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Abstract
It has recently been shown that executions of authenticated Byzantine agreement protocols

in which more than a third of the parties are corrupted, cannot be composed concurrently or
in parallel. This result puts into question any usage of authenticated Byzantine agreement in a
setting where many executions take place. In particular, this is true for the whole body of work
of secure multi-party protocols in the case that a third or more of the parties are corrupted.
This is because these protocols strongly rely on the extensive use of a broadcast channel, which
is in turn realized using authenticated Byzantine agreement. We remark that it was accepted
folklore that the use of a broadcast channel (or authenticated Byzantine agreement) is actually
essential for achieving meaningful secure multi-party computation whenever a third or more of
the parties are corrupted. In this paper we show that this folklore is false. We present a mild
relaxation of the definition of secure computation allowing abort. Our new definition captures
all the central security issues of secure computation, including privacy and correctness. However,
the novelty of the definition is in decoupling the issue of agreement from these issues. We then
show that this relaxation suffices for achieving secure computation in a point-to-point network.
That is, we show that secure multi-party computation for this definition can be achieved for any
number of corrupted parties and without a broadcast channel (or trusted preprocessing phase as
required for running authenticated Byzantine agreement). An important corollary of our result
is the ability to obtain multi-party protocols in a point-to-point network that compose.

1 Introduction

In the setting of secure multi-party computation, a set of n parties with private inputs wish to
jointly and securely compute a function of their inputs. This computation should be such that each
party receives its correct output, and none of the parties learn anything beyond their prescribed
output. This setting encompasses computations as simple as coin-tossing and agreement, and as
complex as electronic voting, electronic auctions, electronic cash schemes, anonymous transactions,
and private information retrieval schemes.

1.1 Ground Rules of the 80’s

This problem was initiated and heavily studied in the mid to late 80’s, during which time the
following ground rules were set.

∗An extended abstract of this work appeared in the 16th DISC, 2002.
†This work was carried out while the author was at the Weizmann Institute of Science.
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Security in multi-party computation. A number of different definitions were proposed for
secure multi-party computation. These definitions aimed to ensure a number of important security
properties. The most central of these are:
• Privacy: No party should learn anything more than its prescribed output. That is, the only

information that should be learned about other parties’ inputs is what can be derived from the
output itself.

• Correctness: Each party is guaranteed that the output that it receives is correct.

• Independence of Inputs: The corrupted parties must choose their inputs independently of the
honest parties’ inputs.

• Guaranteed output delivery: Corrupted parties should not be able to prevent honest parties from
receiving their output. In other words, the adversary should not be able to carry out a denial
of service attack.

• Fairness: Corrupted parties should receive their output if and only if honest parties do.
The standard definition today, [8] building on [28, 2, 34], formalizes the above requirements (and
others) in the following general way. Consider an ideal world in which an external trusted party
is willing to help the parties carry out their computation. An ideal computation takes place in
this ideal world by having the parties simply send their inputs to the trusted party, who then
computes the desired function and passes each party its prescribed output. Notice that all of the
above security properties (and more) are ensured in such an ideal computation. The security of a
real protocol is established by comparing the outcome of the protocol to the outcome of an ideal
computation. Specifically, a real protocol that is run by the parties (in a world where no trusted
party exists) is said to be secure, if an adversary controlling a coalition of corrupted parties can do
no more harm in a real execution that in the above ideal execution. Since the adversary is unable to
cause any harm in an ideal execution, this means that security is also guaranteed in a real protocol
execution.

We remark that the above informal description is “overly ideal” in the following sense. It is a
known fact that unless an honest majority is assumed, it is impossible to obtain generic protocols
for secure multi-party computation that guarantee output delivery and fairness. The definition is
therefore relaxed when no honest majority is assumed. In particular, under certain circumstances,
honest parties may not receive their prescribed output, and fairness is not always guaranteed.
In fact, a number of different levels of fairness have been considered. On one extreme, complete
fairness states that corrupted parties receive their outputs if and only if honest parties receive
their outputs (this is the notion of fairness described above and is only achievable for the case of an
honest majority). On the other extreme, no fairness states that corrupted parties may receive their
outputs even if honest parties do not. An intermediate notion that we call partial fairness has the
following property. There exists a specified party (say P1) such that if P1 is honest then complete
fairness is achieved. However, if P1 is corrupt then no fairness is achieved. That is, sometimes
fairness is obtained and sometimes it is not (and the fairness is thus partial).

Broadcast: In the construction of protocols, the ability to “broadcast” messages (if needed) was
always assumed as a primitive, where broadcast takes on the meaning of the Byzantine Generals
problem [32]. Namely, an honest party can deliver a message of its choice to all honest parties in a
given round. Furthermore, all honest parties will receive the same message, even if the broadcasting
party is corrupt. Let t be the number of corrupted parties controlled by the adversary. Then, from
results obtained largely by the distributed computing community, it was known that:
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1. For t < n/3, Byzantine agreement can be achieved by a deterministic protocol with O(t) round
complexity [35], and by a randomized protocol with constant expected round complexity [18];

2. For t ≥ n/3, broadcast is achievable using a protocol for authenticated Byzantine agreement,
in which a public-key infrastructure for digital signatures is used [35, 32]. (This public-key
infrastructure is assumed to be setup in a trusted preprocessing phase.) We note that an
information theoretic analogue also exists [36]. The round complexity of the above protocols
is O(t).

Assuming broadcast as a primitive in a point-to-point network was seen as non-problematic. This
is because Byzantine agreement is achievable for all values of t (with the added requirement of a
trusted preprocessing phase in the case of t ≥ n/3).

1.2 Feasibility of Secure Computation

Wide reaching feasibility results regarding secure multi-party computation were presented in the
mid to late 1980’s. The most central of these are as follows (recall that t equals the number of
corrupted parties):

1. For t < n/3, secure multi-party protocols (with complete fairness and guaranteed output
delivery) can be achieved for any function in a point-to-point network and without any setup
assumptions. This can be achieved both in the computational setting [27] (assuming the
existence of trapdoor permutations), and in the information theoretic (private channel) setting
[5, 14].1

2. For t < n/2, secure multi-party protocols (with complete fairness and guaranteed output
delivery) can be achieved for any function assuming that the parties have access to a broadcast
channel. This can be achieved in the computational setting [27] (with the same assumptions
as above), and in the information theoretic setting [37].

Alternatively, without assuming a broadcast channel, it can be achieved in a point to point
network assuming a trusted pre-processing phase for setting up a public-key infrastructure
(which is then used for running authenticated Byzantine agreement).

3. For t ≥ n/2, secure multi-party protocols with partial fairness (and without guaranteeing
output delivery) can be achieved assuming that the parties have access to a broadcast channel
and in addition assuming the existence of trapdoor permutations [38, 27, 24]. (In fact, it
suffices to assume a broadcast channel and an oblivious transfer protocol [29, 30].) Some
works attempting to provide higher levels of fairness have also appeared [38, 22, 28, 3].

We stress that all of the above results have been proven in the stand-alone model of computation
where only a single execution takes place.

1In the information theoretic setting of secure computation, the adversary is not bound to any complexity class (and
in particular, is not assumed to be polynomial-time). Results in this model require no complexity or cryptographic
assumptions and hold unconditionally. The only assumption used is that parties are connected via ideally private
channels (i.e., it is assumed that the adversary cannot eavesdrop on the communication between honest parties).

In contrast, in the computational setting the adversary is assumed to be a probabilistic polynomial-time machine
(or a polynomial-size family of circuits). Results in this model typically assume cryptographic assumptions like the
existence of trapdoor permutations. We note that in this model, it is not necessary to assume that the parties have
access to ideally private channels (because such channels can be implemented using public-key encryption).
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1.3 Byzantine Agreement and Secure Computation

There is a close connection between Byzantine agreement and secure multi-party computation.
First, Byzantine agreement (or broadcast) is used as a basic and central tool in the construction of
secure protocols. In particular, all the feasibility results described above assume a broadcast channel
(and implement it using Byzantine agreement or authenticated Byzantine agreement). Second,
the definition of secure computation that guarantees output delivery actually implies Byzantine
agreement. Therefore, all the lower bounds for Byzantine agreement apply to this definition of
secure multi-party computation as well. Specifically, it is known that the Byzantine agreement
problem cannot be solved for any t ≥ n/3 [35]. Thus, in a point-to-point network it is also impossible
to achieve general secure computation with guaranteed output delivery for t ≥ n/3. The solution
to this problem in the past has been to use a trusted setup phase which then enables the use of
authenticated Byzantine agreement. However, it was recently shown that authenticated Byzantine
agreement cannot be composed (concurrently or even in parallel) for t ≥ n/3 [33]. Therefore, in
order to obtain secure computation that composes for the case of t ≥ n/3, one must relax the
definitions of secure computation.2 As we have mentioned above, the relaxation classically taken
is one which guarantees all of the security properties except for guaranteed output delivery and
fairness. However, even for the relaxed definition, all known protocols for secure computation in
this range make extensive use of a broadcast primitive. Therefore, the impossibility of composing
authenticated Byzantine agreement implies that these protocols do not compose (even in parallel).
In summary, the current state of affairs is that there are no known protocols for secure computation
in a point-to-point network that compose in parallel or concurrently, for any t ≥ n/3 (even assuming
a trusted setup phase).

1.4 Our Results

We present a further relaxation of the definition of secure multi-party computation where output
delivery is not guaranteed. Our additional relaxation is very mild, yet has the effect of decoupling
the issue of agreement from the issue of security in multi-party computation. Before describing our
definition, we first recall the standard relaxation that is introduced for the case of t ≥ n/2. In this
case of an honest minority, guaranteed output delivery and fairness are not required. Therefore,
some parties may conclude with a special abort symbol ⊥, and not with their output. Previously, it
was required that either all honest parties receive their outputs or all honest parties output ⊥ [24].3

Thus the parties all agree on whether or not output was received. In contrast, in our new definition
some honest parties may receive output while some receive ⊥, and the requirement of agreement
of abort is removed. We stress that this is the only difference between our definition and previous
ones. All the other security properties (e.g., privacy, correctness and independence of inputs) are
preserved.

Our main result is the construction of a protocol for secure computation according to the new
definition for any t < n and without a broadcast channel or setup assumption. (Our protocol
assumes the same computational assumptions made, if any, by corresponding protocols that as-
sume a broadcast channel.) We note that our results hold in both the information theoretic and
computational models.

2Of course, one could assume a physical broadcast channel instead. However, this is not realistic in most settings.
Another approach is to suggest a different (realistic) model of computation that does not suffer from this lower bound.
We remark that no such model is known today.

3We note that in private communication, Goldreich stated that the requirement in [24] of having all parties abort
or all parties receive output was only made in order to simplify the definition.

4



A hierarchy of definitions. In order to describe our results in more detail, we present a hierar-
chy of definitions for secure computation. The hierarchy that we present here relates to the issues
of abort (or failure to receive output) and fairness.

1. Secure computation without abort: According to this definition, all parties are guaranteed to
receive their output. (This is what we previously called “guaranteed output delivery”.) This
is the standard definition for the case of honest majority (i.e., t < n/2). Since all honest
parties receive output, complete fairness is always obtained here.

2. Secure computation with unanimous abort: In this definition, it is ensured that either all hon-
est parties receive their outputs or all honest parties abort. This definition can be considered
with different levels of fairness:

(a) Complete fairness: Recall that when complete fairness is achieved, the honest parties
are guaranteed to receive output if the adversary does. Therefore, here one of two cases
can occur: Either all parties receive output or all parties abort. This means that the
adversary can conduct a denial of service attack, but nothing else. (This definition can
only be achieved in the case of t < n/2.)

(b) Partial fairness: As in the case of complete fairness, the adversary may disrupt the
computation and cause the honest parties to abort without receiving their prescribed
output. However, unlike above, the adversary may receive the corrupted parties’ outputs,
even if the honest parties abort (and thus the abort is not always fair). In particular,
the protocol specifies a single party such that the following holds. If this party is honest,
then complete fairness is essentially achieved (i.e., either all parties abort or all parties
receive correct output). If the specified party is corrupt, then fairness may be violated.
That is, the adversary receives the corrupted parties’ outputs first, and then decides
whether or not the honest parties all receive their correct output or all receive abort
(and thus the adversary may receive output while the honest parties do not).
Although fairness is only guaranteed in the case that the specified party is not corrupted,
there are applications where this feature may be of importance. For example, in a sce-
nario where one of the parties may be “more trusted” than others (yet not too trusted),
it may be of advantage to make this party the specified party. Another setting where
this can be of advantage is one where all the participating parties are trusted. However,
the security problem that we are trying to protect against is that of an external party
“hacking” into the machines of one of more of the parties. In such a case, it may be
possible to provide additional protection to the specified party.

