Medical information has to be
secretive and protected by the laws of privacy with restrictions on its access. E-health security is a holistic notion that encompasses
available medical data’s integrities and con�dentiality which ensures that data are not accessed by unauthorized people and allow
doctors to o�er proper treatment. �e patients’ data need to be secured on servers holding medical data. �is work adds new
features for ensuring storage and access safety through ITPKLEIN-EHO (integrated transformed Paillier and KLEIN algorithms)
that use EHOs (elephant herd optimizations) to provide lightweight features. �e key space a�ects lightweight encryption
techniques in general. �e EHOs (elephant herd optimizations) optimize key spaces by adjusting iteration rounds. �e main goal
is to encrypt EEGs (electroencephalographic signals) in healthcare and send it to end users using the proposed ITPKLEIN-EHO
approach.�is suggested technique utilizes MATLAB for its tests on various EEG data sets for implementation.�e simulations of
the proposed IRPKLEIN-EHO technique are evaluated with other existing techniques in terms of MSEs, PSNRs, SSIMs, PRDs,
and encryption/decryption times.

1. Introduction

Daily, more than 7.7 billion people utilize the Internet [1]. Its
capabilities have grown to include themes as broad as getting
food delivered from one area to another, as well as more vital
activities such as money tracking and online banking. �e
Internet’s amicable culture has morphed into one of venom
[2] as the number of users has increased. Since the initial
data leak, the risks that Internet users have faced have not
altered. Inadvertent mistakes (natural and man-made di-
sasters, as well as personnel mishaps) and deliberate oper-
ations (fraud, identity theft, embezzlement, and so on) are
the two sorts [3]. Numerous breaches of data using the
Internet have been the reason for deliberations on the In-
ternet’s security aspects that need consideration and re-
sultant secure solutions [4]. Data security has been an

important focus of research and discussions in e-health
systems since its outset. While data digitalization, increased
e¢ciencies, and speeds have increased the vulnerabilities of
data to cyber-attacks, medical records appear to be a popular
target for hackers, as seen in Figure 1.

A few information breaks have driven the improvement
of hostile to danger security arrangements [5]. Notwith-
standing utilizing an assortment of safety methodology
including �rewalls, VPNs (virtual con�dential organiza-
tions), and encryptions, mixes of these actions are required
for compelling and secure information exchanges. As ad-
vancements of sight and sound applications rise, pictures are
becoming assumed critical parts in a few applications.
E-medical services are one of the most fundamental pur-
poses [6]. Correspondence among specialists and patients
has become a lot simpler because of digitization. Specialists
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from different areas can team up and cooperate. #ere are
various purposes for e-medical care which can anticipate
drug collaborations, analyse infections, help medical pro-
cedures carefully, and use telemedications/wellbeing. #ese
delicate pieces of information of medical services are sent
utilizing public organizations representing an assortment of
safety gambles.

Because of the lack of sufficient security measures in
place, medical imaging modalities have been targeted by
hackers [7]. In today’s healthcare information systems,
medical data are an essential component of diagnostics [8].
#e majority of health institutions maintain their medical
data remotely in third-party servers and clouds. For such
digital material, privacy, safety, and security must be ensured
through the use of encryption to assure secrecy and au-
thentication techniques to ensure authorship. In this arena,
digital image data encryption and watermarking solutions
had to be reversible [9]. Due to the sensitivity of the data
conveyed in medical data, the original plain image data used
in cryptography and watermarking methods should be
recoverable.

Watermarking is used to introduce identifiers that, by
definition, are inseparable from the material in which they
are placed. #ey could be viewed as the ultimate defense
against usurpation and falsification. Medical tradition is
quite demanding about the quality of biomedical data, and it
is frequently forbidden to change the bit field encoding the
image in any way (nondestructive) [10]. #e data alteration
idea underpins the watermarking technology. As a result, the
watermarking process must be reversible in the sense that
the original pixel values must be precisely retrieved. #is
severely limits the capability and quantity of approaches
available. It also requires dedicated algorithms to suppress
and introduce the mark automatically to prevent the delivery
of unprotected documents. However, mindlessly applying
watermarking is not acceptable in the medical imaging
profession, where any change to the image’s high infor-
mation area is not allowed. Encryption is an exceptionally
effective method for capacity and transmissions. However,
once sensitive data are encrypted, it may not be secure [11]

when images are found as open (plain-content) frames
where intruders can breach privileges and obtain daily
records.

Most typical encryption techniques emphasize text data
or paired data [12]. As a result, traditional ciphers such as
IDEA, AES, DES, and RSA, among others, cannot encrypt
real-time images within specific time durations as they
demand longer calculation times and larger registration
powers. Considering the advantages of encryptions in
protecting data, an effective method of safeguarding medical
data was proposed [13]. It has been shown that medical data
generally contain confidential information about patients
and are thus vulnerable to different security dangers when
transmitted over public networks making it compulsory to
encrypt images before transmissions over public networks.
Traditional encryption approaches, on the other hand, have
been found incapable of providing acceptable security levels
due to the uniqueness of medical data such as increased
correlations and redundancies amongst pixels and bigger
sizes. #is results in their inability to stand against security
threats.

#us, this work aims to create efficient encryption of
images with highly complex secret keys. #e heterogeneous
network system’s nature also takes advantage of (i.e., res-
pirator pumps with a network-permitted system that is
distinct from enlisting frameworks that may pay special
attention to the Internet). #e expanded assessment of sold-
off information on under data is set by the growing risk
scenario, in which cyber-attacks [14] are becoming in-
creasingly polished and substantially financed. #e primary
goal is to provide a revolutionary combined transformed
Paillier and KLEIN algorithm that makes use of the EHOs.
#e proposed ITPKLEIN-EHO encrypts EEG signals before
their transmissions. #e primary contributions of this work
are detailed as follows:

(i) Effective encryptions of images for e-healthcare data
using the proposed ITPKLEIN-EHO scheme which
secures biological EEG signals with secret keys. #e
key space affects lightweight encryption techniques in
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Figure 1: Security risks in traditional electronic health systems.
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general. #e swarm optimization approach is intro-
duced here to optimize key spaces by adjusting it-
eration rounds.

