
Secure Multi-Party Computation

with Identifiable Abort

Yuval Ishai1,�, Rafail Ostrovsky2,��, and Vassilis Zikas3,���

1 Computer Science Department, Technion, Haifa, Israel
yuvali@cs.technion.ac.il

2 Computer Science Department, UCLA, Los Angeles, CA, USA
rafail@cs.ucla.edu

3 Computer Science Department, ETH Zurich, Switzerland
vzikas@inf.ethz.ch

Abstract. Protocols for secure multi-party computation (MPC) that
resist a dishonest majority are susceptible to “denial of service” attacks,
allowing even a single malicious party to force the protocol to abort. In
this work, we initiate a systematic study of the more robust notion of
security with identifiable abort, which leverages the effect of an abort by
forcing, upon abort, at least one malicious party to reveal its identity.

We present the first information-theoretic MPC protocol which is
secure with identifiable abort (in short ID-MPC) using a correlated
randomness setup. This complements a negative result of Ishai et al.
(TCC 2012) which rules out information-theoretic ID-MPC in the OT-
hybrid model, thereby showing that pairwise correlated randomness is
insufficient for information-theoretic ID-MPC.

In the standard model (i.e., without a correlated randomness setup),
we present the first computationally secure ID-MPC protocol making
black-box use of a standard cryptographic primitive, namely an (adap-
tively secure) oblivious transfer (OT) protocol. This provides a more
efficient alternative to existing ID-MPC protocols, such as the GMW
protocol, that make a non-black-box use of the underlying primitives.

As a theoretically interesting sidenote, our black-box ID-MPC pro-
vides an example for a natural cryptographic task that can be realized
using a black-box access to an OT protocol but cannot be realized un-
conditionally using an ideal OT oracle.

� Supported by the European Union’s Tenth Framework Programme (FP10/2010-
2016) under grant agreement no. 259426 ERC-CaC, ISF grant 1361/10, and BSF
grant 2012378.

�� Work supported in part by NSF grants 09165174, 1065276, 1118126 and 1136174,
US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty
Research Award, Xerox Faculty Research Award, B. John Garrick Foundation
Award, Teradata Research Award, and Lockheed-Martin Corporation Research
Award. This material is based upon work supported by the Defense Advanced Re-
search Projects Agency through the U.S. Office of Naval Research under Contract
N00014 -11 -1-0392. The views expressed are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

��� Portions of this work were done at UCLA. Work supported in part by the Swiss
National Science Foundation (SNF) Ambizione grant PZ00P2 142549.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 369–386, 2014.
c© International Association for Cryptologic Research 2014

370 Y. Ishai, R. Ostrovsky, and V. Zikas

1 Introduction

Recent advances in secure multiparty computation have led to protocols that
compute large circuits in a matter of seconds. Most of these protocols, how-
ever, are restricted to provide security against semi-honest adversaries, or alter-
natively assume an honest majority. A notable exception is the SPDZ line of
work [3,16,14,15,34] which tolerates a majority of malicious parties. SPDZ is op-
timized for the pre-processing model and demonstrates a remarkably fast on-line
phase, largely due to the fact that it uses information-theoretic techniques and,
thus, avoids costly cryptographic operations. Unfortunately, all these efficient
MPC protocols for the case of a dishonest majority are susceptible to the fol-
lowing denial-of-service (DoS) attack: even a single malicious party can force an
abort without any consequences (i.e., without even being accused of cheating).
Although classical impossibility results for MPC prove that abort-free compu-
tation is impossible against dishonest majorities, vulnerability to DoS attacks is
an issue that should be accounted for in any practical application.

Summary of Known Results. The seminal works on MPC [47,21,2,9,42] es-
tablish tight feasibility bounds on the tolerable number of corruptions for per-
fect, statistical (aka information-theoretic or unconditional), and computational
(aka cryptographic) security. For semi-honest adversaries, unconditionally secure
protocols exist if there is an honest majority, or if the parties have access to a
complete functionality oracle or other types of setup. An arguably minimal setup
is giving the parties (appropriately) correlated random strings before the inputs
are known. We refer to this as the correlated randomness model.

When there is no honest majority and the adversary is malicious, full security
that includes fairness cannot be achieved [12]. Instead, one usually settles for
the relaxed notion of security with abort: Either the protocol succeeds, in which
case every party receives its output, or the protocol aborts, in which case all
honest parties learn that the protocol aborted. (Because of the lack of fairness,
the adversary can learn its outputs even when the protocol aborts.) The GMW
protocol [21,19] realizes this notion of security under standard cryptographic
assumptions. Interestingly, this protocol also satisfies the following useful identi-
fiability property: upon abort every party learns the identity of some corrupted
party. This property is in the focus of our work.

To the best of our knowledge, all protocols achieving this notion of security
(e.g., [21,7]) are based on the same paradigm of using public zero-knowledge
proofs to detect deviation from the protocol. While elegant and conceptually
simple, this approach leads to inefficient protocols that make a non-black-box
use of the underlying cryptographic primitives.1 The situation is even worse in
the information-theoretic setting, where an impossibility result from [31] (see

1 Alternatively, protocols such as the CDN protocol [13] make a use of ad-hoc zero-
knowledge proofs based on specific number theoretic intractability assumptions. The
disadvantage of these protocols is that they require public-key operations for each
gate of the circuit being evaluated, and cannot get around this by using optimization
techniques such as efficient OT extension [28].

Secure Multi-Party Computation with Identifiable Abort 371

also [44, Section 3.7]) proves that information-theoretic MPC with identifiable
abort is impossible even in the OT-hybrid model, i.e., where parties can make
ideal calls to an oblivious transfer (OT) functionality [41].

Our Contributions. We initiate a systematic study of this more robust and
desirable notion of secure MPC with identifiable abort (ID-MPC). An ID-MPC
protocol leverages the effect of an abort by forcing, upon abort, at least one
malicious party to reveal its identity. This feature discourages cheaters from
aborting, and in many applications allows for full recovery by excluding the iden-
tified cheater and restarting the protocol. We provide formal security definitions
both in the setting of Universal Composition (UC) [5] and in the stand-alone
setting [21,19,4]. Furthermore, we study feasibility and efficiency of ID-MPC in
both the information-theoretic and the computational security models.

