
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

Secure Multi-party Computation of
Differentially Private Median

Jonas Böhler, SAP Security Research; Florian Kerschbaum,
University of Waterloo

https://www.usenix.org/conference/usenixsecurity20/presentation/boehler

Secure Multi-party Computation of Differentially Private Median

Jonas Böhler
SAP Security Research

Florian Kerschbaum
University of Waterloo

Abstract
In this work, we consider distributed private learning. For this
purpose, companies collect statistics about telemetry, usage
and frequent settings from their users without disclosing indi-
vidual values. We focus on rank-based statistics, specifically,
the median which is more robust to outliers than the mean.

Local differential privacy, where each user shares locally
perturbed data with an untrusted server, is often used in pri-
vate learning but does not provide the same accuracy as the
central model, where noise is applied only once by a trusted
server. Existing solutions to compute the differentially pri-
vate median provide good accuracy only for large amounts
of users (local model), by using a trusted third party (central
model), or for a very small data universe (secure multi-party
computation).

We present a multi-party computation to efficiently com-
pute the exponential mechanism for the median, which
also supports, e.g., general rank-based statistics (e.g., pth-
percentile, interquartile range) and convex optimizations for
machine learning. Our approach is efficient (practical run-
ning time), scaleable (sublinear in the data universe size) and
accurate, i.e., the absolute error is smaller than comparable
methods and is independent of the number of users, hence,
our protocols can be used even for a small number of users.
In our experiments we were able to compute the differentially
private median for 1 million users in 3 minutes using 3 semi-
honest computation parties distributed over the Internet.

1 Introduction

We consider the problem of distributed private learning.
Specifically, how multiple users can compute rank-based
statistics over their sensitive data, with high accuracy, a strong
privacy guarantee, and without resorting to trusted third par-
ties. Rank-based statistics include the median, pth-percentiles,
and interquartile ranges, and we present a protocol to compute
the differentially private median, which is extensible to any
kth ranked element. We use differential privacy (DP) [25, 28],

a rigorous privacy notion, restricting what can be inferred
about any individual in the data, used by Google [15, 31],
Apple [1, 66], Microsoft [23] and the US Census bureau [2].
The median is a robust statistical method used to represent a
“typical” value from a data set, e.g., insurance companies use
the median life expectancy to adjust insurance premiums.

Previous work on DP median computation either require
a large number of users to be accurate [27, 34, 63], rely on a
trusted third party [51, 58], or cannot scale to large universe
or data set sizes [14, 30, 59]. We present a novel alternative
that is superior in accuracy, requires no trusted party, and is
efficiently computable. Our protocol provides high accuracy
even for a small number of users. Note that small sample size
is the most challenging regime for DP [56]. Even Google’s
large-scale data collection (billions of daily reports via [31])
is insufficient if the statistical value of interest is not a heavy
hitter [15], e.g., the median.

We present a secure multi-party computation (MPC) of
the exponential mechanism [52] for decomposable aggregate
functions. Such functions, as used in MapReduce-style al-
gorithms [22], allow efficient aggregation in parallel over
distributed data sets, and application examples include con-
vex loss functions and rank-based statistics. The exponential
mechanism can implement any differentially private algo-
rithm by computing selection probabilities for all possible
output elements. Its computation complexity is linear in the
size of the data universe [52] and efficiently sampling it is
non-trivial [29]. Also, the exponential mechanism requires
exponentiations, increasing the MPC complexity. However,
as it is a universal mechanism, a scalable, secure implementa-
tion can be widely applied. Eigner et al. [30] also implement
the exponential mechanism in MPC. They compute the expo-
nential function with MPC, whereas we provide a more effi-
cient alternative for decomposable functions. Their approach,
while more general, is only practical for a universe size of
5 elements, whereas our protocol is sublinear in the size of
the universe and handles billions of elements. We achieve
this via divide-and-conquer and optimizing our protocol for
decomposable functions that enable efficient alternatives to

USENIX Association 29th USENIX Security Symposium 2147

expensive secure computation of exponentiations [5,7,20,43].
In summary, our contribution is a protocol for securely

computing the differentially private median

• with high accuracy even for small data sets (few users)
and large universe sizes (see Section 3.4 for our theo-
retical errors bounds, Appendix F for a comparison of
that bound to related work, and Section 5.3 for empirical
comparison to related work),

• that is efficient (practical running time for millions of
users) and scalable (sublinear in the data universe size)
(Sections 4, 5),

• secure in the semi-honest model with an extension to
the malicious model (Section 4.6) and outputs the dif-
ferentially private median according to the exponential
mechanism by McSherry and Talwar [52],

• evaluated using an implementation in the SCALE-
MAMBA framework [6], for 1 million users using 3
semi-honest computation parties with a running time of
seconds in a LAN, and 3 minutes in a WAN with 100 ms
network delay, 100 Mbits/s bandwidth (Section 5).

The remainder of this paper is organized as follows: In
Section 2 we describe preliminaries for our protocol. In Sec-
tion 3 we explain our protocol and introduce definitions. We
present our protocol and implementation details for the secure
multi-party computation of the differentially private median
in Section 4. We provide a detailed performance evaluation
in Section 5, describe related work in Section 6 and conclude
in Section 7.

2 Preliminaries

In the following, we introduce preliminaries for differential
privacy and secure multi-party computation.

We consider a set of input parties P = {P1, . . . ,Pn}, where
party Pi holds a datum di, and D denotes their combined data
set. We model a data set as D = {d1, . . . ,dn} ∈Un with un-
derlying data universe U . We also consider m semi-honest
computation parties, e.g., m ∈ {3,6,10}, who run the compu-
tation on behalf of the input parties. To simplify presentation,
we assume the size n of D to be even, which can be ensured
by padding. Then, the median’s position in sorted D is n/2.

2.1 Differential Privacy

Differential privacy (DP), introduced by Dwork et al. [25,28],
is a strong privacy guarantee restricting what a mechanism
operating on a sensitive data set can output. Informally, when
the input data set changes in a single element, the effect on
the output is bounded. The formal definition is as follows:

Definition 1 (Differential Privacy). A mechanism M satisfies
ε-differential privacy, where ε≥ 0, if for all neighboring data
sets D' D′, i.e., data sets differing in a single entry, and all
sets S⊆ Range(M)

Pr[M (D) ∈ S]≤ exp(ε) ·Pr
[
M (D′) ∈ S

]
,

where Range(M) denotes the set of all possible outputs of
mechanism M .

The above definition holds against an unbounded adver-
sary, however, due to our use of cryptography we assume a
computationally bounded adversary. A formal definition is
presented in Appendix A based on MPC preliminaries from
Section 2.2.

Randomization is essential for differential privacy to hide
an individual’s inclusion in the data [29]. Noise, added to the
function output, is one way to achieve differential privacy,
e.g., via the Laplace mechanism [29]:

Definition 2 (Laplace Mechanism). Given a function f :
Un → R with sensitivity max∀D'D′ | f (D)− f (D′)|, privacy
parameter ε, and a database D, the Laplace mechanism re-
leases f (D)+ r, where r is drawn from the Laplace distribu-

tion (centered at 0) with density ε

2∆ f e
−ε

∆ f .

The alternative to additive noise is probabilistic output
selection via the exponential mechanism, introduced by Mc-
Sherry and Talwar [52]. The exponential mechanism expands
the application of differential privacy to functions with non-
numerical output, or when the output is not robust to additive
noise, e.g., the median function [48]. The mechanism is expo-
nentially more likely to select “good” results where “good” is
quantified via a utility function u(D,r) which takes as input a
database D ∈Un, and a potential output r ∈ R from a fixed
set of arbitrary outputs R . Informally, higher utility means
the output is more desirable and its selection probability is
increased accordingly.

Definition 3 (Exponential Mechanism). For any utility func-
tion u : (Un×R)→ R and a privacy parameter ε, the expo-
nential mechanism EMε

u(D) outputs r ∈ R with probability
proportional to exp(εu(D,r)

2∆u), where

∆u = max
∀r∈R ,D'D′

∣∣u(D,r)−u
(
D′,r

)∣∣
is the sensitivity of the utility function. That is,

Pr[EMε
u(D) = r] =

exp
(

εu(D,r)
2∆u

)
∑r′∈R exp

(
εu(D,r′)

2∆u

) . (1)

We omit u,ε,D, i.e., write EM, if they can be derived from
the context.

DP algorithms M can be implemented in different models,
visualized in Figure 1. Next, we describe the models and
explain which model we implement.

2148 29th USENIX Security Symposium USENIX Association

C1...
Cn

Trusted
Server

d1

dn
M (f (d1, . . . ,dn))

(a) Central Model

C1...
Cn

Untrusted
Server

r1=M (d1)

rn=M (dn)
f (r1, . . . ,rn)

(b) Local Model

C1...
Cn

Shuffler Untrusted
Server

r1=M (d1)

rn=M (dn)

rπ(1)
...

rπ(n)
f
(
rπ(1), . . . ,rπ(n)

)
(c) Shuffle Model with permutation π

Figure 1: Models for DP mechanism M . Client Ci sends a
message (raw data di or randomized ri) to a server, who com-
putes function f over the messages, and releases the result.

2.1.1 Why We Consider the Central Model

In the central model (Figure 1a) every client sends their un-
protected data to a trusted, central server which runs M on the
clear data. The central model provides the highest accuracy
as the randomization inherent to DP algorithms, is only ap-
plied once. In the local model (Figure 1b), introduced by [44],
clients apply M locally and sent anonymized values to an un-
trusted server for aggregation. The accuracy is limited as the
randomization is applied multiple times. Hence, it requires a
very large number of users to achieve accuracy comparable to
the central model [15,18,40,44,50]. Specifically, an exponen-
tial separation between local and central model for accuracy
and sample complexity was shown by [44]. Recently, an in-
termediate shuffle model (Figure 1c) was introduced [15, 18]:
A trusted party is added between client and server in the lo-
cal model, the shuffler, who does not collude with anyone.
The shuffler permutes and forwards the randomized client
values. The permutation breaks the mapping between a client
and her value, which reduces randomization requirements.
The accuracy of the shuffle model lies between the local
and central model, however, in general it is strictly weaker
than the central model [9, 18]. As our goal is high accuracy
without trusted parties even for small number of users, we
simulate the central model in a distributed setting via secure
multi-party computation (MPC), which is often used in DP
literature [26, 30, 38, 59, 60, 65]. MPC, further described in
Section 2.2, is a cryptographic protocol run by clients over
their sensitive data that only reveals the computation output
without requiring a trusted server. General MPC incurs high
computation and communication overhead which reduce ef-
ficiency and scalability [18]. However, MPC combines the

0.1 0.25 0.5

0

5

10

15

20

25

ε

A
v
g
.
A
b
s.

E
rr
o
rs Smooth

Sensitivity

This work
Exponential
Mechanism

(a) Credit card transactions [67],
first 105 payment records in Cents.

0.1 0.25 0.5

0

2

4

6

8

10

12

ε

A
v
g
.
A
b
s.

E
rr
o
rs Smooth

Sensitivity

This work
Exponential
Mechanism

(b) Walmart supply chain data [42],
175k shipment weights as integers.