(c) No fairness: This is the same as in the case of partial fairness except that the adversary
always receives the corrupted parties’ outputs first (i.e., there is no specified party).

We stress that in all the above three definitions, if one honest party aborts then so do all
honest parties, and so the abort is unanimous. This means that in the case that an abort
occurs, all of the parties are aware of the fact that the protocol did not successfully terminate.
This feature of having all parties succeed or fail together may be an important one in some
applications.

3. Secure computation with abort: The only difference between this definition and the previous
one is that some honest parties may receive output while others abort. That is, the require-
ment of unanimity with respect to abort is removed. This yields two different definitions,
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depending on whether partial fairness or no fairness is taken. (Complete fairness is not con-
sidered here because it only makes sense in a setting where all the parties, including the
corrupted parties, either all receive output or all abort. Therefore, it is not relevant in the
setting of secure computation with non-unanimous abort.)

Using the above terminology, the definition proposed by [24] for the case of t ≥ n/2 is that of
secure computation with unanimous abort and partial fairness. Our new definition is that of secure
computation with abort (and partial or no fairness), and as we have mentioned, its key feature is
a decoupling of the issues of secure computation and agreement (or unanimity) of abort.

Achieving secure computation with abort. In this paper, we show that secure computation
with abort and partial fairness can be achieved for any t < n, and without a broadcast channel
or a trusted pre-processing phase. We achieve this result in the following way. We begin by
defining a weak variant of the Byzantine Generals problem, called broadcast with abort, with the
following properties. First, there exists a single value x such that every party either outputs x
or aborts. Second, when the broadcasting party is honest, the value x equals its input, similarly
to the validity condition of Byzantine Generals. We call this “broadcast with abort” because as
with secure computation with abort, some parties may output the correct value while other honest
parties abort. We show how to achieve this type of broadcast with a simple deterministic protocol
that runs in 2 rounds. Secure multi-party computation is then achieved by replacing the broadcast
channel in known protocols with a broadcast with abort protocol. Despite the weak nature of
agreement in this broadcast protocol, it is nevertheless enough for achieving secure multi-party
computation with abort. Since our broadcast with abort protocol runs in only 2 rounds, we also
obtain a very efficient transformation of protocols that work with a broadcast channel into protocols
that require only a point-to-point network. In summary, we obtain the following theorem:

Theorem 1.1 (efficient transformation): There exists an efficient protocol compiler that receives
any protocol Π for the broadcast model and outputs a protocol Π′ for the point-to-point model such
that the following holds: If Π securely computes a functionality f with unanimous abort and with
any level of fairness, then Π′ securely computes f with abort and with no fairness. Furthermore,
if Π tolerates up to t corruptions and runs for R rounds, then Π′ tolerates up to t corruptions and
runs for O(R) rounds.

Notice that in the transformation of Theorem 1.1, protocol Π′ does not achieve complete fairness
or partial fairness, even if Π did. Thus, fairness may be lost in the transformation. Nevertheless,
meaningful secure computation is still obtained, and at virtually no additional cost.

When obtaining some level of fairness is important, Theorem 1.1 does not provide a solution. We
show that partial fairness can be obtained without a broadcast channel for the range of t ≥ n/2.
Recall that even with a broadcast channel, complete fairness cannot be obtained in this range;
therefore, we do not lose any fairness even though we work in the point-to-point model only. This
result is stated in the following theorem:

Theorem 1.2 (partial fairness): For any probabilistic polynomial-time n-party functionality f ,
there exists a protocol in the point-to-point model for computing f that is secure with abort, partially
fair and tolerates any t < n corruptions.

The theorem is proved by first showing that fairness can be boosted in the point-to-point model.
That is, given a generic protocol for secure multi-party computation that achieves no fairness, one
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can construct a generic protocol for secure multi-party computation that achieves partial fairness.
(Loosely speaking, a generic protocol is one that can be used to securely compute any efficient
functionality.) Applying Theorem 1.1 to known protocols for the broadcast model, we obtain secure
multi-party computation that achieves no fairness. Then, using the above “fairness boosting”, we
obtain Theorem 1.2. We note that the round complexity of the resulting protocol is of the same
order of the “best” generic protocol that works in the broadcast model. In particular, based on the
protocol of [4], we obtain the first constant-round protocol in the point-to-point network for the
range of n/3 ≤ t < n/2.4 That is:

Corollary 1.3 (constant round protocols without broadcast for t < n/2): Assume that there exist
public-key encryption schemes (or, alternatively, assume the existence of one-way functions and a
model with private channels). Then, for every probabilistic polynomial-time functionality f , there
exists a constant round protocol in the point-to-point network for computing f that is secure with
abort, partially fair and tolerates t < n/2 corruptions.

Composition of secure multi-party protocols. An important corollary of our new definition
is the ability to obtain secure multi-party protocols, that compose in parallel (for any t < n) or
concurrently (for t < n/2), without assuming a broadcast channel. (By composition here, we mean a
scenario where the same protocol is run many times by the same set of parties.) Until now, it was not
known how to achieve such composition. This is because previously the broadcast channel in multi-
party protocols was replaced by authenticated Byzantine agreement, and by [33] authenticated
Byzantine agreement does not compose even in parallel, when t > n/3. (Authenticated Byzantine
agreement was used because for t > n/3 standard Byzantine agreement cannot be applied.) Since
we do not need to use authenticated Byzantine agreement to obtain secure computation, we succeed
in bypassing this problem. See Section 6 for more discussion on this issue.

Recently, a new framework for multi-party computation was proposed that guarantees security
in a general setting where many arbitrary protocols are running concurrently [9]. Protocols that
fulfill this new definition are called “universally composable”. The communication model considered
by [9] is one where the adversary can block messages sent by the honest parties. Notice that in this
model, the adversary can always prevent the parties from receiving output. Therefore, guaranteed
output delivery and fairness are not required. In this “blocking” model, universally composable
multi-party computation for any t < n was demonstrated, using a broadcast channel and a common
reference string [13]. We show that the broadcast channel used in [13] can be replaced by a variant of
our “broadcast with abort” protocol. Therefore, universally composable multi-party computation
can be obtained in the point-to-point model for any t < n and only assuming the existence of a
common reference string.

Discussion. We propose that the basic definition of secure computation should focus on the
issues of privacy, correctness and independence of inputs. In contrast, the property of agreement
should be treated as an additional, and not central, feature. The benefit of taking such a position
(irrespective of whether one is convinced conceptually) is that the feasibility of secure computation
is completely decoupled from the feasibility of Byzantine agreement. Thus, the lower bounds
relating to Byzantine agreement (and authenticated Byzantine agreement) do not imply anything

4For the range of t < n/3, the broadcast channel in the protocol of [4] can be replaced by the expected constant-
round Byzantine agreement protocol of [18]. However, when n/3 ≤ t < n/2, authenticated Byzantine agreement must
be used. Since there are no known (expected) constant-round protocols for authenticated Byzantine agreement, we
have that the resulting protocol for secure computation is not constant-round.
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regarding secure computation. Indeed, as we show, “broadcast with abort” is sufficient for secure
computation. However, it lacks any flavor of agreement in the classical sense. This brings us
to an important observation. Usually, proving a lower bound for a special case casts light on the
difficulties in solving the general problem. However, in the case of secure computation this is not the
case. Rather, the fact that the lower bounds of Byzantine agreement apply to secure computation
is due to marginal issues relating to unanimity regarding the delivery of outputs, and not due to
the main issues of security.

1.5 Related Work

We have recently learned of two independent and concurrent results [20, 21] studying the necessity of
broadcast in secure computation, although apparently for different motivation. In [20], the question
of multi-party computation in the case that the number of corruptions is t < n/2 is studied. They
show that in this case, it is possible to achieve weak Byzantine agreement (where loosely speaking,
either all honest parties abort or all honest parties agree on the broadcasted value). (We note that
their protocol is randomized and therefore bypasses the t < n/3 lower-bound on deterministic weak
Byzantine agreement protocols of [31].) They further show how this can be used in order to obtain
secure computation with unanimous abort and complete fairness for the case of t < n/2. Thus for
the range of n/2 ≤ t < n/3, their solution achieves complete fairness whereas ours achieves only
partial fairness.

In subsequent work, [21] studied the question of Byzantine agreement for any t < n and whether
its relaxation to weak Byzantine agreement can be achieved without preprocessing. They show
that it is indeed possible to achieve (randomized) weak Byzantine agreement for any t < n, in O(t)
rounds. They also show how their weak Byzantine agreement protocol can be used to obtain secure
computation with unanimous abort and partial fairness for any t < n.

In comparison, we achieve secure computation with (non-unanimous) abort and partial fairness
for any t < n. However, our focus is different. In particular, our results emphasize the fact that the
issue of agreement is not central to the task of secure computation. Furthermore, removing this
requirement enables us to remove the broadcast channel with almost no cost. Thus, we obtain a
round-preserving transformation of secure protocols in the broadcast model to those in the point-
to-point model. This is in contrast to [20, 21] who use their weak Byzantine agreement protocol in
order to setup a public-key infrastructure for authenticated Byzantine agreement. They therefore
incur the cost of setting up this infrastructure along with a cost of t+1 rounds for simulating every
broadcast in the original protocol. Our protocols are therefore significantly more round efficient.5

Finally we note that we can use the weak Byzantine agreement protocol of [21] to transform any
generic r-round protocol for secure computation with abort into an (r+ t)-round protocol with
unanimous abort (and the same level of fairness). This is achieved by having the parties broadcast
whether they received outputs or not after the protocol with abort concludes. It is enough to use
weak Byzantine agreement for this broadcast. We therefore reduce the O(tr) round complexity
of [21] to O(r+t), while achieving the same level of security.

Recall that [9] introduced a communication model where the adversary has control over the
5We note one subtle, yet important caveat. Given a generic protocol for secure computation that uses a broadcast

channel and runs for r rounds, we obtain an O(r)-round protocol that is secure with abort and partially fair (this
is in contrast to the O(tr) round complexity of [20, 21]). However, given a protocol that solves a specific secure
computation problem, our transformation provides no fairness and does not achieve partial fairness. In order to
achieve partial fairness, we must revert to a generic protocol. In contrast, the transformation of [20, 21] works for any
protocol. Thus, given a very efficient protocol for a specific problem that achieves partial fairness, it may actually be
“cheaper” to use the transformation of [20, 21].
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delivery of messages. Essentially, this definition also decouples secure computation from agreement
because parties are never guaranteed to get output. In particular, the adversary is allowed to
deliver output to whomever it wishes, and only these parties will ever receive output. However,
the motivation of [9] is different; it aims to decouple the issue of guaranteed output delivery from
the main issues of secure computation. In contrast, we focus on the question of agreement by the
parties on whether or not output was delivered.

2 Definitions – Secure Computation

In this section we present definitions for secure multi-party computation. The basic description and
definitions are based on [24], which in turn follows [28, 2, 34, 8]. We actually consider a number of
definitions here. In particular, we present formal definitions for secure computation with unanimous
abort and with abort, with complete fairness, partial fairness, and no fairness. In addition, we refer
to secure computation without abort, which is the standard definition used when more than half the
parties are honest. According to this definition, all parties receive the output and the adversary
cannot disrupt the computation. However, we will not formally present this definition here.

Notation: We denote by Uk the uniform distribution over {0, 1}k; for a set S we denote s ∈R

S when s is chosen uniformly from S; we let [n] denote the set of integers {1, . . . , n}; finally,
computational indistinguishability is denoted by

c≡ and statistical closeness by
s≡. The security

parameter is denoted by k.

Multi-party computation. A multi-party protocol problem (for n parties P1, . . . , Pn) is cast
by specifying a random process that maps vectors of inputs to vectors of outputs (one input and
one output for each party). We refer to such a process as an n-ary functionality and denote it
f : ({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, . . . , fn). That is, for a vector of inputs x = (x1, . . . , xn),
the output-vector is a random variable (f1(x), . . . , fn(x)) ranging over vectors of strings. The
output for the ith party (with input xi) is defined to be fi(x).

