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14.1 Introduction

A plethora of mutually beneficial information collaboration opportunities exist when organizations
and individuals share information. Some examples of such collaborations include (1) hospitals
sharing information about patients with a rare disease in order to develop better treatments; (2)
suppliers and retailers sharing their holding costs, inventory on hand, and other supply-chain
information in order to reduce their costs; and (3) finding interorganization purchase patterns by
sharing customer records to perform collaborative data mining. Clearly, there are many potential
benefits, both monetary and societal, for such collaborations, however, one significant drawback is
concerns about confidentiality and privacy that are associated with sharing information. Returning
to the examples above, sensitivity concerns include (1) patients’ information is private and theremay
be lawspreventing such sharing of information (e.g., in theUnited States,HIPAArestricts the sharing
of medical information); (2) the supplier and retailer may be concerned that their cost information
could be used against them in a future interaction; and (3) sharing customers’ information may
violate the customers’ privacy. Thus, while significant benefit may result from such collaborations,
these collaborations may not occur due to privacy and confidentiality concerns.
Secure protocols (also called privacy-preserving or confidentiality-preserving protocols) are cryp-

tographic techniques that obtain the result of information collaboration while preserving privacy
and confidentiality. More specifically, secure protocols are cryptographic techniques for computing
functions (i.e., collaboration outcomes) over distributed inputs while revealing only the result of
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the function. Thus, secure protocols are a way to have the best of both worlds—we can obtain the
benefit of collaboration without the drawback of revealing too much information. While this may
seem like an intractable goal for many problems, there have been many general results which state,
under various assumptions, that any function computable in polynomial time can also be computed
securely with polynomial communication and polynomial computation. The problem of computing
any function in a secure manner is called secure multiparty computation (SMC).
This chapter provides a description of techniques for building secure protocols from an applied

standpoint. That is, this chapter is not an exhaustive description of SMC techniques, but rather this
chapter describes a few key building blocks that facilitate the creation of several secure protocols.
For the reader that is interested in a formal description of cryptographic primitives and SMC we
refer you to [15,16]. The rest of this chapter is organized as follows: in Section 14.2 secure protocols
are defined more formally. Section 14.3 presents a survey of known results for secure protocols.
Section 14.4 describes practicality problems for the general SMC results along with methods that
help overcome these problems. In Sections 14.5 through14.7 several specific techniques for two-party
secure protocols are described, and in Section 14.8 we summarize this chapter.

14.2 What Is a “Secure” Protocol?

Before describing techniques for “secure” protocols, one must define what is meant by “secure.”
Before formally defining this notion, we provide some intuition into the definition. One trivial way
to securely compute any function is for all parties to send their input to a fully trusted third party
(TTP), and this TTP then computes the desired result and sends the output of the function to each
party. Obviously, it is unlikely that such a TTP exists, but this protocol achieves the best possible
outcome—that is, the only information revealed about inputs is the output of the protocol and
inferences that can be made from this output along with one or more inputs.∗ Thus a protocol is
considered “secure” if it is no worse than the above-described TTP protocol. More specifically, a
secure protocol is a protocol that reveals only the result of the function and inferences that can be
deduced from this output with one or more input values.
The following is a simple example of a secure protocol that helps clarify the above intuition.

Suppose N people are sitting around a table lamenting that they are vastly underpaid; to help justify
their complaints, this group has a genuine interest in finding the mean salary of everyone at the
table, but due to privacy concerns, they do not want to reveal individual salaries to the group. Now
if there are only two people at the table, then when given the result (i.e., the average salary) and one
person’s salary, one can deduce the other person’s salary. Thus for N = 2 a secure protocol is as
simple as having both parties reveal their salaries to each other, because one party’s value can be
deduced from the result and the other input. However, when N ≥ 3, such exact inferences cannot
be made, so a more complicated protocol is needed.
One way to compute the average salary (for N ≥ 3) is as follows. The first person chooses a

random number R from a range of values much larger than the range of salaries. This person adds
his salary to R, writes the result on a slip of paper, and then passes this piece of paper to the next
person at the table. When this person receives the slip of paper, he adds his salary to the value on the
paper, writes down the new sum on a different piece of paper, destroys the original piece of paper,
and passes the new paper to the person next to him. The paper passing continues until everyone
has incorporated their salary into the sum. After everyone has had a turn, the final piece of paper is
passed back to the first person. The first person then subtracts R from the sum to learn the sum of
everyone’s salary. He then divides this sum by the number of people to learn the average salary and
then he reveals the average salary to everyone at the table.

∗ In a multiple party protocol it is possible that participants will collude and share inputs with each other.
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Let us examine the properties of this average salary protocol. By adding a large random value
R to the first person’s salary, this person’s salary is hidden with high probability (furthermore the
probability is controllable by the range from which R is chosen). More generally, assuming that
there is no collusion between members, then all that the ith person learns from the protocol is the
sum of the first i− 1 salaries and R, and since R is chosen from a large range, the sum of the first i− 1
salaries is hiddenwith high probability. Of course, there are some problemswith this protocol: (1) the
protocol is not collusion-resistant—for example, if the 2nd and 4th parties collaborate together, then
they could learn the 3rd party’s salary; (2) the first person can learn the actual result and announce a
different result; and (3) any participant can modify the value that is being passed around the group
to increase or reduce the average.
Clearly, there are different types of adversaries that must be considered when creating secure

protocols. There are two basic types of adversaries that are considered in the SMC literature. The
first adversary type is called an honest-but-curious (HBC) adversary model (also called semi-honest
or passive adversaries). In this adversary model, the adversary will faithfully follow the specified
protocol, but after the protocol has completed it will attempt to learn additional information about
other inputs. While this model is unrealistic in many regards, if an efficient protocol cannot be
developed for this simplified model, then there is little hope that a protocol can be developed for a
more realistic adversary model. The second adversary model is a more realistic adversary model,
and it is often called the malicious or active adversary model. A malicious adversary will deviate
arbitrarily∗ from the protocol in order to gain some advantage over the other participants. The
advantages that an adversary can try to obtain include (1) to learn additional information about
other inputs; (2) to modify the result of the protocol; (3) to abort the protocol prematurely (perhaps
after the adversary learns a partial result it aborts the protocol to prevent others from learning the
results).

