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ABSTRACT Trusted decentralized applications based on distributed ledger technologies provide many

potential opportunities to 5G applications and verticals, as well as in fifth generation mobile network

(5G) enabling technologies, systems, and services. Apart from the tamper-proof exchange of transactions,

distributed ledgers can provide a software environment for the trusted execution of smart contracts. In this

article, we explore the security aspects of decentralized applications and, in particular, the security of

smart contracts. Distributed ledger characteristics impose distinct requirements on smart contract design,

implementation, deployment, andmanagement.We briefly present the approach to the development of secure

smart contracts, and highlight key smart contract vulnerabilities and the developer tools supporting smart

contract security. We developed a secure, upgradeable modular multi-contract platform. It combines per-

contract Smart Contract Tunnels and per-user-based access control to minimize vulnerabilities. The smart

contract platform is comprised of service-agnostic, auxiliary, and service-specific smart contracts. It can be

therefore easily adapted to different 5G application verticals. For illustration and evaluation, we elaborated

on the proposed solution on a case of smart electric charging. During the design and development, state-of-

the-art code analysis was applied. Finally, we propose an architecture for the integration of the secure multi-

contract platform into a 5G architecture. The integration proposal utilizes hybrid private-public blockchain

networks for possible security, scalability, performance, and transaction cost optimization.

INDEX TERMS Access control, blockchain, distributed ledger, module, security, smart contract, upgrade-

able.

I. INTRODUCTION

Emerging 5G networks are characterized by three major fea-

tures, which promise to support a variety of new services,

applications, and business opportunities. These diverse fea-

tures include greater data bandwidth, full end-to-end latency

reduction, reliable communications, and support of machine-

type communications for massive Internet of Things (IoT)

deployments, including numerous constrained devices con-

nected to the network [1]. The underlying technologies,

like Cloud Radio Access Network (Cloud-RAN, C-RAN),

Software-defined Networking (SDN), Network Function Vir-

tualization (NFV), and slicing, are enablers for new radio

access, the core of the network and new service provision-

ing principles. At the same time, 5G imposes new security

challenges, such as network availability, data immutability,
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and privacy. The existing security techniques and architec-

tures that are available in 2G-4G networks are not suffi-

cient for 5G. They cannot adequately address issues such

as data tampering, dynamics of new technologies and ser-

vices in 5G networks, or new requirements on security and

privacy beyond protecting data integrity [2]. This is becom-

ing additionally challenging with 5G being distinctly multi-

tenant and multi-domain, with diverse network participants,

including infrastructure providers, network operators, service

providers, enterprises, government regulators, and mobile

users.

The security associated with 5G technologies has been

considered as one of the key requirements related to both 5G

and beyond systems. The existing 5G technology infrastruc-

ture has remaining unsolved challenges in terms of security,

networking, and computing performance degradation due to

its centralized architecture [2]. Centralized cloud/edge ser-

vice provisioning does not guarantee a seamless provision
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of Internet of Things (IoT) services. In the scenarios where

tenants share the same cloud infrastructure, the possibility

of attacks inside the cloud can increase, which damages the

transparency and accountability of service providers. End-to-

end service function chains may deploy NFVs in an environ-

ment involving multiple cloud providers, which could lead

to data leakage concerns [3]. The increase in mobile data

traffic and the increasing user demands on 5G infrastructure

also introduce new challenges in terms of security and per-

formance degradation. Current resource management strate-

gies for spectrum sharing provide a central point of attacks

for malicious users [4]. Despite a considerable heterogene-

ity of the foreseen 5G requirements, technologies, tenants,

and use cases, we believe they share a common demand

for secure, trusted, autonomous, and automated interactions,

which leverage 5G system management, service provision-

ing, and related applications. This demand can be lever-

aged/addressed by distributed ledger technologies.

Distributed ledger technologies (DLT) [6] could effi-

ciently contribute to solving some of the discerned challenges

in 5G security and architecture. The opportunities brought by

blockchains (BC) to 5G networks and services may include

security enhancements, system performance improvements,

and even network simplification [2]. 5G services require

automated, secure, and transparent interactions among mul-

tiple stakeholders, trusted intermediaries for newly emerg-

ing options, such as infrastructure crowdsourcing, and shar-

ing. At the same time, BC technology adapted in 5G could

contribute to services and applications in 5G verticals, too.

Management and service capabilities of massive machine-

type communications (mMTC) impose new challenges to the

scalability and IoT authentication in 5G networks [5].

Distributed ledger technologies and BC [7] as the most

prominent example of DLT provide a unique aspect of secu-

rity – the decentralized trust. In the initial BC protocols (e.g.,

the Bitcoin), this refers to a trusted exchange of transactions,

which are immutably and non-repudiatively stored in a chain

of blocks. There is no centralized entity that would provide

trust in the system. The trust is achieved with sophisticated

cryptographic mechanisms and a public ledger (chain) of

past transactions, which is mutually accessible and verifiable

by any BC network participant. But the real proliferation

of BC technology arose for smart contracts (SC), a feature

enabled in various forms in the second generation of BC

systems (e.g., Ethereum [8], Hyperledger Project [9], Hedera

Hashgraph [10], EOS [11], Corda [12]). These BCs provide

a virtual machine that runs in the decentralized nodes of the

BC system and enables a trusted execution of programming

code – the smart contract. Smart contracts (the backend code,

on-chain code) along with the enabling BC network and the

corresponding BC-enabled end user and IoT applications (the

frontend code) build the fundament of decentralized applica-

tions (DApps).

Blockchain properties impose additional considerations

and modified approaches in the development of decentralized

applications because traditional software engineering princi-

ples cannot address some of the specific security challenges

of the smart contracts in the decentralized application.

In this article we therefore:

• Analyzed the background security aspects of decen-

tralized applications and smart contracts based on dis-

tributed ledger and blockchain technology.

• Proposed a secure, modular multi-smart contract plat-

form, which is upgradeable, enables secure module and

user authorization, and is composed of service-agnostic,

service-specific, and auxiliary smart contracts. The plat-

form is multi-tenant and can be adapted to various appli-

cation scenarios or 5G verticals.

• We implemented a prototype of a decentralized smart

electric charging service to illustrate and evaluate the

proposed approach in a deployment use case for smart

electric charging.

• Finally, we proposed several possible approaches to the

integration of such a secure decentralized application

into the 5G infrastructure, including considerations on

hybrid public and private distributed ledger network

architectures for secure and scalable operation.

The remainder of this article is organized as follows.

In Section II we provide background on the role of BC

technologies for 5G networks, services, and applications, and

present the concept of decentralized applications. Section III

points out key BC security challenges relevant to 5G and

elaborates on the security of smart contracts. In Section IV

we present our approach to a secure modular smart contract

platform for the administration of multi-tenant 5G applica-

tions, including the results of a prototype implementation

and evaluation. Hybrid public and private distributed ledger

network architectures for secure and scalable operation in 5G

applications and verticals are discussed in Section V.

II. BACKGROUND

A. BLOCKCHAIN POTENTIALS IN 5G

Potential opportunities of the BC in 5G can be found in 5G

applications and verticals as well as in 5G enabling technolo-

gies, systems, and services [2]. The decentralized nature of

DL applications can eliminate the need for trusted centralized

intermediaries in 5G, e.g., for spectrum, band or database

management, or centralized cloud and edge service man-

agers. It potentially eliminates single-point failures and pro-

vides data and service availability. Immutability of DL

records can assist in 5G services, such as spectrum, data,

and virtual resource sharing, and can be useful in accounting

tasks and usage information for statistics, billing or utilization

monitoring. In addition, transparency of these records can

mitigate frauds and facilitate better access, verifications, and

tracking of transactions for all the involved participants and

according to the pre-agreed access rights. BCs can contribute

to other unique security features, such as trusted computation,

rule execution, and access control with smart contracts.

Cloud computing has a vital role in 5G for optimiz-

ing communications, processing, storage of computing and
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storage-intensive applications, and data content delivery [4].

Likewise, cloud infrastructure is being integrated into many

of the 5G enabling technologies, e.g., in the Cloud-RAN,

where a cloud controller manages a large number of small

cells. Cloud management in 5G itself imposes challenging

requirements on the availability, integrity, immutability, and

privacy of data. DLT has already been investigated for cloud

management. However, with the extension of cloud services

toward the edge of the network and introduction of (decen-

tralized) mobile edge computing (MEC), the decentralized

characteristics of DLT become an obvious solution for the

security and management of cloud-edge systems [13]. Even

wider decentralization in 5G is present when device-to-device

(D2D) communication is brought into play. Peer-to-peer

based applications for location-based services, secure content

sharing, and computational offload between devices can be

well addressed by trusted, autonomous machine-to-machine

(M2M) communications in the blockchain [2]. Two other

5G underlying technologies, Software-defined networking

(SDN) and Network function virtualization (NFV), are char-

acterized by distributed computing paradigms. The BC can

ensure decentralization in a trustful manner to enable dis-

tributed controllers and distributed network resources in SDN

[14]. NFV can spawn over multiple non-trusting administra-

tive domains for inter-domain transactions and billing. Multi-

domain orchestration (MdO) imposes complex distributed

service level agreements (SLAs) and automated consensus

based on chained SLAs [15], which is one of the key objec-

tives for modern decentralized applications.

1) ILLUSTRATIVE USE CASES

We illustrate these possibilities in three use cases, BC-based

slice brokering, identification, and authorization for IoT and

BC supported smart grid applications in 5G.

Network slicing is an efficient sharing paradigm for

advanced mobile network sharing and multi-tenancy.

It enables the network operators to recover up to 30%

of operational and infrastructure costs in the radio access

network, backhaul, and core network. On the other hand,

specific application verticals, for example, public protec-

tion and disaster relief (PPRD), are keen to replace their

costly and frequently outdated existing infrastructure for

a modern, efficient and reliable communication service.