Adversarial behavior. Loosely speaking, the aim of a secure multi-party protocol is to protect
the honest parties against dishonest behavior from the corrupted parties. This “dishonest behavior”
can manifest itself in a number of ways; in this paper we focus on malicious adversaries who
may arbitrarily deviate from the protocol specification. When considering malicious adversaries,
there are certain undesirable actions that cannot be prevented. Specifically, parties may refuse to
participate in the protocol, may substitute their local input (and enter with a different input) and
may cease participating in the protocol before it terminates. Essentially, secure protocols limit the
adversary to such behavior only.

Formally, the adversary is modeled by a non-uniform interactive Turing machine: in the com-
putational model this machine is polynomial-time whereas in the information-theoretic model it is
unbounded. (We note that by standard arguments, we can assume that the adversary is determinis-
tic.) For simplicity, in this work we consider a static corruption model. Therefore, at the beginning
of the execution, the adversary is given a set I of corrupted parties which it controls. That is, the
adversary obtains the views of the corrupted parties, and provides them with the messages that
they are to send in the execution.
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Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in the protocol to what it can do in an ideal scenario that is secure by definition.
This is formalized by considering an ideal computation involving an incorruptible trusted party to
whom the parties send their inputs. The trusted party computes the functionality on the inputs and
returns to each party its respective output. Loosely speaking, a protocol is secure if any adversary
interacting in the real protocol (where no trusted party exists) can do no more harm than if it
was involved in the above-described ideal computation. We begin by formally defining this ideal
computation.

2.1 Execution in the Ideal Model

The ideal model differs for each of the definitions. We therefore present each one separately (see
Section 1.4 for an outline of the different definitions).

1. Secure computation with unanimous abort and complete fairness: According to this
definition, there are two possible termination cases. In the first case, all parties (including the
corrupted parties) abort without receiving output. In the second case, the protocol terminates
and all parties receive their prescribed output. As we have mentioned, even assuming a broadcast
channel, this definition is only achievable when the number of corrupted parties is less than n/2 (i.e.,
|I| < n/2). Recall that a malicious party can always substitute its input or refuse to participate.
Therefore, the ideal model takes these inherent adversarial behaviors into account; i.e., by giving
the adversary the ability to do this also in the ideal model. An ideal execution proceeds as follows:

Inputs: Each party obtains its respective input from the input vector x = (x1, . . . , xn).

Send inputs to trusted party: An honest party Pj always sends its input xj to the trusted party.
The corrupted parties may, depending on their inputs {xi}i∈I , either abort or send modified
values x′i ∈ {0, 1}|xi| to the trusted party. Denote the sequence of inputs obtained by the
trusted party by x′ = (x′1, . . . , x′n) (for an honest party Pj , it always holds that x′j = xj).

Trusted party answers the parties: In case x′ is a valid input sequence, the trusted party computes
f(x′) and sends fi(x′) to party Pi for every i. Otherwise (i.e., in case a corrupted party
aborted or sent a non-valid input), the trusted party replies to all parties with a special abort
symbol ⊥.

Outputs: An honest party always outputs the message that it received from the trusted party and
the corrupted parties output nothing. The adversary outputs an arbitrary function of the
initial inputs {xi}i∈I and the messages that the corrupted parties received from the trusted
party.

Definition 1 (ideal-model computation with unanimous abort and complete fairness): Let f :
({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality, where f = (f1, . . . , fn), and let I ⊂ [n] be such
that for every i ∈ I, the adversary A controls Pi (this is the set of corrupted parties). Then, the
joint execution of f under (A, I) in the ideal model on input vector x = (x1, . . . , xn) and auxiliary
input z to A, denoted ideal

(1)
f,I,A(z)(x), is defined as the output vector of P1, . . . , Pn and A resulting

from the above described ideal process.
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2. Secure computation with unanimous abort and partial fairness: As before, a malicious
party can always substitute its input or refuse to participate. However, when there are a half or
less honest parties, it is not possible to continue computing in the case that the adversary ceases
prematurely. Thus, we cannot prevent the “early abort” phenomenon in which the adversary
receives its output, whereas the honest parties do not receive theirs (i.e., complete fairness cannot
be achieved). Nevertheless, a partial notion of fairness can be achieved. That is, a party P1 is
specified so that if it is honest, then complete fairness is achieved. In contrast, if it is corrupted,
then the adversary receives the corrupted parties’ outputs first and then can decide whether or not
the honest parties receive output or abort. We note that the abort is unanimous and thus if one
honest party aborts, then so do all honest parties. The only difference from the previous definition
is in the “trusted party answers remaining parties” stage. An ideal execution proceeds as follows:

Inputs: Each party obtains its respective input from the input vector x = (x1, . . . , xn).

Send inputs to trusted party: An honest party Pj always sends its input xj to the trusted party.
The corrupted parties may, depending on their inputs {xi}i∈I , either abort or send modified
values x′i ∈ {0, 1}|xi| to the trusted party. Denote the sequence of inputs obtained by the
trusted party by x′ = (x′1, . . . , x′n) (for an honest party Pj , it always holds that x′j = xj).

Trusted party answers first party: In case x′ is a valid input sequence, the trusted party computes
f(x′) and sends f1(x′) to party P1. Otherwise (i.e., in case a corrupted party aborted or sent
a non-valid input), the trusted party replies to all parties with a special symbol, ⊥.

Trusted party answers remaining parties: If the first party is not corrupted (i.e., 1 6∈ I), then the
trusted party sends fj(x′) to party Pj , for every j.

In case the first party is corrupted, then for every i ∈ I, the trusted party sends fi(x) to party
Pi (i.e., the corrupted parties receive their outputs first). Then the corrupted P1, depending
on the views of all the corrupted parties, instructs the trusted party to either send fj(x′) to
Pj for every j 6∈ I, or to send ⊥ to Pj for every j 6∈ I.

Outputs: An honest party always outputs the message that it received from the trusted party and
the corrupted parties output nothing. The adversary outputs an arbitrary function of the
initial inputs {xi}i∈I and the messages that the corrupted parties received from the trusted
party.

Definition 2 (ideal-model computation with unanimous abort and partial fairness): Let f :
({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality, where f = (f1, . . . , fn), and let I ⊂ [n] be such
that for every i ∈ I, the adversary A controls Pi (this is the set of corrupted parties). Then, the
joint execution of f under (A, I) in the ideal model on input vector x = (x1, . . . , xn) and auxiliary
input z to A, denoted ideal

(2)
f,I,A(z)(x), is defined as the output vector of P1, . . . , Pn and A resulting

from the above described ideal process.

We note that this is the definition of [24] for the case of t ≥ n/2.

3. Secure computation with unanimous abort and no fairness: This definition is very
similar to the previous one, except that there is no specified party. Rather, the adversary first
receives the output of the corrupted parties. Then, it decides whether all the honest parties receive
output or they all abort. Formally,
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Inputs: Each party obtains its respective input from the input vector x = (x1, . . . , xn).

Send inputs to trusted party: An honest party Pj always sends its input xj to the trusted party.
The corrupted parties may, depending on their inputs {xi}i∈I , either abort or send modified
values x′i ∈ {0, 1}|xi| to the trusted party. Denote the sequence of inputs obtained by the
trusted party by x′ = (x′1, . . . , x′n) (for an honest party Pj , it always holds that x′j = xj).

Trusted party answers adversary: In case x′ is a valid input sequence, the trusted party computes
f(x′) and sends fi(x′) to party Pi for every i ∈ I. Otherwise (i.e., in case a corrupted party
aborted or sent a non-valid input), the trusted party replies to all parties with a special
symbol, ⊥.

Trusted party answers remaining parties: The adversary, depending on the views of all the cor-
rupted parties, instructs the trusted party to either send fj(x′) to Pj for every j 6∈ I, or to
send ⊥ to Pj for every j 6∈ I.

Outputs: An honest party always outputs the message that it received from the trusted party and
the corrupted parties output nothing. The adversary outputs an arbitrary function of the
initial inputs {xi}i∈I and the messages that the corrupted parties received from the trusted
party.

Definition 3 (ideal-model computation with unanimous abort and no fairness): Let f : ({0, 1}∗)n →
({0, 1}∗)n be an n-ary functionality, where f = (f1, . . . , fn), and let I ⊂ [n] be such that for every
i ∈ I, the adversary A controls Pi (this is the set of corrupted parties). Then, the joint execution
of f under (A, I) in the ideal model on input vector x = (x1, . . . , xn) and auxiliary input z to A,
denoted ideal

(3)
f,I,A(z)(x), is defined as the output vector of P1, . . . , Pn and A resulting from the

above described ideal process.

The above three definitions all relate to the case of secure computation with unanimous abort. We
now present the analogous definitions for the case of secure computation with abort. The only
difference between the definitions is regarding the “trusted party answers remaining parties” item.
In the above definitions all honest parties either receive their output or they receive ⊥. However,
here some of these parties may receive their (correct) output and some may receive ⊥. This is
where our new definition differs from past ones. We only present definitions for partial and no
fairness (complete fairness only makes sense if all parties, including the adversary, either receive
their outputs or ⊥).

4. Secure computation with abort and partial fairness: As we have mentioned, the only
difference between this definition and the analogous definition with unanimous abort is that if
party P1 is corrupted, then it may designate who does and does not receive output. We repeat
only the relevant item:

Trusted party answers remaining parties: If the first party is not corrupted (i.e., 1 6∈ I), then the
trusted party sends fj(x′) to party Pj , for every j.

In case the first party is corrupted, then for every i ∈ I, the trusted party sends fi(x′) to Pi

(i.e., the corrupted parties receive their output first). Then the corrupted P1, depending on
the views of all the corrupted parties, chooses a subset of the honest parties J ⊆ [n] \ I and
sends J to the trusted party. The trusted party then sends fj(x′) to Pj for every j ∈ J , and
⊥ to all other honest parties.
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Definition 4 (ideal-model computation with abort and partial fairness): Let f : ({0, 1}∗)n →
({0, 1}∗)n be an n-ary functionality, where f = (f1, . . . , fn), and let I ⊂ [n] be such that for every
i ∈ I, the adversary A controls Pi (this is the set of corrupted parties). Then, the joint execution
of f under (A, I) in the ideal model on input vector x = (x1, . . . , xn) and auxiliary input z to A,
denoted ideal

(4)
f,I,A(z)(x), is defined as the output vector of P1, . . . , Pn and A resulting from the

above described ideal process.

5. Secure computation with abort and no fairness: This definition is the same as Defi-
nition 3 with respect to the fact that the adversary always receives the output of the corrupted
parties first. However, as with Definition 4, the honest parties’ abort is not necessarily unanimous.
That is, the adversary designates which honest parties receive their output and which receive ⊥.
We repeat the only item in which this definition differs from Definition 3:

Trusted party answers remaining parties: The adversary, depending on the views of all the cor-
rupted parties, chooses a subset of the honest parties J ⊆ [n] \ I and sends J to the trusted
party. The trusted party then sends fj(x′) to Pj for every j ∈ J , and ⊥ to all other honest
parties.

Definition 5 (ideal-model computation with abort and no fairness): Let f : ({0, 1}∗)n → ({0, 1}∗)n

be an n-ary functionality, where f = (f1, . . . , fn), and let I ⊂ [n] be such that for every i ∈ I, the
adversary A controls Pi (this is the set of corrupted parties). Then, the joint execution of f un-
der (A, I) in the ideal model on input vector x = (x1, . . . , xn) and auxiliary input z to A, denoted
ideal

(5)
f,I,A(z)(x), is defined as the output vector of P1, . . . , Pn and A resulting from the above de-

scribed ideal process.

2.2 Execution in the Real Model

We now define a real model execution. In the real model, the parties execute the protocol in a
synchronous network with rushing. That is, the execution proceeds in rounds: each round consists
of a send phase (where parties send their message from this round) followed by a receive phase
(where they receive messages from other parties). This means that the messages sent by an honest
party in a given round depend on the messages that it received in previous rounds only. However,
the adversary can compute its messages in a given round based on the messages that it receives
from the honest parties in the same round. The term “rushing” refers to this additional adversarial
capability.

In this work, we consider a scenario where the parties are connected via a fully connected point-
to-point network (and there is no broadcast channel). We refer to this model as the point-to-point
model (in contrast to the broadcast model where the parties are given access to a physical broadcast
channel in addition to the point-to-point network). The communication lines between parties are
assumed to be ideally authenticated and private (and thus the adversary cannot modify or read
messages sent between two honest parties).6 Furthermore, the delivery of messages between honest
parties is guaranteed. Finally, we note that we do not assume any trusted preprocessing phase (that
can be used to setup a public-key infrastructure, for example).7 Most of the results in this paper

6We note that when the parties are assumed to be computationally bounded, privacy can be achieved over
authenticated channels by using public-key encryption. Therefore, in such a setting, the requirement that the channels
be private is not essential. However, we include it for simplicity.