Figure 2: Absolute errors, averaged for 100 differentially
private median computations via Laplace mechanism with
smooth sensitivity, this work, and the exponential mechanism.

respective benefits of the models, namely, high accuracy and
strong privacy, i.e., no disclosure of values to a third party,
and we present an efficient and scaleable MPC protocol.

2.1.2 Why We Use the Exponential Mechanism

Next, we illustrate why the exponential mechanism offers bet-
ter accuracy than additive noise w.r.t. the DP median. Recall,
the noise depends on the sensitivity of function f and the
privacy parameter ε. The sensitivity is the largest difference
a single change in any possible database can have on the
function result. Smooth sensitivity, developed by Nissim et
al. [58], additionally analyzes the data to provide instance-
specific additive noise that is often much smaller. (See Ap-
pendix F for a formal description.) However, computation
of smooth sensitivity requires access to the entire data set,
otherwise the error increases further1, which prohibits effi-
cient (secure) computation with high accuracy. Li et al. [48]
note that the Laplace mechanism is ineffective for the me-
dian as (smooth) sensitivity can be high. Additionally, they
present a median utility function for the exponential mecha-
nism with low, data-independent sensitivity, which we use in
our protocol. To illustrate that additive noise can be high, we
empirically evaluated the absolute error of the Laplace mecha-
nism with smooth sensitivity, the exponential mechanism, and
our protocol in Figure 2 on real-world data sets [42, 67]. Our
protocol uses the exponential mechanism in multiple steps,
and while the accuracy is not the same as for (single use
of) the exponential mechanism, we do not require a trusted
third party. Overall, we achieve better accuracy than additive
noise for low ε (corresponding to high privacy protection)
with better scalability than the exponential mechanism. We
provide our accuracy bounds in Section 3.4, further empirical
evaluations w.r.t. related work in Section 5.3, and describe
related work in Section 6.

1Smooth sensitivity approximations exist that provide a factor of 2 ap-
proximation in linear-time, or an additive error of max(U)/poly(|D|) in
sublinear-time [58, Section 3.1.1]. Note that this error e is w.r.t. smooth
sensitivity s, the additive noise is even larger with Laplace((s+ e)/ε).

USENIX Association 29th USENIX Security Symposium 2149

2.2 Secure Multi-party Computation

Secure multi-party computation (MPC) [36] allows a set
of three or more parties P = {P1, . . . ,Pn}, where party Pi
holds sensitive input di, to jointly compute a function y =
f (d1, . . . ,dn) while protecting their inputs. The computation
must be correct, i.e., the correct y is computed, and secret, i.e.,
only y and nothing else is revealed. There are two main imple-
mentation paradigms for MPC [32,46]: garbled circuits [68]2,
where the parties construct a (large, encrypted) circuit and
evaluate it at once, and secret sharing [12, 21, 57, 62], where
the parties interact for each circuit gate. In general, the for-
mer allows for constant number of rounds but requires larger
bandwidth (as fewer, but bigger messages are sent), and the
latter has low bandwidth (small messages per gate) and high
throughput, where the number of rounds depends on the cir-
cuit depth. We will focus on secret-sharing-based MPC as
our goal is an efficient implementation in a network with
reasonable latency. Informally, a (t,n)-secret sharing scheme
splits a secret s into n shares si and at least t shares are re-
quired to reconstruct the secret. We use 〈s〉= (s1, . . . ,sn) to
denote the sharing of s among n parties (for a formal defini-
tion see, e.g., Evans et al. [32]). Recent works, e.g., SCALE-
MAMBA [6], BDOZ [12], SPDZ [21], improve MPC perfor-
mance by combining a computationally secure offline phase,
to exchange correlated randomness (e.g., Beaver triples [11]),
with an information-theoretic secure online phase. The former
is generally more efficient since the latter requires asymmetric
cryptography [47]. MPC can be implemented in two models
with different trust assumptions: in the semi-honest model
(passive) adversaries do not deviate from the protocol but
gather everything created during the run of the protocol, in
the malicious model (active) adversaries can deviate from the
protocol (e.g., alter messages).

In this work we consider n input parties with sensitive
input, and m (e.g., m ∈ {3,6,10}) semi-honest computation
parties, i.e., non-colluding untrusted servers. The input parties
create and send shares of their input to the computation parties,
which run the secure computation on their behalf. We assume
semi-honest parties but explain how to extend our protocol
to malicious parties and implement our protocol with the
SCALE-MAMBA framework [6].

3 Secure EM for Median Selection

We implement a multi-party computation of the exponential
mechanism EM for rank-based statistics enabling distributed
parties to learn the differentially private median of their joint
data. There are two challenges for multi-party computation
of the exponential mechanism:

2Yao described a garbled circuit for two parties in an oral presentation
about secure function evaluation [68], the first written description is from [37],
and the first proof was given in [49].

(i) the running time complexity is linear in the size of the
data universe, |U |, as selection probabilities for all pos-
sible outputs in U are computed,

(ii) the general mechanism is too inefficient for general se-
cure computation as selection probability computation
requires |U | exponentiations over floating-point numbers.

We solve these challenges by (i) recursively dividing the data
universe into subranges to achieve sublinear running time in
|U |, and (ii) focusing on utility functions which allow effi-
cient selection probability computation. We call such utility
functions decomposable, which we formalize in Section 3.1,
and give example applications.

In the following, we describe an overview of our solution.
We efficiently compute the exponential mechanism with run-
ning time complexity sublinear in the size of the data universe
U by dividing U into k subranges. We select the best sub-
range and also split it into k subranges for the next iteration,
until the last subrange is small enough to directly select the
final output from it. After dlogk |U |e iterations the selected
subrange contains only one element. Each subrange selection
increases the overall privacy loss ε, and we enable users to
select a trade-off between running time, privacy loss and accu-
racy by presenting three protocols to compute unnormalized
selection probabilities, which we call weights, w.r.t. ε:

• Weightsln(2) fixes ε = ln(2) to compute exp(εy) as 2y,

• Weightsln(2)/2d
allows ε = ln(2)

2d for some integer d > 0,

• Weights∗ supports arbitrary ε.

On a high-level, we have three phases in each iteration:

1. Evaluate: Each party locally computes the basis for util-
ity scores for each subrange.

2. Combine: They combine their results into a global result
and compute selection probabilities.

3. Select: Finally, they select an output based on its selec-
tion probabilities.

The results of the evaluation step are computed over sensitive
data and might also be sensitive (e.g., utility functions for
median and mode leak exact counts [48]). Therefore, we com-
bine them via MPC to preserve privacy. To ensure efficient
implementation of the combination step we require utility
functions to have a certain structure as detailed next.

3.1 Decomposability & Applications
Recall, each party Pi holds a single value di (we can generalize
to data sets Di). To combine local utility scores per party
into a global score for all, we require utility functions to be
decomposable:

2150 29th USENIX Security Symposium USENIX Association

Application Utility

Convex optimization: find x that minimizes
∑

n
i=1 l(x,di) with convex loss function l de-

fined over D; e.g., empirical risk minimization
in machine learning [10, 63], and integer parti-
tions (password frequency lists) [16]

−∑
n
i=1 l(x,di)

Unlimited supply auction: find price x max-
imizing revenue x∑i bi(x), where bidder de-
mand curve bi indicates how many goods bid-
der i will buy at price x; e.g., digital goods [52]

x∑i bi(x)

Frequency: select x based on its frequency in
D; e.g., mode [48] ∑

n
i=11x=di

Rank-based statistics: select x based on its
rank in sorted D; e.g., kth-ranked element [48]

See
Section 3.2

Table 1: Applications with decomposable utility functions.

Definition 4 (Decomposability). We call a function u : (Un×
R)→ R decomposable w.r.t. function u′ : (Un×R)→ R if
u(D,x) = ∑

n
i=1 u′(di,x) for x ∈ R and D = {d1, . . . ,dn}.

We use decomposability to easily combine utility scores in
Weightsln(2), Weightsln(2)/2d

, and to avoid secure evaluation
of the exponential function in Weights∗3. If u is decompos-
able, users can compute weights locally, and securely combine
them via multiplications:

∏
i

exp(u′(di,x)ε) = exp(∑
i

u′(di,x)ε) = exp(u(D,x)ε).

Decomposability is satisfied by a wide range of selection
problems. Counts are clearly decomposable and so are utility
functions that can be expressed as a sum of utility scores.
Applications with decomposable utility functions are listed
in Table 1. One use case for the median is a software com-
pany collecting private usage statistics, e.g., number of times a
procedure was run or the size of database tables, in a medium-
sized installed base. Reporting the median in addition to the
mean allows the collector to detect skew in the distribution.
Another example is private federated learning with network
resource constrained parties, e.g., mobile phones on cellu-
lar networks. Gradient compressed federated learning, e.g.,
signSGD [13], enables to reduce the update message size
for these parties, but uses the median instead of the mean to
aggregate the gradients. The additional communication stem-
ming from our secure median computation can be shifted to
few parties who are not network resource constrained, e.g.,
mobile phones on WiFi networks.

To be sublinear in the size of the universe we consider
decomposability w.r.t. ranges instead of elements: parties only

3Secure exponentiation is complex [5,7,20,43], requiring many interactive
rounds, and we want to avoid the expensive computational overhead.

report one utility score per range, instead of one score per
element. Decomposability for elements x ∈U does not imply
decomposability for ranges R⊂U4. However, we present a
decomposable utility function w.r.t. ranges for rank-based
statistics next.

3.2 Decomposable Median Utility Function
First, we describe the median utility function [48]. Then, we
present a reformulation more convenient for secure imple-
mentation and show that it is decomposable.

Li et al. [48, Section 2.4.3] quantify an element’s utility
via its rank relative to the median. The rank of x ∈U in a
data set D is the number of values in D smaller than x. More
formally, rankD(x) = |{d | d ∈ D : d < x}|. Note that for the
median we have R =U , which means every universe element
is a potential output. As U can be large, we divide U in k
equal-sized ranges, and define utility per range next.

Definition 5 (Median Utility Function). The median utility
function uµ : (Un×U)→ Z gives a utility score for a range
R = [rl ,ru) where rl ,ru ∈U w.r.t. D ∈Un as

uµ(D,R) =− min
rankD(rl)≤ j≤rankD(ru)

∣∣∣ j− n
2

∣∣∣.
We focus on MPC of the differentially private median

with rank n/2 but Definition 5 supports any kth-ranked el-
ement. The sensitivity of uµ is 1/2 since adding an element
increases n/2 by 1/2 and j either increases by 1 or remains
the same [48]. Thus, the denominator 2∆u in the exponents
of (1) equals 1, and we will omit it in the rest of this work.

To compute uµ one needs to find rank j minimizing the
distance between the median and all range elements by iterat-
ing over all j where rankD(rl)≤ j ≤ rankD(ru). However, a
naive implementation of uµ leaks information as the iteration
count depends on the number of duplicates in the data. We
adapt uµ next to remove this leakage. To avoid iterating over
range elements observe that the utility for a range R = [rl ,ru)
is defined by the element in the range closest to the median µ.
Thus, it suffices to consider three cases: The range is either
positioned “before” the median (ru ≤ µ), contains it, or comes
“after” it (rl > µ). This observation leads us to the following
definition without iterations:

Definition 6 (Simplified Median Utility Function). The me-
dian utility function uc

µ : (Un×U)→ Z gives a utility score
for a range R = [rl ,ru) of U w.r.t. D ∈Un as

uc
µ(D,R) =


rankD(ru)− n

2 if rankD(ru)<
n
2

n
2 − rankD(rl) if rankD(rl)>

n
2

0 else
.

