
Secure Monitoring of Service Level Agreements

K.P. Clark, M.E. Warnier, F.M.T. Brazier
Faculty of Technology, Policy and Management

Delft University of Technology
Delft, The Netherlands

{k.p.clark, m.e.warnier, f.m.brazier} @tudelft.nl

T.B. Quillinan
D-CIS Lab

Thales Netherlands
Delft, The Netherlands

thomas.quillinan@icis.decis.nl

Abstract—Service Level Agreements (SLA) are commonly
used to define terms and conditions of service provisioning.
WS-Agreement1 is an SLA specification that addresses the
need of both producers and consumers of services to specify
and negotiate terms and conditions of access to these services.
This specification has gained wide acceptance in both the Grid
computing and Web Services communities. WS-Agreement
includes support for both negotiating and specifying penalties
that arise from violation of these terms and conditions. It does
not, however, include support for monitoring these agreements
to determine if any such violations have occurred and, if so,
determining which parties are responsible.

This paper proposes a framework and design for secure
and reliable monitoring of WS-Agreement specified SLAs.
Modifications to WS-Agreement are necessary for effective
monitoring. These modifications are outlined, along with an
implementation of the framework in the AgentScape middle-
ware system.

Keywords-sla, ws-agreement, distributed monitoring, reliabil-
ity

I. INTRODUCTION

Service Level Agreements (SLA) define the terms and
conditions of service provisioning. The Web Service Agree-
ment [1] (WS-Agreement) provides a protocol for negotiat-
ing; a language for specifying terms and conditions, and
an advertising protocol for services. While the ability to
specify penalties and rewards is included in WS-Agreement,
the standard does not, as yet, specify how these agreements
should be monitored to ensure that the terms and conditions
are not violated [2].

When a consumer and provider agree on a service for a
specific price, the minimal requirements of this service can
be specified as part of an SLA. For instance, an SLA can
state that bandwidth must be greater than 1MB, or average
up-time must be greater than 99%. If a provider is unable to
meet these requirements, a consumer may impose penalties,
such as reducing or cancelling payment or reporting the vio-
lation to a reputation authority. One method to determine if,
when, and by whom, an agreement is violated, is to employ
reliable monitoring. Monitoring of active agreements, and
the audit trail it provides, can be used to establish whether or
not the agreement is violated. Furthermore, the responsible

1SLA specification by the Open Grid Forum: http://www.ogf.org

party can be impartially established and a determination
reached whether or not sanctions are justified.

One approach to reliable monitoring makes use of a
Trusted Third Party (TTP). This TTP can (1) monitor active
SLAs by performing measurements at specified intervals and
comparing them to threshold values stored in the SLA; (2)
record communication between consumer and provider, and
(3) take action when a violation is detected, such as notifying
the relevant parties, withholding payment or terminating the
service.

This paper proposes an SLA monitoring framework that
provides reliable data that is accurate and secure.

The principles outlined in this framework are incorporated
in a monitor design using the WS-Agreement specification.
This design has been implemented in the AgentScape mid-
dleware to illustrate the potential of this approach. Agent-
Scape has an established mechanism for SLA negotiation
and serves as the TTP.

The main contributions of this paper are (1) the generic
framework and design for secure and reliable monitoring of
SLAs for violations; (2) a method for specifying violation
policies, and (3) an implementation of this framework in
the AgentScape middleware with which the feasibility of a
decentralised approach is shown.

The remainder of this paper is structured as follows:
Section II briefly introduces SLAs and the Web Service
Negotiation. Different aspects of monitoring SLAs are ex-
amined in Section III. Section IV describes the design of our
monitor, including security and reliability considerations.
A comparison of centralised and decentralised variants of
the monitoring framework, implemented in AgentScape, is
presented in Section V. Section VI discusses related research
and, finally, Section VII discusses the results and depicts
areas for future research.

II. BACKGROUND

Service Level Agreements (SLAs) represent the main
tool for specifying transactions between those providing
and those seeking resources. Currently, there are several
specifications that describe, not only the structure of an
SLA document, but also the processes of advertising and



negotiating this document. One of these specifications is
WS-Agreement [1].