7One can argue that achieving authenticated and private channels in practice essentially requires a trusted pre-
processing phase for setting up a public-key infrastructure. Therefore, there is no reason not to utilize this prepro-
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relate to the above-described communication model. However, we also consider an asynchronous
network model where the adversary has complete control over the timing and delivery of messages.
(In particular, the adversary may decide to never deliver a certain message.) We stress that here
the communication lines are also authenticated and private, and therefore the only thing that the
adversary can do is delay or prevent a message from being sent. This network model is considered
in Sections 3.2 and 6 in the context of universally composable protocols.

Throughout a real execution, the honest parties all follow the instructions of the prescribed
protocol, whereas the corrupted parties receive their (arbitrary) instructions from the adversary.
Then, at the conclusion of the execution, the honest parties output their prescribed output from
the protocol, the corrupted parties output nothing and the adversary outputs an arbitrary function
of its view of the computation (which contains the views of all the corrupted parties). Without loss
of generality, we assume that the adversary always outputs its view (and not some function of it).
Formally,

Definition 6 (real-model execution): Let f be an n-ary functionality and let Π be a multi-party
protocol for computing f . Furthermore, let I ⊂ [n] be such that for every i ∈ I, the adversary A
controls Pi (this is the set of corrupted parties). Then, the joint execution of Π under (A, I) in the
real model on input vector x = (x1, . . . , xn) and auxiliary input z to A, denoted realΠ,I,A(z)(x), is
defined as the output vector of P1, . . . , Pn and A resulting from the protocol interaction, where for
every i ∈ I, party Pi computes its messages according to A, and for every j 6∈ I, party Pj computes
its messages according to Π.

On synchronous versus asynchronous networks. As we have mentioned above, most of the
results of this paper are presented in the synchronous network model. However, this is for the sake
of simplicity only. In fact, when output delivery is not guaranteed, asynchronous communication
does not present any additional hardship. Specifically, the honest parties should merely wait until
receiving all round i messages before sending their message for round i+1. This ensures that the only
difference between a synchronous and an asynchronous execution is the ability of the adversary to
prevent the parties from receiving output. When output delivery is not guaranteed, this is anyway
allowed.

2.3 Security as Emulation of a Real Execution in the Ideal Model

Having defined the ideal and real models, we can now define security of protocols. Loosely speaking,
the definition asserts that the adversary can do no more harm in a real protocol execution that in
the ideal model (where security trivially holds). This is formulated by saying that adversaries in
the ideal model are able to simulate adversaries in an execution of a secure real-model protocol.
The definition of security comes in two flavors. In the first, we consider polynomial-time bounded
adversaries, and require that the simulation be such that the real-model and ideal-model output
distributions are computationally indistinguishable. In the second, we consider unbounded adver-
saries and require that the simulation be such that the output distributions of the two executions
are statistically close.

cessing phase in the secure multi-party computation as well. In such a case, the preprocessing phase could be used
in order to implement authenticated Byzantine agreement (and thereby achieve secure broadcast for any number
of corrupted parties). However, we claim that the issue of achieving “secure communication channels” should be
separated from the issue of achieving “secure broadcast”. An example of why this is important was demonstrated
in [33], who showed that authenticated Byzantine agreement does not compose (in parallel or concurrently) when 2/3
or less of the parties are honest. In contrast, secure channels can be achieved without any limitation on the protocol
using them [11]; in particular, without restrictions on composability and the number of corrupted parties.
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Definition 7 (computational security): Let f and Π be as above. We say that protocol Π is
a protocol for computational t-secure computation with unanimous abort (resp., with abort) and
with complete fairness (resp., with partial fairness or with no fairness), if for every non-uniform
polynomial-time adversary A for the real model, there exists a non-uniform probabilistic (expected)
polynomial-time adversary S for the ideal model, such that for every I ⊂ [n] with |I| < t,

{ideal
(α)
f,I,S(z)(x)}k∈N,x∈({0,1}k)n,z∈{0,1}poly(k)

c≡ {realΠ,I,A(z)(x)}k∈N,x∈({0,1}k)n,z∈{0,1}poly(k)

where the value of α ∈ {1, 2, 3, 4, 5} depends on whether secure computation with unanimous abort
or with abort is being considered, and whether complete fairness, partial fairness or no fairness is
required.

Definition 8 (information-theoretic security): Let f and Π be as above. We say that protocol Π
is a protocol for information-theoretic t-secure computation with unanimous abort (resp., with abort)
and with complete fairness (resp., with partial fairness or with no fairness), if for every non-uniform
adversary A for the real model, there exists a non-uniform probabilistic adversary S for the ideal
model such that for every I ⊂ [n] with |I| < t,

{ideal
(α)
f,I,S(z)(x)}k∈N,x∈({0,1}k)n,z∈{0,1}∗

s≡ {realΠ,I,A(z)(x)}k∈N,x∈({0,1}k)n,z∈{0,1}∗

where the value of α ∈ {1, 2, 3, 4, 5} depends on whether secure computation with unanimous abort
or with abort is being considered, and whether complete fairness, partial fairness or no fairness is
required.

3 Broadcast with Abort

In this section, we present a weak variant of the Byzantine Generals problem, that we call “broadcast
with abort”. The main idea is to weaken both the agreement and validity requirements so that some
parties may output the broadcast value x while others output ⊥. Formally,

Definition 9 (broadcast with abort): Let P1, . . . , Pn, be n parties and let P1 be the dealer with
input x. In addition, let A be an adversary who controls up to t of the parties (which may include
P1). A protocol solves the broadcast with abort problem, tolerating t corruptions, if for any adversary
A the following three properties hold:

1. Agreement: If an honest party outputs x′, then all honest parties output either x′ or ⊥.

2. Validity: If P1 is honest, then all honest parties output either x or ⊥.

3. Non-triviality: If all parties are honest, then all parties output x.

(The non-triviality requirement is needed to rule out a protocol in which all parties simply output ⊥
and halt.) We now present a simple protocol that solves the broadcast with abort problem for any
t. As we will see later, despite its simplicity, this protocol suffices for obtaining secure computation
with abort.

Protocol 1 (broadcast with abort):
• Input: P1 has a value x to broadcast.
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• The Protocol:

1. P1 sends x to all parties.
2. Denote by xi the value received by Pi from P1 in the previous round. Then, every party Pi

(for i > 1) sends its value xi to all other parties.
3. Denote the value received by Pi from Pj in the previous round by xi

j (recall that xi denotes
the value Pi received from P1 in the first round). Then, Pi outputs xi if this is the only
value that it saw (i.e., if for every xi

j that Pi receives, it holds that xi
j = xi). Otherwise, it

outputs ⊥.
We note that if Pi did not receive any value in the first round, then it always outputs ⊥.

We now prove that Protocol 1 is secure, for any number of corrupted parties. That is,

Proposition 3.1 Protocol 1 solves the broadcast with abort problem, and tolerates any t < n
corruptions.

Proof: The fact that the non-triviality condition is fulfilled is immediate. We now prove the other
two conditions:

1. Agreement: Let Pi be an honest party such that Pi outputs a value x′. Then, it must be that
Pi received x′ from P1 in the first round (i.e., xi = x′). Therefore, Pi sent this value to all
other parties in the second round. Now, a party Pj will output xj if this is the only value
that it saw during the execution. However, as we have just seen, Pj definitely saw x′ in the
second round. Thus, Pj will only output xj if xj = x′. Furthermore, if Pj does not output
xj , then it outputs ⊥.

2. Validity: If P1 is honest, then all parties receive x in the first round. Therefore, they will
only output x or ⊥.

3.1 Strengthening Broadcast with Abort

A natural question to ask is whether or not we can strengthen Definition 9 in one of the following
two ways (and still obtain a protocol that tolerates t ≥ n/3 corruptions):

1. Strengthen the agreement requirement: If an honest party outputs a value x′, then all honest
parties output x′. (Note that the validity requirement remains unchanged.)

2. Strengthen the validity requirement: If P1 is honest, then all honest parties output x. (Note
that the agreement requirement remains unchanged.)

It is easy to see that the above strengthening of the agreement requirement results in the definition
of weak Byzantine Generals. (The validity and non-triviality requirements combined together are
equivalent to the validity requirement of weak Byzantine Generals.) Therefore, there do not exist
deterministic protocols for the case of t ≥ n/3 [31]. For what can be done if one utilizes randomized
protocols, see the section on recent related work in the introduction. Regarding the strengthening of
the validity requirement, the resulting definition implies a problem known as “Crusader Agreement”
(outputting ⊥ can be interpreted as “explicitly” knowing that the dealer is corrupted). This was
shown to be unachievable for any t ≥ n/3 in [15] (we note that this lower bound holds for randomized
protocols as well). We therefore conclude that the “broadcast with abort” requirements cannot be
strengthened in either of the above two ways (for deterministic protocols), without incurring a
t < n/3 lower bound.
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3.2 Universally Composable Broadcast

In this section, we consider an asynchronous network setting with ideally authenticated communi-
cation lines. In such a setting, the adversary cannot modify messages sent by the honest parties,
but does have control over the timing and delivery of these messages. We note that the adversary’s
control is complete, and thus it may decide to never deliver certain messages. This is modeled in
the following way: The parties send messages by placing them in an “out-box”, and the adversary
then delivers (or does not deliver) them at will. This capability is given to the adversary in both
the real and ideal models (and thus the adversary also delivers – or does not deliver – messages
between the honest parties and the trusted third party). This is very similar to our definition of
secure computation with abort and no fairness. In particular, output delivery is not guaranteed.
Furthermore, the adversary can choose to deliver outputs to any subset of the parties that it wishes
to (and can decide after having seen the corrupted parties’ outputs). Thus, there is a fundamental
difference between the notion of universally composable broadcast in this model and all the other
works on Byzantine agreement in the asynchronous model where output is guaranteed [7, 12]. (As
we have discussed at length in the introduction, this much weaker notion of broadcast nevertheless
suffices for the purposes of secure computation with abort.)

In this section we show that it is possible to realize an ideal broadcast functionality in a uni-
versally composable way within the above-described model, for any t < n. Essentially this means
that any protocol that uses a broadcast channel can be implemented in the point-to-point model
while achieving the same effect. An important corollary of this result is the existence of universally
composable multi-party computation for t ≥ n/3, in a point-to-point network. This corollary is
obtained by applying our secure realization of the broadcast functionality with known universally
composable multi-party protocols; see Section 6. We refer the reader to Appendix A for an overview
of the universal composition framework and to [8] for more details.

The ideal broadcast functionality is defined in Figure 1.

Broadcast Functionality

The broadcast functionality is defined as follows, running with parties P1, . . . , Pn and an ideal-model
adversary S:

• Upon receiving a message (broadcast, x) from Pi, send (broadcast, Pi, x) to all parties and to S.

Figure 1: The ideal broadcast functionality

We now present our protocol for securely realizing universally composable broadcast. This protocol
is a slightly modified version of Protocol 1 and is suited for an asynchronous setting:

Protocol 2 (universally composable broadcast):
• Input: Pi has input (broadcast, x).

• The Protocol:

1. Pi sends x to all parties.

2. Upon receiving a value xj from Pi, party Pj sends the value xj that it received to all other
parties.

3. Party Pj waits to receive a message from every party (other than party Pi). Denote the
message received from Pk by xj

k. Then, Pj outputs (broadcast, Pi, x
j) if and only if for every

k, it holds that xj
k = xj (i.e., xj = xj

1 = · · · = xj
n). Otherwise, it outputs nothing.
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The main result of this section is the following proposition:

Proposition 3.2 Protocol 2 is a universally composable protocol for securely realizing the ideal
broadcast functionality (in an asynchronous network).