#e remainder of the paper is structured as follows:
Section 2 presents related work. #e proposed model is
discussed in Section 3. #e experimental analysis is pre-
sented in Section 4. Section 5 presents the conclusion as well
as future work.

2. Related Work

#e approaches based on encryption and watermarking are
addressed in this part to protect medical data for the
healthcare system, which provides various significant as-
pects. Ali et al. [15] suggested a zero-watermarking tech-
nique to preserve an individual’s privacy and avoid the risk
of identifying exposure to telemedicine. #e suggested
technique embeds a person’s identification in medical voice
signals without creating any distortion. To select the ap-
propriate sites, two metrics are computed in the signal for
identity insertion: Hurst exponent and zero-crossing. Un-
voiced speech frames are reliable for identifying insertion
and extraction, according to an analysis of the signals as well
as resistance to noise attacks. #e suggested zero-water-
marking approach inserts identifications into secret keys
instead of signals using 1-D binary local operators. Kamran
and Farooq [16] developed an information-preserving
watermarking technique as a restricted optimization prob-
lem where the study’s experimental results showed diag-
nostic accuracies while resisting well-known watermark
corruption assaults.

Pilot results show that by utilizing the suggested in-
formation-preserving strategy, total classification accuracy is
never reduced by more than 1%. Vasanthanayaki [17] an-
nounced the launch of a new safe and secure system for
medical records. #e suggested architecture has an impact
on cloud infrastructures, allowing for cost efficiency, quick
deployment, scalability, and flexibility to meet variable
workloads. #e research system might be utilized to safe-
guard a variety of medical documents. #e proposed
SMCPSs (secure medical healthcare content protection
system) have two main steps: HKGs (hybrid key genera-
tions) and storage management. Keys and values for
healthcare records are initially generated using AES and
MD5 (message digest) techniques for secure multiparty
computing. #e proposed HKG method was distinguished
from other key generation algorithms by its use of AES and
MD5 in key values. #ese two methods generate a new key
value, increasing the system’s security level. #e HKGs
create dynamic and representative keys for medical records
that are computationally efficient to compute and contrast
and require little storage. In the second stage of the project, a
framework based on compressive sensing (CS) will be de-
veloped for the preservation and management of medical
healthcare records.

Anand et al. [18] created encrypted dual watermarks for
EPR data protection that were compressed using numerous
important features. #eir experimentations on large medical

datasets proved their suggested scheme’s viability. Finally,
the proposed method outperforms the existing techniques
by providing superior robustness and security. #e general
design of an MCPS by Kocabas et al. [19] consisted of four
layers, namely, data collections, aggregations, cloud pro-
cesses, and actions where the layer’s hardware and com-
munication capabilities changed, and separate encryption
algorithms were utilized to ensure data privacy in layers. #e
study examined both traditional and innovative encryption
techniques in terms of their capacities to provide secure
storage, data shares, and computations. #e full experi-
mental evaluation of each strategy reveals that while
emerging encryption systems enable exciting new capabil-
ities such as safe sharing and secure computing, they impose
computational and storage overhead of several orders of
magnitude. #e report was concluded by proposing po-
tential research topics for improving the usability of
forthcoming encryption techniques in an MCPS. To com-
plete encrypting and decrypting a medical picture, a deep-
learning-based picture encryption and decryption networks
(DeepEDNs) is used, the method was presented by Ding et
al. [20]. #en, cycle-generative adversarial networks (Cycle-
GANs) is utilized for shifting medical images from their
source domains to target domains and where target domains
are “hidden factors” that aided learning models in
encrypting data. Encrypted images were restored to their
original (plaintext) images through reconstruction networks
in decryptions. #e scheme eased data mining procedures
from privacy-protected environments, ROIs (regions of
interest), and mining networks extract relevant items from
encrypted images. #e chest X-ray test recommended
DeepEDNs. Extensive experimental findings and security
analysis show that the suggested technique can provide high
degrees of security while remaining efficient.

Hasan et al. [21] in their proposal utilized light-weighted
encryptions for securing healthcare images. #eir suggested
lightweight encryption method used two permutations of
techniques to protect medical photos. #ey appraised and
compared their approach with generally encrypted schemes
in terms of security and execution speed where their per-
formance evaluations on a large number of test photographs
showed better outcomes when compared with other existing
algorithms in terms of efficiencies.

Yang et al. [22] suggested plaintext encryptions of
marked medical images into similar images of target images
for increasing image security. #eir novel scheme RDH
(reversible data hiding) was based on adaptive texture
classifications to embed data privacy into medical images to
preserve patients’ details while improving image qualities.
#e recommended RDH beats alternative RDH algorithms
in the study’s extensive tests. Plaintext encryptions reduced
attackers’ attention spans and improved the security of
medical images.

Encryption for medical clouds was suggested by Li et al.
[23] where symmetric encryption schemes were dynamically
searched for forward and backward privacies, and at the
same time, the SEDSSEs’ (secure and efficient dynamic
searchable symmetric encryptions) approach employed
KNNs (k-nearest neighbors) and ABEs (attribute-based
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encryptions). In the realm of dynamic searchable symmetric
encryptions, their two security aspects were crucial though
challenging to establish. Key sharing issues that plague kNN-
based searchable encryption systems were handled with a
better technique. #eir techniques were efficient in terms of
storage overheads, index constructions, trapdoor creations,
and queries, according to their extensive research.

Zhou et al. [24] suggested medical image encryptions
based on game theories. #eir scheme optimized ROIs with
concealed ROI positions. ROIs were pixel-level transfor-
mations used in encryptions to allow lossless decryptions
and prevent the loss of information in medical pictures.
Simultaneously, ROI’s position information was appropri-
ately disguised, preventing positional information leakages
during transmissions. Furthermore, hyperchaotic QCNNs
(quantum cell neural networks) scrambled and diffused
ROIs with random sequences. Most crucially, quantitative
parameter analyses of ROIs were presented, and game theory
achieved the best balance between encryption speeds and
encryption security performances.