A. Service Level Agreements

Service Level Agreements (SLA) are agreements between
multiple parties to specify terms of service. They involve at
least one service provider and at least one service consumer
and specify the services to be provided. Additionally, these
documents specify Quality of Service (QoS) guarantees;
payments for compliance, or penalties for violation of the
agreement. QoS attributes can be expressed as a set of
(name, value) pairs where name refers to a Service
Level Objective (SLO) and value represents the requested
level of service. An SLO specifies the particular object to be
measured, how measurements are performed and any actions
that take place after measurement.

Traditionally, SLAs are written and signed between legal
entities, representing each of the parties involved. In recent
years, much attention has been given to automating this
negotiation process [3], [4]. Several specifications have been
proposed for this purpose, including WS-Agreement [1] and
Web Service Level Agreement (WSLA) [5].

B. Web Service Negotiation

The WS-Agreement specification [1] defines a language
with which to express agreements, a protocol to advertise
available services and a protocol to support negotiation and
confirmation of SLAs between resource providers and con-
sumers. This specification defines XML documents that de-
scribe the agreement parties and terms. Agreement templates
are used to advertise available services and list additional
constraints, such as the maximum or minimum QoS levels.
The negotiation protocol is defined by the following steps,
as depicted in Figure 1.

Figure 1. WS-Agreement protocol and SLA specification.

Initially, when a consumer (Agreement Initiator) requests
an indication of services available from a provider (Agree-
ment Responder), the provider produces an overview of
available services (Templates). Based on this information,
the consumer proposes an SLA (Offer). The provider decides
whether or not to accept the proposed SLA. If accepted,
service provisioning begins (Lease).

Figure 1 also illustrates the conceptual overview of the
SLA document as specified by WS-Agreement. This docu-
ment has three main components: Name, Context and Terms.
The Name provides a human-readable identifier. The Con-
text contains information concerning the parties involved,
the duration of the agreement and information about the
original template used. The Terms specifies the functional
and non-functional requirements of the agreement in Service
Description Terms (SDT) and Guarantee Terms (GT). An
SDT identifies the specific services covered by the SLA, for
example, the number of processors or amount of bandwidth.
A GT specifies the levels (QoS) of those services, for
example, availability or response time. A GT also contains
additional information regarding the importance of a certain
SLO, the reward of compliance or the penalty of violation.

WS-Agreement is an active standards proposal. Since
the publication of the original WS-Agreement specification
several extensions have been proposed. These include the
ability to anticipate violations and renegotiate agreements
at run-time [6], finalise the agreement using a two-phase
commit [7] and support multiple rounds of negotiation and
dynamic re-negotiation due to the changing needs of the
consumer or abilities of the provider [8].

III. MONITORING FRAMEWORK

Monitoring is needed to determine if an agreement is be-
ing honoured or not. Once established, appropriate violations
can be enforced. The general principles of monitoring SLAs
are discussed below.

A. Monitoring Service Level Agreements

Monitoring an agreement involves periodically testing
whether the agreement terms have been met by all relevant
parties. Depending on the agreement terms, this either re-
quires testing a specific variable, such as network latency,
or logging communication between consumer and provider.
Monitoring intervals are specified appropriately, such as
daily or hourly, depending on the duration of the agreement
and the nature of the agreement terms. Monitoring must also
support both simple and complex evaluation formulae. For
instance, some requirements can be verified by measuring a
single variable, such as ‘Host is reachable’. However, other
requirements can only be verified once a set of measure-
ments have been performed and their results processed, such
as ‘Average host uptime is greater than 99%’.

A monitoring mechanism must be secure against mali-
cious parties, potentially including the parties with whom
agreements have been reached. Security mechanisms are
necessary to ensure that measurements are accurate and
stored data is not tampered with. Such mechanisms should
include a secure logging mechanism [9] to accurately record
the record of communications and measurements. Protection
of this data is needed as stored data also serves as an audit



trail to detect violations offline, after service provisioning
has ended.