Proof: Let A be a real-model adversary attacking Protocol 2. We construct an ideal model ad-
versary S that internally incorporates A and interacts with the trusted party in an ideal execution.
S forwards all messages unmodified between A and the environment Z. In addition, S simulates
a real execution for A. We separately describe the simulation for the case that the dealer is cor-
rupted, and thus is controlled by A, and the case that it is honest (recall that Pi is the dealer in
the execution):
• Case 1 – Pi is corrupt: In the first round, A (controlling Pi) sends messages to the honest

parties. S simulates the response of the honest parties to these messages and waits until all the
first-round messages of the protocol have been delivered by A in the simulation. Once these
messages have been delivered, S works as follows. If A sent the same first-round message x to all
the honest parties, then S (controlling Pi) sends (broadcast, x) to the trusted party in the ideal
execution. Following this, S continues in the internal simulation for A of the honest parties’
messages until the protocol terminates. In addition, S delivers output from the trusted party
to a given honest party, whenever that honest party receives all of its second-round messages,
and all of these messages equal x.
If A did not send the same first-round message to all the honest parties, then S internally
simulates for A all the messages that the honest parties would send, but does not send anything
to the trusted party.

• Case 2 – Pi is honest: S receives (broadcast, Pi, x) from the trusted party and simulates a real
execution for A where Pi is the dealer. First, S simulates Pi sending x to all the parties. Then,
S receives back the messages sent by A to the honest parties. As in the previous case, S delivers
output from the trusted party to an honest party, whenever the honest party receives all of its
second-round messages, and all of these messages equal x.

We claim that the global output of an ideal execution with S is identically distributed to the global
output of a real execution with A. This is demonstrated by showing that honest parties output a
value x in the simulation by S if and only if they would output x in a real execution with A. First,
consider the case that Pi is honest. In the protocol, an honest party outputs x if it received x in the
first round and receives x from all other parties in the second round. Since Pi is honest, all honest
parties indeed receive Pi’s input x in the first round. Furthermore, S only delivers output from
the trusted party to an honest party if this honest party receives all the second-round messages
and they are all x, exactly as in the protocol. Therefore, the real and ideal executions are identical
when Pi is honest.

Next, consider the case that Pi is corrupt. If Pi, controlled by A, sends all the honest parties
the same value x in the first round, then this is exactly the same as the case that Pi is honest.
However, if Pi does not act in this way, then S sends nothing to the trusted party. Thus, it remains
to show that in a real execution with such a Pi, no honest party would output a value. If Pi sends
two different messages in the first round (i.e., if there exist j and k such that xj 6= xk), then by the
protocol definition, all honest parties who output a value see both xj and xk. (Otherwise, they did
not receive all second-round messages and so do not yet output anything.) Therefore, no honest
party concludes with output. Thus, the real and ideal executions are also identical in the case that
Pi is corrupt. This completes the proof.
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In Section 6, we show how Proposition 3.2 is used to obtain universally composable protocols in a
point-to-point network.

4 Secure Computation with Abort and No Fairness

In this section, we show that any protocol for secure computation (with unanimous abort and any
level of fairness) that uses a broadcast channel can be “compiled” into a protocol for the point-
to-point network that achieves secure computation with abort and no fairness. Furthermore, the
fault tolerance of the compiled protocol is the same as the original one. Actually, we assume that
the protocol is such that all parties terminate in the same round. We say that such a protocol has
simultaneous termination. Without loss of generality, we also assume that all parties generate their
output in the last round. The result of this section is formally stated in the following theorem:

Theorem 1 There exists a (polynomial-time) protocol compiler that takes any protocol Π (with
simultaneous termination) for the broadcast model, and outputs a protocol Π′ for the point-to-
point model such that the following holds: If Π is a protocol for information-theoretic (resp.,
computational) t-secure computation with unanimous abort and any level of fairness, then Π′ is
a protocol for information-theoretic (resp., computational) t-secure computation with abort and no
fairness.

Combining Theorem 1 with known protocols (specifically, [37] and [27]8), we obtain the following
corollaries:

Corollary 2 (information-theoretic security – compilation of [37]): For any probabilistic polynomial-
time n-ary functionality f , there exists a protocol in the point-to-point model, for the information-
theoretic n/2-secure computation of f with abort and no fairness.

Corollary 3 (computational security – compilation of [27]): For any probabilistic polynomial-time
n-ary functionality f , there exists a protocol in the point-to-point model, for the computational
t-secure computation of f with abort and no fairness, for any t.

We now proceed to prove Theorem 1.

Proof of Theorem 1: Intuitively, we construct a protocol for the point-to-point model from a
protocol for the broadcast model, by having the parties in the point-to-point network simulate the
broadcast channel. This simulation is not carried out using Byzantine Generals because this is not
possible for t ≥ n/3. Rather, it is simulated using a protocol for “broadcast with abort”, which as
we have seen can be achieved for any t. Recall that in such a protocol, either the correct value is
delivered to all parties, or some parties output ⊥. The idea is to halt the computation in the case
that any honest party receives ⊥ from a broadcast execution. The point at which the computation
halts dictates which parties (if any) receive output. The key point is that if no honest party receives
⊥, then the broadcast with abort protocol perfectly simulates a broadcast channel. Therefore, the
result is that the original protocol (for the broadcast channel) is simulated perfectly until the point
that it may prematurely halt.

8Both the [37] and [27] protocols have simultaneous termination
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Components of the compiler:

1. Broadcast with abort executions: Each broadcast of the original protocol (using the assumed
broadcast channel) is replaced with an execution of the broadcast with abort protocol.

2. Blank rounds: Following each broadcast with abort execution, a blank round is added in which
no protocol messages are sent. Rather, these blank rounds are used to enable the parties to
notify each other in the case that they abort. Specifically, if a party receives ⊥ in a broadcast
with abort execution, then it sends ⊥ to all parties in the blank round that immediately
follows and halts. Likewise, if a party receives ⊥ in a blank round, then it sends ⊥ to all
parties in the next blank round and halts.

Thus each round of the original protocol is transformed into 3 rounds in the compiled protocol
(2 rounds for broadcast with abort and an additional blank round). We now formally define the
protocol compiler:

Construction 3 (protocol compiler): Given a protocol Π, the compiler produces a protocol Π′.
The specification of protocol Π′ is as follows:
• The parties use broadcast with abort in order to emulate each broadcast message of protocol

Π. Each round of Π is expanded into 3 rounds in Π′: broadcast with abort is run in the
first 2 rounds, and the third round is a blank round. Point-to-point messages of Π are sent
unmodified in Π′. More exactly, the parties emulate Π according to the following instructions
(for simplicity, we count the first round of Π to be round 0):

1. Broadcasting messages: Let Pi be a party who is supposed to broadcast a message m in the
jth round of Π. Then, in the jth broadcast simulation of Π′ (i.e., in rounds 3j and 3j + 1
of Π′), all parties run an execution of broadcast with abort in which Pi plays the dealer
role and sends m.

2. Sending point-to-point messages: Any message that Pi is supposed to send to Pj over the
point-to-point network in the jth round of Π is sent by Pi to Pj over the point-to-point
network in round 3j of Π′.

3. Receiving messages: For each message that party Pi is supposed to receive from a broadcast
in Π, party Pi participates in an execution of broadcast with abort as a receiver. If its
output from this execution is a message m, then it appends m to its view (to be used for
determining its later steps according to Π).
If it receives ⊥ from this execution, then it sends ⊥ to all parties in the next round (i.e.,
in the blank round following the execution of broadcast with abort), and halts immediately
thereafter.

4. Blank rounds: If a party Pi receives ⊥ in a blank round, then it sends ⊥ to all parties in
the next blank round and halts. In the 2 rounds preceding the next blank round, Party Pi

does not send any point-to-point messages or messages belonging to a broadcast execution.
(We note that if this blank round is the last round of the execution, then Pi simply halts.)

5. Output: If a party Pi received ⊥ at any point in the execution (in an execution of broadcast
with abort or in a blank round), then it outputs ⊥. Otherwise, it outputs the value specified
by Π.

By the assumption in the theorem, Π is t-secure with unanimous abort (and any level of fairness).
In order to prove that the compiled protocol Π′ is t-secure with abort and no fairness, we first define

20



a different transformation of Π to Π̃ which is a hybrid protocol between Π and Π′. In particular, Π̃
is still run in the broadcast model. However, it provides the adversary with the additional ability
of prematurely halting honest parties. We now define the hybrid protocol Π̃ and show that it is
t-secure with abort and no fairness:

Lemma 4.1 Let Π be a protocol in the broadcast model that is computational (resp., information-
theoretic) t-secure with unanimous abort and any level of fairness. Then, define protocol Π̃ (also
for the broadcast model) as follows:

1. Following each round of Π, add a blank round.

2. If in a blank round, Pi receives a ⊥ message, then Pi sends ⊥ to Pj for all j 6= i in the next
blank round and halts. Pi also does not broadcast any message or send any point-to-point
messages in the next round of Π (before the blank round where it sends all the ⊥ messages).

3. Apart from the above, the parties follow the instructions of Π.

4. Output: If a party Pi received ⊥ in any blank round, then it outputs ⊥. Otherwise, it outputs
the value specified by Π.

Then, Π̃ is computational (resp., information-theoretic) t-secure with abort and no fairness.

Proof: We prove this theorem for the case that Π is computationally t-secure with unanimous abort
and partial fairness. The other cases (information theoretic security and security with complete
fairness or no fairness) are proved in a similar way. Let Ã be a real-model adversary attacking
Π̃. Our aim is to construct an ideal-model simulator S̃ for Ã. In order to do this, we must use
the fact that for any adversary A attacking protocol Π, there exists an ideal-model simulator S.
Unfortunately we cannot apply S to Ã because S is a simulator for protocol Π and Ã participates
in protocol Π̃. We therefore first construct an adversary A that attacks Π from the adversary Ã
that attacks Π̃. The construction of A is such that the output distribution of an execution of Π
with A is very similar to the output distribution of an execution of Π̃ with Ã. Having constructed
A, it is then possible to apply the simulator S that we know is guaranteed to exist. We therefore
obtain a simulator S̃ for Ã by first “transforming” Ã into A and then applying S. As we will show,
the resulting simulator S̃ is as required for Π̃. Details follow.

We begin by defining the adversary A who attacks Π. Adversary A internally incorporates Ã and
has internal communication with Ã and external communication with the honest parties executing
Π.

Adversary A for Π:

• Input: A receives an auxiliary input z, an input sequence {xi}i∈I and a series of random-tapes
{ri}i∈I . (Recall that A controls all the parties in the set I. Thus, corrupted party Pi’s input
and random-tape equal xi and ri, respectively.)

• Execution:

1. Invoke Ã: A begins by invoking Ã upon auxiliary input z, input sequence {xi}i∈I and
random-tapes {ri}i∈I .

2. Emulation before Ã sends any ⊥ messages: A internally passes to Ã all the messages
that it externally receives from the honest parties (through broadcast or point-to-point
communication). Likewise, A externally broadcasts in Π any message that Ã broadcasts
in Π̃, and A externally sends Pj in Π any message that Ã sends Pj in Π̃.
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3. Emulation after Ã sends a ⊥ message: Once Ã sends a ⊥ message in an execution of Π̃,
the honest parties in Π and Π̃ may behave differently (in particular, a party receiving ⊥
may continue to send messages in Π, whereas it would halt in Π̃). Therefore, A filters
messages sent by honest parties in Π so that Ã’s view equals what it would in an execution
of Π̃. That is:
In the round of Π following the first ⊥ message sent by Ã, adversary A forwards to Ã only
the point-to-point and broadcast messages sent by a party Pj who did not receive ⊥ from Ã
in the previous (simulated) blank round of Π̃. Furthermore, A simulates for Ã the sending
of all the ⊥ messages that would be sent in the next blank round of Π̃ (if one exists), and
halts.

4. Output: A outputs whatever Ã does.

Before proceeding, we show that the only difference between an execution of Π with A, and Π̃
with Ã, is that some additional honest parties may output ⊥ in the execution of Π̃. That is, we
claim that the joint distribution of the outputs of all parties not outputting ⊥ and the adversary
is identical in Π and Π̃. We begin with some notation:
• Let realΠ,I,A(z)(x, r) be the global output of an execution of Π with adversary A with auxiliary

input z, inputs x, and random-tapes r (i.e., r = (r1, . . . , rn) where Pi receives random-tape ri).
(Thus, realΠ,I,A(z)(x) = {realΠ,I,A(z)(x,U|r|)}.)

• For any subset J ⊆ [n], denote by realΠ,I,A(z)(x, r)|J , the restriction of realΠ,I,A(z)(x, r) to
the outputs of A and all parties Pj for j ∈ J . We stress that A’s output is included in this
restriction.