14.2.1 Definition of Two-Party HBC Secure Protocols

We are now ready to formalize the above informal definition for two parties in the HBC adversary
model. Recall that a two-party protocol is secure if everything that can be computed from the
protocol can be deduced from the output and one of the input values. To make this more concrete
suppose Alice and Bob are engaging in a protocol to compute a function f . This protocol involves
one or more message exchanges between Alice and Bob; we will call these messages the transcript
of the protocol. It must be shown that the transcript sent from Alice and Bob (and vica versa) does
not reveal too much information. More specifically, the transcript sent from Alice to Bob should be
computable from the result of the protocol and Bob’s inputs, otherwise the protocol would reveal
more information to Bob than the results (a similar statement must be made about the transcript
from Bob to Alice). In the remainder of this section we formalize this definition. The reader that
is already familiar with the cryptographic literature should feel free to skip the remainder of this
section, and we refer the reader that is interested in more details about these definitions to [15,16].
As any cryptographic protocol will fail with some probability (one can always guess the other

party’s inputs), it is necessary to define an acceptable probability threshold for which a protocol is
deemed secure. Clearly, a fixed constant probability is undesirable since an adversary can simply
repeat the attack several times in order to increase the probability. The standard technique used in
the cryptographic literature is the notion of a negligible probability. More specifically, a function
µ(k) is negligible in k if for any polynomial p, for large enough k, µ(k) < 1

p(k) . A protocol is deemed

secure if the adversary’s success probability is negligible in a security parameter. One advantage of

∗ Adversaries are usually modeled as probabilistic-polynomial time adversaries, and this is the only bound placed on
malicious adversaries.
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using a negligible probability is that even if the adversary repeats the attack a polynomial number of
times, the success probability will still be negligible.
As mentioned above, to show that a protocol is secure, it must be shown that the communication

transcript from the protocol can be simulated when given the results and one party’s input. One
way to do this is to require that the communication transcript be exactly generatable from the
output of the protocol, but this is very limiting. However, if the adversary is computationally-
bounded, then it is enough to generate a transcript that is so close to the real transcript that
the adversary cannot distinguish between the real and simulated transcripts. In the cryptographic
literature, this notion of “close enough” is called computational indistinguishability. More formally,
two random probability ensembles {Xn}n∈N and {Yn}n∈N are computationally indistinguishable if
for any probabilistic polynomial time algorithm D the following value is negligible in n:

|Pr[D(Xn, 1
n) = 1] − Pr[D(Yn, 1

n) = 1]|

It is now possible to define a secure two-party protocol in the HBC model. Suppose that Alice
and Bob have respective inputs xA and xB, and that at the end of the protocol Alice should learn
fA(xA, xB) and Bob should learn fB(xA, xB). Note that in many cases fA and fB will be the same
function, but to make the definition as general as possible, it incorporates the possibility that
Alice and Bob will learn different results. Now given a protocol Π, Alice’s view of the protocol
(i.e., all messages she receives from Bob) is denoted by {viewΠ

A (xA, xB)}xA,xB∈{0,1}∗ , and similarly
Bob’s view is denoted by {viewΠ

B (xA, xB)}xA,xB∈{0,1}∗ . The protocol Π is said to be secure in the
HBC model if there exist probabilistic polynomial time simulation algorithms SA and SB, such that
(1) {SA(xA, fA(xA, xB))}xA,xB∈{0,1}∗ and {viewΠ

A (xA, xB)}xA,xB∈{0,1}∗ are computationally indistinguish-
able and (2) {SB(xB, fB(xA, xB))}xA,xB∈{0,1}∗ and {viewΠ

B (xA, xB)}xA,xB∈{0,1}∗ are computationally indis-
tinguishable. To see how this definition matches the intuition from before, this definition states that
an efficient algorithm exists that can simulate all of the messages sent by Bob (resp. Alice) when
given only Alice’s (resp. Bob’s) input and output. Thus anything learned from the protocol must also
be learnable from the result alone, and therefore the protocol reveals only the result and inferences
derived from this result.

14.2.2 Beyond Two-Party and HBC Adversaries

The definition in the previous section can be extended to the malicious adversary model, but as this
definition is quite cumbersome we opt for an informal discussion (we refer the interested reader
to [16] for more details). Reconsider the TTP setting for computing a function securely, while this
protocol is unrealistic it does provide an “ideal” goal for an SMC protocol. That is, a protocol
will be secure if for any attack in the real protocol, there is another attack (with similar adversary
complexity) in the ideal protocol with the TTP. Consider a malicious adversary in the TTP setting,
this adversary can do the following actions: (1) refuse to participate in the protocol; (2) abort the
protocol prematurely; and (3) modify its inputs. A protocol is secure in the malicious model if for
any PPT adversary in the real protocol there is a malicious adversary in the TTP setting that can
achieve the same∗ results. One limitation of the two-party secure computation is fairness of the
protocols, that is, one party will learn its result before the other party and then can stop participating
in the protocol to prevent the other party from obtaining its output. Unfortunately, the impossibility
results in Byzantine agreement [11] imply that fairness is not achievable in two-party computation
(e.g., a strict majority of the parties must be honest).