Furthermore, trust and objectivity considerations deter-
mine the placement of a monitoring module. Rana et. al.
distinguishes three possible locations for monitoring [2]:

Trusted Third Party (TTP): an independent module that
can monitor (and log) all communication between consumers
and service providers. Once the SLA is successfully com-
pleted, both parties receive a signed certificate from the
TTP that can be used for non-repudiation and/or reputation
building of the service provider. However, a TTP cannot
measure the internal state of either a consumer or provider.

Trusted Module at service provider: functionally equiv-
alent to a TTP but with access to the internal state of the
service provider. However, a provider may not reveal all
of the internal state or may report incorrect information
to the monitor. A module at this location can show that a
provider attempted to avoid violations and dealt with them
responsibly when they occurred.

Trusted Module on the consumer site: functionally
equivalent to a TTP but it can be difficult to distinguish
between provider delay and network delay. A module at
this location is not particularly useful for measurements,
but rather only for establishing the trust level for certain
providers.

B. Auditing and Conflict Resolution

In some cases, conflicts arise that cannot be resolved
automatically. For example, a service provider contests its
liability for failing to meet an SLO. The SLO is known to be
violated; however, the cause of the violation is beyond the
control of the provider (e.g. force majeure or a Distributed
Denial of Service (DDoS) attack [10]). To resolve such
cases, it is necessary to record messages and measurements
for later processing and also determine which messages to
store and the duration of storage. For example, audit logs
should be stored until all parties acknowledge that the SLA
has been successfully completed. It is also necessary to de-
termine how violations are recorded. Violations can either be
stored in the TTP, added explicitly to the SLA document [3]
or included in usage records [11]. SLA status updates can
also be pushed to parties at intervals or published to a secure
site to allow parties on-demand access.

C. Penalising Violations

When a violation occurs, often a penalty is incurred.
Penalties can be as simple as terminating the current agree-
ment and finding a different provider, or more complex rep-
utation or monetary based penalties [12]. These penalties are
commonly used for service provisioning [13]. In these sys-
tems, reputation is a community-wide metric of an entity’s
trustworthiness. This metric increases if the entity completes
transactions without violating the agreement. Conversely,
the metric decreases if a term is violated. Reputation based

penalties utilise the notion that consumers prefer providers
with a higher reputation and try to avoid providers with a
lower reputation.

In contrast, monetary based penalties operate on the
assumption that consumers pay less for poor service and
more for better service.

Both of these mechanisms require additional infrastructure
and security measures [13]. A reputation based system
requires a persistent record of all transactions, both suc-
cessful and violated. A monetary based system requires a
secure means of payment, whether in currency or credit,
that has actual value to the users of the system. Both
of these approaches require a means of guaranteeing that
identities are unique, persistent and legitimate. For instance,
underlying authentication mechanisms can verify that users
are indeed whom they claim to be.

Deposits with a jointly agreed TTP can be used in a
monetary based system to implement penalties if needed. In
the event of violation, the deposit can be used to effectuate
penalty payment. The exact penalty terms can be separately
negotiated during SLA negotiation or follow known policies,
such as the following [2]:

All-or-nothing provisioning: provisioning of a service
must meet all SLOs. ALL of the SLO constraints MUST be
met to satisfy the SLA;

Partial provisioning: provisioning of a service must meet
some SLOs. SOME of the SLO constraints MUST be met
to satisfy the SLA;

Weighted Partial provisioning: provision of a service
meets SLOs that have a weighting GREATER THAN a [user
specified] threshold.

IV. MONITOR DESIGN

This section outlines the design of the monitor follow-
ing the guiding principles discussed above. This includes
a description of the components of the monitor and the
specification of a monitoring policy.

A. Monitor Overview

The two main conceptual components of the monitoring
framework are Monitor Sensors and a Monitor Processes.
Monitor Sensors are positioned at strategic locations to
measure services. These sensors must have direct access to
local variables of host machines of a provider, as well as a
direct connection to any consumers and all communication
in between. Sensors are passive in the regard that they should
not take action or affect the local system until receiving a
request from a Monitor Process. When a request is received,
a sensor becomes active, performs a measurement, returns
the results and then becomes inactive again.