Yang et al. [25] in their study presented a medical data
share method based on attribute crypto-systems and
blockchain technologies. In the first place, encoded clinical
informationwaskeptupwithinmists,with capacity locations,
and clinical related data were recorded on block-chains,
guaranteeing productive capacity and disposing of dangers of
irreversible information changes. Second, their recom-
mended framework blended ABEs with ABSs (property-
based signs), empowering portions of clinical information in
many-to-numerous communications. ABEs guaranteed in-
formation security and fine-grained admittance controls,
while ABSs confirmed the clinical information’s sources
while safeguarding underwriter characters. Moreover, in-
formation clients reappropriated most clinical information
figure text unscrambling exercises to CSPs (cloud specialist
co-ops), which significantly diminished handling loads.

Zheng et al. [26] suggested efficient medical data shares
that leveraged on ABEs to overcome privacy issues in user
data shares. Attribute matching functions were eliminated,
and attribute bloom filters were used to conceal the attri-
bute’s access control structures. #roughout encryptions,
online/offline encryption technologies optimized encryption
efficiencies. Before the message was known, a large number
of works had to be accomplished at the encryption stages.
Cipher texts could be constructed once the message was
decoded. Furthermore, at the system’s initializations, all
characteristics were not needed. #e system did not reini-
tialize when system users’ general attributes increased, which
enhanced the system’s efficiency. #eir data shares were
secure, according to security and performance studies, and
improved data processing capabilities in IoT (Internet of
#ings)-based data shares.

In a multidata-owner setting, Abdelfattah et al. [27]
developed effective searches for encrypted data. #e cloud
server received noisy similarity ratings, which physicians
denoised before downloading most critical articles, to assure
the security of the proposed approach. #e study’s solution
allowed doctors to prescribe search conditions without
giving them to the server and allowed them to customize

searches.#eir formal proof and analysis indicated that their
system was a safeguard for maintaining privacy against
known plaintext and linkability attacks, and their results of
several experiments showed that their technique was more
efficient than previous methods.

Chen et al. [28] used cloudlet’s versatility to construct
breakthroughs in the healthcare system. Privacy protections,
data interchanges, and intrusion detections are all charac-
teristics of cloudlets. #e study adopted NTRUs (number
theory research units) to encrypt user-collected physiolog-
ical data gathered by wearable devices. #ese data were
delivered in an energy-efficient manner to neighboring
cloudlets. Secondly, they provided a novel trust model to
help users choose trustworthy partners for the exchange of
cloudlet data. #e trust idea also allowed individuals with
comparable diseases to talk to one another about their
ailments. #irdly, the study divided and safeguarded stored
medical information into three sections maintained in re-
mote clouds. #eir scheme protected healthcare data from
malicious assaults using collaborative IDSs (intrusion de-
tection systems) which were based on cloudlet mesh that can
prevent clouds from attacks. #e tests suggested that the
proposed strategy was successful.

Liu et al. [29] described ETC approaches for the analysis
of ECG data where data privacy was ensured while recon-
structed signals were of the same quality as unencrypted
compressions and without sacrificing compression perfor-
mances. SVDs (singular value decompositions) compressed
data specifically for providing quality in encrypted and
compressed data. #e results of the study’s experiments
revealed effective ways of data security in addition to en-
hanced compression performances on ECG data.

POMP, a privacy-preserving medical prediagnosis system
for cloud environments created by Yang et al. [22], used LRs
(logistic regressions) to provide health care informationwithout
invading their privacy. #e use of homomorphic encryption
methods to provide private prediagnosis procedures on
encrypted data was the scheme’s distinction. #e proposed
POMP approach used preprocessingmethodologies and Bloom
filters to reduce the computing costs of prediagnostics.#rough
careful research, the study showed that the proposed POMP
systems could successfully survive different security concerns
and safeguard privacies of information.

Tao and Ling [30] proposed block-chain-based medical file
shares based on decentralized ABCs. Authorization applica-
tions and grants were recorded on the blockchain. Smart
contracts provided system users with interactive platforms.
Decentralized ABEs were used to control fine-grained access to
medical information, ensuring privacy and security while
avoiding single-point failures.#emodel was brought closer to
reality by attribute-based algorithms that permit ted demo-
cratic decisions from groups with dynamic personnel changes.
#eir system worked well in real time in terms of security and
practicability while offering new practical models for medical
file shares when comparedwith other similar existing solutions.

Niu et al. [31] proposed permission-based data shares
using block-chains. #e data’s privacies were maintained
using cipher text-based attribute encryptions and thus
controlled accesses. #ey employed polynomial equations
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for building arbitrary connections between keywords and
ensuring the safeguard of patient identities where block-
chain technology was merged. Furthermore, their random
oracle model’s keywords were indistinguishable for adaptive

chosen keyword assaults. #eir system showed high retrieval
efficiencies in their analyses. Table 1 shows a comparison of
suggested and current approaches, as well as their advan-
tages and disadvantages.

Table 1: A comparative table of proposed and existing methods with their advantages and disadvantages.

Author Method Advantages Disadvantages

Ali et al., [15] Zero-watermarking
algorithm

Increase the encryption and decryption
process’s security level

Because some areas in this approach are
more important in the diagnostic process,
slight changes in them might modify the

diagnosis

Kamran and Farooq
[16]

Information-preserving
watermarking scheme

Excellent performance and on-time
delivery

#e investigation discovered, however,
that the present recommended

approaches still had application-specific
security issues

Vasanthanayaki [17] SMCPS #e suggested approach has a fast
computational speed

#e photos of the patients, on the other
hand, are not encrypted

Anand et al., [18]
Compression-then-

encryption-based dual
watermarking

#e suggested technique has
demonstrated good encryption and
decryption performance, as well as

minimal complexity

#e investigation discovered, however,
that the present recommended

approaches still had application-specific
security issues

Ding et al., [20] DeepEDN #e suggested approach is simple to
implement

#e memory, CPU, and energy budgets
are all limited

Hasan et al., [21] Lightweight encryption
algorithm

#e suggested system’s encrypted entropy
and encryption speed are high, protecting
patients’ privacy and boosting the security

of medical photos on the cloud

#e use of security analytics has the
potential to drastically reduce

vulnerability concerns.