∗ That is, computationally indistinguishable.



Secure Multiparty Computation 14-5

14.3 Survey of General SMC Results

The first protocol for computing any two-party function securely in the semi-honest model was
proposed in [30], and was later improved in [31] (in the latter we refer to this scheme as Yao’s
scheme), to require only a constant number of communication rounds. The basic idea of this
approach is to build a logical circuit for the function in question, and then to use a secure protocol
to blindly evaluate the circuit (for details on how this is accomplished, see Section 14.5). While
the original scheme did not have a detailed security proof, the scheme was proven secure in [21].
Furthermore, Yao’s scheme has been implemented in the FAIRPLAY system [22], and it was shown
that this scheme is practical for some problems. Several protocols have extended Yao’s system to
make it secure in the malicious model [22,24,29]).
With regards to multiparty computation, it was shown in [17] that as long as a majority of the

participants are honest, it is possible to securely compute any function. In [23] a scheme was given
to securely compute any function in such a model in a constant number of rounds. There have been
several extensions to more sophisticated adversary models, including (but not limited to) adaptive
adversaries that corrupt participants after the protocol has began [5] and secure protocols against
computationally unbounded adversaries [2,6].

14.4 Methods for Practical Secure Protocols

In this section, we consider techniques for making secure protocols practical. Since the general
results of SMC state that there is a secure protocol for any number of participants, a first approach
is to have all participants engage in a secure protocol as depicted in Figure 14.1. Typically, such
schemes require a portion (e.g., a strict majority) of the participants to be honest. These protocols
are robust in that after the initial rounds of such protocols, even when some of the participants
abort the protocol (intentionally or unintentionally) the rest of the participants can still compute the
result. While this natural protocol architecture does allow for secure computation there are several
disadvantages including (1) all participants must be online at the same time which may be difficult
in some environments and (2) for large numbers of participants these protocols are very expensive.
In summary, this architecture works very well for a small number of participants (especially for two
people), but it does not scale well.
To further emphasize theproblemswith this initial architecture consider creating a secure protocol

for an auction system, where several bidders are bidding on an item held by a seller. Clearly,
bidders will want to protect their bid values. In this architecture all of the bidders and the seller
would have to agree upon a fixed time to engage in a protocol to compute the results. In many
auctions this is impractical, because the identities of the bidders is unknown until they make a bid,

Party 3

Party 1

Party 2Party 4

FIGURE 14.1 Example of first

architecture.

and furthermore the number of bidders could make this protocol
impractical.
Thus, for many problems having all participants engage in a

protocol together is unlikely to be practical. One way to mitigate
this problem is formany of the participants to delegate their portion
of the protocol to another party. Of course, participants would not
want to reveal their values to their representatives, but if the inputs
could be split among different representatives so that no small
group of the representatives can learn the values, then this may
be acceptable. In the next section we describe various techniques
for splitting values and then in Section 14.4.2 we formalize this
representative-based architecture.
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14.4.1 Splitting Values

The following are three techniques for splitting a value x among n participants.
Sharing: In sharing approaches all n participants are required to recover the value. One example,

of this approach is that party i has a value xi such that x = x1 ⊕ x2 ⊕ · · · ⊕ xn where ⊕ is XOR.
To split x in such a manner, n − 1 random values are chosen for x1, . . . , xn−1 and xn is set to
x ⊕ x1 ⊕ · · · ⊕ xn−1. Another similar sharing approach is to store x as the sum of n values modulo
some value. That is, the shares of a value x are x1, . . . , xn where x = x1 + x2 + · · · + xn mod N for
some value N.
When given values in a modularly additive split format, then one can perform certain arithmetic

operations on the split values. For example, if two values x and y are split among a group of
participants then without communicating this group can compute x + y (modulo the splitting
modulus) by having each member add up their shares of x and y. Also, a group of participants can
multiply their shared value by a constant by eachmultiplying their individual values by the constant.
Threshold sharing: Another approach to sharing values is to split the values in such a way that t

participants are required to recover the value (t < n). A classic technique for achieving such sharing
is Shamir’s secret sharing [28]. In this approach a t − 1 degree polynomial P is chosen such that
P(0) = x. Furthermore, participant i is given (i,P(i)). Now if any t parties share their values, they can
interpolate their values to recover P and thus learn P(0) (i.e., x). However, t − 1 or less participants
do not have enough information to reconstruct P and thus x is still protected. This is often referred
to as a (t, n) threshold sharing scheme.
Whengiven values split using such a sharing approach, it is possible to performsomemathematical

operations on the values without having the participants communicate. Suppose that values x and y
are split with a (t, n) sharing scheme andwhere each participant’s points have the same x-coordinate.
Then it is possible to compute x + y in a threshold (t, n) simply by having each participant add the
y-coordinates of their points. Furthermore, it is also possible to compute x ∗ y in a (2t, n) shared
manner by having each participant multiply the y-coordinates of their points. Finally, it is trivial to
multiply a (t, n) shared value by a constant and obtain a (t, n) shared value by having each participant
multiply their y-coordinate by the constant.
Encoding/value: Suppose that x ∈ {0, 1} and that n = 2. In this case a specialized form of splitting

is achieved by having one party learn two large random values v0 and v1 and having the other party
learn vi. Thus the first party knows the semantics of the encoding, but does not know the actual
value. On the other hand, the second party knows the encoded value but does not know what it
means. To split a value in this form the party owning x chooses v0 and v1 and sends them to party
one and then sends vx to party two. Of course, this can be extended to ℓ values in a larger range in
a natural way. Furthermore, this idea can be extended to multiple parties by splitting the encodings
among the parties (using either sharing or threshold sharing) and giving all parties the value.

