
 Eindhoven University of Technology

MASTER

Secure multiparty computation for privacy preserving data mining

Chen, P.

Award date:
2012

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/6c4b73a8-cf20-4aa1-9251-3b8228f02cfc

Master’s Thesis

Secure Multiparty Computation for

Privacy Preserving Data Mining

Ping Chen

EINDHOVEN UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Master’s Thesis

Secure Multiparty Computation for

Privacy Preserving Data Mining

by

Ping Chen

Supervisors:
dr.ir. L.A.M. (Berry) Schoenmakers
prof.dr.ir. H.A.M. (Hennie) Daniels

ir. S.J.A. (Sebastiaan) de Hoogh

August 2012

Acknowledgments

This thesis is the result of my internship at Erasmus University Rotterdam, as part of the the
EU-FP7 project CASSANDRA. I would like to thank professor Hennie Daniels for giving such
an opportunity to perform an interesting and challenging master’s thesis project.

I am very grateful to my supervisor Berry Schoenmakers at Eindhoven University of Tech-
nology, for the guidance, questions and answers, and his humor. Special thanks go to Berry
Schoenmakers and Sebastiaan de Hoogh, for their profound knowledge in cryptography and pro-
viding guidance and support to my work. And with gratitude to Hennie Daniels and Lingzhe
Liu, for managing my internship, and inspiring me some ideas in data mining.

I enjoyed my study and life in the Netherlands, thanks to Eindhoven University of Tech-
nology and the Kerckhoffs Institute, for providing the 2-year master program in Information
Security. And with special thanks to het Koninklijk Concertgebouworkest, for their fantastic
and wonderful performances which give me serenity, comfort and enjoyment.

Writing thesis is not easy for me, I am thankful to Sebastiaan de Hoogh and Boris Škorić,
for their helpful comments to my thesis. And I would like to thank my friend Tingting Cao, for
always encouraging me during the project. Finally and most importantly, I want to thank my
parents for all their love and support over the years.

Ping Chen
August 2012

ii

Contents

1 Introduction 1
1.1 Cryptographic Concepts . 1
1.2 Related Work . 2
1.3 Thesis Structure . 3

2 Secure Multiparty Computation 4
2.1 Security Model . 4

2.1.1 Indistinguishability . 4
2.1.2 Composability . 5
2.1.3 Complexity Analysis . 5

2.2 Basic Framework . 5
2.2.1 Secret Sharing Scheme . 6
2.2.2 Shamir’s Secret Sharing . 7
2.2.3 Replicated Secret Sharing . 8

2.3 Performance Analysis . 9
2.3.1 Virtual Ideal Functionality Framework . 9
2.3.2 Experiment Settings . 10

3 Basic Protocols 11
3.1 Secure Arithmetic . 11

3.1.1 Linear Combination . 11
3.1.2 Multiplication . 12
3.1.3 Inner Product . 12

3.2 Interactive Generation of Random Secret . 13
3.2.1 Shared Random Element . 13
3.2.2 Shared Random Element in Range . 13
3.2.3 Shared Random Bit . 14
3.2.4 Shared Random Invertible Element . 14

3.3 Non-Interactive Generation of Random Secret . 15
3.3.1 Shared Random Element . 16
3.3.2 Shared Random Element in Range . 16
3.3.3 Pseudo Random Zero Sharing . 17

3.4 Basic Constructions for Round Efficiency . 17
3.4.1 Multiplication with Public Output . 17
3.4.2 Generation of Shared Random Bit using PRSS 18
3.4.3 Generation of Shared Random Invertible Element using PRSS 18
3.4.4 Inverse of Field Element . 19
3.4.5 Generation of Bitwise Shared Random Secrets 19
3.4.6 k-ary Operation . 20

iv

3.4.7 Unbounded Fan-in Multiplication . 20
3.5 Integer Comparison Protocols . 21

3.5.1 Equality Test with Public Result . 21
3.5.2 Probabilistic Equality Test . 22
3.5.3 Bounded Equality Test . 23
3.5.4 Greater Equal Than Test . 24