For the information-theoretic model, we present a general compiler that trans-
forms any MPC protocol which uses correlated randomness to achieve secu-
rity against semi-honest adversaries into a similar protocol which is secure with
identifiable abort against malicious adversaries. As a corollary, we get the first
information-theoretic ID-MPC protocol in the correlated randomness model.
This protocol complements an impossibility result from [31], which rules out
information-theoretic ID-MPC in the OT-hybrid model. Indeed, the insuffi-
ciency of OT implies that pairwise correlated randomness is not sufficient for
information-theoretic ID-MPC, but leaves open the question of whether or not
n-wise correlations are, which is answered affirmatively here.

In the computational security model, we present an ID-MPC protocol for real-
izing sampling functionalities, namely ones that sample and distribute correlated
random strings, which only makes a black-box use of an (adaptively secure) OT
protocol and ideal calls to a commitment functionality.2 Using this protocol for
realizing the setup required by the information-theoretic protocol yields the first
ID-MPC protocol which makes a black-box use of standard cryptographic prim-
itives. This holds both in the UC framework [5], under standard UC-setups, and
in the plain stand-alone model [21,19,4]. Combined with the abovementioned
impossibility result from [31], this provides an interesting example for a natu-
ral cryptographic task that can be realized using a black-box access to an OT
protocol but cannot be unconditionally realized using an ideal OT oracle.

Our results demonstrate that ID-MPC is not only the most desirable notion
from a practical point of view, but it also has the potential to be efficiently
implemented. To this end, one can instantiate our construction with efficient
OT protocols from the literature [39,10,36,17].3 Furthermore, pre-computing the

2 The ideal commitments can be replaced by a black-box use of a commitment pro-
tocol, or alternatively realized by making a black-box use of OT [27,38]. The OT
protocol can be secure against either semi-honest or malicious adversaries, as these
two flavors are equivalent under black-box reductions [24,11].

3 Our analysis requires the underlying OT to be adaptively secure. Proving the same
statement for a static OT protocol is a theoretically interesting open problem. From
a practical point of view, however, many instances of adaptively secure OT can
be efficiently implemented from few such instances in the (programmable) random
oracle model [28,36].

372 Y. Ishai, R. Ostrovsky, and V. Zikas

randomness in an off-line phase yields a protocol in the pre-processing model
which, similarly to SPDZ-style protocols, has an information-theoretic online
phase. Investigating how our methodology can be fine-tuned towards practice
remains an interesting direction for future work. Finally, our protocols can be
used to improve the efficiency of a number of protocols in the fairness-related
literature, e.g., [29,18,26,37,48,22,1], as these works implicitly use ID-MPC (typ-
ically instantiated by GMW) to realize a sampling functionality.

Comparison to Existing Work. Our information-theoretic protocol can be
seen as a new feasibility result, since the current literature contains no (efficient
or inefficient) information-theoretic ID-MPC protocol from correlated random-
ness. Similarly, our computational protocol can also be seen as a “second-order”
feasibility result, since this is the first ID-MPC protocol making black-box use of
a standard cryptographic primitive. Notwithstanding, much of the motivation
for considering black-box constructions in cryptography is derived from the goal
of practical efficiency, and indeed the most practical protocols today (whether
Yao-based or GMW-based) are black-box protocols that do not need to know
the “code” of the underlying cryptographic primitives.

2 The Model

We prove our security statements in the universal composition (UC) framework
of Canetti [5]: in a nutshell, a protocol π (securely) UC realizes a functional-
ity F if for any adversary A attacking π there exists an ideal adversary, the
simulator S, that makes an ideal evaluation of F indistinguishable from a pro-
tocol execution with A in the eyes any environment Z. When Z, A, and S are
polynomially bounded we say that the protocol realizes F (with computational
security); otherwise, when Z, A, and S are unbounded, we say that the protocol
unconditionally realizes F (with information-theoretic security).

For simplicity we restrict our description to computation of non-reactive func-
tionalities, also known as secure function evaluation (SFE). (The general case
can be reduced to this case by using a suitable form of secret sharing [31] for
maintaining the secret state of the reactive functionality.) Moreover, we describe
our protocols as synchronous protocols, i.e., round-based protocols where mes-
sages sent in some round are delivered by the beginning of the next round; such
protocols can be executed in UC as demonstrated in [33,35]. The advantage of
such a “synchronous” description is dual: first, it yields simpler descriptions of
functionalities and protocols; indeed, because the parties are aware of the round
in which each message should be sent/received, we can avoid always explicitly
writing all the message/protocol IDs in the descriptions. Second, it is compati-
ble with the protocol description in the stand-alone model of computation [20,4],
which allows us to directly translate our results into that model.

Our protocols assume n parties from the set P = {p1, . . . , pn}. We prove our
results for a non-adaptive adversary who actively corrupts parties at the be-
ginning of the protocol execution, but our results can be extended to the adaptive

Secure Multi-Party Computation with Identifiable Abort 373

case.4 Our results are with respect to an (often implicit) security parameter k,
where we use the standard definition of negligible and overwhelming from [19].

Correlated Randomness as a Sampling Functionality. Our protocols are
in the correlated randomness model, i.e., they assume that the parties initially,
before receiving their inputs, receive appropriately correlated random strings. In
particular, the parties jointly hold a vectorR = (R1, . . . , Rn) ∈ ({0, 1}∗)n, where
pi holds Ri, drawn from a given efficiently samplable distribution D. This is, as
usual, captured by giving the parties initial access to an ideal functionality FD

Corr,
known as a sampling functionality, which, upon receiving a default input from
any party, samples R from D and distributes it to the parties. Hence, a protocol
in the correlated randomness model is formally an FD

Corr-hybrid protocol.