14.4.2 Representative-Based Architectures for SMC

An architecture (formalized in [9]) that increases scalability is to separate the participants into three,
not necessarily mutually exclusive, groups: input servers, computation servers, and output servers.
The input servers split their inputs (using the techniques described in the previous section) among
the computation servers so that no small group of computation servers can recover the inputs. The
computation servers then engage in a secure protocol to compute the results in a split fashion. And
finally, the split results are sent to the output servers who then learn the results. This representative-
based architecture is depicted in Figure 14.2. This architecture mitigates many of the disadvantages
of the original protocol architecture described earlier. That is, the input servers do not all need to be
online at the same time because they can submit their values to the computation servers and then go
offline. Furthermore, the number of computation servers is typically much smaller than the number
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Computation
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server 2
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Party 2
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Split input Split outputSecure

protocol

FIGURE 14.2 Example of representative-based architecture.

of input servers, and thus this approach is more scalable. The downside of this representative-based
approach is that this usually requires some level of trust in an outside party (i.e., a party that is
neither an input nor an output server).
In [25] a version of this representative-based architecture was used to provide a practical privacy-

preserving auction. In this scheme a third party called the auctioneer is utilized. The sole purpose
of the auctioneer is to help the seller compute the winning bid. The bidders split their bids between
the auctioneer and the seller so that neither individual learns information about the bids. Once
the auctioneer and the seller have received all bids, the seller and the auctioneer engage in a
secure protocol to compute the winning bidder along with the winning bid in a split fashion.
This information is then revealed to the seller and to the bidders. The only trust assumption is
that the bidders trust the auctioneer not to collude with the seller, and this level of trust is more
reasonable than the fully trusted third party approach, and may be applicable in many practical
situations.
Since the focus of this chapter is practical SMC techniques, the focus will be on two-party SMC

techniques (as these are more likely to be practical). Thus for problems with more than two parties
we will assume a representative-based architecture with two computational servers.

14.5 Logical Circuit Based Approaches

In this section we discuss a technique for computing any two-party function in a secure manner.
The main focus is on the HBCmodel, but extensions to the malicious model are also discussed. The
principal idea is that we will represent the function f as a logical circuit Cf . In [31], a technique was
described that securely evaluates a logical circuitwith communication and computationproportional
to the number of gates in the circuit and with a constant number of rounds; in [21] this technique
was proven secure. Now, any function computable in polynomial time can be computed with a
polynomially sized logical circuit, and so these two things imply that any function computable in
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polynomial-time can be computed securely with polynomial communication and computation and
a constant number of rounds. In the remainder of this section we first describe the cryptographic
primitives needed for Yao’s construction in Section 14.5.1. Then Yao’s scrambled circuit evaluation
technique for the HBC adversary model is described in Section 14.5.2. In Section 14.5.3 extensions
to the malicious model are described. Finally, in Section 14.5.4 applications of Yao’s approach are
described.

14.5.1 Cryptographic Primitives

One building block that is used is a form of symmetric key encryption. The encryption scheme
for Yao’s scrambled circuit evaluation requires specific properties: elusive range (it is difficult to
choose a value that is a valid ciphertext for a particular key k) and efficiently verifiable range (given
a ciphertext and a key it is possible to determine if the ciphertext is a possible encryption with the
key k). These properties are possible for cryptosystems, and we refer the reader to [21] for more
information about these properties. In the remainder of the paper we use the notation Enc(M, k) to
denote the encryption of the messageM with the key k.
The other core building block needed for Yao’s scrambled circuit evaluation is 1-out-of-2 chosen

oblivious transfer; oblivious transfer (OT) was introduced in [27]. In the original OT protocols the
sender would have a message and the receiver would obtain the value with probability one-half. In
[10], a variation was introduced where the sender has twomessages and the receiver obtainsmessage
one with probability one-half and receives message two with probability one-half; furthermore, the
sender would not know which message the sender obtained. While these two versions of OT seem
different, they were proved to be equivalent in [7]. The version that will be used in the remainder
of the chapter is chosen 1-out-of-k OT (also called all or nothing disclosure of secrets) and was
introduced in [3]. In this version of OT the sender has kmessages and the receiver obtains a specific
message that the receiver gets to choose. We will denote this protocol as OTk

1((M1,M2, . . . ,Mk), i)
where the receiver learnsMi and the sender learns nothing.
The following is a protocol described in [1] for chosen 1-out-of-2 OT. Note that there are many

other protocols for OT in the literature, but as OT is not the focus of this chapter only one such
protocol is described (see Figure 14.3).
The above protocol for OT requires a single round (once the setup has been done), and it requires

O(1)modular exponentiations and other computations. We now give a sketch of security argument
for the above protocol. First, an honest receiver will obtain Mb, because βr

b = (gsb)r = (gr)sb = γb.
However, the receiver cannot obtain M1−b, because this would imply that the receiver also learns

Input: The sender inputs two messages M0 and M1, and the receiver inputs b ∈ {0, 1}.
Output: The receiver obtains Mb.