Common business scenarios for network sharing include

sharing of a common radio access or a common core net-

work, enhancing and sharing mobile coverage, and spec-

trum sharing. A network slice refers to dedicated network

capacities, virtual network functions as well as computing

and other resources, which are provided by the infrastructure

providers to mobile virtual network operators (MVNO), over-

the-top (OTT) providers, or different application verticals.

Slices can be set statically or dynamically, and resources

in a slice are assigned according to communication loads,

key performance indicators, and service level agreements.

A slice broker [16] provides dynamic and automated admis-

sion control for the incoming request (from, e.g., PPRD),

and resource assignment via standardized network sharing

application programming interfaces (API). The slice broker

complements the infrastructure provider’s network manage-

ment. In [17] they propose a 5G network slice broker based

on BC technology to reduce service creation time and enable

manufacturing equipment autonomously and dynamically

acquire the slice needed for more efficient operations.

IoT is an established technology with many successful

large-scale production deployments. It is also one of the

major 5G domains, and thus a key driver for 5G development,

deployment, and use. Blockchain technology is already being

adopted in the IoT in various vertical industries, such as the

supply chain and logistics for complex management of sen-

sory data, documentation or regulatory compliance, in food

traceability, smart health, smart grid, and alike [18]. The inte-

gration of the IoT and BC can result in decentralization and

scalability, efficient device management and authorization,

trustworthiness in data and sharing services, data monetiza-

tion, autonomous device operation and automation, machine-

to-machine transactions, and micropayments [19].

The security and performance of underlying BC technolo-

gies and architectures are being improved to meet the require-

ments of the IoT [20]. At the same time, some of the key

challenges of the IoT are being addressed by the BC, too [21].

One area of research is decentralized storage, preprocessing,

andmining for decentralized datamanagement. In this aspect,

the BC has a strong competitor in cloud-centric solutions,

which are more mature and currently provide performance

beyond the one in decentralized solutions for the IoT. But for

the ownership, identity and access management, and security

of IoT devices, DLT and the BC show immense potentials.

Device management and maintenance of the numerous

inexpensive and resource-constrained devices imply a strong

potential for security vulnerabilities in the IoT. Device man-

agement is characterized by massive deployments of sim-

ple unmanned devices. The device maintenance challenge

is how to keep the security credentials, firmware, and soft-

ware properly configured and up to date in these constrained

devices. From the security perspective, the BC can address

two major issues in the IoT, identification and authentication.

Lightweight, yet reliable device authentication is required,

along with a convenient way of flexible governance for

the manufacturers and owners to track and maintain device

identities [22]. A study [23] explores how devices’ iden-

tities are authenticated and how the consequent data and

service access is managed. A semi-decentralized BC-based

framework is proposed to provide features of identity cre-

ation and transfer of ownership. Similarly, research on the

means of identification and authorization of IoT devices

with the BC [24] explores and proposes an authenticated

device configuration protocol to achieve this authentication

process.

A smart grid enables new and innovative use cases in

the utility domain, which are technically infeasible in the

traditional electric grid. Numerous sensors, actuators, and

meters are dispersed over large territories, and 5G con-

150628 VOLUME 8, 2020



M. Pustišek et al.: Secure Modular Smart Contract Platform for Multi-Tenant 5G Applications

nectivity makes smart grid one key 5G verticals. DLT

with autonomous machine-to-machine negotiations, micro-

payments, and utility tokens can support advance smart grid

services for microgrids, management of distributed resources

(DER) and storage, smart electric vehicle (EV) charging,

demand and supply aggregation, and management. Architec-

tural considerations of BC implementation for the IoT and

smart grid are addressed in [25], [26]. Some studies point

out the need to distribute a part of the BC functionality

toward the edge of the communication network [26], and

some investigate the possibilities of applying the BC in the

SG [27], too. In [28] they focus on the role of the BC in

mobile charging of electrical vehicles. A blockchain-based

PEV charging system is presented in [29], where energy can

be traded directly from one vehicle to another (P2P mode).

We present a BC-based smart grid prototype in the introduc-

tion of Section IV. The practical part of our research is based

on it.

B. DECENTRALIZED APPLICATIONS

The term decentralized application (DApp) refers to an appli-

cation that is executed by multiple users over a decen-

tralized network. [30]. A DApp implementation framework

consists of three key building elements, which we dubbed

a DApp triplet. These elements are a trusted decentralized

ledger, trusted decentralized execution of program logic, and

user applications [18]. An example of a DApp triplet is a

BC network, smart contracts implemented in this network,

and BC-enabled front-end applications, which provide user

interfaces and run embedded IoT devices.

Possible application scenarios impose desirable character-

istics on a blockchain platform. The characteristics, which are

not narrowed down to only the performance of BC networks

in terms of transaction latency, throughput and sequential

performance, are strongly shaped by the nature of the chain-

structured distributed ledger and consensus mechanisms built

in the network. Although the type and configuration of a BC

network radically affect these parameters, the performance

is still not comparable with the renowned and alternative

non-BC transaction processing systems. Another expectation

is the management of offline transactions for predictable

behavior and security implications on the services that are

provided by DApp when connectivity to the BC network is

not guaranteed. In public BC networks with cryptocurren-

cies, reasonable monetary costs can become a problem. They

include the transaction processing fees as well as the ability

of DApp developers to leverage other models apart from

the transaction cost-based ones. Despite the immutability of

the distributed ledger, BC platforms need to provide flexible

maintainability, which includes upgrades of the BC protocols

and management of the readily deployed SC code for bug

recovery and updates. And lastly, when required, the privacy

in BC networks needs to be addressed, and efficient iden-

tity management is expected, especially for the IoT DApps,

where unmanned devices act as BC participants [18].

1) DAPP TRIPLET: DISTRIBUTED LEDGER NETWORK FOR

DECENTRALIZED APPLICATIONS

A blockchain network is a set of peer nodes, which intercon-

nect in a decentralized manner through an IP network. The

nodes, also named clients, are responsible for running the

BC protocols and thus all communication with the rest of the

BC network. This includes managing peers and the network,

monitoring the status and synchronizing the chain of blocks

(to keep the local chain up to date), managing the accounts

and transactions (e.g., creating and sending outgoing trans-

actions), listening to events, mining blocks, and enabling a

decentralized virtual machine where smart contracts can be

deployed and executed. A BC node usually exposes a Web-

based API through which the off-chain applications use the

BC capabilities.

Mining is not a mandatory function of every BC node.

However, it is frequently implemented in the common node

software and can be arbitrarily enabled. When a node creates

a new BC transaction (Tx), it populates the requested Tx data

structure and signs it with the private encryption key. The key

belongs to the originating BC account and thus the authentic-

ity of the transaction is assured. Miners – i.e., mining nodes –

receive newly created transactions from the other nodes in the

network. They validate the incoming transactions in terms of

authenticity, and verify the account balance. A subset of valid

transactions in the transaction pool is used to compose a new

block to be included in the chain. The process of building new

possible blocks is running concurrently inmany decentralized

miners. Therefore, miners execute a consensus algorithm to

select which of the miners will append a new block to the

chain.

In BC network implementations various approaches exist

and the selected approach can affect the performance, scala-

bility, security, and privacy of the network. The approaches

differ in how new nodes can be added to the network and

which nodes are allowed to act as miners. The latter can be

to some extent related to the consensus algorithm applied

in the specific BC network [18]. In public BC networks

(e.g., Bitcoin network [31]; Ethereum mainnet – a public

instance of the Ethereum network; Hedera mainnet [32]),

anyone can propose a new BC node, including a mining node.

There is no authentication of the node proprietor and there

is no explicit guarantee that all the nodes behave honestly

in creating new blocks for the chain. Anyone can access

the ledger and transactions in the ledger. A large number

of mining nodes and the decentralized nature of the consen-

sus algorithms make sure that malicious node behaviors are

detected and the blockchain remains uncompromised. In a

private BC network (e.g., Hyperledger Fabric [33]), nodes

may run the same BC protocols as the public BCs and still

operate in a distributed manner, but the mining nodes are

under the control of a single entity. This might, on the one

hand, have a positive impact on the transaction throughput,

latency and privacy of the BC data, but on the other hand

to a large extent inhibits the trust of the system. Private BCs

are no longer decentralized but merely distributed. The chain
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owner can decide who can access and write chain data and

nodes to the network. Consortium BC platforms (e.g., Hyper-

ledger Fabric) have many of the same advantages as a private

blockchain, but operate under the leadership of a group (e.g.,

a group of collaborating organizations) instead of a single

entity. Thus, they combine elements from public and private

networks. Unlike in private BCs, where only a single entity

appoints nodes and miners, a consortium chain builds on

equally powerful parties that function as validators. Access to

the ledger can be limited to validators readable to authorized

individuals, or granted to all. A consortium blockchain is

commonly applied in a setting where multiple organizations

operate in the same industry and require a common ground

on which to carry out transactions or relay information [34].

Based on how the data are managed and accessed in the

blockchain system, we can classify the blockchain into two

types, a permissionless and a permissioned blockchain. In a

permissionless blockchain, a participant can join the network

without any approval or registration, and all the nodes can

initiate or verify transactions. On the other hand, access to the

network is permissioned, and the operations needed to per-

form or verify transactions are under administrator control,

too, in a permissioned blockchain [21]. Public BC networks

are permissionless, whereas private and consortium networks

are permissioned and have only known participants.

Apart from a trusted environment to exchange and keep

a record of mutual transactions, running the DApps requires

the capability to execute on-chain smart contract logic. This

feature, if provided by the BC nodes and the network, results

in a distributed and decentralized virtual machine (VM).

It enables the execution of the SC code that has been pre-

viously deployed (‘‘installed’’) in the BC network, where the

code is guaranteed to produce the same results for everyone

who runs it. The SC VM thus introduces trust in the code exe-

cution. The VM makes it possible to run DApps that have no

central points of failure or control, integrate with a payment

network, and operate on a private, public, or consensus-based

BC network. An example of such a VM is an Ethereum Vir-

tual Machine (EVM) [35], [36]. In Hyperledger Fabric, smart

contracts are packaged as chaincode. Chaincode is installed

on peer nodes and then defined and used on one or more

channels, which are private blockchain overlays that allow

for data isolation and confidentiality [33], [37]. Details on

smart contract development, deployment, and execution are

presented in the following subsection.