Yang et al., [22] RDH In terms of storage, search, and update
difficulty, the approaches are superior

Searching encrypted medical data without
decryption, on the other hand, is

challenging

Li et al., [23] SEDSSE

It delivers optimal and lossless picture
encryption and decryption, as well as the

ability to safeguard medical photos
flexibly and reliably

At the low embedding rate, the image
contrast does not appear to be boosted

Zhou et al., [24] A lossless medical image
encryption scheme

Reduce the computational load
significantly

However, being vulnerable to data
manipulation and forgery is a

disadvantage

Yang et al., [25], zheng
et al., [26], tao and ling
[30]

ABE
It protects against known-plaintext/

background and linkability attacks while
maintaining privacy

However, sharing paper-based medical
data between two or more medical

institutions was cumbersome and time-
consuming

Abdelfattah et al., [27] Search scheme over
encrypted data

Increase the encryption and decryption
process’s security level

Smart terminals, on the other hand, are
typically restricted in computer capacity,

and users’ privacy concerns persist

Chen et al., [28] NTRU Excellent performance and on-time
delivery

Users’ sensitive information is involved,
and communication energy is used

Liu et al., [29] Singular value
decomposition It necessitated little overheads

#is technique, however, has a substantial
computing cost since it compares

individual keywords in the trapdoor to all
of the keywords

Guo et al., [32] Homomorphic
encryption

It features a low computation/
communication overhead and a quick

search time

However, numerous problems remain in
the creation of an online medical

prediagnosis system, including medical
information leakage and misuse

Niu et al., [31] Searchable attribute-
based encryption

Low computation and transmission
overheads are required

However, this results in erroneous search
results and the downloading of

unnecessary material, which may lead to
doctor misdiagnosis
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2.1. Inference. According to the study, the majority of the
effort is based on the medical image-based security mode;
however, it is heavily focused on data security. As a result,
this work concentrated solely on medical data. Medical data
exchange and storage over public networks are not secure.
Authentications, confidentiality, and integrity are the three
main challenges with medical data. Medical data security
issues can expose patients to several risks, restricting the
growth of mobile healthcare apps even more. As a result,
medical data must be safeguarded at all times during
transmission and storage. Image encryption is one of the
information security approaches that may be used to protect
medical data.

3. Proposed Methodology

As illustrated in Figure 2, distinct EEG signal data sets are
used as a source of data for encryption and decryption.
Before being delivered to the hybrid lightweight encryption
technique, the data are preprocessed (transformed Paillier
and KLEIN algorithm). Transformed Paillier is key pair-
based cryptography that adds homomorphism to the system.
Because messages are encoded and will interpret as needed,
they may be merged in this manner. Every client is given a
private and public key, and messages encrypted with the
public key may be decoded with the private key. KLEIN is a
lightweight encryption estimator that is impacted by key
space; it utilizes the EHO improvement framework to
minimize key space. #is decreases the degree of a cycle and,
as a result, the amount of space available. Finally, the EEG
signal data have been encoded and unscrambled.

3.1. Medical Data Security Model Based on ITPKLEIN-EHO.
EEGs are a critical biosignal used by neurosurgeons to
handle cerebrum issues. #e use of transmission medium
and pressure systems to send biomarkers such as ECG and
EEG for remote medicinal delivery has improved in the
telemedicine industry, boosting realism and testing. Tomake
optimal use of transmission capacity, it is necessary to pack
and send this information for the critical treatment/standard
healthcare/patient observation framework. In telemedicine
applications, transmitting a significant volume of data safely
and originally becomes problematic. ITPKLEIN-EHO is
presented as a solution to the aforementioned issues.

3.1.1. Transformed Paillier Encryption. Image scaling and
cropping in a reduced cloud storage system with dedupli-
cation are presented in this section based on two distinct

encryption levels. Many users can use this system, but each
user (i.e., data owner) wants to utilize two keys to encrypt the
image. #e key management authority generates these keys
for each user by running an initialization process. #e initial
key pair is used for the first level of encryption that is formed.
KLEIN is used by Paillier to encrypt the second key pair. #e
keys for encryption and decryption are provided by the key
management authority. #e initialization algorithm repre-
sents the initialization of the key management authority.
Choose two huge prime integers, pr1 and pr2, at random and
independently, such that
gc d(pr1 ∗ pr2(pr1 − 1)(pr2 − 1)) � 1. #is feature is guar-
anteed if both primes are of similar length. Computing ‘Sk’
for the secret key and gpr1 1 and pr2 for the public key, we
obtain

Sk � pr1 ∗ pr2,

Λ � lcm pr1 − 1, pr2 −1( 􏼁,

Μ � L g
Λmod Sk2􏼐 􏼑􏼐 􏼑

−1
mod Sk.

(1)

Here, g ∈ Z, the public keys for encryption are Sk and g, and
the private keys for decryption are Λ and Μ. Let the image
pixel pr1 be encrypted, where Λ is the requested leakage
function, 0≤ pr1 ≤ Sk, and a randomnumber rand are chosen
from a range of integers, where 0 rand n. #e encryption
procedure will be represented by (2) using these two values.
Here, E is the encrypted image pixel, minp is the minimal
polynomial, and randn is an integer random number.

E � minp ∙ randn mod Sk2. (2)

After the encryption process is complete, the user will
perform the second level of encryption before performing
the first level of decryption D using the secret key (3), which
represents this decryption procedure.

D � L c
Λmod Sk2􏼐 􏼑∙Mmod, (3)

whereD represents the decoded pixel of the given image and
c represents the plaintext.

3.1.2. KLEIN Encryption Process. #e structure of KLEIN is
a conventional substitution-permutation network (SPN),
which is used in several sophisticated block cyphers, in-
cluding AES and PRESENT. To give an acceptable security
buffer and asymmetric iteration for KLEIN64/80/96, the
rounds counts NR are estimated as of 12/16/20. To extend
relatively small master keys into successive round keys and
round transformations, all viable block ciphers use distinct

Input EEG dat set

Integrated Transformed Paillier 
and KLEIN algorithm using 
Elephant Herdoptimization 

algorithm

Encryption and 
decryption process

Figure 2: General framework diagram of ITPKLEIN-EHO.
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key schedules.#e key schedule must be flexible, and KLEIN
is used to build block cipher-based hash functions and
message authentication codes, even when keys are updated
often. Key scheduling, on the other hand, considers the right
level of security complexity. KLEIN’s key scheduling is
designed to eliminate potential related-key weaknesses while
balancing performance and is detailed as follows:

(1) Input: a 64/80/96 bit master key Mk for KLEIN-64/
80/96.