• In any execution of Π̃, it is possible to divide the parties into those who output ⊥ and those who
do not output ⊥. We note that the set of parties outputting ⊥ is chosen by the adversary Ã
and is dependent solely on the auxiliary input z and the parties’ inputs x and random-tapes r.
We denote by J = JÃ(z)(x, r) the set of parties who do not output ⊥ in an execution of Π̃

with adversary Ã (and where the auxiliary input is z and the parties’ inputs and random-tapes
are x and r). (Notice that JÃ is a deterministic function depending only on z, x and r. This
is because, without loss of generality, the adversary Ã is deterministic.) We also denote by
JÃ(z)(x) a random variable taking values over JÃ(z)(x, r) for uniformly distributed r.

We now consider the joint distribution of the outputs of the adversary and the parties in JÃ(z)(x, r)
(i.e., those not outputting ⊥). We claim that these distributions are identical in Π with A and in
Π̃ with Ã. Using the above notation, we claim that for every adversary Ã and set of corrupted
parties I, for all auxiliary inputs z, and for all input and random-tape sequences x and r,

realΠ,I,A(z)(x, r)|JÃ(z)(x,r)= realΠ̃,I,Ã(z)(x, r)|JÃ(z)(x,r) (1)

where A is as defined above. We now prove Eq. (1). First, it is clear that Ã’s view in a real
execution of Π̃ is identical to its view in the simulation by A. Therefore, A’s output in Π equals
Ã’s output in Π̃. Next, notice that if there exists an honest party that does not output ⊥ in Π̃,
then it must be that ⊥ messages were sent in the last blank round only. However, this means that
any honest party not receiving such a message has an identical view in Π and Π̃. Therefore, the
outputs of all such parties are identical in Π and Π̃. Eq. (1) follows. We stress that the parties who
output ⊥ in Π̃ may have very different outputs in Π (and in particular may output their prescribed
outputs). Nevertheless, at this stage we are only interested in those parties not outputting ⊥.
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We now proceed to construct a simulator S̃ for Ã. Intuitively, S̃ works by using the simulator
S for A, where A is derived from Ã as above. Recall that A is an adversary for the secure protocol
Π, and thus a simulator S is guaranteed to exist for A.

Simulator S̃: First consider an adversary A for Π constructed from the adversary Ã as described
above. By the security requirements of Π, for every adversary A there exists an ideal-model
simulator S for A. Simulator S̃ for Ã works by emulating an ideal execution for this S. This
involves emulating the interaction that S has with its trusted third party. Recall that S̃ works in
an ideal model for secure computation with abort and no fairness (i.e., according to Definition 5),
whereas S works in an ideal model for secure computation with unanimous abort and partial fairness
(i.e., according to Definition 2). Thus, essentially S̃ has “more power” than S. Also, recall that
where partial fairness holds, there are two cases depending on whether or not P1 is corrupted. If
P1 is not corrupted, then essentially all parties receive output at the same time. If P1 is corrupted,
then the adversary receives the corrupted parties’ outputs first and then decides whether the honest
parties all receive output or all abort.

We now describe the simulator. Let S̃’s auxiliary input be z and its input be a set of values
{xi}i∈I . Furthermore, let r be the contents of S̃’s random tape. Then, S̃ sets S’s random tape to
r and internally invokes S upon auxiliary input z and input series {xi}i∈I . Next, S̃ works as an
intermediary between S and the trusted party. That is, S̃ obtains the input values {x′i}i∈I sent by
S and externally sends these same values to the trusted party. Once S̃ forwards these inputs to
the trusted party, it receives back all the corrupted parties’ outputs (recall that S̃ interacts in an
ideal model with no fairness). S̃ then forwards these outputs to S. We distinguish two cases:

1. P1 is not corrupted: in this case, S concludes its execution at this point, outputting some
value.

2. P1 is corrupted: in this case, S first instructs the trusted party to either send all the honest
parties their outputs or send them all ⊥. S then concludes, outputting some value.

S̃ ignores the instruction sent to the trusted party in the second case, and sets its output to
be whatever S output. It remains to define the set J that S̃ sends to the trusted party in the
“trusted party answers remaining parties” stage of its ideal execution (recall that all honest parties
in J receive their output and all others receive ⊥). First notice that the string output by S is
computationally indistinguishable to A’s output from a real execution. However, by the definition
of A, this output contains Ã’s view of an execution of Π̃. Furthermore, Ã’s view fully defines which
honest parties in an execution of Π̃ output ⊥ and which receive their output. In particular, if Ã sent
a ⊥ message before the last blank round, then all honest parties abort (and J = φ). Otherwise, all
parties receive output except for those receiving ⊥ messages in the last blank round. Therefore, S̃
examines this view and defines the set J accordingly.9 Once J is defined, S̃ sends it to the trusted
party and halts. This completes the description of S̃.

We now wish to show that the output of an ideal execution with abort and no fairness with adversary
S̃ is computationally indistinguishable to the output of a real execution of Π̃ with Ã. We begin
by showing an analog to Eq. (1) in the ideal model. That is, we show that the outputs of parties
not outputting ⊥ in an execution of Π̃ are the same in an ideal execution (by Def. 2) with S and
in an ideal execution (by Def. 5) with S̃. Before claiming this formally, we introduce the following

9This is the point in the proof where we need the original protocol to be such that all parties terminate simulta-
neously. Actually, it suffices that each party defines its output at a fixed and predetermined point. However, in such
a case, simultaneous termination can anyway be achieved.
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notation. Let ideal
(α)

f,I,S̃(z,r)
(x) denote the output of an ideal execution (by Definition α) with

input series x and where the ideal model adversary S̃’s auxiliary input and random tape equal z

and r, respectively. Furthermore, for any subset J ⊆ [n], let ideal
(α)

f,I,S̃(z,r)
(x)|J be the restriction

of ideal
(α)

f,I,S̃(z,r)
(x) to the output of S̃ and the parties in J . Finally, let J = JS̃(z,r)(x) be the set

of parties in the ideal execution with S̃ who do not output ⊥ (this set is a deterministic function
of z, r and x), and let JS̃(z)(x) denote the associated random variable when r is chosen uniformly.

Now, we claim that for every set I, every auxiliary input z and random tape r (for S or S̃), and
every set of inputs x,

ideal
(5)

f,I,S̃(z,r)
(x)|JS̃(z,r)(x)= ideal

(2)
f,I,S(z,r)(x)|JS̃(z,r)(x) (2)

where S and S̃ are invoked with auxiliary input z and random-tape r. In order to see that Eq. (2)
holds, notice the following. First, S̃ (upon auxiliary input z, random tape r and inputs {xi}i∈I)
sends exactly the same inputs to the trusted party as S does (upon auxiliary input z, random tape
r and inputs {xi}i∈I). Next, the outputs of all honest parties not outputting ⊥ are fixed by x and
the inputs sent to the trusted party by the simulators S or S̃. Therefore, if S and S̃ send the same
inputs, it follows that all parties not outputting ⊥ have exactly the same output. In addition, S̃
outputs exactly the same string that S outputs. Eq. (2) therefore follows.

By assumption, Π is computationally t-secure with unanimous abort and partial fairness. It
therefore holds that for every set I ⊂ [n] such that |I| < t, and for every set J ⊆ [n]

{
ideal

(2)
f,I,S(z)(x)|J

}
x,z

c≡
{
realΠ,I,A(z)(x)|J

}
x,z

Next, notice that the sets JS̃ and JÃ are fully defined given Ã and S̃’s outputs respectively. (Recall
that JS̃ equals the set of parties not outputting ⊥ in an ideal execution with S̃, and JÃ equals the
set of parties not outputting ⊥ in a real execution of Π̃ with Ã.) Furthermore, by the definitions
of A and S, it follows that their outputs also fully define JS̃ and JÃ. Therefore, JS̃ (resp., JÃ) is
part of the global output ideal (resp., real). This implies that,

{
ideal

(2)
f,I,S(z)(x)|JS̃(z)(x)

}
c≡

{
realΠ,I,A(z)(x)|JÃ(z)(x)

}
(3)

(Otherwise, we could distinguish ideal
(2)
f,I,S(z)(x) from realΠ,I,A(z)(x) by considering the restriction

to JS̃ or to JÃ, respectively.) Combining Eq. (3) with Equations (1) and (2), we have that
{
ideal

(5)

f,I,S̃(z)
(x)|JS̃(z)(x)

}
c≡

{
realΠ̃,I,Ã(z)(x)|JÃ(z)(x)

}

It remains to show that the entire output distributions (including the honest parties not in J) are
computationally indistinguishable. However, this is immediate, because for every party Pi for which
i 6∈ J , it holds that Pi outputs ⊥ (this is true for both the real and ideal executions). Therefore,

{
ideal

(5)

f,I,S̃(z)
(x)

}
c≡

{
realΠ̃,I,Ã(z)(x)

}

completing the proof of Lemma 4.1.

Recall that our aim is to show the security of the compiled protocol Π′ (and not Π̃). However,
intuitively, there is no difference between Π̃ and Π′. The reason is as follows: the only difference

24



between Π′ and Π̃ is that in Π′ the adversary can cause a party Pi to receive ⊥ in a broadcast
with abort execution. Now, when this happens, Pi sends ⊥ to all honest parties in the next blank
round of Π′. However, the adversary for Π̃ can just send ⊥ itself to all the honest parties in the
next blank round. The same effect is therefore achieved. Formally:

Lemma 4.2 Let Π be any protocol in the broadcast model and let Π̃ be the transformation of Π as
described in Lemma 4.1. Then, for every real-model adversary A′ for Π′ of Construction 3, there
exists a real-model adversary Ã for Π̃, such that for every I ⊂ [n] with |I| < t,

{
realΠ̃,I,Ã(z)(x)

}
≡

{
realΠ′,I,A′(z)(x)

}

Proof: We begin by describing the adversary Ã. Intuitively, Ã works by simulating the executions
of broadcast with abort for A′. If a party receives ⊥ in Π′ (in a broadcast with abort execution or
in a blank round), then Ã sends the appropriate ⊥ messages in a blank round of Π̃. This strategy
works because in Π′, a party’s output is the same if it receives ⊥ in a broadcast with abort execution
or in the blank round that immediately follows it. Formally, adversary Ã invokes A′ and in every
round of the execution of Π̃ works as follows:

1. Receiving messages in rounds r, r + 1: Ã receives the broadcast and point-to-point messages
from the honest parties in Π̃. For every message broadcast by an honest party, Ã simulates
a “broadcast with abort” execution, playing the honest parties’ roles (where A′ plays the
corrupted parties’ roles). In addition, Ã forwards any point-to-point messages unchanged to
A′.

2. Sending messages in round r, r+1: Ã plays the honest parties’ roles in “broadcast with abort”
executions, in which A′ broadcasts messages to the honest parties. Consider a particular
execution in which a corrupted party P plays the dealer. If all the honest parties receive
⊥ in this execution, then Ã broadcasts nothing in Π̃. However, if at least one honest party
outputs a message m, then Ã broadcasts m. As before, point-to-point messages are forwarded
unchanged.

3. Blank round following round r+1: If an honest party Pi receives⊥ in the simulated “broadcast
with abort” execution of rounds r and r + 1, then Ã sends ⊥ to all the honest parties in this
blank round.

At the conclusion of the execution, Ã outputs whatever A′ does. This completes the description
of Ã. The fact that Ã perfectly simulates an execution of Π′ with A′ follows directly from the
definition of Π′. That is, the only difference between Π̃ and Π′ is that in Π′ the broadcast channel
is replaced by broadcast with abort. This means that some parties may receive ⊥ instead of the
broadcasted message. However, in this case, Ã knows that this event occurred and can send ⊥ to
all the honest parties in the following blank round, as would occur in an execution of Π′. The key
point is that in Π′ it makes no difference to an honest parties if it received ⊥ in a broadcast with
abort execution or in the following blank round. We conclude that the outputs of all the honest
parties and Ã in Π̃, are identically distributed to the outputs of the honest parties and A′ in Π′.
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Concluding the proof of Theorem 1: Let A′ be an adversary attacking Π′. By Lemma 4.2, we
have that there exists an adversary Ã attacking Π̃ such that the output distributions of Π′ with A′,
and Π̃ with Ã are identical. Then, by Lemma 4.1, we have that for every real-model adversary Ã
for Π̃, there exists an ideal-model simulator S̃ such that the output distribution of a real execution
with Ã is computationally indistinguishable (or statistically close) to an ideal execution with abort
and no fairness with S̃ . We conclude that the output distribution of a real execution of Π′ with
adversary A′ is computationally indistinguishable (or statistically close) to an ideal execution with
abort and no fairness with S̃. That is, Π′ is t-secure with abort and no fairness, as required.