2) DAPP TRIPLET: SMART CONTRACTS FOR DECENTRALIZED

APPLICATIONS

The term ‘‘Smart Contract’’ was coined by Nick Szabo in the

’90s. In the BC, an SC is programming code, deployed and

executed in the BC network. It has no central point of failure,

it can perform operations, hold value and unlock it only if spe-

cific conditions are met [33], [35]. The benefits of smart con-

tracts are most apparent in business collaborations, in which

they are typically used to enforce some type of agreement so

that all participants can be certain of the outcome without an

intermediary’s involvement [38]. Various programming lan-

guages are applied in the development of SCs, depending on

the VM in the selected network. Some VMs support diverse

programming languages for SCs [37], others stick to one. The

same VM can be supported in different BC protocols (e.g.,

EVM in Ethereum, Hyperledger Burrow, etc.). If the scripting

language used by the VM is Turing-complete, this essentially

means that the types of DApps users can design are limited

only by their programming skills and creativity. This is the

case in Ethereum, too. The VM limits the scope of the SC

execution to the BC network. An SC can call methods of other

SCs in the network, but cannot access external programming

interfaces, like Web APIs. External applications call SC’s

methods to read the SC parameters, or send BC transactions

to the SC to change its state. An SC can emit events, which

are received by the BC network nodes and can be passed to

the external applications by a node. In Ethereum, the use of

a deployed SC is defined by an Application Binary Interface

Specification (ABI) [39]. An ABI is the interface between

external program modules and the SC bytecode. In the BC,

the interface is the de facto method for encoding/decoding

data into/out of the SC, i.e., how you call functions in a con-

tract or pass and get data back. Slightly different approaches

are taken in other BC architectures, e.g., Hyperledger [37].

A smart contract lifecycle is comprised of several stages:

the development and verification, deployment, use, andmain-

tenance. In Ethereum, the SCs are primarily developed in

the Solidity (or Vyper) programming language. Solidity is

supported by various dedicated (Truffle, Remix) and com-

mon (e.g., VS Code) development environments. During the

development and after the deployment, an SC should be

verified with formal and/or runtime methods to verify the

correctness of the SC code and minimize possible security

flaws in the specification, code implementation or misun-

derstandings, mistakes, and bugs in VM implementation.

Typical approaches may include static analysis, symbolic

execution, or input fuzzing to detect security bugs and verify

the correctness of smart contract code. Once the source code

is completed, it is compiled to the Ethereum-specific binary

format, called the EVM bytecode. The bytecode, along with

the Application Binary Interface Specification (ABI) file,

is then sent off to the blockchain with a contract creation

transaction. This is a special transaction that is sent to an

empty BC address, with the EVM bytecode as data. Once the

creation transaction is added to the chain by validating nodes

in the BC, the SC obtains a unique SC address. An SC has

its balance, some code, and some persistent storage for the

execution of its operations.

Each node in the BC network (not just miners) executes

the SC. This ensures the consensus and thus trust in the

results of the SC execution. The SC methods can be accessed

in two ways by the BC network participants. If an external

application requires, e.g., a simple read of an SC parameter,

this is donewith a local invocation (occurring only in the local

BC node) of the SC method call via the node API. On the

other hand, when a BC network participant needs to modify
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some state in the SC, the call has to be initialized through

a transaction sent to the SC address. This transaction can

include a cryptocurrency for the SC, as well as additional

input parameters for the method call. Transactions have to be

validated and included in the chain in the sameway as non-SC

transactions. Upon the inclusion, the SC is executed and the

state is updated accordingly. The SC’s bytecode, of course,

remains unchanged. Any code changes of the deployed byte-

code are impossible due to the BC’s immutable nature.

3) DAPP TRIPLET: SOFTWARE ARCHITECTURE

Most of the current blockchain-based applications are still

limited to utilizing smart contracts for the core data and

backend functionality. Smart contract users run their Web,

mobile, or embedded programs off-chain to complete the

application [18]. This might not be yet the ultimate goal of

decentralization, where a DApp is hosted entirely by a BC

system. There are some solutions readily available to support

user applications in a decentralized manner, for example,

the EthereumName Service (ENS) or decentralized file trans-

fer systems. The ENS is a distributed, open, and extensible

naming system based on the Ethereum blockchain. It offers

a secure and decentralized way to address resources both on

and off the blockchain, using simple, human-readable names.

Many applications are emerging that support this way of

naming resources [40]. BC-based decentralized file systems

make it possible to distribute data without having to host any

kind of server, as the nodes download (or stream) files from

hundreds of nodes simultaneously. Efficient decentralized

storage layers for the future of the next generation internet are

provided by, e.g., Swarm and IPFS. Both the high-level goals

and technology used in Swarm and IPFS are very similar.

They aspire to provide a generic decentralized distributed

storage solution and a content delivery protocol [41].

However, not every part of a DApp can reside in the

BC because on-chain SC applications have to manipulate

actual devices (e.g., IoT), or face real-word (off-chain) data

sources. The BC-aware embedded applications in an IoT

device connect the BC backend to the physical environment.

The oracles [42] serve as intermediaries, providing data feeds

along with an authenticity proof to the smart contracts and the

BC from/to external software (e.g., web sites) or hardware

entities.

Currently, the DApp design principle is to put into an SC

only the part of the application logic that should be resistant

to modifications and rely on the proven Web-related tech-

nologies for the remainder of the application. As presented

later in Section II.B, this is, in fact, positive from the security

perspective. But the given approach also alleviates some of

the performance bottlenecks of state-of-the-art blockchain

systems.

ABC provides computation and storage capabilities via the

mechanism of smart contracts. In the relation between the SC

and off-chain applications in a DApp triplet, there are three

kinds of architectures seen in practice: direct, indirect, and

mixed. In the direct architecture, the client directly interacts

with smart contracts deployed on the BC network. DApps

of the indirect architecture have back-end services running

on a centralized server, and the client interacts with smart

contracts through the server. DApps of the mixed architecture

combine the preceding two architectures, where the client

interacts with smart contracts both directly and indirectly

[30]. In the Ethereum based DApps, the indirect architecture

is usually applied for the constrained IoT devices [43]. These

constraints include limited computation, storage, or commu-

nication resources. Interestingly, the same approach is fre-

quently taken in mobile BC-based applications, too. For the

latter, this is mostly to increase the security and to ensure

better user experience in terms of application’s instant avail-

ability, despite the intermittent connectivity.

4) OPEN CHALLENGES

There are several challenging aspects in the selection and

adoption of the appropriate DL technologies for decentralized

applications in 5G and elsewhere. These are by far not only

the technical characteristics of the underlying technologies,

where often potentially promising new features in DLT are

discussed. For a sustainable business solution development,

a proven, reliable, and future-oriented DApp ecosystem is at

least of equal importance. This, along with a thorough design

of the DLT role in the overall solution, is the fundament for

success. Nevertheless, the exact definition of the decentral-

ization triplet is a challenge, too.

For the DL network, we need to consider mutual impacts

on the performance, security (trust), and costs of applying

such a network. We select among the readily available public

networks or a private one. With public or consortium-based

networks meant for public use, we are limited to the given

network performance and transaction costs, but we benefit

from considerable trust and public cryptocurrencies. If the

latter is not required in our envisaged solution, then a pri-

vate or consortium-based network offers many possibilities

to trim the network operation for the desired performance,

but we need to be aware of the consequent risks related to (at

least partially) the centralization of the network.

The off-chain application development, in particular for the

IoT, has to consider the limited resources of the device and

possible physical threats to a compromised device. Especially

in unmanned devices, the account access keys and passwords

might be exposed if a device is, e.g., stolen. To meet the

communication and computation constraints, architectural

modificationsmight need to be taken. The IoT device can then

perform only a subset of actions needed for the participation

in the DL communications. For example, a device might cre-

ate and sign a transaction but rely on an external node’s API

for the entire DL communications. Similarly, it could only

create a transaction, which would be signed and submitted to

the DL network by an intermediary node. These architectural

variations can have significant implications for security and

trust.

The SC lifecycle imposes an additional challenge

in DApp software design and development. In a truly
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decentralized and trusted DL network, any changes in a

previously deployed SC code should be practically impos-

sible. This, in fact, presents a relevant security issue, which

has to be thoroughly addressed during the SC development.

Any fallback methods need to consider that the SC bytecode

cannot be changed anymore, even if severe mistakes were

found after the deployment to the BC network. The aspects

of SC security are presented in more detail in Section III.A.

III. SECURITY IN DECENTRALIZED APPLICATIONS AND

DISTRIBUTED LEDGER TECHNOLOGIES

DLT brings several new dimensions to application design

with their inherent trust and security. However, it is not

immune to security threats. Some of the risks share patterns

already known in cybersecurity, whereas others are specific

for DLT. Among unspecific attack vectors, there are attacks

on application clients and user wallets, and mining malware

installed into target computers. The known attacks on user

wallet credentials typically occur through phishing, dictio-

nary attacks, through the exploits of a digital signature, hash

function, and address vulnerabilities [44], or by exploiting

bugs in hardware wallets [45]. Distributed denial of service

(DDoS) attacks have targeted off-chain and auxiliary ser-

vices, such as crypto exchanges and mining pools.

Possible attacks and new attack vectors comprise the

governance and operation of the DL network, mining and

consensus, tampering of transactions, and attacks on smart

contracts. Various vectors are frequently combined into one

attack area, with the objective to first gain control over the

network, a part of the network or individual nodes, and then

to exploit this control to manipulate transactions. Some of

the attack vectors might be extremely hard and costly to

execute. In truly decentralized DL networks they might be

practically almost infeasible. However, in more centralized

(private) networks, the risks remain real. Many of the attack

vectors are protocol and implementation specific, and are not

present in every variant of DLT. So the actual implementation

of a DL network may mitigate or prevent some of the risks

with, e.g., high decentralization, authorized nodes instead of

anonymous ones, consensus mechanisms other than tradi-

tional PoW, etc.