3.6 Symmetric Boolean Function . 25
3.6.1 Unbounded Fan-in Symmetric Boolean Functions 25
3.6.2 Symmetric AND/OR Operation Using Equality Test 26

3.7 Summary . 27

4 Secure Frequent Itemset Mining 28
4.1 Frequent Itemset Mining . 28

4.1.1 Apriori Algorithm . 29
4.2 Secure Apriori Protocol . 30

4.2.1 Calculate the Support of an Itemset . 30
4.2.2 Check Minimum Support Requirement . 31
4.2.3 Secure Apriori Protocol . 31
4.2.4 Association Rule Learning . 32

4.3 Fully Secure Frequent Itemset Ming . 32
4.3.1 Secure Candidates Generation . 33
4.3.2 Calculate the Support of an Itemset . 33
4.3.3 Check Minimum Support Requirement . 34
4.3.4 Fully Secure Apriori Protocol . 34

4.4 Performance Result . 35

5 Secure Decision Tree Learning 37
5.1 Decision Tree Learning . 37

5.1.1 ID3 Algorithm . 38
5.1.2 Splitting Measures . 39

5.2 Secure ID3 Protocol . 41
5.2.1 Data Representation . 41
5.2.2 Create Contingency Table . 43
5.2.3 Calculate χ2 Statistic and Gini Index . 44
5.2.4 Complete Decision Path . 46
5.2.5 Double Field Setting . 48
5.2.6 Overview of Secure ID3 Protocol . 48

5.3 Performance Result . 50

6 Conclusions 52
6.1 Further Research . 52

Bibliography 53

v

Chapter 1

Introduction

Consider a supply chain, in which a number of parties collaborate with each other for moving a
product or service from supplier to customer. For better supply chain management (optimizing
the benefit of the supply chain), it is essential to share data among supply chain partners. Data
sharing increases the visibility of a supply chain, hence allows for cost-efficient risk management
for both business companies and customs authorities. However, as data is part of partners’
trade secret, they are usually reluctant to disclose their data. Furthermore, if this data contains
customers’ sensitive information, it is prohibited by legal acts to disclose that information.

To enable collecting and analyzing large data sets from supply chain partners, without
compromising the confidentiality of the data, privacy-preserving data mining solutions can be
used. Usually the data collected is not for the sake of having the individual records, but
rather for characterizing the whole data set and generating an overall result, by using various
data mining algorithms. Privacy-preserving data mining considers the problem of running data
mining algorithms on confidential data that is not supposed to be revealed, even to the party
running the algorithm [LP09].

Randomization method and anonymization method are two common techniques for privacy-
preserving data mining, which can help protect the confidentiality of data, however they intro-
duce a trade-off between information loss and privacy [AY08]. In practise, it is difficult to strike
the right balance to get satisfied result.

Secure Multiparty Computation (SMC) is a technique from modern cryptography that can
be used to achieve privacy-preserving data mining. Secure multiparty computation refers to
cryptographic protocols that allow a set of parties to perform a computation on their private
inputs in such a way that the parties only learn the correct output and nothing else, hence their
privacy is preserved.

This thesis is mostly about deploying secure multiparty computation for privacy-preserving
data mining. As a case study, we address the problem of secure frequent itemset mining and
secure decision tree learning. The research was part of the EU-FP7 project CASSANDRA
which aims to make container security more efficient and effective through secure data sharing
[CAS12].

1.1 Cryptographic Concepts

The concept of secure multiparty computation was formally introduced in 1982 by Yao as secure
two-party computation through the millionaires problem, which allowed two parties to compare
their wealth (to see who is the richer one) without revealing anything else about each other’s
wealth [Yao82]. In general, there are a number of parties P1, P2, ..., Pn, with respective input
values x1, x2, ..., xn, a SMC protocol enables them to jointly evaluate f(x1, x2, ..., xn) for some

1

function f , in such a way that each party obtains the correct output value and no information
leaks on the input values of the honest parties beyond what is implied logically from the output
values and the input values of the corrupted parties [Sch11].