Information-Theoretic Signatures. Our protocols use information-theoretic
(i.t.) signatures [45,43,46] to commit a party to messages it sends. Roughly
speaking, these are information-theoretic analogues to standard digital signa-
tures, i.e., they allow some party pi, the signer, to send a message m to a party
pj , the receiver, along with a string σ that we refer to as the signature, such
that the receiver can at a later point publicly open σ and prove to every party
that the message m was indeed sent from pi. Note that in order to achieve i.t.
security the verification key cannot be publicly known. Rather, in i.t. signatures,
the signer has a signing key sk and every party pi ∈ P holds a different private
verification key vki corresponding to sk.

In our protocols different (independent) signing keys are used for each signa-
ture. In this case, i.t. signatures provide the following guarantees with overwhelm-
ing probability (against an unbounded adversary): (completeness) A signature
with the correct singing key will be accepted by any honest verifier in P ; (un-
forgeability) the adversary cannot come up with a signature that will be accepted
by some (honest) verifier without knowing the signing key; (consistency) an ad-
versarial signer cannot come up with a signature that will be accepted by some
honest verifier and rejected by another.

3 Security with Identifiable Abort

We put forward the notion of secure multi-party computation with identifiable
abort, also referred to as Identifiable MPC (ID-MPC) which allows the compu-
tation to fail (abort), but ensures that when this happens every party is informed
about it, and they also agree on the index i of some corrupted party pi ∈ P (we
say then that the parties abort with pi). More concretely, for an arbitrary func-
tionality F, we define [F]ID⊥ to be the corresponding functionality with identifiable
abort, which behaves as F with the following modification: upon receiving from
the simulator a special command (abort, pi), where pi ∈ P is a corrupted party
(if pi is not corrupted then [F]ID⊥ ignores the message), [F]ID⊥ sets the output of
all (honest) parties to (abort, pi).

4 In fact, some of our protocols use optimizations tailored to proving adaptive security.

374 Y. Ishai, R. Ostrovsky, and V. Zikas

Definition 1. Let F be a functionality and [F]ID⊥ be the corresponding function-
ality with identifiable abort. We say that a protocol π securely realizes F with
identifiable abort if π securely realizes the functionality [F]ID⊥ .

The UC composition theorem extends in a straightforward manner to security
with identifiable abort. The concrete composition statement can be found in the
full version.

4 Unconditional ID-MPC from Correlated Randomness

In this section we describe our unconditionally secure identifiable MPC protocol
in the correlated randomness model. In fact, our result is more general, as we
provide a compiler that transforms any given unconditionally secure protocol
in the semi-honest correlated randomness model into an unconditionally secure
ID-MPC protocol in the (malicious) correlated randomness model. Although
the correlated randomness provided by the setup in the malicious protocol is
different than the semi-honest, the latter can be obtained from the former by an
efficient transformation. Informally, our statement can be phrased as follows:

Let πsh be an FD
Corr-hybrid protocol (for an efficiently computable dis-

tribution D), which unconditionally UC realizes a functionality F in
the presence of a semi-honest adversary. Then there exists a compiler
turning πsh into an FD′

Corr-hybrid protocol (for an appropriate efficiently
computable distribution D ′), which unconditionally UC realizes F with
identifiable abort (in the malicious model).

Overview of the Compiler. We start by providing a high-level overview of
our compiler. As is typical, the semi-honest protocol πsh which we compile works
over standard point-to-point (insecure) channels. Furthermore, without loss of
generality (see Section 4.3) we assume that πsh is deterministic.

Let Rsh = (Rsh
1 , . . . , Rsh

n) denote the setup used by the semi-honest protocol
πsh (i.e., each pi holds string Rsh

i). The setup for the compiled protocol dis-
tributes Rsh to the parties, and commits every party to its received string. Sub-
sequently, the parties proceed by, first, committing to their inputs and, then,
executing their πsh-instructions in a publicly verifiable manner: whenever, pi
would send a message m in πsh, in the compiled protocol pi broadcasts m and
publicly proves, in zero-knowledge, that the broadcasted message is consistent
with his committed input and setup string Rsh

i . For the above approach to work
for unbounded adversaries and allow for identifiability, we need the commitment
scheme and the associated zero-knowledge proofs to be unconditionally secure
and failures to be publicly detectable. We construct such primitives relying on
appropriately correlated randomness in Sections 4.1 and 4.2, respectively.

4.1 Commitments with Identifiable Abort

In this section we provide a protocol which unconditionally UC realizes the stan-
dard (one-to-many) multi-party commitment functionality Fcom with identifiable

Secure Multi-Party Computation with Identifiable Abort 375

abort. Fcom allows party pi ∈ P , the committer, to commit to a message m and
later on publicly open m while guaranteeing the following properties: (hiding)
no party in P \ {pi} receives any information on m during the commit phase;
(binding) at the end of the commit phase a message m′ is fixed (where m′ = m
if the committer is honest), such that only m′ might be accepted in the reveal
phase (and m′ is always accepted when the committer is honest).

Our protocol Πcom which i.t. securely realizes Fcom with identifiable abort
assumes the following correlated-randomness setup: for pi to commit to a value
m ∈ {0, 1}∗, pi needs to hold a uniformly random string r ∈ {0, 1}|m| along
with an information-theoretic signature σ on r, where every party in P holds his
corresponding verification key (but no party, not even pi, gets to learn the signing
key). Given the above setup, pi can commit to m by broadcasting y = m ⊕ r.
To, later on, open the commitment y, pi broadcasts r along with the signature
σ, where every party verifies the signature and outputs m = y ⊕ r if it is valid,
otherwise aborts with pi (i.e., outputs (abort, pi)).

The hiding property of Πcom follows from the fact that r is uniformly random.
Moreover, the unforgeability of the signature scheme ensures that the commit-
ment is binding and publicly verifiable. Finally, the completeness of the scheme
ensures that the protocol aborts only when the committer pi is corrupted. Ad-
ditionally, same as all UC commitments, the above scheme is extractable, i.e.,
the simulator of a corrupted committer can learn, already in the commit phase,
which message will be opened so that he can input it to the functionality, and
equivocal, i.e., the simulator of a corrupted receiver can open a commitment to
any message of his choice.5 Taking a glimpse at the proof both properties follow
from the fact that the simulator controls the setup: knowing r allows the simu-
lator to extract m from the broadcasted message, whereas knowing the signing
key sk allows him to generate a valid signature/opening to any message.