DL network attacks are usually the basis for further attacks.

They target the governance or operation of a DL network,

with the ambition of taking the control of the majority of

nodes and thus the entire ledger (e.g., 51% attacks). They

might also try to partition the DL network into several sep-

arate and inconsistent partitions, or to isolate a selected node

from the remaining trusted nodes (Eclipse attack, Sybil).

In the Eclipse attack, they introduce a large number of node

IPs, possibly with a distributed botnet. All the victim’s out-

going connections are redirected to these IPs, and the victim

is unable to obtain transactions. In the Sybil attack, they

assign several identifiers to the same (malicious) node. This

is then followed by presenting the node under attack with

a deceptive state of the ledger, often through manipulating

time perception of the node under attack (e.g., Timejacking,

FIGURE 1. Smart contract security in the context of cybersecurity. Security
aspects of decentralized applications are a part of a broader
cybersecurity landscape. In DApp security, in addition to common cyber
risks and vulnerabilities, specific DL network and specific smart contract
security-related challenges appear.

delay attack). The attacked node can then be subjected to

transaction tampering by delaying a pre-mind block with the

first transaction to invalidate the second, identical transaction

in the next block (Finney attack).

A transaction can be tampered by exploiting propagation

and block delays due to the consensus mechanism, too. This

exploits the intermediate time between the initiation and con-

firmation of a transaction to invalidate some previous transac-

tions, and to enable double-spending. In the Race attack, one

creates two conflicting transactions so that the second makes

the first invalid. Transaction malleability attack intends to

trick the victim into paying twice, by broadcasting a second

transaction with a changed hash to the network.

Mining nodes and consensus mechanisms are vulnerable,

too. A mining node can be dishonest and behave selfishly,

and withhold some of the already mined blocks (e.g., Selfish

mining, Block withholding). In this way, the miners attempt

to increase their share of the reward. Effective countermea-

sures include the application of block timers or increasing the

randomness of miner pool assignments.

The immutable nature of a previously deployed SC code

exposes vulnerabilities that could be easily mitigated in tradi-

tional software systems but can present severe risks in decen-

tralized applications. As any source code, even a thoroughly

tested and validated smart contract might have bugs. There

can be bugs in the SC execution environment, the EVM, and

alike. Unlike the SC code, these can be fixed with DL node

updates. However, the time of updating a decentralized com-

munication system run by independent node owners might be

longer than in centralized ones. Some of the known Ethereum

attacks include Integer overflow and underflow, denial of SC

services, Timestamp dependence, where the timestamp of the

block can be manipulated by the miner, Reentrancy, which

can occur across multiple functions and even multiple con-

tracts, or Displacement, Insertion, Suppression front-running

attacks [46]. Smart contract security is thus a specific, yet an

integral part of the broader DLT security.
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Security aspects of decentralized applications are a part of

a broader cybersecurity landscape, as depicted in Fig. 1. For

secure decentralized applications, security aspects of all three

DApp triplet building elements are relevant. These aspects

can overlap to some extent (e.g., vulnerabilities have common

roots and similar mitigations can be applied). But DApp secu-

rity, in addition to common cyber risks and vulnerabilities,

introduces specific DL network and specific smart contract

security related challenges. In this article, we focus on smart

contract security.

A. SMART CONTRACT SECURITY

There are tens [47] of decentralized application platforms

using different SC languages and having different DLT char-

acteristics, which makes them difficult to compare. Some

vulnerabilities arise from specific SC languages and may

appear only in the corresponding platform. Others arise from

specific features of the specific platform, such as transaction

gas and fees in Ethereum, and order dependence in Solidity.

Vulnerabilities from a misunderstanding of common prac-

tices may appear on most DL platforms. But in the two most

relevant ones we can observe similar vulnerability aspects. In

Ethereum, smart contract vulnerabilities arise from the Solid-

ity language, the Ethereum or EVM blockchain platform,

and amisunderstanding of common practices. In Hyperledger

Fabric chaincodes, vulnerabilities arise from almost identical

points: the Go language, the blockchain platform, and a mis-

understanding of common practices [48].

The trusted environment provided by a DL network may

enable smart contracts. However, the same underlying decen-

tralizedmechanisms present a very specific software environ-

ment in terms of SC security design, implementation, testing,

and monitoring. In most of the DL networks, SC transactions

and data may be visible to an adversary. Public functions are

public in the broadest sense, and this exposure makes smart

contract vulnerability easy to exploit. Similarly, the privacy

of data is not granted, and network participants might be

anonymous or pseudo-anonymous. These aspects might be

reduced in authorized private or consortium-based networks,

but cannot be fully eliminated. In the Ethereum network,

additional consensus and computation related challenges are

known, for example, imprecise block and transaction times-

tamps, potential miner interference to transaction execution,

non-trivial and possibly unreliable random generation, over-

flows and underflows in mathematical calculations, and alike

[27]. An additional challenge is the immaturity of blockchain

platforms and smart contract languages. Blockchain tech-

nologies are evolving fast, and the DApp developers are con-

frontedwith changing platform features. Frequently, there is a

substantial mismatch between planned and promised features

and their actual delivery. Therefore, design flaws may exist

in blockchain platforms or smart contract languages. Com-

mon software security weaknesses [26], [49] may be ampli-

fied on blockchain platforms and in the related SC security

[50]. Such weaknesses include improper behavioral work-

flow, access control or initialization, incorrect calculation and

insufficiently random values, the inclusion of untrusted exter-

nal functionalities (e.g., external libraries, smart contracts

deployed by others), and improper exception handling and

cryptographic understanding [48].

A recent study [30] revealed interesting smart contract

usage patterns in a large set of Ethereum based DApps. About

75% of them are single contract, meaning that the on-chain

application logic consists of only one smart contract. The

remainingweremulti-contract, on average comprised of three

SCs. This indicates that modularization of SC design and

development is not very common. This limits the efficient

reuse of SC source code, which is mostly being simply

duplicated among different implementations [46]. The same

research investigates the openness of the DApp and SC source

code. In most cases, the DApp and SC source code have

mixed access, where key parts of the software are not fully

open. Only 16% of DApps were found to be fully open,

whereas 25% of them are fully closed and so are 52% of

SCs. The overall SC security is affected by the importance of

good external data, where an SC needs additional data feeds

from traditional on-line resources, independent from the user

data in the transactions for SC calls. Most previous researches

surveyed smart contract security only in Ethereum. How-

ever, much of it has a broader impact and is not limited to

Ethereum, especially where security risks occur because of

the misunderstanding of common practices.

B. SC VULNERABILITIES COVERAGE

Key SC vulnerabilities stem from logical flows, bugs in the

SC code, and under-optimized code patterns. Logical flows

in the implementation of the contract, where, for example,

an SC does not refund the initial deposit, lack of cryptography

for user inputs to ensure fairness, or incentive misalignments

[51], may be deliberate or caused by a misunderstanding

of DL properties. In public DL networks, where cryptocur-

rencies and miner awards are part of the DApp execution,

there is a risk of under-optimized SC code patterns that lead

to unnecessary gas consumption [52]. Their research states

that the two main reasons for this are useless-code related

and loop-related patterns. The result of scanning 4,240 smart

contracts shows that at least 80% of contracts suffer from

one or more of such patterns. However, most of the SC

vulnerability detection work is focused on the SC code and

flaws specific for the DL environment. The Smart Contract

Weakness Classification and Test Cases registry (SWC Reg-

istry) [50] is a comprehensive list of key security flaws in the

Solidity SC code. It provides a checklist for SC programmers

as well as for many of the SC vulnerability detection tools.

Some of the common Solidity SC vulnerabilities [51], [53]

include transaction-ordering dependence, timestamp depen-

dence, mishandled exceptions, and reentrancy. Transaction-

ordering dependence (SWC114) can be a problem if users

have no control over the order of transaction execution. The

order is up to miners. If there is more than one transaction

that invoked the same contract, the order of those transac-

tions can affect the new state of the blockchain. Timestamp
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Dependence is related to smart contracts, which include

conditions that are triggered by the block timestamp. Block

timestamps are set by miners based on their local system

time, and are therefore unreliable, or can be manipulated by

an adversary. Mishandled exceptions (SWC104) target the

contract that calls another contract. If any exception occurs

in the called contract, it terminates and returns false, but it

may not notify the caller contract. Reentrancy vulnerability

(SWC107) is present when a contract calls another contract,

and the current contract execution waits until the called con-

tract finishes. This provides an opportunity for the adversary

to exploit the intermediary state of the caller contract and call

its methods several times. Authorization through tx.origin

(SWC115) could make a contract vulnerable if an authorized

account calls into a malicious contract. A call could be made

to the vulnerable contract that passes the authorization check

since tx.origin returns the original sender of the transaction

which in this case is the authorized account.

In Hyperledger Fabric chaincode development, Go is most

widely used. Most security vulnerabilities in Hyperledger

Fabric chaincodes arise from the nondeterministic behavior

of Go, which may lead to consensus failure [48]. Apart from

this, other vulnerabilities arise from almost identical points as

in Ethereum: the blockchain platform and amisunderstanding

of common practices.

C. ANALYSIS AND VERIFICATION TOOLS

Several projects are aiming at formal verification of smart

contracts and a comprehensive list is beingmaintained at [54].

Some of these tools operate at the source code level (Solidity),

whereas others at the compiled bytecode level.

Mythril [55] is a free and open-source smart contract

security analyzer for the EVM bytecode. It detects security

vulnerabilities in smart contracts that are built for EVM-

compatible blockchains (e.g., Ethereum, Hedera, Quorum).

It uses symbolic execution, SMT solving, and taint analysis

to detect a variety of security vulnerabilities. It is also used

in combination with other tools and techniques in the MythX

security analysis platform.