(2) Key scheduling: let i be the round counter of KLEIN-
64/80/96. In the first round, when i � 1, the initial
subkey sk1 � mk � sk10‖sk

1
1‖ · · ·

����sk1t , where t � 7/
9/11 for KLEIN-64/80/96. For KLEIN-64, the
(i + 1)th subkey ski+1 can be derived from the ith
subkey ski as follows:

(i) Divide the ith subkey ski into two byte-oriented
tuples, such that t1 � (ski

0, sk
i
1, · · ·, ski

⌊t/2⌋) and
t2 � (ski

⌊t/2⌋, sk
i
⌊t/2⌋+1, . . . , ski

t) for the next step
(ii) Cycling left shift one byte position in (t1, t2),

obtain t1′ � (ski
1, · · · , ski

⌊t/2⌋ , ski
0) and

t2′ � (ski
⌊t/2⌋+1, · · · , ski

t, sk
i
⌊t/2⌋) for the next step

(iii) Swap the tuple (t1, t2) with a Feistel-like
structure, such that t1″ � t2′ becomes the left
tuple, whilst t2″ � t1′ ⊕ t2′ becomes the right tuple

(iv) XOR round counter i with the third byte in the
left tuple t1″, and we substitute the second and
the third bytes of the right tuple t2″ by using the
KLEIN S-box S

(3) Output: iteratively execute the above step for dif-
ferent key lengths, truncate the leftmost 64 bits of
subkey ski for the ith round transformation.

#e KLEIN-64 key schedule technique is shown in
Figure 3. Different key sizes can be accommodated using
KLEIN’s key scheduling. KLEIN subkeys can be generated in
round transformations to save memory for retaining interim
values. KLEIN’s on-the-fly key scheduling is more resource-
efficient than classical optimizations, which involve com-
putations of all subkeys beforehand during the sensor’s
performance tuning. Figures 4 and 5 show the system model
for EEG signal encryption and decoding.

3.1.3. Elephant Herding Optimization. By varying the
number of iteration rounds, EHO was able to optimize the
key space. #e authors in [33] proposed the EHO technique,
which is an SI technique. It is based on natural elephant
herding behavior. #is behavior is summarised as follows:
elephants are split into clans, each of which has numerous
elephants. Each clan is led by a matriarch, while adult male
elephants leave their clans and live alone. Two operators in
EHO handle these actions: clan update and clan separation.
Clan updates move elephants and matriarchs about within
each clan, whereas separation enhances population diversity
later in the search phase.

EHO behavior classifications include separating opera-
tors and clan updating operators. As shown in Figure 6,
EHO outperforms conventional approaches for detecting

critical search spaces. #e elephant A matriarch, usually the
eldest cow, leads the herd. Eachmember ‘j’ of the clan I move
following the matriarch, who is the elephant with the highest
fitness value in a generation:

Fitness � Elnewcli,j � Elcli,j + α Elbest,cli􏼐 􏼑 × r. (4)

In clan i, Elnew,cli,j depicts an elephant j in a present
location, and Elcli,j is its previous location. #e best solution
for clan cli is the Elbestcli, where α ∈ [0, 1] is a scale factor of
the procedure that recognizes the matriarch position of the
best elephant in clan Elbert,cli:

Elbestcli � β × Elcentercli. (5)

Here, β ∈ [0, 1] is the second parameter of the procedure
that controls the influence of the Elcentercli defined as (clan-
updating process):

Elcentercli �
1
ncli

× 􏽘

ncl i

j�1
Elcli ,j,d. (6)

Here, 1≤ d≤D is the dimension of the d th term and
denotes the dimension total space, and ncli recognizes an
unlimited amount of elephants in a clan i. In each clan i

elephants, which are shifted to the fresh positions as per the
following equation (separating process):

Elworstcli � Elmin + Elmax − Elmin + 1( 􏼁 × rand. (7)

Here, Elmin and Elmax are the minimum and maximum
bounds of the search space, and Rand [0, 1] is a stochastic
distribution between 0 and 1.

Each potential solution is tied to a matriarch, which
distinguishes EHO from other population-based evolu-
tionary methods. “member” and “clan” are two possible
solutions found in the search space. To create the EHO
process, an elephant population is formed. Each elephant’s
matriarch position is then revised based on the elephant’s
and the clan’s experiences. #e elephants should seek better
alternatives. #e objective function of an optimization
problem can be used to evaluate the fitness of each elephant,
and the input is
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Figure 3: #e key schedule algorithm of 64 bit key length.
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BPEli �
Fitness Elbestki􏼐 􏼑 − FitnessKN
Fitness Elbest1i􏼐 􏼑 − FitnessKN

. (8)

Fitness(Elbestki ) is the fitness of the elephant’s best
previous position in the kth iteration, Fitness KN is the
known genuine optimal solution value, and Fitness(Elbest1i )

is the fitness of the elephant in the first iteration.#e current
value of the scale factor for ith elephant Eli is the second
fuzzy input. Here, the longest time of Fitness KN, which is
consistent K and is the current generation number, is KN,
and the biggest generation number is KN. Figure 7 depicts a
cost function graphical representation of EHO for a key
search space with an elephant in a unique position and a
subsequent new position. Figures 8 and 9 demonstrate the
input EEG signal and the encrypted signal output.