Theorem 1. The protocol Πcom unconditionally UC realizes the functionality
Fcom with identifiable abort.

4.2 Setup-Commit-Then-Proof

Next we present a protocol which allows the parties receiving random strings
(drawn from some joint distribution D) to publicly prove, in zero-knowledge,
that they use these strings in a protocol. Our protocol implements the Setup-
Commit-then-Prove functionality Fscp which can be viewed as a modification
of the Commit-then-Prove functionality from [7] restricting the committed wit-
nesses to be distributed by the setup instead of being chosen by the provers. More
concretely Fscp works in two phases: in a first phase, it provides a string/witness
Ri to each pi ∈ P , where R = (R1, . . . , Rn) is drawn from D; in a second
phase, Fscp allows every party pi to prove q-many NP statements of the type

5 In [31] a primitive called unanimously identifiable commitments (UIC) was intro-
duced for this purpose, but the definition of UIC does not guarantee all the proper-
ties we need for UC secure commitments.

376 Y. Ishai, R. Ostrovsky, and V. Zikas

R(x,Ri) = 1 for the same publicly known NP relation Ri and the witness Ri

received from the setup, but for potentially different (public) strings x.
In the remainder of this section we describe a protocol which unconditionally

securely realizes the setup-commit-then-proof functionality Fscp in the correlated
randomness model. To this direction, we first show how to realize the sigle-use
version of Fscp, denoted as F1scp, and then use the UC composition with joint
state theorem (JUC) [8] to derive a protocol for Fscp. The functionality F1scp

works exactly as Fscp with the restriction that it allows a prover p ∈ P to do a
single (instead of q-many) proofs for a witness w of a given NP relation R.

Our protocol for realizing the functionality F1scp with identifiable abort uses
the idea of “MPC in the head” [25,30,32]. In particular, let FD denote the (n+1)-
party (reactive) functionality among the players in P and a special player pD,
the dealer, which works as follows: In a first phase, FD receives a message w ∈
{0, 1}poly(k) from pD and forwards w to p ∈ P . In a second phase, p sends x to
FD, which computes b := R(x,w) and outputs (b, x) to every pj ∈ P \ {pD}.
Clearly, any protocol in the plain model which unconditionally realizes FD with
an honest dealer pD, where pD does not participate in the second phase, can be
turned into a protocol which securely realizes F1scp(P ,D,R, p) in the correlated
randomness model. Indeed, one needs to simply have the corresponding sampling
functionality play the role of pD (where w is drawn from D). In the following we
show how to design such a protocol using the idea of player-simulation [25].

Let Π(n+1,m),t be a protocol which perfectly securely (and robustly) realizes
FD in the client-server model [25,30,32], among the clients P ∪ {pD} and an
additional m servers. Such a protocol exists assuming t < m/3 servers are cor-
rupted [2]. For simplicity, assume that Π(n+1,m),t has the following properties,
which are consistent to how protocols from the literature, e.g., [2], would realize
functionality FD in the client-server setting: (i) for computing the first phase
of FD, Π(n+1,m),t has pD share his input w among the m servers with a secret
sharing scheme that is perfectly t-private (the shares of any t servers leak no
information on w) and perfectly t-robust (the sharing can be reconstructed even
when up to t cheaters modify their shares), and, also pD hands all the shares to
p (ii) pD does not participate in the second phase of Π(n+1,m),t (this is wlog as
pD is a client with no input or output in this second phase), and (iii) the output
(R(x,w), x) is publicly announced (i.e., is in the view of every server at the end
of the protocol).

Assuming pD is honest, a protocol Πn+1 for unconditionally realizing FD with
identifiable abort (among only the players in P∪{pD}) can be built based on the
above protocol Π(n+1,m),t as follows: for the first phase, pD generates shares of a
t-robust and t-private sharing of w as he would do in Π(n+1,m),t and sends them
to p. In addition to sending the shares, pD commits p to each share by sending
him an i.t. signature on it and distributing the corresponding verification keys
to the players in P . For the second phase, p emulates in his head the second
phase of the execution of Π(n+1,m),t among m virtual servers p̂1, . . . , p̂m where
each server has private input his share, as received from pD in the first phase,
and a public input x (the same for all clients); p publicly commits to the view of

Secure Multi-Party Computation with Identifiable Abort 377

each server. Finally, the parties in P \ {p} challenge p to open a random subset
J ⊆ [m] of size t of the committed views and announce the corresponding input-
signatures which p received from pD. If the opened views are inconsistent with
an accepting execution of Π(n+1,m),t on input x and the committed shares—i.e.,
some output is 0, or some opening fails, or some signature does not verify for
the corresponding (opened) private input, or for some pair of views the incoming
messages do not match the outgoing messages—then the parties abort with p.

The security of the protocol Πn+1 is argued similarly to [30, Theorem 4.1]: on
the one hand, when p is honest then we can use the simulator for Π(n+1,m),t to
simulate that views of the parties in J . The perfect t-security of Π(n+1,m),t and
the t-privacy of the sharing ensures that this simulation is indistinguishable from
the real execution. On the other hand, when p is corrupted, then we only need
to worry about correctness. Roughly, correctness is argued as follows: if there
are at most t < m/3 incorrect views, then the t-robustness of Π(n+1,m),t and of
the sharing ensures that the output in any of the other views will be correct; by
a standard counting argument we can show that the probability that some of
these views is opened is overwhelming when m = O(k). Otherwise, (i.e., if there
are more than t-incorrect views) then with high probability a pair of such views
will be opened and the inconsistency will be exposed.