4Consider the mode, i.e., the most frequent element. E.g., for two parties
with data sets D1 = {1,1,1,2,2},D2 = {2,2,3,3,3} the mode per data set
is 1 resp. 3 but the mode for the combined data is 2.

USENIX Association 29th USENIX Security Symposium 2151

1. Set s = dlogk |U |e and split privacy budget ε into ε1, . . . ,εs

2. Initialize S =U and repeat below steps s times:

(a) Every party p ∈ P divides S into k equal-sized subranges
{Ri = [ri

l ,r
i
u)}k

i=1

i. if ε j = ln(2)/2d in step j (with integer d ≥ 0), input{
rankDp(r

i
l), rankDp(r

i
u)
}k

i=1,d
ii. else input{

eε j(rankDp (r
i
u)−|Dp|/2),eε j(|Dp|/2−rankDp (r

i
l))
}k

i=1
,ε j

(b) The functionality combines the inputs (Section 3.2)
and outputs S = Ri with probability proportional to
exp(uc

µ(D,Ri)ε j)

Figure 3: Ideal functionality FEM∗ for EM∗.

In the following, we generalize from a single value per
(input) party, di, to multiple values, i.e., data set Di, as com-
putation parties operate on data sets later on. Definition 5
and 6 are equivalent as can be seen by proof by cases (see
Appendix B), and uc

µ is decomposable w.r.t.:

u′(Di,R) =


rankDi(ru)− |Di|

2 if rankD(ru)<
n
2

|Di|
2 − rankDi(rl) if rankD(rl)>

n
2

0 else

,

where rankD(r) = ∑
n
i=1 rankDi(r) for range endpoints r. We

will use both utility definitions interchangeably. Specifically,
we use uµ to simplify notation in our accuracy proofs (Sec-
tion 3.4), and uc

µ in our implementation (Section 4).

For implementations Weightsln(2), Weightsln(2)/2d
the par-

ties input ranks for lower and upper range endpoints (as in
u′ above), which we combine (as uc

µ) to efficiently compute
weights. For Weights∗ we let the parties input weights, i.e.,
exp(εu′), which we can efficiently combine via multiplication.
In more detail, weights for u′ are:

eε·u′(Di,R) =


eε

(
rankDi (ru)−

|Di |
2

)
if eε(rankD(ru)− n

2)) < 1

eε

(|Di |
2 −rankDi (rl)

)
if 1 > eε(n

2−rankD(rl))

1 else

,

where, e.g., eε(rankD(r)− n
2)) = ∏

n
i=1 eε

(
rankDi (r)−

|Di|
2

)
for range

endpoints r. Given these inputs, we are ready to describe an
idealized version of our protocol next.

3.3 Ideal Functionality FEM∗

The ideal functionality FEM∗ in Figure 3 describes our DP
median protocol EM∗ as executed by a trusted third party,
which we later replace by implementing FEM∗ with MPC. We

iteratively select subranges of universe U w.r.t. DP median via
the exponential mechanism. After s = dlogk |U |e steps the last
selected subrange contains only the DP median. We split ε,
also called privacy budget, into s parts such that ε = ∑

s
j=1 ε j,

and consume ε j for each subrange selection. (We describe the
budget composition in Section 3.4 and provide a heuristic in
Section 5.) Overall, FEM∗ provides ε-differential privacy:

Theorem 1. FEM∗ , with privacy parameter ε j in step j ∈
{1, . . . ,s}, is ε-differentially private for ε = ∑

s
j=1 ε j.

Proof. FEM∗ performs s sequential steps, and each step
applies the exponential mechanism EMεi

uc
µ
. Since EMεi

uc
µ

is
(2εi∆uc

µ)-DP [52], with sensitivity ∆uc
µ = 1/2 [48], we have εi-

DP per step. Thus, according to the composition theorem [29],
the total privacy budget after all steps is ∑

s
j=1 ε j.

3.4 Accuracy of Differentially Private Median
We express accuracy as the absolute error between differen-
tially private and actual median. In more detail, the absolute
error is bounded by α with probability at least 1−β, known as
(α,β)-accuracy. Next, we discuss how the data distribution
influences accuracy and present worst-case bounds on the
accuracy of the exponential mechanism for median selection.

3.4.1 Data Distribution

Accuracy depends on the data distribution, specifically, on
gaps di+1−di, and duplicates di = d j with i 6= j5. Recall, a
DP mechanism bounds the probability that data set D and its
neighbor D′ can be distinguished from the mechanism out-
put. As neighbor D′ may contain values from the gaps of D,
these gap values must be output with a non-zero probability.
This is why bounds for absolute error depend on such gaps
between data elements in this and related work (Appendix F).
As a worst-case example, consider a data set with universe
U = {0,1, . . . ,109} containing only an equal number of du-
plicates for 0 and 109. Then, smooth sensitivity is extremely
large with 109 and the exponential mechanism outputs a value
at uniform random. However, for such pathological, worst-
case data even the actual median does not provide much in-
sight. On the other hand, the number of duplicates in the data
can increase accuracy dramatically. For example, consider a
data set where the median has 2c duplicates: dn/2±i = dn/2
for i ∈ {1, . . . ,c}. Then, the probability that the exponential
mechanism outputs the median is exp(cε) times higher than
for any other element. Such duplicates also fit the intuition
that the median is a “typical” value from the data that rep-
resents it well. In general, the probability to output a “bad”
element x decreases exponentially in ∑ci, where ci ≥ 1 are
duplicate counts of “good” elements yi, which are closer to
the median than x.

5To simplify the explanation, assume the universe consists of consecutive
integers, i.e., U = {x ∈ Z | a≤ x≤ b} with a,b ∈ Z.

2152 29th USENIX Security Symposium USENIX Association

3.4.2 Accuracy Bounds

In the following, we show that the output of EMε
u(D,R) con-

tains an element at most
⌊

ln(|R |/β)
ε

⌋
positions away from the

median in the sorted data. Note that |R | is k if we select
among k subranges or |U | if we output elements directly.

For our accuracy proofs we structure the universe as a tree:
we set U as the root of a tree of height logb |U |, for some
base b, with k child nodes per parent. The child nodes are
equal-sized subranges of the parent node and R j

i denotes the
ith subrange in level j.

Theorem 2 (Median Accuracy for Ranges). Fixing a
database D of size n with a set of k subranges R =
{R j

1, . . . ,R
j
k} of data universe U. Then, output of EMε

u(D,R)

contains an element at most
⌊

ln(k/β)
ε

⌋
positions away from

median position n
2 with probability at least 1−β.

Our proof uses Corollary 3.12 from [29], which we restate
as the following Lemma:

Lemma 1 (Accuracy of the Exponential Mechanism). Fix-
ing a database D, and let OPT = maxr∈R u(D,r) denote the
maximum utility score of any element r ∈ R , we have

Pr
[

u(D,EMε
u(D,R))≤ OPT− 2∆u

ε
(ln |R |+ t)

]
≤ exp(−t).

Proof of Theorem 2. First, we bound the utility difference be-
tween optimal and selected output. Then, we translate this to
a bound on the output’s rank.

The complementary of Lemma 1 with ∆u = 1
2 is

Pr
[

OPT−u(D,EMε
u(D,R))<

ln |R |+ t
ε

]
> 1− exp(−t).

Let R j
i = [rl ,ru) be the output of EMε

u(D,R). Recall, that
for median utility OPT = 0, then,

OPT−u(D,EMε
u(D,R)) = 0−u(D,R j

i)

= min
rankD(rl)≤ j≤rankD(ru)

∣∣∣ j− n
2

∣∣∣.
Next, we consider different cases for R j

i to bound the rank
difference between the selected range and the range that con-
tains the median. Assume median µ /∈ R j

i , as otherwise the
bound holds trivially, and let d denote the utility difference
OPT−u(D,EMε

u(D,R)).
For ru < µ we have d = |rankD(ru)− n

2 | =
n
2 − rankD(ru)

from which we obtain rankD(ru) >
n
2 −

ln |R |+t
ε

with prob-
ability at least 1− exp(−t). Analog, for rl > µ we have
d = rankD(rl)− n

2 , and obtain rankD(rl) <
n
2 +

ln |R |+t
ε

with

the same probability. Altogether, R j
i is at most

⌊
ln |R |+t

ε

⌋
rank

positions away from median rank n/2 with probability at
least 1− exp(−t). We have k = |R | and setting β = exp(−t)
concludes the proof.

To obtain an absolute error with regards to data elements,
consider universe elements instead of subranges as the output
of the exponential mechanism.

Corollary 1 (Median Accuracy). Fixing a sorted database
D of size n, let µ be the median of D, and µ̂ the output of
EMε

u(D,U). Then, absolute error |µ− µ̂| is at most

max
i∈{+1,−1}·

⌊
ln(|U |/β)

ε

⌋∣∣∣d n
2+i−d n

2

∣∣∣
with probability at least 1−β.

The proof follows directly from Theorem 2 with |R |= |U |.
Note that it is more likely to select a “good” subrange as it

is to directly select a “good” element from the entire universe
(as k� |U |). However, sequential (subrange) selections con-
sumes ε j per selection step j which adds up to a total privacy
budget of ε=∑ j ε j as described in Section 3.3. We now show
how to choose ε j to select the subrange containing the median
in each iteration step with probability at least 1−β.

Theorem 3 (Choice of ε). Let R = {R j
1, . . . ,R

j
k}, where

R j
i = [rl ,ru) contains the median, and ni j = min{|rankD(µ)−

rankD(rl)|, |rankD(ru + 1)− rankD(µ+ 1)|} is the minimum
count of data elements in R j

i smaller resp. larger than the
median. Then, EMε

u(D,R) selects R j
i with probability at least

1−β if

ε j ≥
ln(k/β)

ni j
.

Proof. Ranges R j
h without the median have a rank at least ni j

positions away from median rank. More formally,

OPT−u(D,R j
h)≥

∣∣∣(n
2
±ni j

)
− n

2

∣∣∣= ni j.

According to Lemma 1 we have Pr
[
ni j ≥ ln |R |+t

ε j

]
≤

exp(−t). Thus, for ε j ≥ ln |R |+t
ni j

the probability that any range

R j
h is selected is at most exp(−t). We have k = |R | and setting

β = exp(−t) concludes the proof.

Parameter ε j is undefined for ni j = 0, i.e., when the median
is a range endpoint6. Note that the exact value of ni j is data-
dependent. E.g., for the uniform distribution ni j ≈ |D|/k j.
A differentially private ni j can be efficiently computed by
distributed sum protocols [26, 38, 60, 65] as it is just a count
of data elements. However, a differentially private count also
consumes a portion of the privacy parameter. For low epsilon
(e.g., ε = 0.1) we want to use the entire privacy budget on the
actual median selection to achieve high accuracy. Thus, we
use a heuristic in our evaluation: larger subranges, that hold
exponentially more elements, receive exponentially smaller
portions ε j of the privacy budget (see Section 5 for details).

6An undefined ε j can be avoided by using an additional discretization
of the universe, with different subrange endpoints, and switching to it if a
(differentially private) check suggests ni j = 0 [27].