MythX [56] is a cloud-based smart contract security ser-

vice. It performs security analysis remotely, accepting jobs,

and returning results via an API. A free version is available,

but for a complete analysis, you must sign up and purchase

a subscription. It currently detects most weaknesses found in

the SWC Registry, and thus covers assertions and property

checking, byte-code safety, authorization controls, control

flow, the correctness of ERC standard implementations, and

various coding best practices for Solidity [57]. The analysis

types include symbolic analysis, fuzzing (bytecode), Solidity

code analysis, taint analysis, and static analysis. The MythX

API has been integrated into many development frameworks,

including Brownie, Truffle, and Remix.

OYENTE [58] is another tool to analyze the Ethereum

smart contracts code based on symbolic execution. OYENTE

takes two inputs, the Ethereum smart contract bytecode,

and Ethereum global state. It checks a contract against

Transaction-Ordering Dependence (SWC114), Timestamp

Dependence (SWC116), Mishandled Exceptions (SWC104),

and Reentrancy Vulnerability (SWC107).

SmartCheck [59], [60] is a tool that translates the contract

source code (Solidity code) to the XML format, and looks

for problematic patterns using XPath queries. The knowledge

base [61] includes several known security, functional, opera-

tional, and development issues.

Securify [62] is a fully automated online static analyzer

for smart contracts, providing a security report based on vul-

nerability patterns. The project was funded by an Ethereum

Foundation grant and created by ICE center, ETH Zurich,

and ChainSecurity AG. Securify first decompiles the EVM

bytecode of a smart contract, extracts data and control flow

dependencies of the contract, and checks the security pattern

represented in the Domain-specific language (DSL). The

observed patterns are classified as compliant or violating

[63].

GASPER [52] is focusing on the identification of gas-

costly programming patterns in Solidity. In particular, they

identify 7 gas-costly patterns and group them into 2 cate-

gories, i.e., useless-code related, and loop-related patterns.

Chaincode scanner [64] is a static security checker for

Hyperledger Fabric Smart Contracts. It takes a chaincode

written in Go as input, and checks it for nine vulnerability

patterns.

With Etherscan [65], one can explore and search for trans-

actions, addresses, tokens, prices, and other activities taking

place on Ethereum (ETH) public networks. Etherscan also

supports smart contract source code verification, which is

done after the deployment. The verification provides proof

that the supplied SC source code matches the bytecode

deployed in the network. This increases the transparency of

the deployed SCs if developers decide to make code public.

This is a popular checking tool but limited by the insufficient

support for the passing of additional arguments to the con-

structor of a contract.

D. APPROACHES TO SMART CONTRACT SECURITY

ASSURANCE

According to [48], smart contract security should be explored

from a global perspective and reaching beyond merely ana-

lyzing the smart contract code for possible vulnerabilities

and flaws. They refer to four development phases, which

all contribute to SC security: i. security design, ii. security

implementation, iii. testing before deployment, and iv. mon-

itoring and analysis. These phases are similar to a traditional

software lifecycle.

The design includes secure design principles and patterns.

ConsenSys elaborated good design practices for Solidity SCs

[46]. The practices strive for the simplicity of the SC logic,

modularization, and reuse. This facilitates more efficient

mechanisms to upgrade an already implemented SC in a con-

trolled manner. Several approaches can be taken or auxiliary

services used to do this, e.g., a registry contract, delegate

calls, or using the Ethereum Name Service. In addition, they
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advise to include mechanisms to pause, freeze or delay smart

contract actions if relevant flaws are found after deployment,

as well as mechanisms to migrate and transfer data and funds

to the updated version of the SC. Modularization implies the

multi-contract DApp architecture, which is still not a com-

mon practice (see Section III.A). For DApps with multiple

SCs, there are three usage patterns of smart contracts [48].

In leader-member, one SC is the leader and is responsible for

user interactions, and the remaining sub-contracts are invoked

through internal transactions. In the equivalent architecture,

all the SCs are at an equivalent level and there is no invocation

between smart contracts. Factory enables the simple creation

of new child contracts, which are deployed by a (parent)

factory contract.

An approach to upgradeable modular contracts has been

recently proposed as the Ethereum Improvement Proposal

(EIP) 2535 [66]. This draft document proposes a proxy

contract that supports using multiple logic contracts. These

delegate contracts are called facets, and each facet supplies

one or more functions. A dedicated function enables adding,

replacing, or removing functions. Events are emitted upon

changes in diamond functions, and a user can verify what

version of the function is called. With this design approach,

one can develop and incrementally improve the SC logic of

a DApp over time. However, the design of SCs ownership,

authentication, and authorization is not a part of this draft.

Secure implementation follows secure design principles.

Security libraries offer instant provisioning of several rele-

vant security features. OpenZepplin [67] provides role-based

access control and secure mathematical library for SC pro-

gramming for Ethereum. It helpsminimize risk by usingwell-

tested libraries. It includes the most used implementations of

ERC standards. However, the application of external libraries

might contradict the desired simplicity of the SC code, as well

as it may introduce possible new risks with additional code in

the library. Secure development also includes a well-defined

upgrade mechanism and systematic applications of suggested

fixes for the known SWC vulnerabilities. Another approach

is security templates that connect legal agreements to the

executable code, and can then generate standardized SC code.

Several kinds of testing can be made before deployment of

an SC to a DL network. This reduces the need for a rather

complicated updating of smart contracts if bugs are found

after the deployment. Testing methods include code analysis

(for a brief overview of some of the tools see Section III.C).

Some of the code analyzers are integrated into the SC devel-

opment tools, but most of them are still maturing. Many cover

only a limited scope of SC vulnerabilities, and some need

to considerably improve the accuracy of detection. Formal

verification is a mathematical approach to verify the cor-

rectness and security of a program. The approach to formal

verification for Ethereum is well defined and relies on the

formalization of the EVM and SC code with some general-

purpose intermediate language (e.g., Lem, Scilla), and the

proof is done on the intermediate language. DL ecosystems

that use general-purpose programming languages for SCs are

more complicated for formalization. Lastly, security audits

are provided as a service by dedicated companies. They

combine automated code and manual analysis. Audits can be

costly, but with substantial financial consequences in many

DApps, they might be necessary to ensure the security and

correctness of the code.

Finally, even once the SC has been deployed and is being

used, measures like bug bounty programs, security runtime

monitoring, and DL data analysis can be taken. Blockd Build

[68] is Blockd’s innovative approach to active smart contract

security. It combines real-time monitoring of incoming trans-

actions at the DL network level (in the transaction pool of a

mining node), and can actively protect a smart contract from

accepting calls from unregistered or malicious transactions.

The DL data analysis applies modern big data and machine

learning techniques to the vast amounts of the chain data. It

discovers possible attacks and irregular activities in the DL

network, such as crypto money laundering attempts.

IV. SECURE MODULAR SMART CONTRACT PLATFORM

We based the practical part of our research of the secure,

modular, multi-contract, multi-service, and multi-tenant SC

platform on a smart electric grid and charging service. A part

of our previous research [69] is a prototype of an end-to-end

solution, based on an Ethereum BC-controlled IoT electric

switch and meter, dubbed Swether. This DApp is comprised

of the hardware and software for the IoT device, along with

the smart contract and Ethereum-compliant Web applications

for the use and control of the system. This prototype has been

later applied in various research projects related to require-

ments and architecture for IoT BC [70] and BC edge services

[71], and in proof-of-concept demonstrations [72].

The described implementation of Swether is a single con-

tract solution, focusing predominantly on client services (i.e.,

electric charging and metering), and BC network communi-

cations. Although smart contract security was not our key

objective at that time, and the development approach of the

former version was not secure by design, basic security prin-

ciples were regarded there, too. The code check with Mythril

detected no issues.

We are running the system in the Ropsten public Ethereum

network and in various Ethereum flavored private networks.

The Swether device can be built into, e.g., an electric car

charging station, and acts as an independent BC node, report-

ing the measurement status into the chain. The SC in the

DApp enables booking of a charging station for a selected

period, tracks the availability of charging stations, and han-

dles the charging payments. In a typical user scenario [69],

a client would book a plug in a Swether device for the desired

time period or energy quantity, and confirm the booking

with a transaction to the Ethereum network sent from a BC-

enabled web browser or mobile application. The smart con-

tract would validate the request and launch the events to the

blockchain. The events would be intercepted by the Swether

device. The smart contract enables additional payment and

workflow features, such as escrow (to increase the security
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of involved stakeholders), bidding (to automatically select

among different available energy providers), and a system of

loyalty tokens for the clients (additional incentives for service

use).

The research presented in this article relies on a similar

client service as the previous one, with the key focus on

the design and implementation of an entirely new version of

supporting SCs. Instead of a single contract solution, we now

elaborated the BC part into a modular platform of various

smart contracts to enable a secure, multi-service and multi-

tenant DApp backend platform. We present it in the case

of smart charging. But the platform can be easily adapted

to another novel IoT and 5G application domains, such as

collaborative robotics, smart watering, and alike.

The key security contributions of the presented SC plat-

form are as follows. Some additional details about security

measures are later given in Table 2.:

• A single contract solution is transformed into a modular

one. In each module, methods are provided to freeze

and update a smart contract if a security vulnerability is

found or functional extensions are required. This facili-

tates the efficient management of security updates and

upgrades. Modularization also lowers the deployment

costs if the platform SCs are installed into a public

DL network. Every module of the platform has twofold

access control.

• At the level of message senders, we proposed and

built Smart Contract Tunnels (SCT). This access con-

trol mechanism interconnects only the valid SCs in the

platform, and prevents malicious SCs from accessing the

platform methods.

• At the level of transaction origin, we provide additional,

per stakeholder (based on the stakeholder’s DL network

address) access control to platformmethods. Each stake-

holder can be granted one of four permission levels,

which separately control access to service-specific and

platform management smart contracts and methods.

• Modularization and access management enable multi-

tenancy and reuse of the deployed platform modules.

Different platform modules can be deployed and man-

aged by different stakeholders. The platform owner

could, e.g., provide service agnostic modules for plat-

form management and security features, and a ser-

vice provider would deploy and manage service-specific

SCs.