There are inherent limitations regarding the functions that can be computed without leaking
information about their inputs. For example, to securely compute the average over distributed
inputs: f(x1, x2, ..., xn) = (

∑n
i=1 xi)/n, if n = 2, then each party can determine the input of the

other party, so input privacy is not possible. Also, if n = 3, two parties can collude and learn
the input of the third one.

Secure multiparty computation protocols can be designed to be secure against either passive
adversaries or active adversaries. The adversary represents the coalition formed by an attacker
and/or one or more of the parties taking part in the protocol. The parties under the control of the
adversary are said to be corrupted. An adversary is passive or semi-honest if the corrupt parties
do not interfere with the execution of the protocol, but eavesdrop on the communication between
the parties and try to learn as much as possible from the data collected. An active adversary
can make the corrupted parties to behave arbitrarily, and interfere with the communication by
deleting, injecting, or modifying messages [Sch12].

An adversary can also be categorized as static or adaptive, from the point of view of the
corruption strategy. A static adversary cannot corrupt parties during protocol execution, hence
the set of corrupted parties is fixed from the start of the protocol. The adversary is adaptive if
the parties can be corrupted during protocol execution. Logically, designing secure computation
protocols against an active and adaptive adversary is much harder than against a passive and
static adversary.

An important aspect of secure multiparty computation is the underlying communication
model, which describes how messages are transmitted among parties and what an adversary is
allowed to observe. Generally, there are two different settings. In the cryptographic setting,
the parties communicate via a broadcast channel, where all parties are able to see the mes-
sages exchanged, but the adversary has bounded computational resources (restricted to be a
probabilistic polynomial time algorithm). In the information theoretic setting, the parties are
connected via private channels, which allow the parties to send each other messages that are
not visible to the adversary, and the adversary may be unlimited powerful.

1.2 Related Work

Although the general theory of secure multiparty computation has been created in the 1980s,
and it was proven that secure multiparty computation is feasible for any computable function
[Yao82, CGMA85, GMW87, BGW88, RB89], secure multiparty computation was not efficient
to be able to solve complex functions in a reasonable amount of time. To apply the theoretical
result in real life, protocols must be designed that are highly efficient. Nowadays, efficiency of
secure multiparty computation is an important topic of cryptographic research, and there are
a number of practical results appeared in [Tof07, BCD+09, Gei10, DK10, Hoo12].

The first real life application of secure multiparty computation is presented in [BCD+09],
where about 1200 Danish farmers participated in a auction system built using secure multiparty
computation protocols to determine the market price of their sugarbeets. The computation took
about 15 minutes using three laptops connected by a LAN.

Secure multiparty computation solution for secure linear programming is reported in [Hoo12],
where they designed large scale application to solve linear programming problem in the context
of collaborative supply chain management. The computation for solving linear programs with
about 300 variables and 200 constraints requires about 1 day on an ordinary PC.

The idea to use secure multiparty computation for privacy-preserving data mining was first

2

appeared in [LP00], where Lindell and Pinkas proposed a secure two-party protocol for building
decision tree over horizontally partitioned data, based on the ID3 algorithm and oblivious
transfer protocol. The core block of the protocol is securely computing logarithm function,
using Taylor approximation and oblivious polynomial evaluation.

After Lindell and Pinkas’s work, there has been growing interest in using secure multiparty
computation for privacy-preserving data mining. A generalized privacy-preserving variant of the
ID3 algorithm for vertically partitioned data is presented in [VCKP08], and privacy-preserving
classification using Näıve Bayes classifier for both horizontally partitioned and vertically parti-
tioned data is proposed in [VKC08]. Other privacy-preserving data mining solutions for hori-
zontally partitioned data using secure multiparty computation includes association rule mining
[KC04], and clustering [JW05, IKS+07].