USENIX Association 29th USENIX Security Symposium 2153

MPC protocol Output / Functionality

Rec(〈a〉) a, reconstructed from 〈a〉
Add(〈a〉,〈b〉) 〈a+b〉
Sub(〈a〉,〈b〉) 〈a−b〉
Mul(〈a〉,〈b〉) 〈a ·b〉
Mod2m(〈a〉,b) 〈a mod 2b〉, where b is public
Trunc(〈a〉,b) 〈ba/2bc〉, where b is public
Rand(b) 〈r〉 with uniform random b-bit value r
Choose(〈a〉,〈b〉,〈c〉) 〈a〉 if bit c = 1 otherwise 〈b〉
LT(〈a〉,〈b〉) 〈1〉 if a < b else 〈0〉
Int2FL(〈a〉) converts integer a to secret shared float

Table 2: Basic MPC protocols [5, 6] used in EM∗. We prefix
protocols for integers with Int and floats with FL.

4 MPC for Differentially Private Median

In the following, we describe details of our protocol EM∗,
which implements ideal functionality FEM∗ , analyse its run-
ning time and security.

On a high-level, our protocol recursively selects the best
subrange until the DP median is found: First, each party lo-
cally evaluates a utility score (or weight) for each subrange.
They combine their results into a global result. Then, they
select a subrange based on the combined result. We use up-
per case letters to denote arrays in our protocol, and A[j]
denotes the jth element in array A. Our protocol uses integers
as well as floating point numbers. We adopt the notation from
Aliasgari et al. [5] and represent a floating-point number f
as (1− 2s)(1− z) · v · 2x with sign bit s set when the value
is negative, zero bit z only set when the value is zero, lv-bit
significand v, and lx-bit exponent x. The sharing of a floating
point value f is a 4-tuple (〈v〉,〈x〉,〈s〉,〈z〉), which we abbre-
viate as 〈 f 〉FL. To refer to, e.g., the significand v of f we will
write f.v. (Privacy violations and mitigations w.r.t. limited
machine precision are discussed in Appendix D.) The basic
MPC protocols used in our protocol are listed in Table 2. We
prefix MPC protocols for integers with Int and floating point
versions with FL.

4.1 Subrange Selection
On a high level, protocol EM∗, implemented in Algorithm 1,
computes selection weights for possible outputs (via Algo-
rithm 2) and selects an output according to these weights
(via Algorithm 3 or 4). We assume that the universe U and
combined data size n are known to all parties (note that the
latter can be hidden via padding [3]). Recall, that efficient
weight computation and selection are the main challenges
for our secure exponential mechanism. Straightforward selec-
tion over all universe elements is linear in the size of U . To
achieve a running time sublinear in the size of U we selects
subranges instead: Algorithm 1 selects one of k subranges
based on their median utility. The selected subrange is recur-

Algorithm 1 Algorithm EM∗.
Input: Number of subranges k, size n of combined data D, num-

ber of selection steps s ∈ [1,dlogk |U |e], and (ε1, . . . ,εs). Data
universe U is known to all parties.

Output: Differentially private median of D.
1: rl ,ru← 0, |U |
2: for j← 1 to s do
3: r#←max{1,b ru−rl

k c}
4: k←min{k,ru− rl}
5: Define array W of size k
6: if ε j = ln(2)/2d for some integer d then
7: 〈W 〉FL←Weightsln(2)/2d

(rl ,ru,r#,k,n,d) //Alg. 3

8: else
9: 〈W 〉FL←Weights∗(rl ,ru,r#,k,n,ε j) //Algorithm 4

10: end if
11: i← Select(〈W 〉FL) //Algorithm 2

12: rl ← rl +(i−1) · r#
13: ru← rl + r# if i < k
14: end for
15: return Uniform random element in [U [rl],U [ru])

sively divided into k subranges until the last subrange, after
at most dlogk |U |e iterations, contains only one element: the
differentially private median7. Alternatively, one can use
fewer selection steps s and select an element from the last
subrange at uniform random (line 15 in Algorithm 1). We
discuss the running time vs. accuracy trade-offs of reduced
selection steps in Section 5. We implement selection with
inverse transform sampling (ITS) via binary search in Algo-
rithm 2 similar to [30]. ITS uses the uniform distribution to
realize any distribution based on its cummulative distribution
function. Formally, one draws r ∈ (0,1] at uniform random
and outputs the first R j ∈R with ∑

j−1
i=1 Pr[EMε

u(D,R) = Ri]≤
r < ∑

j
i=1 Pr[EMε

u(D,R) = Ri]. Recall, we compute unnormal-
ized probabilities (weights), which do not require division for
normalization, thus, reducing computation complexity. To
use weights instead of probabilities in ITS we only need to
multiply r with normalization N = ∑o∈R exp(u(D,o)ε).

We use decomposable utility functions to combine local
evaluations over each party’s data into a global utility score for
the joint data. Next, we present three solutions to efficiently
compute weights for decomposable utility functions.

4.2 Weightsln(2)

We implement Weightsln(2) as a special case of our approach
Weightsln(2)/2d

in Algorithm 3 (with d = 0 in line 16). Here,
parties locally compute ranks which are combined into global
utility scores. Weights for these scores use a fixed ε of ln(2)
to let us compute 2u instead of exp(ε ·u). Solutions for secure
exponentiation of 2u exist where u is an integer or a float

7To simplify presentation, assume that logk |U | is an integer. Otherwise
the last subrange might contain less than k elements, and fewer weight com-
putations are needed in the last step.

2154 29th USENIX Security Symposium USENIX Association

Algorithm 2 Algorithm Select.

Input: List 〈W 〉FL of weights with size k.
Output: Index j ∈ [1,k] sampled according to 〈W 〉FL.

1: Define array M of size k //Probability mass

2: 〈M[1]〉FL← 〈W [1]〉FL
3: for j← 2 to k do
4: 〈M[j]〉FL← FLAdd(〈W [j]〉FL,〈M[j−1]〉FL)
5: end for
6: 〈t〉 ← IntRand(b) //Bitlength b
7: 〈 f 〉FL← Int2FL(〈t〉)
8: 〈x〉 ← IntSub(〈 f.x〉,〈b〉)
9: 〈 f 〉FL← (〈 f.v〉,〈x〉,〈 f.z〉,〈 f.s〉)

10: 〈r〉FL← FLMul(〈M[k]〉FL,〈 f 〉FL)
11: il ← 1; iu← k
12: while il < iu do
13: im←

⌊
il+iu

2

⌋
14: 〈c〉 ← FLLT(〈M[im]〉FL,〈r〉FL)
15: c← Rec(〈c〉)
16: il ← im +1 if c = 1 else iu← im
17: end while
18: return il

[5, 7, 20, 43]. When u is an integer (resp. a float) the result
2u is an integer (resp. float) as well. The complexity of the
integer-based solution is linear in the bit-length of u, however,
this is not sufficient for us: Recall, that the utility is based on
ranks, i.e., counts of data elements, thus u can be roughly as
large as the size of the data. An integer representation of 2u

has bit-length u, which is potentially unbounded. Eigner et
al. [30] use the float-based solution from [5] but we present
a more efficient computation in the following. Although our
exponent u is an integer, we do not require the result to be an
integer as well. We use the representation of floating point
numbers as a 4-tuple to construct a new float to represent 2u

as (2,u,0,0), where sign and zero bit are unset, as 2u cannot
be negative or zero. Note that we require no interaction as
each party can construct such a float with their share of u.
Also, a naive approach requires 2k total inputs per party (one
per endpoint per k ranges). However, with half-open ranges
[ri

l ,r
i
u) in each step i, they overlap for i > 1: ri−1

u = ri
l . Thus,

the parties only input k+1 ranks (Algorithm 3 lines 5, 7).

4.3 Weightsln(2)/2d

Next, we generalize the weight computation to support ε =
ln(2)/2d for integers d ≥ 1. To illustrate our approach, we
implement Weightsln(2)/2d

in Algorithm 3 for d = 1, and de-
scribe the approach for any integer d: Recall, our goal is to
compute the weight exp(εu) with efficient MPC protocols.
As we can efficiently compute 2εu if εu is an integer, we ap-
proximate the weight by truncating εu to an integer before
exponentiation with base 2. To avoid a loss of precision we
correct this approximation with a multiplicative term based
on the truncated remainder. More formally, with ε as above

Algorithm 3 Algorithm Weightsln(2)/2d
.

Input: Range [rl ,ru), subrange size r#, number k of subranges, data
size n, and parameter d ∈ {0,1}. Subrange ranks rankDp(·) are
input by each party p ∈ {1, . . . ,m}.

Output: List of weights.
1: Define arrays R of size k+1, W of size k; initialize R with zeros
2: for p← 1 to m do //Get input from each party

3: for j← 1 to k do //Divide range into k subranges

4: il ← rl +(j−1) · r#
5: 〈R[j]〉 ← IntAdd(〈R[j]〉,〈rankDp(U [il])〉)
6: end for
7: 〈R[k+1]〉 ← IntAdd(〈R[k+1]〉,〈rankDp(U [ru])〉)
8: end for
9: for j← 1 to k do

10: 〈uu〉 ← IntSub(〈R[j+1]〉,〈 n
2 〉)

11: 〈ul〉 ← IntSub(〈 n
2 〉,〈R[j]〉)

12: 〈cu〉 ← IntLT(〈R[j+1]〉,〈 n
2 〉)

13: 〈cl〉 ← IntLT(〈 n
2 〉,〈R[j]〉)

14: 〈t〉 ← IntChoose(〈uu〉,〈0〉,〈cu〉)
15: 〈u〉 ← IntChoose(〈ul〉,〈t〉,〈cl〉)
16: if d = 0 then
17: 〈W [j]〉FL← (〈2〉,〈u〉,〈0〉,〈0〉) //float 〈2u〉
18: else
19: 〈t〉 ← IntTrunc(〈u〉,d)
20: 〈e〉FL← (〈2〉,〈t〉,〈0〉,〈0〉)
21: 〈c〉 ← IntMod2m(〈u〉,d)
22: 〈s〉FL← FLChoose(〈1〉FL,〈

√
2〉FL,〈c〉)

23: 〈W [j]〉FL← FLMul(〈e〉FL,〈s〉FL)
24: end if
25: end for
26: return 〈W 〉FL

the weight for u is

2u/2d
= 2bu/2dc ·2(u mod 2d)/2d

.

First, we compute 2bu/2dc (lines 19–21 in Algorithm 4).
Then, we multiply this with one of 2d constants of the form
2(u mod 2d)/2d

. E.g., for d = 1, we either use 1, if u is even,
or
√

2 otherwise (line 22). The constants themselves are not
secret and can be pre-computed. Which constant was selected,
leaks the last d bits from u, thus, we choose them securely.

4.4 Weights∗

We implement Weights∗ in Algorithm 4. To allow arbitrary
values for ε we avoid costly secure exponentiation for weight
computation altogether: Utility u, decomposable w.r.t. u′, al-
lows for efficient combination of local weights for Di, input
by the parties, into global weights for D via multiplication (as
described in Section 3.2).

4.5 Running Time Complexity Analysis
We analyse the running time of EM∗ w.r.t. MPC protocols
from Table 2 (omitting non-interactive addition/subtraction),

USENIX Association 29th USENIX Security Symposium 2155

Algorithm 4 Algorithm Weights∗.