The bulk of monitoring logic is stored in a separate
Monitor Process. The responsibilities of the Monitor Process
are: (1) identify which SLAs require monitoring; (2) request
measurements from Monitor Sensors; (3) check results for



Figure 2. Monitor deployment

violations, and (4) take appropriate action when a violation
is detected. The design of the Monitor Sensor and Monitor
Process is illustrated in Figure 2.

Each Monitor Sensor provides an interface for communi-
cation with a Monitor Process and a local library of measure-
ment formulae. A Monitor Sensor listens for measurement
requests, loads measurement formulae from a local library,
performs the measurement and returns the results.

A Monitor Process has an interface component and four
engines: a Management Engine, a Measurement Engine,
a Violation Engine and an Output Engine. An interface
component receives new SLAs, sends measurement requests
and receives results. A single Management Engine module
coordinates and stores the SLAs, measurement results and
recorded violations. This module creates a new Measurement
Engine for each active SLA. The Measurement Engine
receives the SLA information and begins performing mea-
surements and testing results for violations based on the
negotiated violation policy. If a violation is detected, the
Violation Engine is notified. This module can take action as
specified by a violation policy, such as contacting the Output
Engine to inform one or more parties.

When an active SLA is received, a Monitor Process
checks if any of the clauses require monitoring and, where
appropriate, begins monitoring these items by communicat-
ing with sensors. These measurements can include static
facts, such as the presence or absence of a required item
(for example, a boolean value, such as ‘host is reachable’).
These measurements can also include dynamic items that
require aggregated data to calculate the average, minimum,
maximum or complex functions (for example, that return
a real number, such as ‘average uptime is 99.9%’). If
a violation is detected during active monitoring, action
is taken, as specified by the SLA. When the SLA ends,
the results are stored, along with the communications log,

in encrypted form for possible later auditing or conflict
resolution. Additional mechanisms are available to secure
this data, such as append-only storage [14].

B. Policy Specification

The current WS-Agreement specification [1] contains a
BusinessValueList by which the value of a certain SLO can
be expressed. This can declare its value explicitly or imply
its value through a penalty or reward type. For instance,
a penalty or reward type may hold a monetary value that
indicates the importance of the SLO. Although this enables
a basic mechanism for punishing poor performance and
rewarding good performance, this paper proposes the use
of a richer and more flexible method to specify violation
policies. As opposed to adding more terms to the WS-
Agreement standard, this paper proposes adding a separate
SDT to specify these policies. This includes the ability to
choose a violation policy, such as those mentioned above, as
well as the number of acceptable violations and the actions
that should be taken.

A portion of this extension is shown in Figure 3. The
value of ViolationPolicy specifies the violation policy and
can be none, allornothing, partial or weighted. The value of
ViolationCount specifies how many violations are detected
before action is taken. This must be a positive integer. The
value of ViolationAction specifies the action to be taken
when a violation is detected and can be none, notify, penalise
or cancel. This allows for no action, notification of the
parties, penalty enforcement (as specified by existing penalty
clause) or cancellation of the service.

C. Security and Reliability

To provide reliable measurements, the monitoring process
must be secure against malicious users that attempt to violate
agreements or interfere with the provision of services to



<ServiceDescriptionTerm ServiceName="SLAMon">
<Policies xsi:type="Policies">

<ViolationPolicy/>
<ViolationCount/>
<ViolationAction/>

</Policies>
</ServiceDescriptionTerm>

Figure 3. Monitoring policy attributes

others. Thus, the data collected from monitoring should
be protected from deletion or modification by unauthorised
users. Additionally, audit logs should be used, when nec-
essary, to distinguish violations caused by parties of the
agreement from those caused by other factors or users
external to the agreement. Furthermore, monitoring should
rely as little as possible on data provided by parties and
should attempt to rely as much as possible on measurements
of independently accessible variables.