1. The sender chooses a large prime p, a generator g of Z∗
p , and a value C in Z∗

p where the receiver does not
know the discrete log of C. The values p, g, and C are sent to the receiver. Note that this step needs to be
done only once for several OT protocols.

2. The receiver chooses a random value r computes two values α0 and α1 where αb = gr and α1−b = C
gr . The

receiver sends α0 to the sender.

3. The sender computes α1 = C
α0

. It then chooses two random values s0 and s1, and computes: βi = gsi ,

γi = α
si
i , and δi = Mi ⊕ γi for i ∈ {0, 1}. It then sends β0, β1, δ0, and δ1 to the receiver.

4. The receiver computes βr
b

=(gsb )r=(gr)sb= γb. The receiver then computes δb ⊕ γb = Mb.

FIGURE 14.3 Oblivious transfer protocol.
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γ1−b, which is
(

C
gr

)s1−b
, which is gms1−b for some value m. The receiver does not know this value,

because otherwise the receiver would know the discrete logarithm of C. Thus the receiver knows
gm and gs1−b , and needs to calculate gms1−b (which is the Diffie–Hellman problem). The sender
is unaware of which item the receiver is choosing because C

gr and gr are indistinguishable for a

randomly chosen (and unknown) value r. For a more detailed argument as to why this scheme is
secure see [1].

14.5.2 Simulating Circuits with Yao’s Method

A high-level overview of Yao’s approach is as follows: one party is labeled the circuit generator and
the other party is labeled the circuit evaluator. For each wire in the circuit the generator creates two
encodings (one for 0 and one for 1), and the evaluator will learn the encoding that corresponds to the
actual value of each wire without knowing what the encoding corresponds to. A crucial piece of this
protocol is a gate encoding that allows the evaluator to obtain the gate’s output wire’s encoding when
given the gate’s input wires’ encodings. Finally, to learn the final result the evaluator is given the
mapping between the circuit’s output wire encodings and their values. In what follows we describe
the details of this process.

Setup: Assume that Alice is playing the role of the generator and that Bob is the evaluator. Suppose
the circuit in question consists of wires w1, . . . ,wn that are partitioned into four mutually exclusive
sets A (Alice’s inputs), B (Bob’s inputs), I (intermediate wires), and O (output wires). Furthermore,
suppose these wires are connected to a set of binary gates G1, . . . ,Gm and that each wire is either
in A ∪ B or is an output from some gate. We denote the actual value of the wire wi by vi, and
we denote the binary function that corresponds to gate Gi ad gi, e.g., gi : {0, 1} × {0, 1} → {0, 1}.
Finally, the input wires to Gi are denoted by xi and yi, and the output wire is denoted by zi. That is,
vzi = g(vxi , vyi).

Circuit generation: For each wire wi Alice randomly chooses two encryption keys wi[0] and wi[1],
and she also chooses a random bit λi ∈ {0, 1}. One of the goals of the protocol is for Bob to learn
(vi ⊕ λi)||wi[vi ⊕ λi] for each wire in the circuit. Note that the λ value hides from Bob the actual
value of a wire.
Furthermore, for each gate Gi, the generator creates four messages, denoted by Gi[0, 0], Gi[0, 1],

Gi[1, 0], and Gi[1, 1], where Gi[a, b] is Enc(si[a, b]||wzi[si[a, b]],wxi [a] ⊕ wyi [b])
∗ where si[a, b] =

gi(a ⊕ λxi , b ⊕ λyi) ⊕ λzi .

Circuit evaluation: The circuit generator and the evaluator do the following:

1. For each a ∈ A, Alice sends (va ⊕ λa)||wa[va ⊕ λa] to Bob.

2. For each b ∈ B, Alice and Bob engage in OT2
1({λb||wb[λb], λ̄b||wb[λ̄b]}; vb) where Alice

plays the role of the sender.

3. Alice sends to Bob Gi[0, 0], Gi[0, 1], Gi[1, 0], and Gi[1, 1] for every gate.

4. For each o ∈ O, Alice sends λo to Bob.

After Bob receives the above information, he evaluates the circuit. First, for each wire i ∈ A ∪ B,
Bob knows (vi⊕λi)||wi[vi⊕λi] (from Steps 1 and 2 in the protocol above). Once Bob has learned the
encodings forwires xj and yj, he computesDec(Gj[vxj⊕λvxj , vyj⊕λvyj ],wxj [vxj⊕λvxj ]⊕wyj[vyj⊕λvyj ])

∗ Note that this notation indicates that si[a, b]||wzi [si[a, b]] is encrypted with the key wxi [a]⊕wyi [b], and thus to be able
to decrypt this value one would need both wxi [a] and wyi [b].
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a, w1
EQ

a=b, w3

b, w2

FIGURE 14.4 Example circuit.

to obtain the encoding of the output wire ofGj (i.e., wire zj). That is,
this value is (vzj ⊕ λvzj )||wzj[vzj ⊕ λvzj ]. Once Bob has these values

for all wires, he can compute vo for all wires in O, since he knows
λo (from Step 4 of the protocol above).
To clarify the details of the above protocol, consider the following

example. Suppose we have a small circuit where Alice has a single
input bit a and Bob has a single input b. Furthermore, the output of
the circuit is the predicate a = b. Note that this can be viewed as a
circuitwith a single equality gate (i.e., anotXORgate). Furthermore,
we will label the circuit as in Figure 14.4. To make this a concrete example, let us suppose that a = 0
and b = 1.
For each wire wi Alice will choose encoding values wi[0] and wi[1] and λi. Let us suppose that