Input: Range [rl ,ru), subrange size r#, number k of subranges, data
size n, and ε. Subrange weights eε(·) are input by each party
p ∈ {1, . . . ,m}.

Output: List of weights.
1: Define arrays W l , W u, W of size k; initialize W l , W u with ones
2: for p← 1 to m do //Get input from each party

3: for j← 1 to k do //Divide range into k subranges

4: il ← rl +(j−1) · r#
5: iu← ru if j = k else rl + j · r#

6: 〈W l [j]〉FL← FLMul(〈W l [j]〉FL,〈e
ε

(
|Dp |

2 −rankDp (U [il])
)
〉FL)

7: 〈W u[j]〉FL← FLMul(〈W u[j]〉FL,〈e
ε

(
rankDp (U [iu])−

|Dp |
2 |
)
〉FL)

8: end for
9: end for

10: for j← 1 to k do
11: 〈cu〉 ← FLLT(〈W u[j]〉FL,〈1〉FL)
12: 〈cl〉 ← FLLT(〈W l [j]〉FL,〈1〉FL)
13: 〈t〉FL← FLChoose(〈W u[j]〉FL,〈1〉FL,〈cu〉)
14: 〈W [j]〉FL← FLChoose(〈W l [j]〉FL,〈t〉FL,〈cl〉)
15: end for
16: return 〈W 〉FL

and their complexity is given in Appendix C. We measure the
running time of our implementation in Section 5.

Theorem 4. EM∗ with Weightsln(2) or Weightsln(2)/2d
re-

quires O(kdlogk |U |e) MPC protocol calls, with Weights∗ we
require O(mkdlogk |U |e). Note that complexity of these MPC
protocols is at most O(lv log lv + lx) for bit-lengths lv, lx (Ap-
pendix C).

Proof. EM∗ invokes the weight computation and Select at
most dlogk |U |e times. An invocation of Weightsln(2) or
Weightsln(2)/2d

performs k truncations IntTrunc, 2k com-
parisons IntLT and 2k selections IntChoose. Additionally,
Weightsln(2)/2d

also requires one truncation IntTrunc, mod-
ulo IntMod2m, float selection FLChoose and float multiplica-
tion FLMul. Weight computation via Weights∗ requires 2km
float multiplications FLMul, 2k float comparisons FLLT and
2k float selections FLChoose. Each invocation of Select re-
quires k− 1 float additions FLAdd, only one random draw
IntRand, conversion Int2FL and float multiplication FLMul.
Also, Select performs at most log2(k) comparisons FLLT and
share reconstruction steps during binary search.

4.6 Security
We consider the semi-honest model introduced by Goldre-
ich [36] where corrupted protocol participants do not deviate
from the protocol but gather everything created during the run
of the protocol. Our protocol consists of multiple subroutines
realized with MPC protocols listed in Table 2 (for details
and security proof references we refer to [6]). To analyze
the security of the entire protocol we rely on the well-known

composition theorem [36, Section 7.3.1]. Basically, MPC pro-
tocols using an ideal functionality (a subroutine provided by
a trusted third party) remain secure if the ideal functionality
is replaced with an MPC protocol implementing the same
functionality. We implement such ideal functionality with the
maliciously secure SCALE-MAMBA framework [6] (which
was faster than its semi-honest fork in a WAN, as detailed in
Appendix E). Our protocol performs multiple subrange selec-
tions and each selection round is maliciously secure. Overall,
we only provide semi-honest security as malicious adversaries
can deviate from inputs provided in previous rounds. We later
show how to extend our protocol to malicious adversaries, but
first we proof semi-honest security for EM∗:

Theorem 5. Protocol EM∗ realizes FEM∗ in the presence of
semi-honest adversaries.

Proof. To prove semi-honest security we show the existence
of a simulator Sim according to Goldreich [36] such that
the distributions of the protocol transcript EM∗ is compu-
tationally indistinguishable from simulated transcript using
FEM∗ produced in an “ideal world” with a trusted third party.
Note that an adversary in the ideal world learns nothing ex-
cept the protocol inputs and outputs, hence, if he cannot dis-
tinguish simulated transcripts (from ideal world) and actual
transcripts (in the real world), he learns nothing in our real-
world implementation. Next, we formalize the ideal and real-
world executions, ideal and real, with notation from Evans
et al. [32]: Consider a subset of corrupted parties C ⊂ P ,
and let VIEWi denote the view of party i ∈ C during the ex-
ecution of EM∗ implementing ideal functionality FEM∗ , in-
cluding all exchanged messages and internal state, and let
xi denote the protocol input of party Pi and µ̂ the final out-
put of all parties. The parameters s,k,U are public. Then,
realEM∗ , on input security parameter κ, C and all xi, runs pro-
tocol EM∗ (where each party Pi behaves honestly using its
own input xi) and outputs {VIEWi|i∈C}, µ̂. And idealFEM∗ ,Sim,
with the same inputs, computes µ̂←FEM∗(x1, . . . ,xm) and out-
puts Sim(C, µ̂,{xi | i ∈C}), µ̂. Now, simulator Sim produces
a transcript for realEM∗ as follows: As we operate on secret
shares, which look random to the parties [32], Sim replaces all
secret shares with random values to create VIEWi. Likewise,
the secret-shared output of the weight computations (Algo-
rithm 3 and 4) are replaced with randomness. Sim can simu-
late Algorithm 2 by recursively splitting U into k subranges,
and outputting the subrange containing µ̂ in each selection
step. Finally, Sim outputs a uniform random element from
the last subrange (Algorithm 1). Altogether, a semi-honest
adversary cannot learn more than the (ideal-world) simulator
as this information is sufficient to produce a transcript of our
(real-world) protocol.

For malicious adversaries, we need to ensure consistency
between rounds based on Aggarwal et al. [3], who securely
compute the (non-DP) median via comparison-based prun-
ing rounds. Informally, we have two consistency constraints:

2156 29th USENIX Security Symposium USENIX Association

First, valid rank inputs must be monotone within a step. Sec-
ond, for consistency between steps, valid inputs are contained
in the subrange output in the previous step. Formally, let
{Ri

1, . . . ,R
i
k} denote the set of subranges in the ith step of

EM∗ and let li
j,u

i
j denote the lower resp. upper range endpoint

of Ri
j. Then, rankDp(l

i
1) ≤ rankDp(l

i
2) ≤ ·· · ≤ rankDp(l

i
k) ≤

rankDp(u
i
k) describes monotone input in step i for party

p. Consistency between step i and i + 1, if the jth range
was selected, is expressed as rankDp(l

i+1
1) = rankDp(l

i
j) and

rankDp(u
i+1
k) = rankDp(u

i
j). In other words, the subrange out-

put in the previous step is used in the current step. Analo-
gously, we can enforce consistency for weights as they are
based on rank values.

4.7 Scaling to Many Parties

Recall, we distinguish two sets of parties: Input parties send
shares of their input to computation parties which run the
secure computation on their behalf. The latter can be a subset
of the input parties or non-colluding untrusted servers (e.g.,
multiple cloud service providers). This scales nicely as the
number of computation parties is independent of the number
of input parties and can be constant, e.g., 3. In our evalua-
tion (Section 5) m ∈ {3,6,10} computation parties perform
the computation for 106 input parties, each holding a single
datum. Addition suffices for Weightsln(2) and Weightsln(2)/2d

to combine local rank values into a global rank. Addition is
essentially “free” as it requires no interaction between the
computation parties. For Weights∗ we require multiplication
to combine the local weights, which requires interaction dur-
ing the preprocessing step. However, logn rounds suffice to
combine the inputs by building a tree of pairwise multiplica-
tions with 2i multiplications at level i [5].

5 Evaluation

Our implementation is realized with the SCALE-MAMBA
framework [6] using Shamir secret sharing with a 128-bit
modulus and honest majority. Next, we evaluate the running
time, privacy budget and accuracy of our solution and refer to
Appendix E for additional evaluations.

5.1 Running Times

We performed our evaluation on t2.medium AWS instances
with 2GB RAM, 4 vCPUs [8] and the Open Payments data
set from the Centers for Medicare & Medicaid Services
(CMS) [33]. Our evaluation uses 106 records from the Open
Payments data set, however, our approach scales to any data
set size as we consider universe subranges. We used the max-
imum number of selection steps, i.e., s = dlogk |U |e, with
k = 10 ranges per step. We evaluated the average running

3 6 10

2.5

3

3.5

4

Number of Parties

M
in
u
te
s

|U | = 107

|U | = 106

|U | = 105

(a) Weightsln(2)

3 6 10

10

12

14

16

Number of Parties

M
in
u
te
s

|U | = 107

|U | = 106

|U | = 105

(b) Weightsln(2)/2d
,

d = 2

3 6 10

10

12

14

16

18

Number of Parties

M
in
u
te
s

|U | = 107

|U | = 106

|U | = 105

(c) Weights∗

Figure 4: Average running time of EM∗ – with weight compu-
tation subroutines Weightsln(2),Weightsln(2)/2d

, orWeights∗–
for 20 runs on t2.medium instances in Ohio and Frankfurt
(100 ms delay, 100 Mbits/s bandwidth).

time of 20 runs of the entire protocol EM∗, i.e., offline as well
as online phase (see Appendix E), in a LAN and a WAN.

LAN: We measured our running time for 3 parties in a LAN
with 1 Gbits/s bandwidth to compare it to Eigner et al. [30]
who only report LAN running times. We support universe
sizes of more than 5 orders of magnitude larger with compa-
rable running times: They compute weights per elements and
require around 42 seconds for |U | = 5, whereas our proto-
col EM∗ using Weightsln(2)/ Weightsln(2)/2d

/ Weights∗ runs
in approx. 11 / 33 / 64 seconds for |U | = 105. For detailed
measurements see Table 4 in Appendix E.

WAN: We consider m computation parties, which already
received and combined secret-shared inputs from 106 users
(Section 4.7), and report the average running time of our pro-
tocol. We split the m parties into two regions, Ohio (us-east-2)
and Frankfurt (eu-central-1), and measured an inter-region
round time trip (RTT) of approx. 100 ms with 100 Mbits/s
bandwidth. We evaluated all weight computation subrou-
tines in Figure 4 for m ∈ {3,6,10} computation parties and
|U | ∈ {105,106,107}. The results are very stable, as the 95%
confidence intervals deviate by less than 0.5% on average.
Weightsln(2) (Figure 4a) is the fastest with running times
around 3 minutes for 3 parties, whereas Weightsln(2)/2d

(Fig-
ure 4b) and Weights∗ (Figure 4c) require around 13 and
14 minutes respectively. However, we consider large universe
sizes (billions of elements) in a real-world network with large
latency. The choice of weight computation enables a trade-off
between faster running times, i.e., Weightsln(2) with fixed ε,
and smaller privacy loss ε, i.e, Weights∗, with Weightsln(2)/2d

positioned in the middle (faster running time than Weights∗

with smaller ε compared to Weightsln(2)). The number k of
subranges allow a similar trade-off, as discussed next.