The monitor should also be reliable and robust to sys-
tem failure and overload. Distribution of the monitoring
process can usually support both of these requirements.
A distributed monitor can remove the risk of a single
point of failure. Furthermore, distribution of the monitoring
process can remove possible performance bottlenecks and
allow for greater scaling. The monitoring process should
be self-healing in two ways. Firstly, workload should be
automatically balanced across monitors, preventing any sin-
gle monitor from becoming overloaded. Secondly, monitors
should automatically recover from failures and these failures
should not affect the accuracy or integrity of the data that
has already been collected.

V. MONITORING IN AGENTSCAPE

AgentScape has been used for implementation and ex-
perimentation. The AgentScape middleware [15] platform
supports SLA negotiation using the WS-Agreement specifi-
cation [16]. Moreover, the AgentScape architecture fulfills
the requirements for Trusted Computing Base [17], including
clearly defined and enforceable security policies, role-based
access controls, identification and authentication mecha-
nisms and audit trails [18]. These features make it possible
to serve as the TTP. This section introduces the AgentScape
middleware and describes how the monitoring framework
for WS-Agreement is implemented in AgentScape. This
includes an experimental comparison of a centralised and
decentralised variant to illustrate some of the benefits of a
distributed approach.

A. AgentScape Middleware

AgentScape [15] is a distributed platform for heteroge-
neous mobile agents designed to be open, scalable, secure
and fault-tolerant, the structure of which is depicted in
Figure 4. An AgentScape Location is an administrative do-
main that groups one or more host machines together. Each

AgentScape Location has a Location Manager that regulates
access to a location and its resources. These resources may
include middleware services such as Agent Servers for dif-
ferent programming languages (for example, Java, C, Jason)
or an anonymity service. Each host machine has a Host
Manager that regulates access to a host and its resources.
A Web Service Gateway provides access to external web
services. A group of independent AgentScape Locations that
are aware of, and accessible to one another, may be referred
to as an AgentScape World. This awareness is facilitated by
an external Lookup Service that is responsible for providing
listings of known locations and, optionally, their services.

Figure 4. AgentScape architecture

An SLA framework implemented in AgentScape [16]
allows agents to negotiate access to a site (that is, a location),
the right to migrate to a site and access resources. In
practice, agents negotiate leases using the WS-Agreement
specification with the Location Managers. After checking
an agent’s credentials, a Location Manager takes note of an
agent’s requests and proposes combinations of services in
an SLA, as described above. Agents can choose to accept a
proposal or not. A Location Manager is, in fact, a mediator,
that not only interacts with agents, it also interacts with its
own hosts to determine which services it can provide. When
an agreement is reached, the SLA is stored by the Location
Manager, and an agent is provided access to a location and
the services specified in the lease for the period of time
depicted.

AgentScape is well-suited to distributed environments and
is self-healing in the presence of failures. Mechanisms are in
place to automatically recover crashed agents without losing
data. Data persistence is achieved by storing data in the
agent’s container stored on the hard disk [19].

This framework has been used for service negotiation
applications for both the energy domain as well as the Grid
resource management domains [16].

B. Design Implementation

AgentScape currently supports negotiation and creation
of SLAs using the WS-Agreement specification [16] as de-
scribed above. The SLA framework in AgentScape has been
extended to support monitoring and penalty enforcement. A



trusted monitoring module has been implemented to measure
the provided services and ensure that the GTs in the SLA
are fulfilled by both parties. The SLA document has been
extended, similar to those described in [20]: the item to be
measured, time constraints, and the method to be used for
measurement as described in Example 1 below are included.

Example 1
An SLA specifies that measuredItem is network latency, mea-
suredAt is every 10 seconds, evalFunc is average latency is
less than 50 milliseconds and evalAction is to warn customer
if over limit three times in a row. Thus, the customer is alerted
if average latency is consistently higher than 50 milliseconds.
4

As average user do not necessarily have trusted hardware
modules, our implementation makes use of a TTP to achieve
secure and reliable monitoring. The AgentScape middleware
is the TTP. The middleware is impartial to the process and
has no stake in the outcome of a consumer or provider.
Therefore, when a host manager declares that it has a certain
service to provide, or when it declares that a violation has
occurred based on evidence, these are valid and honest
actions.