To derive, from Πn+1, a protocol for F1scp(P ,D,R, p) in the correlated ran-
domness model, we have the sampling functionality, F1scp

Corr play the role of the
dealer pD. In addition to the committed shares, F1scp

Corr generates the necessary
setup enabling any prover p ∈ P to commit to the m (virtual) servers’ views in
the second phase of the protocol Πn+1. Furthermore, to simplify the description,
we also have F1scp

Corr create a “coin-tossing setup” which players in P can use to
sample the random subset J ∈ [m] of views to be opened: F1scp

Corr hands to each
pj ∈ P a random string cj and commits pj to it; the coin sequence c for choos-
ing J is then computed by every pj opening cj and taking c = ⊕n

j=1cj . In the
following we give a detailed description of the protocol Π1scp for implementing
F1scp, where we denote by 〈w〉 = (〈w〉1, . . . , 〈w〉m) a perfectly t-private and t-
robust secret sharing of a given value w among players in some P̂ = (p̂1, . . . , p̂m)
(e.g., the sharing from [2] which is based on bivariate polynomials), where 〈w〉i
denotes the ith share of 〈w〉, i.e., the state of the (virtual) server p̂i after the
sharing is done.

Theorem 2. Let Π(n+1,m),t be a protocol as described above among n + 1
clients and m = O(k) servers which perfectly securely (and robustly) real-
izes the functionality FD in the presence of t < m/3 corrupted servers. The
(F1scp

Corr (P ,D,m, t,R)-hybrid) protocol Π1scp(P ,D,R,m, t, p) unconditionally se-
curely realizes the functionality F1scp(P ,D,R, p) with identifiable abort.

TheMultiple-Proof Extension of F1scp. In order to realize functionality Fscp

we need to extend F1scp to distribute a vector R = (R1, . . . , Rn) of witnesses,
one for each party, (instead of only one witness) sampled from some efficient
distribution D, and allow every pi ∈ P to prove up to q statements of the type

378 Y. Ishai, R. Ostrovsky, and V. Zikas

Protocol Π1scp(P ,D,m, t,R, p)

Setup-Commit Phase: To obtain the appropriate setup, prover p sends
(CorrRand, p) to the sampling functionality F1scp

Corr (P ,D, m, t,R), which distributes
the following random strings and signatures (where every pj ∈ P receives the corre-
sponding verification keys):

The prover p receives a sharing 〈w〉 = (〈w〉1, . . . , 〈w〉m) of w along with corre-
sponding signatures σ(〈w〉1), . . . , σ(〈w〉m) and (privately) outputs (witness, w).

Every pi ∈ P receives the challenge-string ci along with a corresponding signature
σ(ci).

The prover also receives random strings v1, . . . , vm along with correspond-
ing signatures σ(v1), . . . , σ(vm) to use for committing to the server’s views in
Π(n+1,m),t.

Prove Phase: Upon p receiving his input (ZK-prover, x) the following steps are
executed:

1. If R(x,w) = 0 then p broadcasts (not-verified, p) and every party halts with
output (not-verified, p). Otherwise, p broadcasts (R, x).

2. p emulates in his head the second phase of protocol Π(n+1,m),t where each server

p̂j ∈ P̂ = {p̂1, . . . , p̂m} has private input 〈w〉j and public input x.

3. For each p̂j ∈ P̂ , p commits, by invocation of protocol Πcom(P), to the view
Viewj ∈ {0, 1}Vj of p̂j in the above emulated execution using vj from his setup.

4. For each pi ∈ P : pi announces the random string ci and the corresponding
signature σ(ci) and every pj ∈ P verifies, using his corresponding verification
keys, validity of the signatures and aborts with pi in case the check fails.

5. The parties compute c =
∑n

i=1 ci and use it as random coins to sample a
random t-size set J ⊆ [m].

6. For each j ∈ J : p opens the commitment to Viewj and announces the signature
σ(〈w〉j). If any of the openings fails or any of the announced signatures is not
valid for the input-share appearing in the corresponding view, then the protocol
aborts with pi.

7. Otherwise, the parties check that the announced views are consistent with an ex-
ecution of protocol Π(n+1,m),t with the announced inputs in which the (global)
output is 1, i.e., they check that in all the announced views the output equals
1 and all signatures are valid, and that for all pairs (j, k) ∈ J 2: the incoming
messages in p̂j ’s view match the outgoing messages in p̂k’s view. If any of these
checks fails then the protocol aborts with pi, otherwise, every party outputs
(verified, x, p).

R(Ri, x) for potentially different public inputs x. The corresponding sampling
functionality is derived as follows: it first samples R and subsequently it emu-
lates, for each pi ∈ P , q independent setups for Π1scp (for the same random value
Ri and relation Ri). Given such a sampling functionality the protocol Πscp for
unconditionally securely realizingFscp with identifiable abort is straight-forward:
The parties receive the random strings R1, . . . , Rn along with q proof setups for

Secure Multi-Party Computation with Identifiable Abort 379

each party. Then, for each invocation of the prove phase, party pi executes the
prove phase of protocol Π1scp using the corresponding proof setup.6

Theorem 3. Protocol Πscp(P ,D,R, q) unconditionally securely realizes the
functionality Fscp(P ,D,R, q) with identifiable abort.

The proof follows from the security of Π1scp by a direct application of the
universal composition with joint state (JUC) theorem [8].

4.3 The “Semi-honest to Malicious with Abort” Compiler

We are now ready to describe our main compiler, denoted as C(·) which compiles
any given protocol πsh secure in the semi-honest model using (only) correlated
randomness into a protocol C(πsh) which is secure with abort in the (malicious)
correlated randomness model.7

We make the following simplifying assumptions on the semi-honest protocol
πsh which are without loss of generality, since all existing semi-honest protocols
in the correlated randomness model can be trivially turned to satisfy them:

We assume that πsh has a known (polynomial) upper bound Rndπsh
on the

number of rounds, where in each round every party sends a single message.

We assume that πsh is deterministic. Any πsh can be turned into such by
having the setup include for each pi ∈ P a uniformly random and indepen-
dent string ri that pi uses as his coins.

Finally, we assume that πsh starts off by having every party send to all
parties a one-time pad encryption of his input xi using as key the first |xi|
bits from ri (those bits are not reused). Clearly, this modification does not
affect the security of πsh as the simulator can easily simulate this step by
broadcasting a random string. Looking ahead in the proof, this will allow
the simulator to extract the corrupted parties’ inputs.