5.2 Privacy Budget vs. Running Time
The privacy budget is the sum of privacy parameters con-
sumed per step, i.e., the overall privacy loss. Figure 5 shows

USENIX Association 29th USENIX Security Symposium 2157

1.5

2

2.5

3

3.5

4

4.5

5ε

6ε

7ε

8ε

9ε

10ε

11ε

3 5 7 10 13 15

Number k of Ranges

M
in
u
te
s

P
riva

cy
B
u
d
g
et

Running
Times

m = 6

m = 3 m = 10

Privacy
Budget

Figure 5: Privacy vs. running time trade-off: For increasing
number k of subranges the running time (left axis) increases
whereas the consumed privacy budget (right axis) decreases.
(Illustrated for EM∗ with Weightsln(2) and |U |= 105).

how the privacy budget and the running time are affected by
the number k of subranges. Larger k leads to larger running
times, as the number of costly secure computations depends
on the number of ranges times the number of selection steps
(k · dlogk |U |e), which increases proportionally to k. However,
smaller values for k require more selection steps (dlogk |U |e),
which lead to an increase in the privacy budget. Overall, for
k = 10 subranges, as used in our evaluation, the consumed
privacy budget is small with an acceptable running time.

5.3 Accuracy Comparison to Related Work
EM∗ performs multiple selection steps s, each consume a por-
tion εi of the overall privacy budget ε = ∑

s
i=1 εi. How to opti-

mally split ε (optimal composition) is #P-complete [55]. Thus,
we use the following heuristic to divide ε among the selection
steps: Initial steps cover exponentially larger subranges, and
require exponentially less of the privacy budget. After a while
an equal split is more advantageous, as the subranges be-
come smaller and contain fewer elements. Altogether, we use
εi = ε/2s−i+1 if i≤ bs/2c and εi = ε′/(s−bs/2c) else, where
ε′ is the remaining privacy budget. We used s= dlogk |U |e−1
for our accuracy evaluation. We found in our experiments that
performing one selection step less increases accuracy, as the
privacy budget can be better divided among the other remain-
ing steps and the last subrange is already small enough (at
most k elements).

Related work computing DP median in the central model
shows a strong data dependence which makes straightforward
comparison difficult (Appendix F). Therefore, we empirically
evaluated the different approaches closest to ours, i.e., support-
ing more than 2 parties, on real-world data sets [42, 64, 67] as
well as the normal distribution in Figure 68 for 100 averaged
runs with 95%-confidence intervals. Low ε (as evaluated) is
desirable as it provides more privacy or allows the remain-
ing privacy budget to be spend on additional queries. The

8“Small” data is the most challenging regime for DP [15, 56], thus, we
use small data sets to better illustrate the accuracy differences.

0.1 0.25 0.5

0

5

10

15

20

25

30

35

ε

A
v
g
.
A
b
s.

E
rr
o
rs EM

EM∗

SS

SA

(a) Credit card data [67], first
105 payment records in Cents.

0.1 0.25 0.5

0
5

10
15
20
25
30
35
40

ε

A
v
g
.
A
b
s.

E
rr
o
rs EM

EM∗

SS

SA

(b) Walmart supply chain data
[42], 175k shipment weights as
integers.

0.1 0.25 0.5

0

50

100

150

200

250

300

350

ε

A
v
g
.
A
b
s.

E
rr
o
rs EM

EM∗

SS

SA

(c) California public salaries [64],
71k records, state department’s to-
tal wages.

0.1 0.25 0.5

0

2.5

5

7.5

10

12.5

15

17.5

ε

A
v
g
.
A
b
s.

E
rr
o
rs EM

EM∗

SS

SA

(d) Normal distribution with σ =
3, 105 samples (as integers with
scaling factor 1000).

Figure 6: Comparing exponential mechanism (EM) as base-
line, this work (EM∗), smooth sensitivity (SS) [58], sample-
and-aggregate (SA) [59] on different data, 100 averaged runs.

evaluation for smooth sensitivity [58] and exponential mech-
anism per element assume a trusted party with full access
to the data set, whereas our approach and [59] use MPC in-
stead of a trusted party. Nissim et al. [58] (SS in Figure 6)
compute instance-specific additive noise, requiring full data
access, and achieve good accuracy, however, the exponential
mechanism can provide better accuracy for low ε. Pettai &
Laud [59] (SA in Figure 6) securely compute the noisy aver-
age of the 100 values closest to the median within a clipping
range. Recall, the median is the 0.5th-percentile. To minimize
the error from clipping range [cl ,cu], we choose cl = 0.49th-
percentile, cu = 0.51th-percentile, i.e., we presume to already
know a tight range for the actual median. Nonetheless, in our
experiments the absolute error of SA is the largest. Overall,
no solution is optimal for all ε and data sets. However, the
exponential mechanism EM, and our protocol EM∗, provide
the best accuracy for low ε, i.e., high privacy, compared to
additive noise approaches [58, 59].

6 Related Work

Next, we describe related work for secure computation of the
exponential mechanism, DP median and decomposability.

Secure Exponential Mechanism: Alhadidi et al. [4]
present a secure 2-party protocol for the exponential mech-
anism for max utility functions. It uses garbled circuits and
oblivious polynomial evaluation to compute Taylor series for
the exponential function. Our work is more general as we

2158 29th USENIX Security Symposium USENIX Association

support more parties and a broader class of utility functions,
including max utility functions. Eigner et al. [30] present a
carefully designed secure exponential mechanism in the multi-
party setting. Their work is more general, supporting arbitrary
utility functions and malicious parties, but they are linear in
the size of the universe, and securely compute the exponential
function. We provide a sublinear solution without costly se-
cure exponentiation, supporting at least 5 orders of magnitude
more elements than them. Böhler and Kerschbaum [14] also
securely compute the DP median with the exponential mech-
anism. They optimize their protocol for the 2-party setting,
compute the utility over (sorted) data, and provide DP for
small data (sublinear in the size of the universe). They ini-
tially prune large data sets via [3] (who securely compute the
exact median), requiring a relaxation of DP [39], to achieve
running time sublinear in the universe size. We consider the
multi-party setting and provide pure differential privacy.

DP Median: Pettai and Laud [59] securely compute DP
statistics, including the DP median, via sample-and-aggregate
[58]. Their implementation is based on secret sharing in a
3-party setting. Pettai and Laud [59] compute the DP median
as noisy average of 100 values closest to the median within a
clipping range, which limits accuracy, especially, if the data
contains outliers or large gaps (see Section 5.3). Dwork and
Lei [27] consider robust privacy-preserving statistics with
a trusted third party where data samples are known to be
drawn i.i.d. from a distribution. They present the first DP
median algorithm that does not require bounds for the data but
aborts if the data are not from a “nice” distribution with small
sensitivity. Their DP median algorithm first estimates scale
s via DP interquartile range and the noise magnitude sn−1/3

can be large. Nissim et al. [58] present smooth sensitivity,
which analyzes the data to provide instance-specific noise. For
the DP median, the exponential mechanism provides better
accuracy for low epsilon and can be efficiently computed,
whereas computation of smooth sensitivity requires full data
access in clear or the error increases (see Section 2.1.2).

PINQ, a DP query framework developed by McSherry [51],
also computes the DP median via the exponential mechanism,
however, they rely on a trusted third party with access to
the data in clear. Cryptε [19] employs two non-colluding un-
trusted servers and cryptographic primitives to compute noisy
histograms (Laplace mechanism) for SQL queries (e.g., count,
distinct count) in the central model, which can be extended to
compute the median. However, we show that the exponential
mechanism is more accurate for the median with low ε. Also,
Cryptε has a running time linear in the data size, whereas our
work is independent of the data size. Smith et al. [63] and
Gaboardi et al. [34] consider the restrictive non-interactive
local model, where at most one message is sent from client
to server, and achieve optimal local model error. However,
local DP requires more samples to achieve the same accu-
racy as central DP. (No non-interactive LDP-protocol [34, 63]
can achieve asymptotically better sample complexity than

O(ε−2α−2) for error α [24].) We, on the other hand, are inter-
ested in high accuracy, as in the central model, even for small
sample sizes. We give accuracy bounds for related work for
the DP median in the central model in Appendix F. As these
data-dependent bounds are hard to compare we provide an
empirical comparison in Section 5.3.

Decomposability: MapReduce is a programming para-
digm for distributed data aggregation where a mapper pro-
duces intermediary results (e.g., partial sums) that a reducer
combines into a result (e.g., total sum). Airavat [61] provide
a Hadoop-based MapReduce programming platform for DP
statistics based on additive noise (Laplace mechanism) with
an untrusted mapper but trusted reducer. We consider de-
composable utility functions for the exponential mechanism
without any trusted parties. The secure exponential mecha-
nisms [4, 30] use decomposable utility functions (max and
counts), but do not classify nor provide optimizations for such
functions. Blocki et al. [16] minimize cummulative error for
DP password frequency lists employing (decomposability of)
frequencies for their dynamic programming, which has access
to all the data in the clear. We use decomposable aggregate
functions to efficiently and securely combine inputs.

7 Conclusion

We presented a novel alternative for differentially private me-
dian computation with high accuracy (even for small num-
ber of users), without a trusted party, that is efficiently com-
putable (practical running time) and scaleable (sublinear in
the size of the universe). Our semi-honest multi-party proto-
col implements the exponential mechanism for decomposable
aggregate functions (e.g., rank-based statistics) as used in
MapRedue-style algorithms, and can be extended to mali-
cious parties. For the median, the exponential mechanism
provides the best utility vs. privacy trade-off for low ε in our
evaluations of related work in the central model.

We optimize our protocol for decomposable functions (al-
lowing efficient MPC on distributed data), and use efficient
alternatives to exponentiations for floating-point numbers.
We implemented our protocol in the SCALE-MAMBA frame-
work [6], and evaluated it for 1 million users using 3 semi-
honest computation parties achieving a running time of sec-
onds in a LAN, and 3 minutes in a WAN (100 ms latency,
100 Mbits/s bandwidth).

Acknowledgments

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 825333 (MOSAICrOWN).

USENIX Association 29th USENIX Security Symposium 2159

References

[1] WWDC 2016. Engineering privacy for your users, 2016.

[2] John M. Abowd. The u.s. census bureau adopts differen-
tial privacy. In Proceedings of the annual ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, KDD, 2018.

[3] Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Se-
cure computation of the median (and other elements of
specified ranks). Journal of Cryptology, 2010.

[4] Dima Alhadidi, Noman Mohammed, Benjamin CM
Fung, and Mourad Debbabi. Secure distributed frame-
work for achieving ε-differential privacy. In Interna-
tional Symposium on Privacy Enhancing Technologies
Symposium, PETS, 2012.

[5] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and
Aaron Steele. Secure computation on floating point
numbers. NDSS, 2013.

[6] Abdelrahaman Aly, Marcel Keller, Dragos Rotaru, Peter
Scholl, Nigel P. Smart, and Tim Wood. Scale–mamba
documentation. https://homes.esat.kuleuven.
be/~nsmart/SCALE/, 2020.

[7] Abdelrahaman Aly and Nigel P Smart. Benchmarking
privacy preserving scientific operations. In International
Conference on Applied Cryptography and Network Se-
curity, ACNS, 2019.

[8] Amazon.com. Amazon Web Services. https://aws.
amazon.com/ec2/pricing/on-demand/.

[9] Victor Balcer and Albert Cheu. Separating local & shuf-
fled differential privacy via histograms, 2019.