Most of the above solutions are based on oblivious transfer protocol [GMW87, Kil88], and
the lnx protocol proposed by Lindell and Pinkas in [LP00] is reused as a building block. In
these solutions, a two-party case was considered first, and the multiparty case with more than
two parties is achieved by reducing the problem to two-party cases, thus they are not efficient
for large scale applications.

Privacy-preserving data mining using secure multiparty computation for solving real-life
problems is first demonstrated in [BTW12], where a secure data aggregation system was built
for jointly collecting and analyzing financial data from a number of Estonian ICT companies.
The application was deployed in the beginning of 2011 and is still in continuous use. However,
their data analysis are limited to basic data mining operations, such as sorting, filtering.

1.3 Thesis Structure

The remainder of this thesis is organized as follows:

• Chapter 2: Secure Multiparty Computation
This chapter gives a brief introduction of the security model for secure multiparty compu-
tation. We distinguish ‘perfect’ security and ‘statistical’ security for our protocols. With
respect to secure multiparty computation, our protocols are based on threshold secret
sharing schemes, and we use the VIFF to implement our protocols.

• Chapter 3: Basic Protocols
This chapter presents an overview of basic protocols that are served as building blocks for
the protocols in Chapter 4 and Chapter 5. Most of the protocols are standard in literature,
as a small contribution, we proposed new protocols for equality test, and symmetric
AND/OR function, which is more efficient in some cases than existing protocols.

• Chapter 4: Secure Frequent Itemset Mining
This chapter proposes two privacy preserving itemset mining solutions using secure mul-
tiparty computation. We base our protocols on the Apriori algorithm. A secure Apriori
protocol which outputs public frequent itemsets, and a fully secure Apriori protocol which
outputs secret result are given.

• Chapter 5: Secure Decision Tree Learning
This chapter proposes a secure ID3 protocol for privacy preserving decision tree learning,
based on the ID3 algorithm. To avoid the secure computation of logarithm function, we
use the Gini Index and χ2 statistic as splitting measures in secure ID3 protocol. In our
benchmark experiment, we compare the performance of the Gini Index and χ2 statistic.
In addition, we introduce double field setting to improve the performance of secure ID3
protocol.

3

Chapter 2

Secure Multiparty Computation

In this chapter, we first introduce some basic concepts about the security of cryptographic
protocols that are used in this thesis, and then present the secret sharing schemes based secure
multiparty computation framework in Section 2.2. Section 2.3 introduces the Virtual Ideal
Functionality Framework that are used to implement our protocols, and the experiment settings
for benchmark analysis.

2.1 Security Model

Defining the security of protocols is a fundamental and complicated problem in cryptography,
which involves a lot of technical details. We refer to [MR92, Bea92, LP09] for the formal defini-
tion of security. Roughly speaking, security against some adversary means that all information
gained by the adversary can be simulated by a simulator using only information that the adver-
sary is allowed to know. In other words, the protocol is said to be secure if the adversary cannot
distinguish the simulated messages from messages it would have received from the parties that
are not corrupt during protocol execution.

In this thesis, we use ‘perfect’ secure and ‘statistical’ secure to describe the security of secure
multiparty computation protocols. The concepts are based on the definition of indistinguisha-
bility.

2.1.1 Indistinguishability

Definition 2.1 Let X and Y be two random variables, both taking values in some finite set V .
The statistical distance between X and Y is defined as

∆(X;Y) =
1

2

∑
v∈V
|Pr[X = v]− Pr[Y = v]|

Definition 2.2 A non-negative function f : N → R is called negligible if for every positive
polynomial p there exists a k0 ∈ N such that for all k > k0, f(k) 6 1/p(k).