4. Experimental Results and Discussion

#is section details the results of quality measurements and
cryptography time for clinical datasets used in a sign, in-
cluding SSIMs (structural similarity indices), NAEs (nor-
malized absolute errors), QILV (quality index-based local
variance), PSNRs (peak signal-to-noise ratios), and MSEs
(mean-squared errors). #e suggested approach will be

implemented in the MATLAB tool, and the results will be
compared to current methodologies such as ABE [25] and
DeepEDN [20] in terms of a variety of common evaluation
metrics to reveal system efficiency. #e results of the
recommended and current approaches are compared in
this section. #e plain input EEG signal that was encrypted
and the resultant output encrypted EEG signal are shown in
Figure 7.#e experiment employed a total of 20 ECG signal
samples from the MIT-BIH databases. #e database has a
recognition rate of 100%. #is study examines three dis-
similarity representations: two first-order spaces, the Eu-
clidean and cosine spaces, and one second-order space,
Dinc, which will be addressed later. Due to the inability of
typical triangulation techniques to capture the original
signal, the inclusion of a second-order dissimilarity metric
offers fascinating security benefits. As long as the encoded
sign’s histograms are distinct, the recommended approach
is effective against histogram-based attacks. When the
encryption technique is performed, the input signal is
referred to as the plain EEG signal or original signal, and it
is transformed into an EEG encrypted signal, i.e., output.
MSEs determine the differences between unique (x) and
encoded (y) signals of length N, as illustrated in the fol-
lowing section.

Input Encrypted EEG 
signal

Transformed Paillier
Decryption

KLEIN based 
Decryption

EHO-based optimal key 
search space

Decrypted EEG signal

Figure 5: #e system model for encryption of the EEG signal.

Input EEG signal and 
preprocessing

Transformed Paillier
Encryption

KLEIN based 
encryption

EHO-based optimal key 
search space

Encrypted EEG 
signal

Figure 4: #e system model for encryption of the EEG signal.
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4.1.PSNR. #is is commonly used to assess the quality of the
encrypted signals. #e parameter is defined as the peak
signal power-to-noise ratio in the decrypted medical data
Sdec. A higher PSNR value implies that the scheme has
superior denoising capacity.

SNR � log10
S
2
max

MSE
. (9)

4.2. NAEs. #ese parameters show estimated error values
from intensity differences where lower values approximating
to zero indicate fewer errors in decrypted signals.

NAE �
􏽐

N
i�0 Senc(x, y) − Sdec(x, y)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐
N
i�1 Senc(x, y)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

. (10)

4.3. MSE. #is is a commonly used distortion measure. #e
parameter estimates the average of the square of errors. #e
parameter is nonnegative, and values closer to zero are
better.
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MSE �
1
N

􏽘

N

i�0
Senc xi, yi( 􏼁 − Sden xi, yi( 􏼁􏼂 􏼃

2
. (11)

4.4. SSIM. #e parameter is computed for finding the
similarity between the encrypted image Senc and the
decrypted signal. Its value should be within [0, 1]. A higher
value indicates a better-decrypted signal.

SSIM �
2μSenc

μSde c
+ v1􏼐 􏼑 2σSenc

μSde n
+ v2􏼐 􏼑

μ2Senc + μ2Sde n + v1􏼐 􏼑 μ2Senc + μ2Sde n + v2􏼐 􏼑
. (12)

Here, μ is an average of the image, and σ are the variances of
the images. v1 and v2 are two variables for stabilizing the
weak denominator.

4.5. QILV. #is gives a comparison of the local variance
distribution of the restored image concerning the pain
signal. A higher index value indicates better signal quality.

QILV �
2μSenc

μSde c

μ2Senc + μ2Sde c
∙
2σSenc

σSde c

σ2Senc + σ2Sde c
∙
σSenc ∗ c

σIenc
σSde c

. (13)

Table 2 shows a comparison of several filtering algo-
rithms. #e performance of the ITPKLEIN-EHO-based
denoising strategy is shown to be effective among them. #e
best values of MSE, SSIM, NAE, and PSNR in the table
demonstrate this. #is could be related to KLEIN’s usage of
an EHO-based key search space, resulting in nonlocal pixel
similarity when leveraging redundant information in the
signal. Furthermore, the assessment indices SSIM and QILV
provide the best results with this method. #is demonstrates
improved image detail preservation when decrypting. Fur-
thermore, the ITPKLEIN-EHO-based approaches improve
the assessment indices for all parameters. #is demonstrates
the approach’s advantage in maintaining crucial search
space in medical data. #e best NAE scores suggest higher
picture detail registration with fewer inaccuracies.

Figure 10 depicts a comparative examination of several
strategies using the proposed model with PSNR. When
compared to other techniques, the PSNR value produced by
the suggested framework is higher. #e proposed approach
has the greatest PSNR value (42.68 dB) among the other
methods tested, including ABE and DeepEDN. Figure 10
compares the PSNR value for various types of signals using
various approaches. #e PSNR acquired for various signal
levels ranges from 30.25 dB to 42.68 dB. #ese results show
that the ITPKLEIN-EHO is best suited for security models
and boosting medical data authentication.

Figure 11 depicts a comparative examination of several
strategies using the suggested model with NAE. When
compared to other techniques, the suggested framework
yields a higher NAE value. #e proposed technique has the
lowest NAE value (0.0845) among the other methods (ABE
and DeepEDN). Furthermore, when compared to other
approaches, the NAE values for all types of photos are low.
#is could be due to KLEIN’s EHO-based key search space
selection. Furthermore, because of the employment of the
security model, it is rotationally invariant.

Figure 12 depicts a comparative examination of several
strategies using the proposed model with MSE. When
compared to other techniques, the MSE value produced by
the suggested framework is higher. #e proposed approach
has an MSE value of 0.005, which is low when compared to
other methods such as ABE and DeepEDN. MI values imply
improved registration of image features. According to the
findings, ITPKLEIN-EHO-based approaches are effective in
producing security in medical data. Because the perfor-
mances of previous approaches are limited due to their
computational complexity, the findings of existing methods
achieved high NAE.
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Figure 10: PSNR of different methods compared with the proposed
framework.
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Figure 13 depicts a comparative examination of several
strategies using the suggested model with SSIM. When
compared to other techniques, the SSIM value obtained by
the suggested framework is higher. #e proposed approach
has the highest SSIM value of 0.9145 when compared to
other methods such as ABE and DeepEDN. #e SSIM value
obtained for various photos ranges from 0.8358 to 0.9145.
#e EHO model was created to locate the best key search
space based on the optimum location of the elephant with
the least amount of effort. #is also solves the EHO training
techniques’ local minima problem.