[10] Raef Bassily, Adam Smith, and Abhradeep Thakurta.
Private empirical risk minimization: Efficient algorithms
and tight error bounds. In Annual IEEE Symposium on
Foundations of Computer Science, FOCS, 2014.

[11] Donald Beaver. Efficient multiparty protocols using cir-
cuit randomization. In Annual International Cryptology
Conference, CRYPTO, 1991.

[12] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and
Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, EUROCRYPT, 2011.

[13] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-
nesheli, and Anima Anandkumar. signsgd: Compressed
optimisation for non-convex problems. arXiv preprint
arXiv:1802.04434, 2018.

[14] Jonas Böhler and Florian Kerschbaum. Secure sublin-
ear time differentially private median computation. In
Network and Distributed Systems Security Symposium,
NDSS, 2020.

[15] Andrea Bittau, Ulfar Erlingsson, Petros Maniatis,
Ilya Mironov, Ananth Raghunathan, David Lie, Mitch
Rudominer, Ushasree Kode, Julien Tinnes, and Bern-
hard Seefeld. Prochlo: Strong privacy for analytics in
the crowd. In Proceedings of the Symposium on Operat-
ing Systems Principles, SOSP, 2017.

[16] Jeremiah Blocki, Anupam Datta, and Joseph Bonneau.
Differentially private password frequency lists. In
Network and Distributed Systems Security Symposium,
NDSS, 2016.

[17] Octavian Catrina and Sebastiaan De Hoogh. Improved
primitives for secure multiparty integer computation. In
International Conference on Security and Cryptography
for Networks, SCN, 2010.

[18] Albert Cheu, Adam Smith, Jonathan Ullman, David Ze-
ber, and Maxim Zhilyaev. Distributed differential pri-
vacy via shuffling. In Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques, EUROCRYPT, 2019.

[19] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ash-
win Machanavajjhala, and Somesh Jha. Cryptε: Crypto-
assisted differential privacy on untrusted servers. In
Proceedings of the annual ACM SIGMOD International
Conference on Management of data, SIGMOD, 2020.

[20] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus
Nielsen, and Tomas Toft. Unconditionally secure
constant-rounds multi-party computation for equality,
comparison, bits and exponentiation. In Theory of Cryp-
tography Conference, TCC, 2006.

[21] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Annual International Cryp-
tology Conference, CRYPTO, 2012.

[22] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM, 2008.

[23] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin.
Collecting telemetry data privately. In Advances in
Neural Information Processing Systems, NIPS, 2017.

[24] John C Duchi, Michael I Jordan, and Martin J Wain-
wright. Local privacy and statistical minimax rates. In
Annual IEEE Symposium on Foundations of Computer
Science, FOCS, 2013.

2160 29th USENIX Security Symposium USENIX Association

https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

[25] Cynthia Dwork. Differential privacy. In International
Colloquium on Automata, Languages, and Program-
ming, ICALP, 2006.

[26] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSh-
erry, Ilya Mironov, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, EUROCRYPT, 2006.

[27] Cynthia Dwork and Jing Lei. Differential privacy and
robust statistics. In Proceedings of the annual ACM
symposium on Theory of Computing, STOC, 2009.

[28] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography Conference,
TCC, 2006.

[29] Cynthia Dwork and Aaron Roth. The algorithmic foun-
dations of differential privacy. Foundations and Trends
in Theoretical Computer Science, 2014.

[30] Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca
Pampaloni, and Ivan Pryvalov. Differentially private
data aggregation with optimal utility. In Proceedings of
the Annual Computer Security Applications Conference,
ACSAC, 2014.

[31] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
Rappor: Randomized aggregatable privacy-preserving
ordinal response. In Proceedings of the annual ACM
conference on computer and communications security,
CCS, 2014.

[32] David Evans, Vladimir Kolesnikov, Mike Rosulek, et al.
A pragmatic introduction to secure multi-party computa-
tion. Foundations and Trends® in Privacy and Security,
2018.

[33] Centers for Medicare & Medicaid Services. Complete
2017 program year open payments dataset, 2017.

[34] Marco Gaboardi, Adam Smith, and Jinhui Xu. Empirical
risk minimization in the non-interactive local model of
differential privacy.

[35] Ivan Gazeau, Dale Miller, and Catuscia Palamidessi.
Preserving differential privacy under finite precision se-
mantics. In Theoretical Computer Science, TCS, 2016.

[36] Oded Goldreich. Foundations of Cryptography: Volume
2, Basic Applications. 2009.

[37] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game. In Proceedings of the annual
ACM symposium on Theory of Computing, STOC, 1987.

[38] Slawomir Goryczka and Li Xiong. A comprehensive
comparison of multiparty secure additions with differ-
ential privacy. IEEE transactions on Dependable and
Secure Computing, 2017.

[39] Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Di-
vesh Srivastava. Composing differential privacy and
secure computation: A case study on scaling private
record linkage. In Proceedings of the annual ACM
conference on Computer and Communications Security,
CCS, 2017.

[40] Justin Hsu, Sanjeev Khanna, and Aaron Roth. Dis-
tributed private heavy hitters. In International Col-
loquium on Automata, Languages, and Programming,
ICALP, 2012.

[41] Christina Ilvento. Implementing the exponential mecha-
nism with base-2 differential privacy, 2019.

[42] Kaggle.com. Walmart supply chain: Import
and shipment. https://www.kaggle.com/sunilp/
walmart-supply-chain-data/data, 2018. Re-
trieved: October, 2019.

[43] Liina Kamm. Privacy-preserving statistical analysis
using secure multi-party computation. PhD thesis, PhD
thesis, University of Tartu, 2015.

[44] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi
Nissim, Sofya Raskhodnikova, and Adam Smith. What
can we learn privately? SIAM Journal on Computing,
2011.

[45] Marcel Keller. Mp-spdz: A versatile framework for
multi-party computation. Cryptology ePrint Archive,
Report 2020/521, 2020. https://eprint.iacr.org/
2020/521.

[46] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Over-
drive: making spdz great again. In Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, EUROCRYPT, 2018.

[47] Marcel Keller, Dragos Rotaru, Nigel P Smart, and Tim
Wood. Reducing communication channels in mpc. In
International Conference on Security and Cryptography
for Networks, SCN, 2018.

[48] Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Dif-
ferential privacy: From theory to practice. Synthesis Lec-
tures on Information Security, Privacy, & Trust, 2016.

[49] Yehuda Lindell and Benny Pinkas. A proof of security
of yao’s protocol for two-party computation. Journal of
Cryptology, 2009.

USENIX Association 29th USENIX Security Symposium 2161

https://www.kaggle.com/sunilp/walmart-supply-chain-data/data
https://www.kaggle.com/sunilp/walmart-supply-chain-data/data
https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2020/521

[50] Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer
Reingold, Kunal Talwar, and Salil Vadhan. The limits
of two-party differential privacy. In Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS,
2010.

[51] Frank McSherry. Privacy integrated queries: an exten-
sible platform for privacy-preserving data analysis. In
Proceedings of the annual ACM SIGMOD International
Conference on Management of data, SIGMOD, 2009.

[52] Frank McSherry and Kunal Talwar. Mechanism design
via differential privacy. In Annual IEEE Symposium on
Foundations of Computer Science, FOCS, 2007.

[53] Ilya Mironov. On significance of the least significant
bits for differential privacy. In Proceedings of the an-
nual ACM conference on computer and communications
security, CCS, 2012.

[54] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil
Vadhan. Computational differential privacy. In Annual
International Cryptology Conference, CRYPTO, 2009.

[55] Jack Murtagh and Salil Vadhan. The complexity of com-
puting the optimal composition of differential privacy.
In Theory of Cryptography Conference, TCC, 2016.

[56] Seth Neel, Aaron Roth, Giuseppe Vietri, and Zhi-
wei Steven Wu. Differentially private objective per-
turbation: Beyond smoothness and convexity, 2019.

[57] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio
Orlandi, and Sai Sheshank Burra. A new approach to
practical active-secure two-party computation. In An-
nual International Cryptology Conference, CRYPTO,
2012.

[58] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Smooth sensitivity and sampling in private data analy-
sis. In Proceedings of the annual ACM symposium on
Theory of Computing, STOC, 2007.

[59] Martin Pettai and Peeter Laud. Combining differential
privacy and secure multiparty computation. In Pro-
ceedings of the Annual Computer Security Applications
Conference, ACSAC, 2015.

[60] Vibhor Rastogi and Suman Nath. Differentially private
aggregation of distributed time-series with transforma-
tion and encryption. In Proceedings of the annual ACM
SIGMOD International Conference on Management of
data, SIGMOD, 2010.

[61] Indrajit Roy, Srinath TV Setty, Ann Kilzer, Vitaly
Shmatikov, and Emmett Witchel. Airavat: Security and
privacy for mapreduce.

[62] Adi Shamir. How to share a secret. Communications of
the ACM, 1979.

[63] Adam Smith, Abhradeep Thakurta, and Jalaj Upadhyay.
Is interaction necessary for distributed private learning?
In IEEE Symposium on Security and Privacy, SP, 2017.

[64] Gaurav Sood. California Public Salaries Data, 2018.

[65] Hassan Takabi, Samir Koppikar, and Saman Taghavi
Zargar. Differentially private distributed data analysis.
In IEEE International Conference on Collaboration and
Internet Computing, CIC, 2016.

[66] Apple’s Differential Privacy Team. Learning with pri-
vacy at scale, 2017.

[67] Machine Learning Group ULB. Credit card fraud detec-
tion, 2018.

[68] Andrew Chi-Chih Yao. How to generate and exchange
secrets. In Annual IEEE Symposium on Foundations of
Computer Science, FOCS, 1986.

A Distributed Differential Privacy

The original definition of Differential Privacy considers the
central model with unbounded adversaries [25,28] (see Defini-
tion 1), later work expanded it to a distributed setting [26,44],
and considered computationally-bounded parties [54].

We consider multiple computationally-bounded, semi-
honest parties performing a joint secure computation realized
with (t,m)-secret sharing. The following definition from [30]
fits our setting, where VIEWp

Π
(D) denotes the view of party

p during the execution of protocol Π on input D, including
all exchanged messages and internal state, and λ is a security
parameter:

Definition 7 (Distributed Differential Privacy). A randomized
protocol Π implemented among m computation parties P =
{P1, . . . ,Pm}, achieves distributed differential privacy w.r.t. a
coalition C ⊂ P of semi-honest computation parties of size t,
if the following condition holds: for any neighbors D,D′ and
any possible set S of views for protocol Π,

Pr
[
VIEWC

Π(D) ∈ S
]
≤ exp(ε)·Pr

[
VIEWC

Π(D
′) ∈ S

]
+negl(λ).

The definition can be expanded to a malicious setting by
replacing the semi-honest parties P and semi-honestly secure
protocol Π with malicious parties and a maliciously secure
protocol. Note that the negligible function negl(λ) can be
omitted for protocols providing information-theoretic security
(such as standard secret sharing), however, our implementa-
tion in SCALE-MAMBA provides computational security
(due to the online phase as described in Section 2.2).