Alice chooses λ1 = 0, λ2 = 1, and λ3 = 1. Alice will send to Bob the values (a ⊕ λ1)||w1[a ⊕ λ1],
that is she sends 0||w1[0] to Bob. Alice and Bob will also engage in a 1-out-of-2 OT to reveal 0||w2[0]
(this corresponds to Bob’s input wire).
For the gate information, Alice will calculate the following four messages:

• s1[0, 0] = EQ(λ1, λ2) ⊕ λ3 = 1

• s1[0, 1] = EQ(λ1, λ̄2) ⊕ λ3 = 0

• s1[1, 0] = EQ(λ̄1, λ2) ⊕ λ3 = 0

• s1[1, 1] = EQ(λ̄1, λ̄2) ⊕ λ3 = 1

Thus the gate information that Alice uses will be as follows:

• G1[0, 0] = Enc(1||w3[1],w1[0] ⊕ w2[0])

• G1[0, 1] = Enc(0||w3[0],w1[0] ⊕ w2[1])

• G1[1, 0] = Enc(0||w3[0],w1[1] ⊕ w2[0])

• G1[1, 1] = Enc(1||w3[1],w1[1] ⊕ w2[1])

Once Bob has this gate information, and he has the values 0||w1[0] and 0||w2[0] the only gate
message he can decrypt is G1[0, 0], and he thus receives 1||w3[1]. If this was to be used as an
intermediate wire, he would not know the actual value of wire w3, because it depends on λ3 which
he does not know. However, if this is an output wire, then Alice will reveal λ3 and he will learn that
the result is actually 0.

14.5.3 What about Malicious Behavior

Consider amalicious adversary inYao’s protocol. If themalicious player is the evaluator, then there is
little that this player can do other than change his inputs. However, if the generator is malicious then
this adversary can create any circuit with the same topology as the desired function. Onemechanism
that has been suggested to mitigate this attack is a cut-and-choose approach [22,24,25,29]. In this
approach the generator creates several versions of the circuit and sends them all to the evaluator.
The evaluator then requests that the generator “open" (i.e., give them all wire keys) a subset of the
circuits. The evaluator then verifies that this subset of circuits was created properly.
In the simplest instantiation of this scheme the generator creates N circuits, and the evaluator

verifiesN−1 of the circuits. In this case, if amalicious generator wants to evaluate a faulty circuit, the
malicious generator’s chances of not being caught is 1

N . In amore complicated approach the evaluator

verifies N
2 circuits and computes the result for the other N

2 circuits. If the evaluated circuits’ outputs
differ then the evaluator sets the result to the most frequent output. In this case a cheating adversary
is successful with a probability that is exponentially small in N. Many of the details on how this
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cut-and-choose model is implemented have been omitted, but we refer the reader to [22,24,25,29]
for more details.

14.5.4 Using Circuits

To use the scrambled circuit evaluation approach one needs to construct a circuit for the problem
at hand. One approach that was used in FAIRPLAY [22] was to build a compiler that converted a
programming language into a circuit. However, depending on the needs of the application one may
decide to construct the circuits by hand. Some common circuits are described below.

• To test two n-bit values, a1, . . . , an and b1, . . . , bn for equality one can use the following
circuit:

∧n
i=1 (ai ⊕ bi). Note that this circuit requires O(n) gates.

• To test if an n-bit value a1, . . . , an is greater than another n-bit value b1, . . . , bn one can
use the following circuit:

∨n
i=1(ai ∧ b̄i ∧

∧i−1
j=1((aj ⊕ bj))). Note that this circuit hasO(n)

gates.

Onedifficultywithusing this approach is thedifficultywith constructing circuit for someproblems.
Furthermore, circuits are inefficient for some problems such as indirect access into a list of values,
that is if there is a list of items v1, . . . , vn given and an index i ∈ [1, n] is computed by the circuit,
then it requires O(n) computation to obtain vi in the circuit.

14.6 Computing on Encrypted Data

Because of the results in the previous section, one may wonder if all secure protocol problems have
been solved.While the above techniques do imply that any polynomially computable function can be
securely evaluated in the semi-honest model with polynomial communication, it is believed that for
many problems the general solutions may not be practical. However, in some situations an efficient
domain-specific protocol exists for some problems [18]. In this section we focus on one class of
problems that have solutions based on arithmetic expressions.

14.6.1 Homomorphic Encryption

A homomorphic encryption scheme allows computation using encrypted values; this is useful
because it facilitates some protocols based on arithmetic that are more efficient than their circuit
counterparts. The idea behind these types of protocols is that the values can be encrypted and then
someone can compute the encryption of a result without knowing the values. Specific homomorphic
encryption schemes are described in [8,26]. In [26] the arithmetic is done mod n where n is an RSA
modulus, and in [8], the arithmetic is done mod nk where n is an RSA modulus and k is an integer.
We now formally describe the properties of a homomorphic encryption scheme.

1. Public key:The systems are public-key encryption schemes in that anyonewith the public
parameters of the scheme can encrypt, but only those with the private parameters can
decrypt.

2. Semantically secure: We require that the scheme be semantically-secure as defined in
[19]. That is, given the following game between a probabilistic polynomial time (PPT)
adversary A and a challenger C:

a. C creates a public–private key pair (E,D) for the encryption system and sends E to A.

b. A generates two messagesM0 andM1 and sends them back to C.
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c. C picks a random bit b ∈ {0, 1} and sends E(Mb) to A.

d. A outputs a guess b′ ∈ {0, 1}.