A. STAKEHOLDERS AND THEIR RIGHTS AND

RESPONSIBILITIES

We anticipate three different roles of stakeholders in the use

cases of the proposed platform. Stakeholders can be persons,

legal entities, or devices. For participation in DL commu-

nication in the platform, each of them is identified by their

DL account/address. The platform provider is the initiator of

platform deployment. Commonly, a platform provider would

be the owner of the contract that is deployed. Charging station

owners are stakeholders registered in the platform. Charging

stations are service/application-specific stakeholders; they

are registered, too, but in a service-specific module. Both

are registered in the system because this is fundamental to

control their access to service-specific SCs and methods.

The charging station owner is the proprietor of a charging

station that he would like to make available to clients via a

decentralized system. A charging station is an actual physical

IoT device, which has capabilities for DL communication and

transaction creation. Unregistered clients are, e.g., electric

car owners who would like to use the charging station and

the corresponding decentralized application provided by the

platform.

This is the fundament for multi-tenancy, where system

and platform operation, service management, and service

provisioning require the collaboration of various stakeholders

in a frequently competitive constellation.

The permissions in the platform are managed on per smart

contract basis and can have four levels: owner, admin, regis-

tered users, and unregistered user. Every stakeholder, includ-

ing an unregistered client, is identified by its DL address.

The term registration in our case refers to the mapping of

these DL addresses to the corresponding permission levels.

Unregistered users have no such mapping and therefore can-

not use the functions of registered users. They can, of course,

use the functions for unregistered users if they have a valid

DL account/address that is required for DL communication.

Each SC can have an SC owner and one or more SC admins.

An SC owner has the right to appoint new SC admins, and

the right to initiate migration procedures from a previous to a

new version of an SC. An SC admin can add newly registered

users to the SCs. Service-specific smart contract methods are

accessed by registered users. A charging station owner, for

example, is a registered user who can access some of the

ChargingStationDirectory methods.

In most cases, modules are owned or administered by the

same stakeholders, i.e., the platform provider or stakehold-

ers assigned by the platform provider to these roles. The

methods used by owners or admins are used for platform

administration, like registering users, handling freezing of

operation if the need arises, and handling the migration of

modules if the smart contract in the module is updated.

The only module that cannot be administered and has no

owner is the self-owned module SmartContractIndex. The

reason for this is that this module is not expected to change

since it is only the address resolution service for mod-

ules to be able to interoperate. In the SmartContractIn-

dex, other modules serve as registered users and administer

their own information. The information stored in the Smart-

ContractIndex module is available to everyone to provide

transparency.

SmartContractAdministration also treats other modules as

registered users since they use the SmartContractAdministra-

tion to administer their access control, and are the only ones

that need to know which users are allowed to access their

methods.
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TABLE 1. Mapping of a stakeholder to corresponding per-module access levels.

TABLE 2. Security measures taken and their impact.

Charging station owners are registered entities in the

ChargingStationDirectory, which allows them to administer

their charging stations. This entails the registration of charg-

ing stations, updating information about the charging stations

and removing the charging stations that are no longer opera-

tional. They are also registered users in the Escrow module

since they are the recipient of the funds that pass through this

module and have to be a verified stakeholder on the platform.

Being a registered user in the Accumulator module allows

one to verify the charging station owner address so that they

can redeem the funds that have accumulated in their virtual

wallet.

Charging stations are unregistered users of the Charg-

ingStationDirectory. This allows them to update their status,

which is usually when charging is finished and they want to

be made available for booking again.

Charging service clients can be present as registered users

in the ChargingStationCore or the Loyalty module. This

allows them to collect and redeem the loyalty benefits of

using the service if such a service is provided. Having them
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FIGURE 2. Smart Contract Tunneling. To limit the possibility of SC method access to only the SCs
explicitly listed in the index SC, we build logical tunnels among the SCs of the current platform
implementation, and limit the access rights only to those attached by these Smart Contract Tunnels
(i.e., SC 1, and not SC x). In SC 2 we verify both the transaction origin and the message sender. During
a transaction pass-through via a Smart Contract Tunnel between SC 1 and SC 2, the transaction origin
remains unchanged, but the message sender refers to the sending SC address. Based on its address
and SC index, SC x has no access rights to the SC 2 methods so it cannot send or pass the transactions
to SC 2.

FIGURE 3. Basic platform architecture: basic application-agnostic and application-specific modules, and the stakeholders. The platform
provider initially deploys the platform, manages the platform and modules, and appoints additional module admins. A charging station
owner registers and manages their charging stations, and accumulates their earnings. A charging station provides electricity charging for
the customer, reports availability status and provides billing information. A charging station customer checks the availability of charging
service, books it and is charged for it. All these interactions are managed through the smart contracts in the platform.

registered in both modules allows them to unlock additional

registered-user-specific methods.

Unregistered charging service clients are still able to

use the service so they are present in the ChargingSta-

tionCore and the Loyalty module, but they have limited

access to the methods in both. Until they register, they

are unable to redeem their loyalty rewards, but we still

keep track of them in case they want to be registered in

the future.

Both registered and unregistered charging service clients

are present in the ChargingStationDirectory as unregistered

users, where they can query for which charging stations are

currently available for booking. They are also both present in

the Escrowmodule when they fund the escrow wallet in order

to use a service as an unregistered user of the module.

All of themodules are further explained in subsection IV.C.

B. DESIGN AND PLATFORM ARCHITECTURE

The expected security enhancements, modularization, and

multi-tenancy directed the key design requirements.

Modularization simplifies the structure and logic of a par-

ticular contract, compared to the single contract solution.

At the same time, it enables transparent, partial updates

of the platform modules with minimal service interruption.

Modularization is the fundament for multi-tenancy, too. The

access rights can now be set per module (SC), apart from
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the access control related to particular methods. However,

modularization introduces inter-contract calls. To exclude

additional vulnerabilities as a consequence of inter-contract

communications, we manage the access rights for the mod-

ules in the platform. This effectively limits the possibility

of SC method access only to the SCs explicitly listed in

the platform index SC. In this way, we build logical tunnels

among the SCs of the current platform implementation, and

limit the access rights only to those attached by these Smart

Contract Tunnels (SCTs).

Multi-tenancy enables that unregistered clients only access

a single application-specific contract and have no direct

access rights to platform management smart contracts. This

effectively protects the remaining SCs from direct access of

anonymous BC users. When the unregistered service clients

send a transaction to the service SC, it passes it to the

subsequent SCs in the platform (pass-through registration).

So the stakeholder identification in SCs can still rely on the

transaction origin address.

Transaction origin (tx.origin) is a global variable in

Solidity, which returns the address of the original external

account that started the transaction, whereas message sender

(msg.sender) refers to the immediate account that invokes the

function. In a single contract solutionmessage, the sender and

the transaction origin are the same address. The difference in

the multi-contract solution is depicted in Fig. 2. When a user

(identified by its account address) sends a transaction to smart

contract SC 1 and it passes through the transaction to SC 2,

then in SC 2 the transaction origin (still) identifies the user,

but the message sender points to SC 1. To additionally limit

access to SC 2 and prevent malicious passing of transactions

to SC 2 by, e.g., an attacking SC x performing a man-in-

the-middle attack, we grant access to SC 2 methods only

to SC 1.

In a practical deployment, ENS would be applied to map

the service SC address to a recognizable name for the service

clients. All the remaining contracts would only be accessible

by their registered owners and administrators, and by the

explicitly listed platform contracts.

1) ARCHITECTURE

The platform smart contracts have three different scopes.

Basic application-agnostic contracts are service and appli-

cation independent. They provide key platform functional-

ities required in any multi-contract solution. On the other

hand, application-specific smart contracts provide unique

functions for service operation, in our case, e.g., methods

for smart electric charging. In a solution for different (5G)

verticals, these contracts would be completely different. The

classification as agnostic or specific is rather straightfor-

ward, but there are some contracts where the positioning is

more debatable. We call these auxiliary contracts. They are

mainly involved in the service provisioning part and thus

directly provide functions required by the application. How-

ever, their functions might be so common and appreciated in

various verticals that it makes sense to provide them system-

wide, too.

The basic architecture of our solution is depicted in the use

case diagram in Fig. 3. In the basic architecture, we imple-

mented two basic platform-agnostic contracts, the SmartCon-

tractIndex and the SmartContractAdministration, and two

service/application-specific contracts, the ChargingStation-

Core and the ChargingStationDirectory. Different stakehold-

ers have the right to access only some of the SCs and their

functionality, according to the access rules in the SmartCon-

tractAdministration.

Fig. 4 gives the extended architecture of the platform and

smart contracts. TheAccumulator, Loyalty, and Escrow smart

contracts are auxiliary contracts. These are service-related

smart contracts, but might be utilized in many various ser-

vices. They are therefore provided as a part of the platform

similarly as the service-agnostic SmartContractAdministra-

tion and SmartContractIndex. The auxiliary contracts in the

current deployment are listed in the SmartContractIndex, and

their administration is managed by the SmartContractAdmin-

istration in the sameway as any other contract in the platform.

2) BASIC APPLICATION-AGNOSTIC SCS

SmartContractIndex maps the leader and all member SC

addresses in the current deployment. If one of the contracts

in the deployed system is upgraded and replaced, the Smart-

ContractIndex reflects this change and transparently directs

the remaining contracts to the updated address.

SmartContractAdministration provides common access

control for all the SCs in the solution. Apart from unregistered

(anonymous) clients of the service, which are not managed by

this access control, the SmartContractAdministration man-

ages and records owners, administrators and registered users

of a particular SC in our solution, and provides the other SCs

with corresponding access rules in inter-contract calls.

3) APPLICATION-SPECIFIC SCS

ChargingStationCore is the key service logic contract and

is thus application specific. It implements all the methods

needed for smart-charging service flow, and communicates

with the following stakeholders: charging station owners,

charging service clients, charging stations, and charging

administrators.

ChargingStationDirectory is a dynamic mapping service

for the ChargingStationCore. It keeps the current list of the

charging stations and active charging service clients in the

system.