2162 29th USENIX Security Symposium USENIX Association

Protocol Rounds Interactive Operations

Rec 1 1

IntRand 0 0
IntMod2m O(1) O(t)
IntTrunc 4 4t +1
IntLT 4 4b−2

Int2FL logv+13 logv(2v−3)−11
FLAdd O(logv) O(v logv+ x)
FLMul 8v+10 11
FLLT 6 4v+5x+4logx+13

Table 3: Complexity of MPC protocols for b-bit integers, t-bit
truncation modulus, and floats with v-bit significand and x-bit
exponent [5, 6, 17, 30].

B Equality of Definitions 5 and 6

We show equality of Definitions 5 and 6 with proof by
cases. Consider range R = [rl ,ru) and its position rela-
tive to the median µ for Definition 5: Case i) For ru < µ
we have rankD(ru) < n/2, thus, uµ = −|rankD(ru)−n/2| =
rankD(ru)−n/2. Case ii) For rl > µ we have rankD(rl)> n/2,
thus, uµ = n/2−rankD(rl). Case iii) Otherwise, the range con-
tains the median, i.e., uµ = 0.

Note that it suffices to look at rl in case i) (resp., ru in case
ii)), as rankD(rl)≤ rankD(ru) and the range endpoint closest
to µ defines the utility for the range. Definition 6 uses the
same cases and is an alternative way to express Definition 5.

C Complexity of MPC Protocols

Table 3 lists the complexities for MPC protocols typically
measured in the number of rounds and interactive operations,
where rounds describes the count of sequential interactive op-
erations, and interactive operations (e.g., reconstruct sharing,
multiplications) require each party to send messages to all
other parties. We omit integer addition/subtraction as these
operations are non-interactive and the parties can perform
them locally. Share reconstruction is denoted with Rec. Note
that Choose(〈a〉,〈b〉,〈c〉) is implemented with one multipli-
cation and two additions (b+(a− b) · c), and that IntRand
uses correlated randomness already exchanged in the offline
phase (hence zero interaction and rounds).

D Precision and Privacy

In general, DP mechanisms operate on reals, whereas actual
implementations are limited to the precision of physical ma-
chines. However, limited precision can lead to privacy viola-
tions: As shown by Mironov [53], the Laplace mechanism is
vulnerable to finite precision as the set of possible outcomes
can differ between neighboring databases due to irregularities

Protocol |U | Running time

Eigner et al. [30] 5 42.3 s

EM∗ & Weightsln(2)
105 11.3 s (7.7 s)
106 13.5 s (9.2 s)
107 15.4 s (10.7 s)

EM∗ & Weightsln(2)/2d
, d = 2

105 33.7 s (23.6 s)
106 39.8 s (27.8 s)
107 46.8 s (31.4 s)

EM∗ & Weights∗
105 64.3 s (41.6 s)
106 77.3 s (52.4 s)
107 91.8 s (61.1 s)

Table 4: Running times for 3 parties in a 1 Gbits/s LAN for
this work and Eigner et al. [30]. We report the average of 20
runs on t2.medium instances with 4 vCPUs, 2 GB RAM (and
r4.2xlarge instances with 8 vCPUs, 61 GB RAM). Eigner et
al. [30] evaluated on a 3.20 GHz, 16 GB RAM machine.

caused by floating point implementations. Their proposed
mitigation is to perform “snapping”, roughly, they clamp the
noisy result to a fixed range and ensure that they output is
evenly spaced. Recent work by Ilvento [41] extend this line of
study to the exponential mechanism, which is also vulnerable
to finite precision. The suggested mitigation is switching from
base e to base 2 to perform precise arithmetic by, e.g., for in-
teger utility functions, approximating ε as η =− log2(x/2y)
for integers x,y such that x/2y ≤ 1.

Interestingly, their mitigation is similar to our efficient se-
cure computation. Our implementation is based on an in-
teger utility function and Weightsln(2) uses base 2 for effi-
ciency reasons and is not vulnerable to such attacks. We
can strengthen Weightsln(2)/2d

, with ε = ln(2)/2d , by using
randomized rounding for non-interger utilities as described
in [41, Section 3.2.2] if we omit 1/2d from ε and include it
as a factor in the utility definition (making the utility non-
integers). For Weights∗, which supports arbitrary ε, careful
choices for ε as described above mitigate attacks on limited
precision.

Implementation Note: SCALA-MAMBA’s floating point
numbers (sfloat) are associated with a statistical security
parameter κ satisfying κ < b−2 · lv where b is the bit-length
of the modulus and lv is the bit-length of the significand.
Security with κ = 40 is the default for b = 128 and we use
lv = 40 in our evaluation, to support large utility values.

E Additional Evaluation

The online and offline phase are integrated in newer versions
of SCALE-MAMBA, thus, we only provide measurements
for the total protocol, i.e., offline as well as online phase.

Running time in a LAN: We compare our running time to

USENIX Association 29th USENIX Security Symposium 2163

Protocol |U | Communication
m = 3 m = 6 m = 10

EM∗ & Weightsln(2)
105 178 MB 402 MB 1.41 GB
106 202 MB 448 MB 1.54 GB
107 222 MB 497 MB 1.75 GB

EM∗ & Weightsln(2)/2d
,

d=2

105 634 MB 1.38 GB 4.73 GB
106 748 MB 1.63 GB 5.58 GB
107 866 MB 1.88 GB 6.39 GB

EM∗ & Weights∗
105 664 MB 1.56 GB 5.59 GB
106 785 MB 1.83 GB 6.57 GB
107 907 MB 2.11 GB 7.59 GB

Table 5: Communication cost (WAN with 100 Mbits/s and
100 ms latency): Data sent per party, average of 20 runs for
m ∈ {3,6,10} parties and |U | ∈ {105,106,107}.

Eigner et al. [30], which only report running times in a LAN,
in Table 4. Eigner et al. [30] evaluated their protocol with a
sum utility function on a 3.20 GHz, 16 GB RAM machine.
They are linear in the size of the universe and compute weights
for a very small universe of only 5 elements. We, on the other
hand, are sublinear in the size of the universe as we compute
weights per subrange and use efficient alternatives to costly
secure exponentiation. We evaluated universe sizes at least 5
order of magnitudes larger than [30] with comparable running
times: Our running time for Weightsln(2), Weightsln(2)/2d

is
below [30] on rather modest t2.medium instances (4 vCPUs,
2 GB RAM) for universe size |U | = 105. Even if we also
consider weights per element (i.e., subrange size 1) for any
decomposable utility function our protocols compute at least 6
times more weights per second on t2.medium instances. (E.g.,
for k = 10, |U |= 105 and Weights∗ we compute 50 weights
in 64.3 seconds, i.e., 0.78 weights per second, compared to
0.12 for [30].)

We also evaluated our protocol on r4.2xlarge instances (8
vCPUs, 61 GB RAM), see seconds in parenthesis in Table 4.
In a LAN the running time compared to t2.medium instances
is reduced by at least 30%, however, in a WAN setting the
latency plays a more important role than powerful hardware
and the running times are much closer. Thus, we only present
running times for t2.medium instances in a WAN in Section 5.

Communication: The communication for the maximum
number of steps (dlog10 |U |e) in a WAN (100 Mbits/s with
100 ms latency) is detailed in Table 5. For 3 parties and one bil-
lion universe elements, the communication for Weightsln(2)

is 222 MB per party, for Weightsln(2)/2d
it is 866 MB, and

Weights∗ requires 907 MB. We stress that this communication
is required for malicious security in each round as provided
by the SCALE-MAMBA implementation. MP-SPDZ [45], a
fork of SCALE-MAMBA’s predecessor SPDZ2, also provides
semi-honest security. MP-SPDZ with semi-honest security
requires much less communication, e.g., only around 25 MB

Work Error bound α with
Pr[abs. error≤ α]≥ 1−β

Nissim et al. [58] max
k=0,..,n

e−kε max
t=0,..,k+1

(
d n

2 +t −d n
2 +t−k−1

)
γ

Dwork and Lei [27] dd0.75ne−dd0.25ne
n1/3 γ

Pettai and Laud [59]
(

cu−cl
j +

max(U)−min(U)
εexp(Ω(ε

√
j))

)
γ

This work max
i∈{+1,−1}·

⌊
ln(|U |/β)

ε

⌋∣∣∣d n
2 +i−d n

2

∣∣∣
Table 6: DP median methods in the central model with
γ = ln(1/β)/ε. Data D ∈ Un is sorted and the error terms
are simplified to ease comparison: assuming expected sensi-
tivity [27], shortened approximation error term [59] (see [58,
Th. 4.2]), using one selection step for this work. Here, [cl ,cu]
is the presumed clipping range for the j elements closest to
the median [59].

for 3 parties, |U | = 105, and Weights∗. However, the run-
ning time in a WAN was some minutes slower compared to
SCALE-MAMBA in our tests (presumably due to SCALE-
MAMBA’s batched communication rounds and integrated
online and offline phases, where parallel threads create offline
data “just-in-time” [6, 7]). Thus, regarding our protocol, one
can choose efficiency w.r.t. communication (MP-SPDZ) or
running time (SCALE-MAMBA).

Cost of Malicious Security: To achieve malicious secu-
rity, via consistency checks as detailed in Section 4.6, we
require additional running time and communication. For the
maximum number of steps with one billion universe ele-
ments in a WAN (100 Mbits/s with 100 ms latency) EM∗

with Weights∗ additionally needs around 10/10/12 minutes
and 0.65/1.4/5 GB for 3/6/10 parties. EM∗ with Weightsln(2)

or Weightsln(2)/2d
(d = 2) additionally requires around

1.3/1.5/2 minutes and 115/260/825 MB for 3/6/10 parties.

F Accuracy Bounds: Related Work for Multi-
party DP Median

We list theoretical accuracy bounds for related work, i.e., com-
putation of the DP median in the central model supporting
many parties, in Table 6. Note that the table entries, except
for this work, are the sensitivity of the method multiplied by
factor γ9 (and with an additional error term for [59]). Hence,
the first entry is the definition of smooth sensitivity for the
median (multiplied by γ). For an empirical comparison of
this work with related work we refer to Section 5.3.

9The related works draw additive noise r from zero-centered Laplace
distribution with scale s/ε and sensitivity s (Laplace mechanism, Defini-
tion 2). Since Pr[|r|< t · s/ε] = 1−exp(−t) [29, Fact 3.7], we can bound the
absolute error |r| as in Table 6 by setting β = exp(−t),γ = t/ε = ln(1/β)/ε.

2164 29th USENIX Security Symposium USENIX Association

	Introduction
	Preliminaries
	Differential Privacy
	Why We Consider the Central Model
	Why We Use the Exponential Mechanism

	Secure Multi-party Computation

	Secure EM for Median Selection
	Decomposability & Applications
	Decomposable Median Utility Function
	Ideal Functionality FEM
	Accuracy of Differentially Private Median
	Data Distribution
	Accuracy Bounds

	MPC for Differentially Private Median
	Subrange Selection
	Weights | ln(2)
	Weights | ln(2)/2d
	Weights | *
	Running Time Complexity Analysis
	Security
	Scaling to Many Parties

	Evaluation
	Running Times
	Privacy Budget vs. Running Time
	Accuracy Comparison to Related Work

	Related Work
	Conclusion
	Distributed Differential Privacy
	Equality of Definitions 5 and 6
	Complexity of MPC Protocols
	Precision and Privacy
	Additional Evaluation
	Accuracy Bounds: Related Work for Multi-party DP Median