Definition 2.3 Let X = {Xi}i∈I and Y = {Yi}i∈I be two probability ensembles, indexed by I.
A probability ensemble is a set of probability distributions or random variables. Suppose that
|Xi| = |Yi| for all i ∈ I, and that these sizes are polynomial in |i|. Then X and Y are said to
be:

perfectly indistinguishable if ∆(Xi;Yi) = 0 for all i ∈ I (hence identically distributed).

4

statistically indistinguishable if ∆(Xi;Yi) is negligible as a function of |i|.

computationally indistinguishable if for all probabilistic polynomial time algorithms D,
we have that

|Pr[D(Xi) = 1]− Pr[D(Yi) = 1]|

is negligible as a function of |i|.

Based on the above definitions, we say a protocol is ‘perfect’ secure if the the simulated
messages and messages obtained by the adversary are perfectly indistinguishable, and ‘statis-
tical’ secure means that the simulated messages and messages obtained by the adversary are
statistically indistinguishable.

2.1.2 Composability

Usually the design of protocols for a complex task uses the so called modular protocol compo-
sition, in which the complex task are divided into several simpler subtasks that are realized by
small sub-protocols. Several sub-protocols can be secure in the stand-alone setting, however the
protocol composed by the sub-protocols may not be secure. To prove the security of a complex
protocol, the framework of Universal Composability (UC) can be used [Can01].

Without going into too much technical details, the main UC theorem says that a protocol
remains secure, if it is composed with an arbitrary set of universal composable protocols. Hence
to design a protocol that securely realizes a complex task, we can divide the task into subtasks,
and design secure sub-protocols which are universal composable for each subtask as building
blocks.

2.1.3 Complexity Analysis

To analyze the performance of secure multiparty computation protocols theoretically, we calcu-
late the round complexity and communication complexity.

• Round Complexity. A protocol can be divided logical units called rounds. A round is a
phase where parties need to wait for messages in order to be able to continue computation.
For example, in a protocol round r, each party receives messages from the other parties
(sent in round r−1), performs a local computation, and then sends messages to the other
parties (to be processed in round r+1). The round complexity of a protocol is the number
of rounds necessary to complete a protocol run.

• Communication Complexity. The communication complexity defines the amount of
data transmitted during a protocol run. We call the amount of data sent by each party
in a multiplication protocol (see Protocol 3.1) an invocation, and the communication
complexity is measured by the number of invocation during a protocol run

In general, the overall protocol running time is dominated by the communication time, an
estimate of the overall communication time can be obtained by combining the Communication
Complexity (the amount of data sent) and Round Complexity (the number of rounds).

2.2 Basic Framework

In general, there are three different frameworks to achieve secure computation, Secret Sharing
Schemes [Sha79, RB89], Threshold Homomorphic Cryptosystems [CDN01, DN03], Oblivious

5

Transfer Protocols [GMW87, Kil88]. This section introduces the secure multiparty computation
framework based on Secret Sharing Schemes.

2.2.1 Secret Sharing Scheme

A secret sharing scheme allows one party, called dealer, to share a secret among a set of parties,
in such a way that only some specified subsets of parties can recover the secret, while others
have no information about it. More formally, let P = {P1, ..., Pn} be the set of all parties,
including the dealer, the idea is to split a secret s into several shares, such that each party Pi
get a share denoted by [s]i ([s] will be used to indicate a shared secret s), and the secret can be
reconstructed whenever a sufficient number of shares is available, but it is not possible to get
any information about the secret if an insufficient number of shares is available.

Secret sharing was introduced independently by A. Shamir [Sha79] and G.R. Blakley [Bla79].
Let P = {P1, ..., Pn} be the set of all parties, including a dealer D, and P(P) be the power set
of P . A secret sharing scheme consists of two phases (and protocols):

• Distribution. A protocol in which the dealer D distributes a secret s by computing the
sharing function to obtain a list of shares ([s]1, ..., [s]n), and sending to each party Pi its
share [s]i on a private channel, for i 6 n.