4) AUXILIARY SCS

The accumulator module is a platform provided wallet that

allows charging station owners to accumulate the Ether they

are paid in exchange for the charging their charging sta-

tions provide. Instead of transferring every charging pay-

ment to the owner right away, the owner can accumulate the

Ether in the accumulator and transfer the desired amount at

VOLUME 8, 2020 150639



M. Pustišek et al.: Secure Modular Smart Contract Platform for Multi-Tenant 5G Applications

FIGURE 4. Extended platform architecture: basic application-agnostic,
auxiliary, and application-specific modules. Auxiliary modules provide
additional functions relevant for charging service provisioning. However,
their functions are common and relevant for other application verticals,
too. Therefore, auxiliary modules (e.g., Accumulator, Loyalty, and Escrow)
are provided system-wide. They are managed through the
SmartContractAdministration and SmartContractIndex (dashed lines).
Their methods are accessed by clients through the ChargingStationCore
with a pass-through via the Smart Contract Tunneling mechanism (solid
lines).

any time of their choosing to their own or someone else’s

address.

The loyalty module is the ERC20 standard non-fungible

dynamically generated infinite supply loyalty token provider.

It allows the allocation of loyalty tokens as a loyalty award

to the platform clients. After the charging is completed,

the escrow module can allocate the tokens to the clients’

accounts in the appropriate amount. The tokens are auto-

matically burned when they arrive back to the accumulator

address. An infinite supply of loyalty tokens ensures that

every client can be fairly awarded for their use of the platform,

and that the value of the token is dictated by the platform

provider instead of the clients.

The Escrow module makes it possible to ensure that

the charging was provided before awarding the provider

the payment. This allows us to operate a trustless plat-

form where only the delivery of the service results in

earning a financial award. At the same time, any unused

Ether can be refunded back to the client that initiated the

charging.

C. MODULES AND METHODS

Some methods are present in all of the modules since they

provide interoperability of the modules with SC tunnels.

These methods are:

–the setupInitial method is used by the platform provider

to register the module in the SmartContractDirectory and the

SmartContractAdministration. This enables the module and

is crucial for smart contract tunneling to work.

–the updateDirectoryListingmethod is used to update the

pairing of a module with a smart contract address. It makes it

possible to migrate to an updated smart contract, and is nec-

essary for seamless smart contract tunneling reconfiguration.

–the freezeAndMigrate method is used to pause or stop

smart contract activity, and provide a smooth update to a new

version of the SC.

There are methods that are specific to certain modules and

only available to the stakeholders with the right access level:

–the registerChargingStationOwner method is only

available to the platform administrator in the ChargingSta-

tionDirectory. It allows an administrator to register a charging

station owner, who can then register their charging stations

and manipulate their data.

–the setAvailabilitymethod is a ChargingStationDirectory

method that is called directly from the charging station. It is

used for billing the client for the service provided by the

charging station, and enables charging stations to update their

availability status when they complete charging.

The ChargingStationCore module is the single point of

interaction for all of the client-facing methods, for both

registered and unregistered clients. This module serves as a

proxy module that enables the passing-through of the method

calls via secure Smart Contract Tunnels to the corresponding

method implementing modules. It thus ties all of the other

modules together, and in this way secures and simplifies the

clients’ interaction with the platform. In the basic platform

architecture, methods accessed through the Smart Contract

Tunnels are:

– bookCharging is a pass-through method with a final

endpoint in the ChargingStationDirectory module, which

allows the client to book charging using a registered charging

station.

– accumulate is a pass-through method with a final end-

point in the Accumulator module, which allows charging sta-

tion owners to collect the earnings produced by their charging

stations.

– checkAvailablity is a pass-through method with a final

endpoint in the ChargingStationDirectory used for checking

the availability of charging stations for charging.

– registerChargingStation is a pass-through method with

a final endpoint in the ChargingStationDirectory, which

enables charging station owners to register their charging

stations.

D. MANAGEMENT AND SERVICE OPERATION FLOW

We distinguish three different workflows in the BC platform

of the described DApp: the initial platform deployment, plat-

form management and upgrades, and the basic or extended

service operation flow.

1) INITIAL DEPLOYMENT

Initial deployment is the first step after the development

of the SCs building the platform is completed. We must
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deploy the four contracts of the basic architecture. The aux-

iliary contracts are optional and are deployed if the ser-

vice logic requires them. First, the SmartContractIndex is

deployed. As it has a very limited functionality and has

no advanced functions implemented, it is not meant to be

updated or administered. It, therefore, is a self-owned con-

tract and has no owner set after the deployment. Second,

the SmartContractAdministration is deployed. The owner

of this SC is the deploying address, usually the platform

provider’s address.We have not chosen to specify an arbitrary

owner address with an input parameter during the deployment

since the smart contract source code verification on Ether-

scan, which is done after the deployment, does not support

well the passing of additional arguments to the constructor

of the contract. Therefore, we opted for the initial setup

function instead of passing the constructor arguments when

deploying a smart contract. Next, the variable pointing to the

SmartContractIndex address is set in the SmartContractAd-

ministration to limit inter-contract calls. Finally, the service-

specific smart contracts are deployed. The deployment order

for them is arbitrary. After the deployment, the initial setup of

these SCs sets the owner and admin address. In the SmartCon-

tractIndex, we point to both newly deployed and initialized

service-specific contracts. With this, the platform is ready for

operation.

2) BASIC SERVICE OPERATION

A service client of the platform does not need to be registered.

The service is provided through the ChargingStationCore.

The only payable transaction the client has to make is the

booking transaction. The operation of the service is as fol-

lows:

(1) The client can view available charging stations and

plugs on them by querying the ChargingStationCore,

which in turn queries the ChargingStationDirectory.

(2) Data about charging stations and their plugs also con-

tains a charging price per unit of charging. We opted

for a price per second of charging.

(3) Once the clients decide which charging station they

want to book, they initiate a transaction to the Charg-

ingStationCore, which contains information about

which charging station and which plug they want to

use, as well as the desired duration of charging. The

transaction has to be accompanied by the appropriate

amount of Ether required for the desired charging

parameters.

(4) The ChargingStationDirectory validates that the

charging plug on the desired charging station is still

free and that the amount of Ether sent with the trans-

action covers the specified duration of charging.

(5) With validation complete, the ChargingStationCore

emits an event notifying everyone listening that the

plug was booked and that charging started, and

removes the plug from currently available charging

plugs. It also forwards the Ether paid for the charging

to the charging station owner.

(6) After the charging on the plug is finished, the charg-

ing station lets the ChargingStationDirectory know

that the plug is available again through the Charg-

ingStationCore. The transaction is validated in the

ChargingStationDirectory, which only allows charging

stations to modify their own states, and forbids them to

modify the states of other charging stations.

(7) As the plug is made available again, the whole process

can be repeated.

3) EXTENDED SERVICE OPERATION

Extended service with auxiliary modules implemented has

the same initial setup flow as for the basic service mod-

ules. Basic service operation is slightly modified to utilize

the auxiliary modules. Steps (1) and (2) from the basic

service operation remain the same, but further steps are

augmented:

(1) Once clients decide which charging station plug they

want to use, they send a transaction to the Charg-

ingStationCore, specifying which charging plug they

want to use, and the required amount of Ether for

charging.

(2) The ChargingStationCore initiates escrow with the

Escrow auxiliary module storing the Ether meant for

charging until the charging is complete. At the same

time, it communicates that charging has to begin with

the ChargingStationDirectory.

(3) Once charging has commenced, the charging station

sends a transaction to the ChargingStationCore. The

core lets the ChargingStationDirectory know that the

plug is available again and a new client can book it.

At the same time, it lets the Escrow module know that

the funds tied to this charging event can be forwarded

to the Accumulator module.

(4) The Escrow module forwards the Ether it holds to the

Accumulator module and assigns it to the charging

station’s owner’s address. It simultaneously sends a

call to the Loyalty module, notifying it about how

much the client has paid for the charging.

(5) The Loyalty module assigns ERC 20 standardized loy-

alty tokens to the client based on how much the client

has spent for charging. These loyalty tokens can be

redeemed for a certain amount of units of charging at

any later time.

(6) The charging station owner can at any time transfer

the Ether tied to their own account in the Accumulator

module to their own or an arbitrary address.

4) MANAGEMENT PROCEDURES

There are two key platform management procedures: manag-

ing access control, and upgrading an SC on the platform. Per

SC access control is managed in the SmartContractIndex by

the SmartContractIndex owner. It points to the valid addresses
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of the SCs in the platform to allow inter-contract communica-

tions. Per stakeholder access control of the methods in an SC

is done by the SmartContractAdministration. This provides

an interface for other platform modules to register various

levels of stakeholders that can interact with the module.

Every time a limited access function call is to be executed,

a module verifies if a user is authorized to execute it. This

is achieved with per module access permission and a combi-

nation of inherent transaction proprieties; message origin and

transaction origin. The SmartContractAdministration module

verifies the module that required access control by using

msg.sender, and then checks if the user indeed has access to

the desired function by using tx.origin.

If any of the SCs in the platform, apart from the SmartCon-

tractAdministration, has to be upgraded, the following steps

are made. First, the SC administrator temporarily freezes

the SC to disable the service providing functions and pre-

vent possible exploitation. Only the functions needed for

the update remain active. Then, a new updated version of

the SC is deployed to the BC network. Next, the data and

funds are migrated from the old to the new SC, and finally,

the address of the newSC is added to the SmartContractIndex,

thus effectively replacing the pointer to the outdated SC. The

platform is now operating with an upgraded SC.

E. IMPLEMENTATION: LESSONS LEARNED

In the current version of the platform, we do not apply any

external security libraries because the current ecosystem of

blockchain libraries is very volatile. Ensuring that our SCs

are secure on their own introduces another layer of security

we have to address, but it is a viable long-term solution.

We executed several security code analyses during the

development to monitor potential risks due to the modular

architecture and implementation. The code was initially ana-

lyzed with the Mythril CLI tool, which showed to be a very

time-consuming process, especially when inter-contract calls

were being added. After applyingMythX instead, the security

analysis was quicker, but inter-contract calls turned out to be

not validatable.