We say that A wins the game if b′ = b. We define the advantage of A for a security
paramater k to beAdvA(k) = Pr[(b = b′)−(1/2)].We say that the scheme is semantically
secure if AdvA(k) is negligible in k.

3. Additive: Given the E(x) and E(y) and the public parameters of the scheme, one can
compute E(x + y) by calculating E(x) ∗ E(y).

4. Multiplication: A natural extension of the previous property is that when given E(x) and
c, one can compute E(xc) by calculating E(x)c.

5. Re-encryption:When given an encryption E(x), one can compute another encryption of
x, simply by multiplying the original encryption by E(0).

14.6.2 Scalar Product

It should not come as a surprise that homomorphic encryption facilitates efficient protocols that
compute some arithmetic expression. One example of such a protocol is the calculation of the scalar
product of two vectors. That is given 
A =< a1, . . . , an > and 
B =< b1, . . . , bn >, the goal is to
compute 
A ◦ 
B =

∑n
i=1(ai ∗ bi). One protocol for secure scalar product was introduced in [14], and

Figure 14.5 is such a protocol.

14.6.3 Polynomial Operations

Another application of homomorphic encryption is the ability to compute various polynomial
operations. This has been useful for set operations (which are described in detail in the next section),
including [12,13,20]. To encrypt a polynomial with homomorphic encryption, each coefficient
of the polynomial is encrypted with the encryption scheme. That is, the encryption of P(x) =
pnx

n + · · · + p1x + p0 is E(pn), . . . ,E(p1),E(p0), and we denote this value by Epoly(P). Given an
encrypted polynomial it is possible to perform some polynomial operations, including

1. Polynomial evaluation: Given Epoly(P) and z it is possible to compute E(P(z)). If P(x) =
pnx

n + · · · + p1x + p0, then E(P(z)) = E(pnz
n + · · · + p1z + p0) = E(pnz

n) ∗ · · · ∗
E(p1z) ∗ E(p0) = E(pn)

zn ∗ · · · ∗ E(p1)
z ∗ E(p0) which can be computed with knowledge

of Epoly(P) and z.

2. Polynomial addition: Given Epoly(P) and Epoly(Q) it is possible to compute Epoly(P +Q).
Assume that P(x) = pnx

n + · · · + p1x+ p0, and Q(x) = qnx
n + · · · + q1x+ q0, if P and

Q have different degrees, then one of them can be padded with 0’s to make the degrees
the same. Now P+Q(x) = (pn +qn)x

n +· · ·+ (p1 +q1)x+ (p0 +q0), thus Epoly(P+Q)

Input: Alice has a vector 
A =< a1, . . . , an > and Bob has a vector 
B =< b1, . . . , bn >.
Output: Alice learns 
A ◦ 
B.

1. Setup: Alice creates parameters for a semantically secure additively homomorphic encryption scheme and
sends Bob the public parameters; we denote encryption by E. Note that this setup phase has to happen only
once for multiple executions of the protocol.

2. Alice sends to Bob the values E(a1), . . . ,E(an).

3. Bob calculates the following value: E(a1)b1 ∗ · · · ∗ E(an)bn ∗ E(0). It is straightforward to verify that this value
is E(
A ◦ 
B), and the multiplication by E(0) is to re-randomize the encryption. Bob sends this value to Alice.

4. Alice decrypts the result and learns 
A ◦ 
B.

FIGURE 14.5 Two-party HBC protocol for scalar product.
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is E(pn + qn), . . . ,E(p1 + q1),E(p0 + q0) which is just E(pn) ∗ E(qn), . . . ,E(p1) ∗ E(q1),
E(p0) ∗ E(q0).

3. Polynomial multiplication: Given Epoly(P) and Q it is possible to compute Epoly(P ∗ Q).
Assume that P(x) = pnx

n + · · · + p1x + p0, and Q(x) = qmx
m + · · · + q1x + q0. Now,

P ∗ Q(x) = sn+mx
n+m + · · · + s1x + s0 where si =

∑i
j=0(pj ∗ qi−j).

∗ Furthermore,

E(si) =
∏i

j=0 E(pj)
qi−j

which can be computed from knowledge of Epoly(P) and Q.

4. Polynomial differentiation: Given Epoly(P), it is possible to compute Epoly(P
′) where P′ is

the first derivative of P. Note that other derivatives can be computed by repeating this
process. Assume that P(x) = pnx

n + · · · + p1x + p0, then P′(x) = npnx
n−1 + · · · + p1,

and so the new coefficients can be computed with the knowledge of Epoly(P).

14.6.4 Set Operations

The ability to perform polynomial operations is useful for computing set operations (set union, set
intersection, etc.) [12,13,20]. Set operations are useful for other privacy-preserving computations
(such as privacy-preserving data mining). The basic idea behind many of these protocols is to
represent the sets as polynomials and then perform set operations on these sets by doing polynomial
operations.
To represent a set S = {s1, . . . , sm}, the polynomial PS(x) = (x − s1) · · · (x − sm) is used. Note

that PS(z) = 0 if and only if z ∈ S.† Using the polynomial operations from the previous section, we
can do some types of set operations.

1. Polynomial evaluation: Given Epoly(PS), one can compute E(PS(z)), and this will be an
encryption of 0 iff z ∈ S. Thus this is a method for detecting if an element is in a set.

2. Polynomial addition: The polynomial PS + PT will be 0 at all values in S ∩ T. Thus this
is useful for computing set intersection.