Additionally, this approach assumes that all work is
performed locally for both consumer and provider. The
AgentScape SLA framework requires that consumer agents
migrate to the host of the provider to use that provider’s
services. Therefore, measurements performed by either the
provider, consumer or a TTP should be identical.

The monitoring process has been implemented as an
AgentScape Agent. This allows existing mechanisms to
be used for secure communication, access controls and
persistent storage of data. Agents are automatically restarted
with their current data if they die unintentionally or even if
the middleware is restarted. Data persistence is achieved by
routinely writing crucial information, such as the state of the
SLA, to the agent container.

C. Centralised and Decentralised Monitoring

Two versions of the Monitor Agent have been designed
and implemented: one centralised and one decentralised. The
centralised variant utilises a Monitor Agent on only one
Location for an entire AgentScape World. The decentralised
variant utilises a Monitor Agent on each Location. These
two variants are contrasted in Figure 5. In this illustration,
three Locations form a single AgentScape World. In the
centralised variant, only the Monitor Agent at Location A
communicates directly with all Monitor Sensors at Locations
where monitoring is needed. In the decentralised variant, a
Monitor Agent is located at each Location and communi-
cates only with Monitor Sensors at the same Location.

The centralised variant simplifies the management of
leases by storing all information in a single place. In the

Figure 5. Centralised and decentralised monitor variants

decentralised version, each host only stores information re-
garding local leases and the load of monitoring responsibility
is more evenly balanced across the system. If a monitor
fails, all other monitors continue to operate normally. New
SLA requests are sent to these monitors. Monitors are
automatically respawned by the middleware once a failure
is detected. Active SLAs and monitoring data are recovered
from the persistent container file and monitoring continues.

Both variants have costs that cannot be known without
experimentation.

D. Experiments

Experimentation tests a monitor’s ability to detect viola-
tions following the specified policy (e.g. those introduced in
Section III-C). These experiments use a web service external
to AgentScape as the monitored service, and network latency
and network traffic as the monitored items. Both provider
and consumer violations are detected. When network latency
to this web service is greater than the maximum agreed
value, as specified by the SLA, this condition is interpreted
by the monitor as a violation for which the provider is re-
sponsible. When network traffic is greater than the maximum
agreed value, this is interpreted as a violation for which
the consumer is responsible. In both cases, the violation is
recorded and the parties are notified.

Further experimentation measures the overhead generated
by the monitoring framework to judge the feasibility of
such a framework in a real-world setting. This experiment
compares the centralised and decentralised versions of the
monitor. The centralised version uses only one monitor
per AgentScape World, thus several Locations share the
same monitor. The decentralised version uses one monitor
per Location. One AgentScape World is created with five
Locations. Each Location runs on a separate physical host
machine. Measurements of the number of threads used and
the amount of memory being consumed are taken as agents
are added and evenly distributed across the Locations. The
comparison of the centralised and decentralised versions is
depicted in Figure 6.

As these results show, the decentralised version of the
monitor utilises slightly more threads than the centralised
version. The number of threads for both monitor versions
increases at approximately the same rate as more consumer
agents are added. The results also show that despite initially



Figure 6. Comparison of centralised and decentralised monitor. (a) shows
the number of threads used as the number of agents increases. (b) shows
the amount of memory consumed as the number of agents increases.

using less memory, the centralised monitor memory con-
sumption increases sharply as agents are added. In contrast,
the decentralised version experiences near linear growth as
load increases.

The experiments reveal information about the scalability
of both the centralised and decentralised monitor. The de-
centralised version requires more resources in a predictable
way, as load increases. However, the centralised version
requires substantially more memory as the number of agents
increase, until a hard limit is reached. After this point, adding
more agents causes the system to become unresponsive. The
decentralised version does not exhibit this characteristic and
easily handles twice the load of the centralised version.