The complexity of protocol Π′: We remark that the transformation of Π to Π′ preserves the
round complexity of Π. In particular, the number of rounds in Π′ equals exactly 3 times the number
of rounds in Π. Regarding the communication complexity (i.e., bandwidth), this is the same in
Π and Π′ except for the cost incurred in simulating the broadcast channel. Notice that in the
“broadcast with abort” protocol, if a dealer sends a k-bit message, then the total bandwidth equals
n · k. (If the dealer cheats and sends “long” messages, then the bandwidth is upper-bound by
the length of the longest acceptable message times n.) Therefore, the number of bits sent in an
execution of Π′ is at most n times that sent in an execution of Π.

5 Secure Computation with Abort and Partial Fairness

In this section we show that for any functionality f , there exists a protocol for the computational
t-secure computation of f with abort and partial fairness, for any t (assuming the existence of
trapdoor permutations). Furthermore, for any functionality f , there exists a protocol for the
information-theoretic n/2-secure computation of f with abort and partial fairness (and without
any complexity assumptions).

Outline: We begin by motivating why the strategy used in Section 4 to obtain secure computation
with abort does not provide partial fairness. The problem lies in the fact that due to the use of
a “broadcast with abort” protocol (and not a real broadcast channel), the adversary can disrupt
messages that are broadcast by honest parties. Now, in the definition of security with abort and
partial fairness, once an honest P1 receives its output, all honest parties must receive their output.
Therefore, the adversary must not be allowed to disrupt the communication following the time that
an honest P1 receives its output. If broadcast is utilized in the remainder of the protocol (as is
indeed the case for known protocols), then the adversary will be able to disrupt the communication
and prevent all other honest parties from receiving output.

We solve this problem here by having the parties compute a different functionality. This func-
tionality is such that once P1 gets its output, it can supply all the other parties with their output
directly and without broadcast. Of course, this functionality must not reveal anything about the
other parties’ outputs to P1. As a first attempt, consider what happens if instead of computing the
original functionality f , the parties first compute the following:

First attempt:

Inputs: x = (x1, . . . , xn)
Outputs:

• Party P1 receives its own output f1(x). In addition, for every i > 1, it receives
ci = fi(x)⊕ ri for a uniformly distributed ri.

• For every i > 1, party Pi receives the string ri.
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That is, for each i > 1, party Pi receives a random pad ri and P1 receives an “encryption” of fi(x)
with that random pad. Now, assume that the parties use a protocol that is secure with abort and no
fairness in order to compute this new functionality. Then, there are two possible outcomes to such
a protocol execution: either all parties receive their prescribed output, or at least one honest party
receives ⊥. In the case that at least one honest party receives ⊥, this party can notify P1 who can
then immediately halt. The result is that no parties, including the corrupted ones, receive output
(if P1 does not send the ci values, then the parties only obtain ri which contains no information on
fi(x)). In contrast, if all parties received their prescribed output, then party P1 can send each party
Pi its encryption ci, allowing it to reconstruct the output by computing fi(x) = ci ⊕ ri. The key
point is that the adversary is unable to prevent P1 from sending these ci values and no broadcast
is needed in this last step. Of course, if P1 is corrupted, then it will learn all the corrupted parties’
outputs first. However, under the definition of partial fairness, this is allowed.

The flaw in the above strategy arises in the case that P1 is corrupted. Specifically, a corrupted
P1 can send the honest parties modified values, causing them to conclude with incorrect outputs.
This is in contradiction to what is required of secure computation. Therefore, we modify the
functionality that is computed so that a corrupted P1 is unable to cheat. In particular, the aim is
to prevent the adversary from modifying ci = fi(x)⊕ ri without Pi detecting this modification. If
the adversary can be restrained in this way, then it can choose not to deliver an output; however,
any output delivered is guaranteed to be correct. The above-described aim can be achieved using
standard (information-theoretic) authentication techniques, based on pairwise independent hash
functions. That is, let H be a family of pairwise independent hash functions h : {0, 1}k → {0, 1}k.
Then, the functionality that the parties compute is as follows:

Functionality F :

Inputs: x = (x1, . . . , xn)

Outputs:

• Party P1 receives its own output f1(x). In addition, for every i > 1, it receives
ci = fi(x) ⊕ ri for a uniformly distributed ri, and ai = hi(ci) for hi ∈R H.
(Note, P1 receives ai but not the function description hi.)

• For every i > 1, party Pi receives the string ri and the description of the hash
function hi.

Notice that as in the first attempt, P1 learns nothing of the output of any honest Pi (since fi(x)
is encrypted with a random pad). Furthermore, if P1 attempts to modify ci to c′i in any way, then
the probability that it will generate the correct authentication value a′i = hi(c′i) is at most 2−k (by
the pairwise independent properties of hi). Thus, the only thing a corrupt P1 can do is refuse to
deliver the output. We now formally prove the above:

Theorem 4 For any probabilistic polynomial-time n-ary functionality f , there exists a protocol
in the point-to-point model for the computational t-secure computation of f with abort and par-
tial fairness, for any t. Furthermore, there exists a protocol in the point-to-point model for the
information-theoretic n/2-secure computation of f with abort and partial fairness.

Proof: We begin by describing the protocol for computing f , as motivated above.
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Protocol 4 (protocol for secure computation with abort and partial fairness for any f):

1. Stage 1 – computation: The parties use any protocol for secure (computational or information-
theoretic) computation with abort and no fairness in order to compute the functionality F
defined above.10 Thus, P1 receives f1(x) and a pair (ci, ai) for every i > 1, and each Pi

(i > 1) receives (ri, hi) such that ci = fi(x)⊕ ri and ai = hi(ci).

2. Stage 2 – blank round: After the above protocol concludes, a blank-round is added so that if
any party receives ⊥ for its output from Stage 1, then it sends ⊥ to P1 in this blank round.

3. Stage 3 – outputs: If P1 received any ⊥-messages in the blank round, then it sends ⊥ to
all parties and halts outputting ⊥. Otherwise, for every i, it sends (ci, ai) to Pi and halts,
outputting f1(x).

Party Pi outputs ⊥ if it received ⊥ from P1 (it ignores any ⊥ it may receive from other
parties). If it received (ci, ai) from P1 (and not ⊥), then it checks that ai = hi(ci). If yes, it
outputs fi(x) = ci ⊕ ri. Otherwise, it outputs ⊥.

Intuitively, the security of Protocol 4 with abort and partial fairness is derived from the fact that
Stage 1 is run using a protocol that is secure with abort (even though it has no fairness property).
Consider the two cases regarding whether or not P1 is corrupted:

1. P1 is corrupt: in this case, A receives all the outputs of the corrupted parties first. Fur-
thermore, A can decide exactly which parties to give output to and which not. However,
this is allowed in the setting of secure computation with abort and partial fairness, and so is
fine. We stress that A cannot cause an honest party to output any value apart from ⊥ or its
correct output. This is because the authentication properties of pairwise independent hash
functions guarantee that A does not modify ci, and the correctness of the protocol of Stage 1
guarantees that ci ⊕ ri equals the correct output fi(x).

2. P1 is honest: there are two possible cases here; either some honest party received ⊥ in the
computation of Stage 1 or all honest parties received their correct outputs. If some honest
party received ⊥, then this party sends ⊥ to P1 in Stage 2 and thus no parties (including the
corrupted parties) receive output. (Similarly, if A sends ⊥ to P1 in Stage 2 then no parties
receive output.) In contrast, if all honest parties received their outputs and A does not send
⊥ to P1 in Stage 2, then all parties receive outputs and the adversary cannot cause any honest
party to abort. We therefore have that in this case complete fairness is achieved, as required.

In order to formally prove the security of the protocol, we use the sequential composition theorem
of [8]. This theorem states that we can consider a model which is a hybrid of the ideal and real
models. In this hybrid model, the parties all interact with a trusted party for the computation of
Stage 1 (where the ideal model for this computation is that of secure computation with abort and
no fairness). Then, Stages 2 and 3 take place as in a real execution. The result is a protocol that is
a hybrid of real and ideal executions. In order to prove the security of the (real) protocol, it suffices
to construct an ideal-model simulator for the hybrid protocol. Thus, the description of the parties
and adversary below relate to this hybrid model (the parties send messages to each other, as in a

10By Corollaries 2 and 3 in Section 4, appropriate protocols exist. That is, information-theoretic secure protocols
exist for t < n/2. Furthermore, assuming the existence of trapdoor permutations, computational secure protocols
exist for any t.
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real execution, and to a trusted party, as in an ideal execution). The proof of [8] is stated for secure
computation without abort (and complete fairness); however it holds also for secure computation
with abort and no fairness.

Let A be an adversary attacking Protocol 4 in the above-described hybrid model. We construct
an adversary S who works in the ideal model for f with abort and partial fairness. S internally
incorporates A and simulates the hybrid execution for A. Therefore, S has external communication
with the trusted party of its ideal model and internal, simulated communication with the adversary
A. In our description of S, we differentiate between the cases that P1 is corrupt and P1 is honest:

1. P1 is corrupt: S invokes A and receives the inputs that A intends to send to the trusted party
of the hybrid model. Then, S externally sends these inputs unmodified to the trusted party
of its ideal model for computing f . If the inputs are not valid, then in the hybrid model all
parties receive ⊥ as output. Therefore, S internally hands ⊥ to A as its output from Stage 1
and simulates all honest parties sending ⊥ in Stage 2 (as would occur in a hybrid execution).
S then halts, outputting whatever A does. Otherwise, if the inputs are valid, S receives all
the corrupted parties outputs {fi(x)}i∈I (this is the case because S controls P1 and by partial
fairness, when P1 is corrupt the adversary receives the corrupted parties’ outputs first). S
then constructs the corrupted parties’ outputs from Stage 1 that A expects to see in the
hybrid execution. S defines P1’s output as follows: First, P1’s personal output is f1(x). Next,
for every corrupted party Pi, party P1’s output contains the pair (ci = fi(x) ⊕ ri, hi(ci)) for
ri ∈R {0, 1}k and hi ∈R H. Finally, for every honest party Pj , party P1’s output contains
a pair (cj , aj) where cj , aj ∈R {0, 1}k. This defines P1’s output. We now define how S
constructs the other corrupted parties’ outputs: for every corrupted Pi, simulator S defines
Pi’s output to equal (ri, hi) where these are the values used in preparing the corresponding
pair (ci, hi(ci)) in P1’s output. (We note that S can prepare these values because it knows
fi(x) for every corrupted party Pi.) S then internally passes A all of these outputs. In the
hybrid model, after receiving the outputs from Stage 1, A sends a set J ′ to the trusted party
instructing it to give outputs to the parties specified in this set (all other parties receive ⊥).
S obtains this set J ′ from A and records it.

S continues by simulating Pl sending ⊥ to P1 in the blank round, for every honest party Pl for
which l 6∈ J ′ (as would occur in a hybrid execution). Then, in the last stage, A (controlling
P1) sends to each honest party Pj a pair (c′j , a

′
j) or ⊥. S receives these strings and defines

the set of parties J to receive outputs to equal those parties in J ′ to whom A sends the same
(cj , aj) that S gave A in Stage 1. (These are the parties who do not see ⊥ in the execution
and whose checks of Stage 3 succeed; they therefore do not abort.) S concludes by externally
sending J to the ideal-model trusted party and outputting whatever A does.

2. P1 is honest: In this case, S begins in the same way. That is, S invokes A and receives the
inputs that A intends to send the trusted party of the hybrid model. However, unlike in the
previous case, S does not forward these inputs to its trusted party; rather it just records
them.11 (If any of these inputs are invalid, then S internally sends ⊥ to all corrupted parties,
externally sends invalid inputs to the trusted party and halts. In the sequel, we assume that
all inputs sent by A are valid.) Now, A expects to receive outputs from Stage 1 before it sends
the trusted party the set J ′ of honest parties receive output from Stage 1. However, S does
not have the corrupted parties’ outputs yet. Fortunately, when P1 is not corrupted, S can

11S cannot forward the inputs to the trusted party yet, because in the model of partial fairness as soon as it does
this all parties receive output. However, in the execution of Protocol 4, A can cause the execution to abort at a later
stage.
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perfectly simulate the corrupted parties outputs from Stage 1 by merely providing them with
(ri, hi) where ri ∈R {0, 1}k and hi ∈R H. After internally passing A the simulated corrupted
parties’ outputs, S obtains a set J ′ from A, instructing the trusted party of the hybrid model
which parties should receive output.