Figure 14 depicts a comparative examination of several
strategies using the suggested model with QILV. When
compared to other techniques, the suggested framework

yields a higher QILV value. #e proposed method’s QILV
value is 0.9254, which is the greatest among the other
methods such as ABE and DeepEDN since it finds the
optimal KLEIN encryption results with the lowest compu-
tational cost.#e best values QILV represent the ITPKLEIN-
EHO for security production.

4.6. Noise Attack Evaluation. Table 3 shows the rate of RMS
differentiation (PRD) in cryptograms with disorder devel-
opments. #e recouped sign loses data when the disturbance
is upgraded to the cryptogram by a noise ambush. Fur-
thermore, the enhanced modification effectively counteracts
natural outcry when the cryptogram is sent via the dubious
channel. Regardless, the suggested encryption approach is
vulnerable to a clatter attack discovered by software engi-
neers, and a couple of frameworks to avoid this problem
should be addressed.

In Table 3 and Figure 15, the value obtained in the
proposed systems PRD with 100 percent noise was 2056.39.
As a result, the suggested encryption scheme generates a
competent sign. #e encryption method incorporates the
modification of the primary clinical sign before encryption.
#e rate of root-mean-square differentiation (PRD) is used
in this criterion to select a certain curvature among
prominent clinical signs, and the PRD of the recovered
clinical sign is expressed as follows: the message between the
patient and the doctor via telemedicine should be
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Table 3: PRD value for the proposed v/s existing method.

Methods PRD with 100% noise
ABE 3041.6
DeepEDN 2104.4
ITPKLEIN-EHO 2056.39

12 Journal of Healthcare Engineering



progressive. For example, the interaction between the two
people groups should be as quick as possible. #e encryption
and unscrambling procedure in the secure message system
requires processing time.

#e encryption and unscrambling times of the proposed
ITPKLEIN-EHO scheme are compared to known tech-
niques for clinical EEG signal datasets in Table 4 and Fig-
ure 16. According to the aforementioned Table 4, the
proposed method’s cryptography timings are 0.1241 s and
0.1385 s. As a result, as compared to the present approach,
the suggested ITPKLEIN-EHO method takes less time to
process. Finally, the proposed ITPKLEIN-EHO approach
outperforms the others.

5. Conclusion and Future Work

#e proposed ITPKLEIN-EHO method outperformed the
existing one in terms of performance. Comparing this
strategy to older ones, it produced better outcomes in terms
of error reduction and processing time for cryptography as
measured by using a simulation tool. According to the
experimental results, the proposed approach has a 93.5%
accuracy rate, compared to a 91% rate for existing meth-
odologies. As a result, the EEG signal data for each patient
can be transmitted safely, quickly, and without incident. In
the future, we will work to cut down on the encryption time
so that real-time applications can use it. #e proposed
technique also reduces the expense of keeping electronic
health records. #e method not only offers fine-grained
access control but also prevents adversarial doctors from
uploading false data during the authentication procedure.
Blockchain technology may also be used in the future to
allow medical institutions to exchange digitised health in-
formation. Clinical professionals may develop quick and
precise diagnosis plans for patients with the help of medical
information used effectively, which also boosts hospital
productivity.

Data Availability

#e data are available at https://physionet.org/content/
mitdb/1.0.0/.

Conflicts of Interest

#e author declares no conflicts of interest regarding the
present study.

Acknowledgments

#is work was supported by the Princess Nourah bint
Abdulrahman University Researchers Project under grant
number (PNURSP2022R234), Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia.

References

[1] Internet World Stats,World Internet Users Statistics and 2019
World Population Stats, https://www.internetworldstats.com/
stats.htm, 2019.

[2] S. Bairwa, B. Mewara, and J. Gajrani, “Vulnerability Scanners-
A Proactive Approach to Assess Web Application Security,”
2014, https://arxiv.org/ftp/arxiv/papers/1403/1403.6955.pdf.

[3] K. Ahmad, S. Verma, N. Kumar, and J. Shekhar, “Classifi-
cation of internet security attacks,” in Proceedings of the 5th
National Conference INDIACom-2011Bharti Vidyapeeth’s
Institute of Computer Applications and Management, New
Delhi ISSN, India, March 2011.

[4] R. Ayyagari, “An exploratory analysis of data breaches from
2005-2011: trends and insights,” Journal of Information Pri-
vacy and Security, vol. 8, no. 2, pp. 33–56, 2012.

[5] A. H. Seh, M. Zarour, M. Alenezi et al., “Healthcare data
breaches: insights and implications,” Healthcare, vol. 8, no. 2,
p. 133, June 2020.

Table 4: Encryption/decryption times of proposed and existing
methods.

Methods Encryption time (s) Decryption time (s)
ABE 0.1640 0.1756
DeepEDN 0.1372 0.1408
ITPKLEIN-EHO 0.1241 0.1385

ABE DeepEDN ITPKLEIN–EHO

Encryption time (s)
Decryption time (s)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

Figure 16: Encryption/decryption times of proposed and existing
methods.

PRD with 100% noise 

0

500

1000

1500

2000

2500

3000

3500

ABE
DeepEDN
ITPKLEIN–EHO

Figure 15: PRD value for the proposed v/s existing method.

Journal of Healthcare Engineering 13

https://physionet.org/content/mitdb/1.0.0/
https://physionet.org/content/mitdb/1.0.0/
https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm
https://arxiv.org/ftp/arxiv/papers/1403/1403.6955.pdf


[6] A. Chandy, “A review on iot based medical imaging tech-
nology for healthcare applications,” Journal of Innovative
Image Processing (JIIP), vol. 1, no. 01, pp. 51–60, 2019.

[7] A. Ferrara, “Cybersecurity in medical imaging,” Radiologic
Technology, vol. 90, no. 6, pp. 563–575, 2019.

[8] P. Ma, Z. Wang, X. Zou et al., “Medical Imaging Device
Security: An Exploratory Study,” 2019, https://arxiv.org/pdf/
1904.00224.pdf.

[9] S. Ajili, M. A. Hajjaji, B. Bouallegue, and A. Mtibaa, “Joint
Watermarking\Encryption image for safe transmission: ap-
plication on medical imaging,” in Proceedings of the 2014
Global Summit on Computer & Information Technology
(GSCIT), pp. 1–6, Sousse, Tunisia, June 2014.