In summary, a centralised and a decentralised SLA mon-
itoring framework has been implemented in AgentScape to
judge the feasibility of such a framework in a real-world set-
ting. These variants differ in the complexity of information
management. The centralised variant with centralised lease
management, suffers from performance problems when the
number of agents increases. In contrast, the decentralised
version utilises a more complex distributed lease manage-
ment system and scales in a predictable and stable way.

VI. RELATED WORK

The field of monitoring agreements is an active area of
research. A number of alternative approaches to this problem
are available, including the WSLA framework from IBM [5]
and Grid-oriented approaches [3], [20]. These projects offer
insights to the considerations and design of monitoring
frameworks.

The Web Service Level Agreement (WSLA) frame-
work [5] is a framework for specifying and monitoring
agreements. This specification provides a very rich language
for specifying monitoring requirements; however, one im-
portant drawback is that it does not support the multiple
violation policies discussed in this paper. Furthermore, this
specification does not appear to be widely used or actively
developed. In contrast, the WS-Agreement specification,
used in this framework, is currently being used and de-
veloped by an active community [8], [6], [21], [22]. This
offers a greater chance of incorporation of the extensions
recommended in this paper.

Two Grid-oriented approaches [3], [20] also include sup-
port for monitoring SLA clauses. Although these approaches
provide methods for automated measurements and violation
capture for distributed environments, both appear to rely
on the assumption of a trusted environment, namely that
of a commercial Grid. This assumes that internal resources
are protected from external attack and that users are not
able to attack the system to prevent detection of their
own violations or to cause the violation of other innocent
users. Furthermore, these grid-oriented approaches use ded-
icated machines for monitoring and logging. While these
approaches may be well-suited to a controlled environment,
this will not scale to open environments, such as the Internet.

In contrast, the approach described in this paper does not
assume a trusted network, but rather expects malicious users
to attack the system. Furthermore, this approach pursues
fully distributing the load of users and the risk of failure
across multiple hosts, providing scalability and reliability.

VII. DISCUSSION

While negotiation of SLAs have been examined in de-
tail [16], monitoring and determining how to address viola-
tions of these agreements have not received the same level of
attention. This paper presents a framework for monitoring
SLAs that is secure and reliable even in the presence of
malicious users, failures and heavy load. Furthermore, the
proposed framework has a broad definition of violation and
what penalties should be enforced.

This monitoring framework has been implemented in
AgentScape. The AgentScape middleware has established
security mechanisms and thus serves as a trusted third party.
A centralised and a decentralised version of the monitoring
framework have been implemented and compared.

Future work in this area will include incorporating trusted
hardware modules, when available, and making use of reac-



tive monitoring mechanisms [23] to lower overhead costs.
While the results of experimentation with the monitoring
framework has indicated the suitabilty of a decentalised
approach for monitoring SLAs under heavy load, further
experimentation is required to investigate more security and
reliability issues, such as active attacks against monitors.
While the current implementation provides a working basis,
more work is also required to standardise penalties and proof
of violations.

Acknowledgements

This work is a result of support provided by the NLnet
Foundation (http://www.nlnet.nl) and the ALIVE project
(FP7-IST-215890).

REFERENCES

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services
Agreement Specification (WS-Agreement). In Global Grid
Forum GRAAP-WG, Draft, August, 2004.

[2] O. Rana, M. Warnier, T. B. Quillinan, and F. M. T. Brazier.
Monitoring and Reputation Mechanisms for Service Level
Agreements. In Proceedings of the 5th International Work-
shop on Grid Economics and Business Models (GenCon), Las
Palmas, Gran Canaria, Spain., August 2008. Springer Verlag.

[3] J. Padget, K. Djemame, and P. Dew. Grid-Based SLA
Management. Lecture Notes in Computer Science, 3470:1076,
2005.

[4] A. Ludwig, P. Braun, R. Kowalczyk, and B. Franczyk.
A Framework for Automated Negotiation of Service Level
Agreements in Services Grids. Lecture Notes in Computer
Science, 3812:89, 2006.

[5] A. Keller and H. Ludwig. The WSLA Framework: Specifying
and Monitoring Service Level Agreements for Web Services.
Journal of Network and Systems Management, 11(1):57–81,
2003.