3. Polynomial multiplication:The polynomial PS∗PT will be the polynomial that represents
the multiset union of S and T.

4. Polynomial derivation: The polynomial PS
′ will be 0 for all items that are in S two or

more times, and thus this is useful for eliminating duplicates in a multiset.

The above building blocks can be combined together to form protocols for set intersection and set
union. Figure 14.6 is a simplified version of the protocol in [12] for set intersection, and Figure 14.7
describes a simplified protocol for secure two-party set union that was introduced in [13].

14.7 Composing Secure Protocols

One may wonder how to put secure building blocks together to form a secure protocol. However,
secure protocols are not always composable. For example, suppose Alice has a point in Cartesian
space and that Bob has a point in Cartesian space. Furthermore, suppose that a threshold distance
T is known to both Alice and Bob. Furthermore, suppose that the goal of the protocol is for Alice
to learn if the distance between her and Bob’s points is smaller than T. One way of doing this is to
use a secure protocol to compute the distance between the two points and to reveal this value to
Alice. Then Alice would compute the result from this value and T. Clearly, the resulting protocol
would not be secure, because it reveals the distance between the two points. On a positive note, it

∗ Note that pℓ = 0 for ℓ > n and qℓ = 0 for ℓ > m.
† It is worth noting that if we are doingmodular arithmetic over a large base that themore correct statement is: PS(z) = 0
if z ∈ S and if z ∈ S, then PS(z) = 0 with high probability.



14-14 Special Topics and Techniques

Input: Alice has a set A = {a1, . . . , an} and Bob has a set B = {b1, . . . , bm}.
Output: Alice learns A ∩ B.
Steps:

1. Alice creates a key pair for a semantically secure homomorphic encryption scheme and sends the public
parameters to Bob. We denote encryption with this scheme by E and decryption by D.

2. Alice computes a polynomial P(x) = (x− a1) ∗ · · · ∗ (x− an) = cnx
n + cn−1x

n−1 + · · · + c1x+ c0. She then
sends E(P) = E(cn), . . . ,E(c1),E(c0) to Bob.

3. For each item bi ∈ B, Bob computes E(P(bi) ∗ ri + bi) for a randomly chosen value ri and sends all of these
values to Alice. Note that E(P(bi) ∗ ri + bi) is E(bi) if bi ∈ A and is a random value otherwise.

4. Alice decrypts all of the values that she receives from Bob and outputs all decrypted values that are in her set.

FIGURE 14.6 Two-party HBC protocol for set intersection.

Input: Alice has a set A = {a1, . . . , an} and Bob has a set B = {b1, . . . , bm}.
Output: Alice learns A ∪ B.
Steps:

1. Alice creates a key pair for a semantically secure homomorphic encryption scheme and sends the public
parameters to Bob. We denote encryption with this scheme by E and decryption by D.

2. Alice computes a polynomial P(x) = (x− a1) ∗ · · · ∗ (x− an) = cnx
n + cn−1x

n−1 + · · · + c1x+ c0. She then
sends E(P) = E(cn), . . . ,E(c1),E(c0) to Bob.

3. For each item bi ∈ B, Bob computes a tuple (E(P(bi) ∗ ri) ; E(P(bi) ∗ ri ∗ bi)) for a randomly chosen value
ri and sends all of these values to Alice. Note that if bi ∈ A then this tuple will be (0 ; 0) and if bi ∈ A then
this tuple will be (E(R) ; E(R ∗ bi)) for some random value R. In the latter case, bi is recoverable from the
decryption of the tuple by multiplying the second value the inverse of the first value.

4. Alice decrypts all of the tuple that she receives from Bob. If a tuple is (0 ; 0) then she does nothing and
otherwise she recovers the value by multiplying the second value the inverse of the first value. She outputs all
recovered values along with her own set.

FIGURE 14.7 Two-party HBC protocol for set union.

was shown in [4] that protocols can be composed in certain circumstances. More specifically, if the
protocol can be proven secure when each secure building block is replaced with the ideal protocol
for the building block (i.e., with the trusted third party solution), then the protocol that uses the
secure protocols (instead of the ideal protocols) is also secure.
The following is a contrived example of a secure protocol composition, suppose we are trying

to calculate the intersection of two sets A and B that are known respectively to Alice and Bob.
Suppose we have two building blocks: (1) CARDINALITY(A;B)—which outputs the |A ∩ B|, and
(2) SETINT(A, |A∩B|;B) that outputsA∩B. In this case one way to compute this value would be to
first run CARDINALITY(A,B) to obtain |A∩B|, and then use SETINT(A, |A∩B|;B) to calculate the
result. If the individual protocols SETINT and CARDINALTITY are secure then this composition
is also secure, because revealing the cardinality as an intermediate input is not a privacy violation
because it is also revealed by the final result.

14.8 Summary

In summary, secure protocols provide a way to compute a function over distributed inputs, without
revealing anything other than the result of the protocol. Of course, unless the function is independent
of the inputs, the result will reveal some information about the inputs into the protocol, but a secure
protocol shouldnot reveal anything about the inputs other thanwhat canbededuced fromtheoutput.
In some cases, the output may be too revealing, i.e., the output of the function reveals too much
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information. However, when the result of a specific information collaboration is not too revealing,
secure protocols are a promising technique, because they allow the result of the collaboration to be
computed while preserving the privacy of the inputs. In fact, secure protocols have been created
for many application domains, including auctions, data mining, set operations, benchmarking, and
privacy-preserving surveys.
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