[10] A. K. Pal, N. Dey, S. Samanta, A. Das, and S. S. Chaudhuri, “A
hybrid reversible watermarking technique for color bio-
Medical Data,” in Proceedings of the 2013 IEEE International
Conference on Computational Intelligence And Computing
Research, pp. 1–6, Enathi, India, December 2013.

[11] A. Banik, Z. Shamsi, and D. S. Laiphrakpam, “An encryption
scheme for securing multiple medical images,” Journal of
Information Security and Applications, vol. 49, Article ID
102398, 2019.

[12] S. Kumar, K. Patidar, R. Kushwah, and S. Chouhan, “A review
and analysis on text data encryption techniques,” Interna-
tional Journal of Advanced Technology and Engineering Ex-
ploration, vol. 4, no. 30, pp. 88–92, 2017.

[13] M. Yang, M. Trifas, L. Chen, L. Song, D. B. Aires, and J. Elston,
“Secure patient information and privacy in medical imaging,”
J. Syst. Cybern. Inf, vol. 8, no. 3, pp. 63–66, 2010.

[14] A. A. AlZubi, M. Al-Maitah, and A. Alarifi, “Cyber-attack
detection in healthcare using cyber-physical system and
machine learning techniques,” Soft Computing, vol. 25, no. 18,
Article ID 12319, 2021.

[15] Z. Ali, M. S. Hossain, G. Muhammad, and M. Aslam, “New
zero-watermarking algorithm using Hurst exponent for
protection of privacy in telemedicine,” IEEE Access, vol. 6,
pp. 7930–7940, 2018.

[16] M. Kamran and M. Farooq, “An information-preserving
watermarking scheme for right protection of EMR systems,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 24, no. 11, pp. 1950–1962, 2012.

[17] C. Vasanthanayaki, “Secure medical health care content
protection system (SMCPS) with watermark detection for the
multi-cloud computing environment,” Multimedia Tools and
Applications, vol. 79, no. 5, pp. 4075–4097, 2020.

[18] A. Anand, A. K. Singh, Z. Lv, and G. Bhatnagar, “Com-
pression-then-encryption-based secure watermarking tech-
nique for smart healthcare system,” IEEE MultiMedia, vol. 27,
no. 4, pp. 133–143, 2020.

[19] O. Kocabas, T. Soyata, and M. K. Aktas, “Emerging security
mechanisms for medical cyber physical systems,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics,
vol. 13, no. 3, pp. 401–416, 2016.

[20] Y. Ding, G. Wu, D. Chen et al., “DeepEDN: a deep-learning-
based image encryption and decryption network for internet
of medical things,” IEEE Internet of Dings Journal, vol. 8,
no. 3, pp. 1504–1518, 2021.

[21] M. K. Hasan, S. Islam, R. Sulaiman et al., “Lightweight en-
cryption technique to enhance medical image security on
internet of medical things applications,” IEEE Access, vol. 9,
Article ID 47731, 2021.

[22] Y. Yang, X. Xiao, X. Cai, and W. Zhang, “A secure and
privacy-preserving technique based on contrast-enhancement
reversible data hiding and plaintext encryption for medical

images,” IEEE Signal Processing Letters, vol. 27, pp. 256–260,
2020.

[23] H. Li, Y. Yang, Y. Dai, S. Yu, and Y. Xiang, “Achieving secure
and efficient dynamic searchable symmetric encryption over
medical cloud data,” IEEE Transactions on Cloud Computing,
vol. 8, no. 2, pp. 484–494, 2020.

[24] J. Zhou, J. Li, and X. Di, “A novel lossless medical image
encryption scheme based on game theory with optimized ROI
parameters and hidden ROI position,” IEEE Access, vol. 8,
Article ID 122210, 2020.

[25] X. Yang, T. Li, X. Pei, L. Wen, and C. Wang, “Medical data
sharing scheme based on attribute cryptosystem and block-
chain technology,” IEEE Access, vol. 8, Article ID 45468, 2020.

[26] D. Zheng, A. Wu, Y. Zhang, and Q. Zhao, “Efficient and
privacy-preserving medical data sharing in internet of things
with limited computing power,” IEEE Access, vol. 6, Article ID
28019, 2018.

[27] S. Abdelfattah, M. Baza, M. M. Badr et al., “Efficient search
over encrypted medical data with known-plaintext/back-
ground models and unlinkability,” IEEE Access, vol. 9, Article
ID 151129, 2021.

[28] M. Chen, Y. Qian, J. Chen, K. Hwang, S. Mao, and L. Hu,
“Privacy protection and intrusion avoidance for cloudlet-
based medical data sharing,” IEEE Transactions on Cloud
Computing, vol. 8, no. 4, 2016.

[29] T. Y. Liu, K. J. Lin, and H. C. Wu, “ECG data encryption then
compression using singular value decomposition,” IEEE
Journal of biomedical and health informatics, vol. 22, no. 3,
pp. 707–713, 2018.

[30] J. Tao and L. Ling, “Practical medical files sharing scheme
based on blockchain and decentralized attribute-based en-
cryption,” IEEE Access, vol. 9, Article ID 118771, 2021.

[31] S. Niu, L. Chen, J. Wang, and F. Yu, “Electronic health record
sharing scheme with searchable attribute-based encryption on
blockchain,” IEEE Access, vol. 8, pp. 7195–7204, 2020.

[32] W. Guo, J. Shao, R. Lu, Y. Liu, and A. A. Ghorbani, “A
privacy-preserving online medical prediagnosis scheme for
cloud environment,” IEEE Access, vol. 6, Article ID 48946,
2018.

[33] G. G. Wang, S. Deb, and L. D. S. Coelho, “Elephant herding
optimization,” in Proceedings of the 2015 3rd International
Symposium on Computational and Business Intelligence
(ISCBI), pp. 1–5, Bali, Indonesia, December 2015.

14 Journal of Healthcare Engineering

https://arxiv.org/pdf/1904.00224.pdf
https://arxiv.org/pdf/1904.00224.pdf