Nevertheless, this provided some interesting insights, such

as tx.origin dependence. We are aware of the potential risk of

authorization through tx.origin (see Section III.B for details).

A call could be made to a vulnerable contract that passes

the authorization check since tx.origin returns the original

sender of the transaction, which in this case is the authorized

account [73]. The proposed remediation is to use msg.sender

instead. We actually do both (see Section IV.B for details).

We use msg.sender and SmartContractAdministration for

the authentication of valid senders (i.e., only the SCs that

build the platform), and to reject possible malicious senders.

As transactions can only be sent by trusted SCs, we then use

tx.origin for user authorization.

The SmartContractIndex uses an unsigned integer

(UINT256) for the indexing of SCs in current and former

platform deployments. In Solidity, an overflow/underflow

happens when an arithmetic operation reaches the max-

imum or minimum size of a type; in the event of a

UINT256 unsigned integer this is 2256. It is recommended

to use safe math libraries for arithmetic operations [74]. But

in our case, this parameter is not used in calculations, and

merely serves as an index and a counter of the SCs in the plat-

form. It is highly unrealistic (also due to related deployment

costs) that any practical DApp implementation would require

so many SCs. In case we approached this limitation, we could

implement a round-robin index, which overwrites the oldest

inputs and thus never exceeds the predefined size.

In some SCs we knew about some SWC violations, like

external calls to user-supplied addresses (SWC ID: 107) in

the ChargingStationDirectory. This was necessary because it

was a means of interconnecting the modules of our platform.

Introducing such an SWC violation appears to be acceptable

when there are security mechanics implemented that target

the point of SWC introduction. In our case, only the Smart-

ContractIndex address is provided at the time of the initial

setup of the module.

F. EVALUATION

Before the modularization of the single smart contract archi-

tecture Swether platform, the smart contract was very long,

about 1000 lines of code. It was difficult to maintain. Anyone

other than the original developers would need a significant

amount of time to be comfortable enough with the source

code to make any changes. The management, adding new

features, and security updates started to become inefficient

and unreliable. Having one smart contract containing access

control, storage of information, and business logic resulted

in an intransparent API, which was hard to be documented.

Any kind of interaction would prove to be extremely time

consuming.

After the modularization rework of the Swether platform,

the source code of any module does not exceed 200 lines.

Modules are logical units that are easier to understand, main-

tain, and update. Whereas modularization introduces new

challenges, like the need for smart contract tunneling, and

adds a need for inter-modular interactions, the clear division

of overall business logic, information storage, and client-

service level functionalities allows for smoother operation

of the platform. Security updates can be performed faster,

and the impacted modules hot-swapped without the service

being disrupted for a significant amount of time. The clear

definition of functionalities provided by the modules also

enables us to faster identify the faulty part of the platform,

should a problem arise.

With upgradeability in mind, we built the reworked plat-

form in a way that every module is notified of a certain

module update. Thus, they can continue operating without the

need of the platform administration to reconfigure SCTs for

each module that interacts with an updated module.

Inter-SC calls do not introduce any additional latency since

the transaction is still executed in a single block. This kind

of operation increases the processing demand for EVM, but
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FIGURE 5. Message flows in the initial setup of the platform and the basic charging service operation. For a charging station owner registration, an admin
calls the registerChargingStationOwner pass-through function, which passes through the ChargingStationDirectory to the SmartContractAdministration
module. There, the admin’s access rights for the ChargingStationDirectory are first verified. Next, a new charging station owner is registered as a
registered user of the ChargingStationDirectory module. The newly added charging station owners can now register and administer their charging
stations. For a charging station registration, a charging station owner calls the registerChargingStation pass-through method, which passes through the
ChargingStationCore into the ChargingStationDirectory. The ChargingStationDirectory checks if the charging station owner is a registered user; then the
charging station is added to the ChargingStationDirectory and becomes available to charging service customers. In the basic charging service operation,
charging station customers query the platform with the checkAvailability method. The query passes through the ChargingStationCore to the
ChargingStationDirectory, which returns a list of all available charging stations. Charging station users select and book their preferred charging station
with a bookCharging pass-through call. It initiates the charging at the charging station, and removes it from the collection of currently available charging
stations. When the charging is complete, the charging station calls the setAvailability method at the ChargingStationDirectory to update its availability
and be added back to the collection of the available charging stations.

FIGURE 6. Platform deployment for performance, scalability, and cost optimization on a private and a public DL
network that are interconnected through an atomic swap. In the public network, the ChargingStationCore, Escrow,
and Accumulator smart contracts are deployed because they need to be accessed by unregistered clients or might
require an exchange of cryptocurrencies. The remaining platform contracts are deployed in a permissioned private
network for additional security and performance.

does not increase the transaction price proportionally to the

increase of new calls. If there are three inter-SC calls in a

single transaction, the price for a transaction does not increase

three times, but only by a fraction of the original cost.

After analyzing the new solution with the MythX and

Mythril tools, we found no unexpected SWC issues. Any

SWC violation that was reported was introduced consciously,

and was handled by own security mechanics. They alleviated

the security vulnerabilities that these, by-design implemented

SWC violations, could introduce.

Since we have redesigned the single-SC solution into a

multi-SC platform, the initial deployment of the platform
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requires more transactions than were required in the original

service. Whereas the initial SC only required one transaction

to be successfully deployed, the new modular design requires

four transactions to deploy all of the modules, and then three

additional calls to link thesemodules amongst themselves and

establish SCTs.

The deployed modules enable the platform to be oper-

ational, but not yet usable. To make the platform usable,

we still need to execute three more transactions. These

transactions are the registration of a charging station owner

executed by the platform administrator, registration of the

charging station executed by the previously registered charg-

ing station owner, and registration of a charging station plug

on the registered charging station, which is again executed by

the CS owner. These steps are analogous in both, the former

single-contract and the new multi-contract solution. Now our

platform is usable, which means that every client needs only

one transaction to book and use charging. We do not consider

the use of view functions as transactions since they are only

an observation of the state of the smart contract, and do not

require any transaction fees.

Introducing auxiliary modules would increase transaction

counts in each step of the platform setup and use. Each mod-

ule would need an additional deploy and setup transaction,

which means that every new module would increment the

number of transactions required for the initial setup, but not

by more than two. Depending on the module, there might

be one or two additional transactions required to render the

module operational. But a bigger increase in the number of

transactions – or rather inter-SC calls – would be introduced

in extended service operation.

V. MODULAR SMART CONTRACT PLATFORM IN A 5G

ARCHITECTURE

We anticipate several levels of integration between 5G and

DLT. These levels mostly differ in the architecture and role

of the underlying DL networks. The most loose coupling

accesses DLT systems through 5G access and services. This

is an over-the-top (OTT) like approach, where DL is not inte-

grated into 5G. The positive side of it is that it immediately

supports the current public DL networks, too. It is envisioned

that future 5Gmobile operators would benefitmore by using a

permissioned consortium or private blockchain networks [5].

The reasons for the introduction of permissioned networks are

security, performance, and transaction costs. The introduction

of private networks is even more justifiable if the DApps do

not require public cryptocurrencies.

Fig. 6 illustrates one possible approach to the deploy-

ment of the modular smart contract platform presented in

this article. We apply a hybrid approach with one public

and one private BC network. In the public network, the

ChargingStationCore, Escrow, and Accumulator smart con-

tracts are deployed because they need to be accessed by

unregistered clients and require an exchange of cryptocurren-

cies. The remaining contracts are deployed in a permissioned

private network managed by the platform provider or a dedi-

FIGURE 7. Network operators A, B, and C provide DL-based services
through their edge private networks, whereas basic application-agnostic
and auxiliary smart contracts are accessed via atomic swap in a separate
and dedicated private network for performance, scalability and service
availability. In this way, the DApp and the service it is providing span over
multiple network operators and connect them to a common platform
backend.

cated consortium. The contracts in the private network do not

require public cryptocurrencies. The private network ensures

appropriate performance in terms of transaction throughput

and delay, and minimizes transaction costs. The atomic swap

is a function that interconnects public and private networks at

the protocol and semantic level. In this way, service process

flows in the private and in the public network remain syn-

chronized, as if the entire platform were implemented in one

network.

Additional simplificationwould be possible if no payments

in public cryptocurrencies were required. This, of course,

does not exclude accounting and compensation for the pro-

vided services. Instead of a cryptocurrency, a token in the

private network would implement, e.g., a stable coin for

accounting. In this case, the Escrow smart contract would

be deployed in the private network, too. The Accumulator

would no longer be necessary as it mainly serves to reduce

transaction costs in a public DL network. The only contract

in the public networkwould thus be the ChargingStationCore,

i.e., the key service contract. Another step would be possible

if we could relinquish unauthorized client access. Then the

public network could be replaced by a private, too. We could

still keep two private networks, a platform-centric and a

client-centric one, to support different performance, security,

and scalability requirements of the overall business logic and

client-service level functionalities.

The hybrid approach can be further generalized to support

multiple network operators that provide the DL-based service

through their edge private networks, as depicted in Fig. 7.

This scales the proposed platform over multiple networks.

But unlike in the OTT approach, the system is integrated

into 5G. Each network operator (A, B, C) runs its private

DL network and deploys the service-specific SC there, and

the atomic swap links all the network operators to a common

platform backend. In this way, the service integrated into the

5G environment can be provided to the clients independently

of their current 5G mobile provider.
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VI. CONCLUSION

We extended the multi-contract diamond-cut architecture not

only to be upgradeable, but to provide high security and

access right management through Smart Contract Tunnels,

combined with per-user authorization. Even when partially

deployed on a public BC network, the solution does not

importantly increase the transaction costs compared to a

single contract solution. This builds a platform that can

meet the service needs, and can be scaled to modern 5G

environments.

Currently, we are adapting the presented platform for

a use case in collaborative robotics, where autonomous

robots interconnect through a mobile network to negotiate

through a hybrid blockchain network for the resource they

require or provide.
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