The compiler C(πsh) uses the protocol Πscp as follows: Denote by Rsh =
(Rsh

1 , . . . , Rsh
n) the setup used by πsh and by Dsh the corresponding distribution.

Let also Rπsh,i denote the relation corresponding to pi’s next message function.
More concretely, if hπsh,i ∈ {0, 1}∗ denotes the history of messages seen by pi and
m is a message, then Rπsh,i((hπsh,i,m), Ri) = 1 if m is the next message of pi in
an execution with history hπsh, and setup Ri, otherwise Rπsh,i((hπsh,i,m), Ri) =
0. The compiled protocol C(πsh) starts by executing the setup-commit phase
of protocol Πscp(P ,Dsh,R = (Rπsh,1, . . . ,Rπsh,n), Rndπsh

). Subsequently, every
pi ∈ P executes his πsh instructions, where in each round instead of sending its
messagem over the point-to-point channel, pi broadcastsm and proves, using the
proof phase of protocolΠscp, that Rπsh,n((hπsh,,m), Ri) = 1. If Πscp aborts with
some pi then our compiler also aborts with pi. Otherwise, the security of Πscp

ensures that every pi followed πsh for the given setup; therefore, security of our

6 Recall that we implicitly assume that all messages generated from the setup have
unique identifiers so that the parties know which ones to use for which proof.

7 Note that C(πsh) uses broadcast which can be trivially realized by a protocol as-
suming appropriate correlated randomness, e.g., [40].

380 Y. Ishai, R. Ostrovsky, and V. Zikas

compiler follows from the security of πsh. Note that the corresponding sampling
functionality for C(πsh) is computable in time polynomial in the running time

of the sampling functionality FDsh

Corr for protocol πsh.

Theorem 4. Let πsh be a protocol as above which unconditionally UC realizes
a functionality F in the presence of a semi-honest adversary in the FDsh

Corr-hybrid
(correlated randomness) model. Then the compiled protocol C(πsh) uncondition-
ally UC realizes the functionality F with identifiable abort in the presence of a
malicious adversary in the F scp

Corr-hybrid (correlated randomness) model.

Note that any (semi-honest) OT-hybrid protocol can be cast as a protocol in
the correlated randomness model by precomputing the OT. Hence, by instan-
tiating πsh with any semi-honest OT hybrid protocol. e.g., [20], we obtain the
following corollary.

Corollary 1. There exists a protocol which unconditionally UC realizes any
well-formed [7] multi-party functionality with identifiable abort.

The question of feasibility of unconditional security with identifiable abort
from correlated randomness has been open even in the simpler standalone
model [21,19,4]. As a corollary of Theorem 4 one can derive a positive state-
ment also for that model.

Corollary 2 (Stand-alone security with identifiable abort). There exists
a protocol which unconditionally securely evaluates any given function f with
identifiable abort in the stand alone correlated randomness model.

5 SFE Using Black-Box OT

In this section, we provide a generic MPC protocol which is (computationally)
secure with identifiable abort making black-box use of an (adaptively) secure
UC protocol for one-out-of two oblivious transfer FOT (see [39] for a formal
description) in the Common Reference String (CRS) model.

The high-level idea of our construction is the following: as we have already
provided an unconditional implementation of ID-MPC based (only) on correlated
randomness, it suffices to provide a protocol Πcsp

Corr with the above properties for
implementing the corresponding sampling functionality F scp

Corr. Indeed, given such
a protocol Πcsp

Corr, we can first use it to compute the setup needed for C(πsh) (for
any appropriate semi-honest protocol πsh, e.g., the one from [21]) and then use
πsh to evaluate any given functionality; if either the setup generation or πsh

aborts with some pi then the construction also aborts with pi.

In the remainder of this section we describe Π
F scp

Corr
Corr . In fact, we provide a proto-

col ΠD
Corr which allows to implement any sampling functionality FD

Corr for a given
efficiently computable distribution D. The key idea behind our construction in
the following: as the functionality FD

Corr receives no (private) inputs from the
parties, we can have every party commit to its random tape, and then attempt

Secure Multi-Party Computation with Identifiable Abort 381

to realize FD
Corr by a protocol which is secure with (non-identifiable) abort; if the

evaluation aborts then the parties open the commitments to their random tapes
and use these tapes to detect which party cheated. Note that, as the parties
have no private inputs, announcing their views does not violate privacy of the
computation.

For the above idea to work we need to ensure that deviation from the honest
protocol can be consistently detected by every party (upon opening the commit-
ted random coins). Therefore, we define the following P-verifiability property.
For any given execution of a protocol Π , we say that a party pi correctly exe-
cuted Π with respect to (xi, ri) (up to round ρ) in the CRS model if pi sent all
his messages as instructed by Π on this input xi, random coins ri and the com-
mon reference string C. Let Π be a protocol in the CRS model which starts by
having every party commit to its random tape. Π is P-verifiable if there exists
a deterministic polynomial algorithm D, called the detector, with the following
property: given the CRS, the inputs of the parties, their committed randomness,
and the view of any honest pj , D outputs the identity of a party pi ∈ P who did
not correctly execute Π (if such a party exists).

In the remainder of this section we provide the details of our protocol. As
our protocols makes black-box use of a UC secure 12OT protocol in the CRS
model, for it to be P-verifiable the underlying 12OT protocol needs to also be
P-verifiable. Therefore, in the following, first, we show how to obtain from any
given OT protocol ΠOT a P-verifiable OT protocol ΠVOT (making black-box use
of ΠOT), and, subsequently, we show how to use ΠVOT to transform an OT-hybrid
SFE protocol into a P-verifiable SFE protocol in the CRS model. Finally, at the
end of the current section, we show how to use our P-verifiable SFE protocol
to implement any sampling functionality FD

Corr with identifiable abort making
black-box use of ΠOT.