[6] M. Aiello, G. Frankova, and D. Malfatti. What’s in an Agree-
ment? An Analysis and an Extension of WS-Agreement.
Lecture Notes in Computer Science, 3826:424, 2005.

[7] A. Pichot, P. Wieder, O. Waldrich, and W. Ziegler. Dynamic
SLA-negotiation based on WS-Agreement. Technical Report
TR-0082, Institute on Resource Management and Scheduling,
CoreGRID - Network of Excellence, June 2007.

[8] W. Ziegler, P. Wieder, and D. Battre. Extending WS-
Agreement for dynamic negotiation of Service Level Agree-
ments. Technical Report TR-0172, Institute on Resource
Management and Scheduling, CoreGRID - Network of Ex-
cellence, August 2008.

[9] L. Gymnopoulos, S. Dritsas, S. Gritzalis, and C. Lambri-
noudakis. GRID security review. Lecture Notes in Computer
Science, pages 100–111, 2003.

[10] F. Lau, SH Rubin, MH Smith, and L. Trajkovic. Distributed
denial of service attacks. In 2000 IEEE International Con-
ference on Systems, Man, and Cybernetics, volume 3, 2000.

[11] R. Mach, R. Lepro-Metz, S. Jackson, and L. McGinnis. Usage
Record Format Recommendation. In Draft Rec-UR-Usage,
Global Grid Forum, Usage Record WG, 2005.

[12] TB Quillinan, BC Clayton, and SN Foley. GridAdmin:
Decentralising grid administration using trust management.
In Parallel and Distributed Computing, 2004. Third Inter-
national Symposium on/Algorithms, Models and Tools for
Parallel Computing on Heterogeneous Networks, 2004. Third
International Workshop on, pages 184–192, 2004.

[13] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and
reputation systems for online service provision. Decision
Support Systems, 43(2):618–644, 2007.

[14] Y. Wang and Y. Zheng. Fast and Secure Append-Only Storage
with Infinite Capacity. In Second IEEE International Security
in Storage Workshop, pages 11–19. IEEE Computer Society,
2003.

[15] B.J. Overeinder and F.M.T. Brazier. Scalable Middleware
Environment for Agent-Based Internet Applications. Lecture
Notes in Computer Science, 3732:675, 2005.

[16] D. G. A. Mobach. Agent-Based Mediated Service Negotiation.
PhD thesis, Computer Science Department, Vrije Universiteit
Amsterdam, May 2007.

[17] D.C. Latham. Department of Defense Trusted Computer
System Evaluation Criteria. Department of Defense, 1986.

[18] T. B. Quillinan, M. Warnier, M. A. Oey, R. J. Timmer, and
F. M. T. Brazier. Enforcing Security in the AgentScape Mid-
dleware. In Proceedings of the 1st International Workshop
on Middleware Security (MidSec). ACM, December 2008.

[19] G. van ’t Noordende, B. J. Overeinder, R. J. Timmer, F. M. T.
Brazier, and A. S. Tanenbaum. Constructing secure mobile
agent systems using the agent operating system. International
Journal of Intelligent Information and Database Systems,
3(4), 2009.

[20] A. Sahai, S. Graupner, V. Machiraju, and A. van Moorsel.
Specifying and monitoring guarantees in commercial grids
through SLA. In Cluster Computing and the Grid, 2003.
Proceedings. CCGrid 2003. 3rd IEEE/ACM International
Symposium on, pages 292–299, 2003.

[21] G. Di Modica, V. Regalbuto, O. Tomarchio, and L. Vita.
Enabling re-negotiations of SLA by extending the WS-
Agreement specification. In IEEE International Conference
on Services Computing, 2007. SCC 2007, pages 248–251,
2007.

[22] G. Frankova, D. Malfatti, and M. Aiello. Semantics and
Extensions of WS-Agreement. Journal of Software, 1(1),
2006.

[23] D. Khader, J. Padget, and M. Warnier. Reactive monitoring
of service level agreements. In Workshop on Service Level
Agreements 2009, 2009.