S continues by simulating Stages 2 and 3 of the protocol. As above, S simulates every honest
party Pl for which l 6∈ J ′ sending ⊥ to P1 in Stage 2. Furthermore, S obtains any messages
sent by A in this stage. If A sends ⊥ to P1 in Stage 2, then S simulates P1 sending ⊥ to all
parties, sends invalid inputs to the trusted party and halts. Likewise, if J ′ does not contain
all the honest parties, then S internally simulates P1 sending ⊥ to all the corrupted parties,
and externally sends invalid inputs to the trusted party. (These cases correspond to the case
that no parties receive their prescribed output.)

In contrast, if J ′ contains all the honest parties (i.e., no honest party received ⊥ from Stage 1)
and A did not send ⊥ to P1 in Stage 2 of the simulation, then S externally sends the trusted
party the inputs that it recorded from A above, receiving back all of the corrupted parties
outputs {fi(x)}i∈I . Then, for each corrupted party’s output fi(x), simulator S generates
the pair that corrupted Pi would see in a hybrid execution. In particular, previously in the
simulation S provided Pi with a pair (ri, hi) where ri ∈R {0, 1}k and hi ∈R H. Now, S
simulates P1 sending corrupted party Pi the pair (ci, ai) where ci = fi(x)⊕ ri and ai = hi(ci).
(S can do this because it knows the random-pad ri and the hash function hi.) Finally, S
outputs whatever A does and halts.

The fact that the global output in the ideal execution with S is identically distributed to the global
output in a hybrid execution with A is derived from the following observations. First, A’s outputs
from Stage 1 can be perfectly simulated, both when P1 is corrupt and when P1 is honest. Second,
the honest parties’ messages in Stage 2 can be perfectly simulated given only the set J ′ sent by
A to the hybrid-model trusted party in the ideal execution of Stage 1. Therefore, A’s view in the
hybrid-model execution is identical to its view in a real execution. It remains to show that the
honest parties’ outputs are also correctly distributed.

First, consider the case that P1 is corrupt. In this case, with overwhelming probability, the
set of honest parties receiving output in the real model are exactly those parties Pj for whom
P1 (controlled by A) sends the exact pair (cj , aj) that it received as output from Stage 1 (and
who did not see ⊥ at any time in the execution). This is due to the authentication properties of
pairwise independent hash functions. Likewise, in the ideal-model simulation, S designates these
same parties to be the ones receiving output. Therefore, except with negligible probability, the set
J sent by S to the trusted party contains exactly those parties who would receive output in a real
execution.

Next, consider the case that P1 is honest. In this case, all parties receive output unless P1 sees
⊥ in Stage 2. This can happen if A sends P1 such a value, or if any honest party received ⊥ from
Stage 1. Both of these cases are detected by S in the hybrid-model simulation, and therefore the
case that all parties abort in the hybrid model corresponds to this case in the real model (and
likewise for the case that all parties receive output). This completes the proof of Theorem 4

6 Obtaining Security Under Composition

As we have discussed, one of our main aims in removing the reliance on a broadcast channel in secure
protocols was to remove the obstacle that such a channel poses when security under composition is
considered. (Of course, achieving secure computation without a trusted setup phase, as needed for
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authenticated Byzantine Agreement, is also of importance. However, the possibility of obtaining
secure protocols that compose was unknown, even assuming a trusted setup phase.) In this section
we informally discuss the ramifications of our results on protocol composition. We consider both
parallel composition (for the case of no honest majority) and concurrent composition (when there
is an honest majority). The type of composition that we consider here is where the same protocol
is run by the same set of parties many times. Furthermore, each party plays the same role in
each execution (as in zero-knowledge where the same party plays the prover in all executions and
likewise for the verifier).

As we have shown, the protocol compiler of Construction 3 is such that the only difference
between the original protocol that uses a broadcast channel and the resulting protocol that uses
only point-to-point channels is with respect to the unanimity of abort. The formal proof of this
fact was demonstrated in the stand-alone model only. However, it is not hard to see that all the
claims also go through in the setting of composition. Therefore, it suffices to demonstrate the
existence of protocols in the broadcast model that remain secure under composition in order to
derive the existence of analogous protocols in the point-to-point network model. The presentation
here is very informal; in particular, we do not even formally define what is meant by security under
composition. We now present the results:

Concurrent composition for t < n/2. The broadcast-model protocol of [37] for the information-
theoretic n/2-secure computation of any functionality has been shown to compose concurrently [9].12

Therefore, by applying the protocol compiler of Construction 3 to the protocol of [37], we obtain a
protocol that provides information-theoretic n/2-secure computation (with abort and no fairness)
in the point-to-point model, and remains secure under concurrent composition. Next, using the
transformation in the proof of Theorem 4, we obtain an analogous protocol with abort and partial
fairness.13

Parallel composition for t ≥ n/2. A variant of the protocol of [27] for the broadcast model
can be shown to compose in parallel. Specifically, consider a variant of [27] where the only rewind-
ing that is carried out by the ideal-model simulator is in simulating zero-knowledge proofs and
extracting witnesses from proofs of knowledge (we note that the protocol as described in [24] has
this property). Then, if the zero-knowledge proofs and proofs of knowledge that are used are such
that they remain secure under parallel composition, it follows that the entire secure protocol com-
poses in parallel. It remains to demonstrate the existence of zero-knowledge proofs and proofs of
knowledge that compose in parallel. The fact that there exist zero-knowledge proofs that compose
in parallel was proven in [25]. In contrast, we do not know of any published theorem stating the ex-
istence of a zero-knowledge proof of knowledge that composes in parallel (i.e., for which knowledge
extraction succeeds even in the setting of parallel composition). Nevertheless, it is not difficult
to show that the knowledge extractors for standard zero-knowledge proofs of knowledge of NP
(e.g., [6, 26]) succeed under parallel composition. Given this observation, it is possible to obtain
zero-knowledge proofs of knowledge for which both the simulation and extraction succeed under
parallel composition. This can be achieved using ideas from the protocol of [17, 16] (where the only
rewinding carried out by the simulator is in running a knowledge extractor). We thus conclude

12Actually, this claim does not yet have an accompanying proof.
13We remark that Theorem 4 actually provides a transformation of any generic secure protocol. That is, any generic

protocol for the broadcast model that is secure with abort and no fairness can be transformed into a general protocol
for the point-to-point model, where the resulting protocol is secure with abort and partially fair. The theorem was
not stated in this way so that it would not be overly cumbersome.
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that in the broadcast model, there exist secure protocols for t ≥ n/2 that compose in parallel. By
applying Construction 3 and the transformation in the proof of Theorem 4 to such protocols, we
obtain secure protocols with abort and partial fairness in the point-to-point model that compose
in parallel.

We remark that it is currently unknown whether or not concurrent composition can be achieved
for the case of t ≥ n/2 (irrespective of the use of a broadcast channel).

Universal composability for any t. In Section 3.2, we showed that the ideal broadcast func-
tionality can be securely realized in the framework of universal composability. Recall that in this
framework, a completely asynchronous point-to-point network is considered and output delivery is
not guaranteed. We now apply Proposition 3.2 (proven in Section 3.2) in order to obtain universally
composable secure computation without a broadcast channel.

We first consider the scenario where a majority of the parties are honest, but this majority
may be less than 2/3 (i.e., n/3 ≤ t < n/2). For this range of corruptions, [9] (building on [37])
showed that universally composable protocols exist for any functionality, assuming that the parties
are given access to an ideal broadcast functionality. Combining this with Proposition 3.2 we have
that universally composable protocols exist for any functionality in the point-to-point model.

Next, we consider the setting of an honest minority. In this setting, universal composability
cannot be achieved in the plain model [10, 9]. Nevertheless, it has been shown that in the common
reference string model,14 it is possible to securely compute any functionality in an asynchronous
network with a broadcast channel [13]. Therefore, by combining this with Proposition 3.2, we obtain
universally composable protocols for any multi-party functionality in an asynchronous point-to-
point network augmented by a common reference string. We remark that the lower bound of [33]
with respect to the composition of authenticated Byzantine agreement holds also in the common
reference string model.

We conclude by noting that the above results on the composition of secure protocols are incom-
parable. On the one hand, the notion of composition considered in the framework of universal
composability is very strong. In particular, it guarantees security when a protocol is run concur-
rently with arbitrary other protocols and arbitrary sets of parties. However, this result requires a
common reference string to achieve. On the other hand, the type of composition discussed first is
rather weak and only considers the case of the same protocol being run many times by a single set
of parties. Furthermore, for the case of t ≥ n/2, only parallel composition is obtained.
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A An Overview of the Universal Composition Framework

In this appendix we provide a brief overview of the framework of universal composability; for more
details see [9]. The framework provides a rigorous method for defining the security of cryptographic
tasks, while ensuring that security is maintained under a general composition operation in which a
secure protocol for the task in question is run in a system concurrently with an unbounded number
of other arbitrary protocols. This composition operation is called universal composition, and tasks
that fulfill the definitions of security in this framework are called universally composable (UC).

As in other general definitions (e.g., [28, 34, 2, 8]), the security requirements of a given task
(i.e., the functionality expected from a protocol that carries out the task) are captured via a set
of instructions for a “trusted party” that obtains the inputs of the participants and provides them
with the desired outputs (in one or more iterations). We call the algorithm run by the trusted
party an ideal functionality. Informally, a protocol securely carries out a given task if any adversary
can gain nothing more from an attack on a real execution of the protocol, than from an attack on
an ideal process where the parties merely hand their inputs to a trusted party with the appropriate
functionality and obtain their outputs from it, without any other interaction. In other words, we
require that a real execution can be emulated in the above ideal process (where the meaning of
emulation is described below). We stress that in a real execution of the protocol, no trusted party
exists and the parties interact amongst themselves only.

In order to prove the universal composition theorem, the notion of emulation in this framework
is considerably stronger than in previous ones. Traditionally, the model of computation includes
the parties running the protocol, plus an adversary A that controls the communication channels
and potentially corrupts parties. Emulation means that for any adversary A attacking a real
protocol execution, there should exist an “ideal process adversary” or simulator S, that causes the
outputs of the parties in the ideal process to be essentially the same as the outputs of the parties in a
real execution. In the universally composable framework, an additional adversarial entity called the
environment Z is introduced. This environment generates the inputs to all parties, reads all outputs,
and in addition interacts with the adversary in an arbitrary way throughout the computation. (As
is hinted by its name, Z represents the external environment that consists of arbitrary protocol
executions that may be running concurrently with the given protocol.) A protocol is said to securely
realize a given ideal functionality F if for any “real-life” adversary A that interacts with the protocol
there exists an “ideal-process adversary” S, such that no environment Z can tell whether it is
interacting with A and parties running the protocol, or with S and parties that interact with F in
the ideal process. (In a sense, here Z serves as an “interactive distinguisher” between a run of the
protocol and the ideal process with access to F . See [9] for more motivating discussion on the role
of the environment.) Note that the definition requires the “ideal-process adversary” (or simulator)
S to interact with Z throughout the computation. Furthermore, Z cannot be “rewound”.
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The following universal composition theorem is proven in [9]: Consider a protocol π that operates
in a hybrid model of computation where parties can communicate as usual, and in addition have
ideal access to an unbounded number of copies of some ideal functionality F . (This model is
called the F-hybrid model.) Furthermore, let ρ be a protocol that securely realizes F as sketched
above, and let πρ be the “composed protocol”. That is, πρ is identical to π with the exception
that each interaction with the ideal functionality F is replaced with a call to (or an activation of)
an appropriate instance of the protocol ρ. Similarly, ρ-outputs are treated as values provided by
the functionality F . The theorem states that in such a case, π and πρ have essentially the same
input/output behavior. Thus, ρ behaves just like the ideal functionality F , even when composed
with an arbitrary protocol π. A special case of this theorem states that if π securely realizes some
ideal functionality G in the F-hybrid model, then πρ securely realizes G from scratch.

The standard network model considered for this framework is one where the adversary sees all
the messages sent, and delivers or blocks these messages at will. Note that although the adversary
may block messages, it cannot modify messages sent by honest parties (i.e., the communication
lines are ideally authenticated). Thus, real executions take place in an ideally authenticated asyn-
chronous network. However, unlike other ideal model definitions, the adversary also delivers (or
blocks) messages between the honest parties and the trusted party/ideal functionality. Among
other things, this implies that output delivery is not guaranteed and that there is no fairness.
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