P-Verifiable OT. Let ΠOT be a (two-party) protocol which adaptively UC
securely realizes FOT, among parties p1 and p2 in the CRS model (e.g., [10,39]).
For i ∈ {1, 2} denote by f i

ΠOT
the next message function of pi defined as follows: let

Viewi be the view of party pi at the beginning of round ρ in an execution ofΠOT;
8

then f i
ΠOT

(Viewi) = m is the message which pi sends in round ρ of protocol ΠOT,
given that his current view is Viewi (if ρ is the last round, then, by default, m =
(out, y), where y is pi’s output). Observe that fΠOT

is a deterministic function.
Without loss of generality, assume that protocol ΠOT has a known number of
rounds RndΠOT

, where in each round only one of the parties p1 and p2 sends a
message (from {0, 1}k). Let, also, FP

OT denote the multi-party extension of FOT,
in which parties other than p1 and p2 provide a default input and receive a default
output, i.e., FP

OT corresponds to the function fP
ot((x0, x1), b, λ, . . . , λ) = (⊥, xb,⊥

,⊥). We describe a multi-party P-verifiable protocolΠVOT which securely realizes
the functionalityFP

OT.
The protocol ΠVOT works as follows: initially, every party commits to its ran-

dom tape. Subsequently, the parties execute their ΠOT instructions with the

8 Recall that Viewi consists of the inputs and randomness of pi along with all mes-
sages received up to round r.

382 Y. Ishai, R. Ostrovsky, and V. Zikas

following modification: whenever, for i, j ∈ {1, 2}, pi is to send a message
m ∈ {0, 1}k to pj , he chooses the first k unused bits from his random tape
(denote by K the string resulting by concatenating these bits), broadcast a one-
time pad encryption c = m ⊕ K of m with key K, and privately opens the
corresponding commitments towards pj . If the opening fails then pj publicly
complains and pi replies by broadcasting K; pj recovers m by decrypting c.
Clearly, the above modification does not affect the security of ΠOT (as all keys
are chosen using fresh and independent randomness), therefore ΠVOT securely re-
alizes FP

OT. Additionally, the above protocol is P-verifiable: indeed, because the
entire transcript is broadcasted, the view of any party contains all information
needed to check whether or not the transcript is consistent with any given set of
inputs and committed randomness. For simplicity, in the following we state the
security in the {CRS, F̂com}-hybrid model i.e., where, in addition to the CRS
the protocol can make ideal calls to a (one-to-many) commitment functionality
F̂com which behaves exactly as Fcom but allows both public and private opening
of the committed value. 9 We point out that all security statements in the lemma
are with respect to an adaptive adversary.

Lemma 1. Assuming ΠOT UC securely realizes the two-party 12OT functional-
ity FOT in the CRS model, the protocol ΠVOT (defined above) satisfies the fol-
lowing properties: (security) ΠVOT UC securely realizes the multi-party extension

FP
OT of FOT (defined above) in the {CRS, F̂com}-hybrid model; (P-verifiability)

ΠVOT is P-verifiable. Furthermore, ΠVOT makes black-box use of (the next-message
function of) ΠOT.

P-Verifiable MPC with (Non-identifiable) Abort. The next step is to add
verifiability to a given adaptively UC secure OT-hybrid MPC protocol ΠFOT .
Wlog, we assume that ΠFOT only makes calls to FOT and to a broadcast channel.
(Indeed, FOT can be used to also implement secure bilateral communication as
follows: to send message x, the sender inputs (x, x) and the receiver input b = 1.)

Denote by ΠΠVOT the version of ΠFOT which starts off by having every party
publicly commit to its random tape and has all calls to FOT replaced by invo-
cations of protocol ΠVOT instantiated with fresh/independent randomness. More
precisely, ΠΠVOT is derived from ΠFOT as follows:

Initially every party commits to its random tape using one-to-many com-
mitments.

All calls to FOT (including the ones used as above to implement bilateral
communication) are replaced by invocations of protocol ΠVOT. (The random
coing do not need to be committed again; the above commitments are used
in the invocations of ΠVOT.)

For each party pi a specific part of pi’s random tape is associated with each
invocation of ΠVOT. This part is used only in this invocation and nowhere
else in the protocol.

9 We can use any of the CRS-based commitment protocols [6,7] to instantiate F̂com.

Secure Multi-Party Computation with Identifiable Abort 383

The following lemma states the achieved security, where as in Lemma 1 all
security statements are with respect to an adaptive adversary. The proof follows
from the security of ΠFOT and the security/P-verifiability of ΠVOT.

Lemma 2. Let F be a UC functionality and ΠFOT be a protocol which uncondi-
tionally UC securely realizes F in the FOT-hybrid model with (non-identifiable)
abort, and for a protocol ΠOT which UC securely realizes FOT in the CRS model,
let ΠVOT be the corresponding P-verifiable protocol (as in Lemma 1). Then pro-
tocol ΠΠVOT , defined above, satisfies the following properties: (security) ΠΠVOT

UC securely realizes F with (non-identifiable) abort in the {CRS, F̂com}-hybrid
model; (P-verifiability) Protocol ΠΠVOT is P-verifiable. Furthermore, ΠΠVOT makes
black-box use of (the next-message function of) ΠOT.

The Setup Compiler. We next describe the protocol ΠD
Corr which securely

realizes any given sampling functionality FD
Corr (for an efficiently computable

distribution D), while making black-box use of a UC secure OT-protocol in the
CRS model and ideal calls to F̂com. The idea is to, first, have every party commits
to its random coins and then invoke ΠΠVOT to securely realize functionality FD

Corr

using these coins; if the evaluation aborts, then the parties open their committed
randomness and use the detector D to figure out which party cheated. Because
the parties have no inputs, opening their randomness does not violate privacy.

Unfortunately, the above over-simplistic protocol is not simulatable. Intu-
itively, the reason is that ΠΠVOT might abort after the adversary has seen his
outputs of FD

Corr, in which case the simulator needs to come up with random
coins for the simulated honest parties which are consistent with the adversary’s
view. We resolve this by the following technical trick, which ensures that S needs
to invoke FD

Corr only if the computation of ΠΠVOT was successful: instead of di-
rectly computing FD

Corr, we use ΠΠVOT to realize the functionality 〈FD
Corr〉 which

computes an authenticated (by means of i.t. signatures) n-out-of-n secret shar-
ing of the output of FD

Corr. This sharing is then reconstructed by having every
party announce its share. The authenticity of the output sharing ensures that ei-
ther the reconstruction will succeed or a party that did not announce a properly
signed share will be caught, in which case the protocol identifies this party.

Theorem 5. Assuming ΠOT, ΠVOT, and ΠΠVOT as in Lemma 2, the protocol ΠD
Corr

securely realizes FD
Corr with identifiable abort in the CRS model while making

black-box use of ΠOT and ideal calls to the commitment functionality F̂com.

By combining Theorems 4 and 5 with the universal composition theorem, and
instantiating ΠΠVOT with the IPS protocol [32] we obtain the following corollary.

Corollary 3. There exists a protocol which UC realizes any given functionality
with identifiable abort, while making black-box use of a protocol for UC realizing
FOT and a protocol for UC realizing F̂com in the CRS model.

The Stand-alone Model. The proof of Theorem 5 does not use the equivo-
cality of the commitments. Therefore, assuming an adaptive 12OT protocol and

384 Y. Ishai, R. Ostrovsky, and V. Zikas

extractable commitments, it can be carried over to the stand-alone setting. Such
extractable commitments can be constructed by making a black-box use of a
one-way function [38], which in turns can be obtained via a black-box use of
OT [27]. Thus, we get the following result for the stand-alone model (see full
version for proof).

Lemma 3 (Stand-alone). There exists a protocol which securely realizes any
given functionality with identifiable abort in the plain model making black-box
use of an adaptively secure OT protocol in the plain model.

References

1. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computation
without honest majority and the best of both worlds. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non- cryp-
tographic fault-tolerant distributed computations. In: 20th ACM STOC, pp. 1–10.
ACM Press (1988)

3. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

4. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)

6. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press (2002)

8. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

9. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: 20th ACM STOC, pp. 11–19. ACM Press (1988)

10. Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and com-
posable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013)

11. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, Black-Box Construc-
tions of Adaptively Secure Protocols. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 387–402. Springer, Heidelberg (2009)

12. Cleve, R.: Limits on the Security of Coin Flips when Half the Processors Are Faulty.
In: 18th STOC, pp. 364–369 (1986)

13. Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty computation from thresh-
old homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

14. Damg̊ard, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing AES
via an actively/Covertly secure dishonest-majority MPC protocol. In: Visconti, I.,
De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 241–263. Springer, Heidelberg
(2012)

Secure Multi-Party Computation with Identifiable Abort 385

15. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

16. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

17. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Mini-
LEGO: Efficient secure two-party computation from general assumptions. In: Jo-
hansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–
556. Springer, Heidelberg (2013)

18. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

19. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

20. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC, pp. 218–229. ACM Press (1987)

22. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010)

23. Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: A black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer So-
ciety (2012)

24. Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-Box Con-
structions of Protocols for Secure Computation. SIAM J. Comput. 40(2), 225–266
(2011)

25. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in
perfect multiparty computation. Journal of Cryptology 13(1), 31–60 (2000)

26. Hirt, M., Maurer, U.M., Zikas, V.: MPC vs. SFE: Unconditional and computational
security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 1–18.
Springer, Heidelberg (2008)

27. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity-based
cryptography. In: 30th FOCS, pp. 230–235. IEEE Computer Society Press (1989)

28. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

29. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with
guaranteed output delivery in secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006)

30. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press (2007)

31. Ishai, Y., Ostrovsky, R., Seyalioglu, H.: Identifying cheaters without an honest
majority. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 21–38. Springer,
Heidelberg (2012)

32. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

386 Y. Ishai, R. Ostrovsky, and V. Zikas

33. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer,
Heidelberg (2013)

34. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure
MPC with dishonest majority. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.)
20th ACM CCS, pp. 549–560. ACM Press (2013)

35. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp.
109–118. ACM Press (2006)

36. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

37. Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.: Fairness with an honest minority
and a rational majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
36–53. Springer, Heidelberg (2009)

38. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009)

39. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

40. Pfitzmann, B., Waidner, M.: Unconditional byzantine agreement for any number of
faulty processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577,
pp. 337–350. Springer, Heidelberg (1992)

41. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical Report
TR-81, Aiken Computation Lab, Harvard University (1981),
http://eprint.iacr.org/2005/187

42. Rabin, T., Ben-Or, M.: Veri able secret sharing and multiparty protocols with
honest majority. In: 21st ACM STOC, pp. 73–85. ACM Press (1989)

43. Seito, T., Aikawa, T., Shikata, J., Matsumoto, T.: Information-theoretically secure
key-insulated multireceiver authentication codes. In: Bernstein, D.J., Lange, T.
(eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 148–165. Springer, Heidelberg
(2010)

44. Seyalioglu, H.: Reducing Trust When Trust is Essential. PhD thesis, UCLA (2012)
45. Shikata, J., Hanaoka, G., Zheng, Y., Imai, H.: Security notions for unconditionally

secure signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 434–449. Springer, Heidelberg (2002)

46. Swanson, C., Stinson, D.R.: Unconditionally secure signature schemes revisited.
In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 100–116. Springer, Heidelberg
(2011)

47. Yao, A.C.: Protocols for secure computations. In: 23rd FOCS, pp. 160–164. IEEE
Computer Society Press (1982)

48. Zikas, V., Hauser, S., Maurer, U.: Realistic failures in secure multi-party compu-
tation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 274–293. Springer,
Heidelberg (2009)

http://eprint.iacr.org/2005/187

	Secure Multi-Party Computationwith Identifiable Abort
	1 Introduction
	2 The Model
	3 Security with Identifiable Abort
	4 Unconditional ID-MPC from Correlated Randomness
	4.1 Commitments with Identifiable Abort
	4.2 Setup-Commit-Then-Proof
	4.3 The “Semi-honest to Malicious with Abort” Compiler

	5 SFE Using Black-Box OT
	References