• Reconstruction. A protocol in which the secret s is recovered by collecting the shares
from a qualified set, and computing the reconstruction function to obtain the secret (this
is often done in parallel by all parties).

A qualified set is a set of parties that is allowed to reconstruct the secret together. The
collection of all qualified sets Γ ⊆ P(P) is called access structure. An access structure is
monotone if for every A ∈ Γ, if A ⊂ B ⊆ P then B ∈ Γ (i.e., closed under taking supersets).

A forbidden set is a set of parties that should not obtain any information by combining
their shares. The collection of all forbidden sets ∆ ⊆ P(P) is called adversary structure. An
adversary structure is monotone if for every A ∈ ∆ and B ⊂ A it holds that B ∈ ∆ (i.e., closed
under taking subsets).

If a secret sharing scheme has a monotone access structure Γ, and a monotone adversary
structure ∆, it is called perfect. A perfect secret sharing scheme satisfies: ∆ = Γ̄ = P(P)− Γ.
This is the typical situation in practice, meaning that the adversary can corrupt any set of
parties A ∈ ∆, while the other parties Ā ∈ Γ are honest.

A secret sharing scheme satisfies the privacy and correctness property:

• Privacy. If the dealer D remains honest, the parties of any set A ∈ ∆ learn nothing
about the secret s after the distribution phase.

• Correctness. In the reconstruction phase, the parties of any set A ∈ Γ can recover the
secret.

A secret sharing scheme is called linear if the shares are a linear function of the secret and
randomly chosen values. A Linear Secret Sharing (LSS) Scheme has the nice property that any
linear combination of shared secrets can be locally computed as a linear combination of their
individual shares, hence there is no communication cost. In the next section, we will introduce
an efficient LSS scheme: Shamir’s Secret Sharing.

6

2.2.2 Shamir’s Secret Sharing

A. Shamir proposed a simple and efficient perfect linear (t, n)-threshold secret sharing scheme
in [Sha79], where n is the number of parties, t(1 ≤ t < n) is the threshold. It allows any set
of t + 1 parties to reconstruct the secret, while a set of t or less parties can not obtain any
information about the secret, thus all qualified sets have size at least t+ 1:

Γ = {A ⊆ {P1, ..., Pn}||A| > t+ 1}, 1 6 t < n

Shamir’s Secret Sharing Scheme is based on Lagrange polynomial interpolation over finite
fields. It consists of three phases:

• Setup: All parties agree on the following public parameters: a finite field Fq with size
q > n, the threshold is t, with t < n. Each party Pi is assigned a public zi ∈ Fq, with
zi 6= 0 and zi 6= zj for i 6= j.

• Distribution: The dealer picks t elements from Fq : a1, a2, ..., at randomly and indepen-
dently. He defines a polynomial f(z):

f(z) = s+ a1z + a2z
2 + ...+ atz

t

Note that f(0) = s. After that the dealer sends to each party Pi a share [s]i = f(zi) on a
private channel.

• Reconstruction: Any t+1 parties can reconstruct s with their shares by using Lagrange
interpolation:

s = f(0) =
∑
i∈I

f(zi)Li(0)

where

Li(z) =
∏

j∈I\{i}

z − zj
zi − zj

, I ⊆ {1, 2, ..., n}, |I| = t+ 1

The setup phase consists of agreement on a finite field Fq with size q and corruption threshold
t < n, and a list of public, distinct, non-zero value zi ∈ Fq for 1 6 i 6 n. All computations are
done in the field Fq. A typical setting is Fq = Zp, with p prime, and zi = i.

In Shamir’s (t, n)-threshold secret sharing scheme, the secret s can be reconstructed for any
set of t+ 1 shares, hence the correctness property holds for a passive adversary. While for t or
less shares, the computed secret can not be distinguished from a random field element, so the
privacy property holds perfectly. The share size in the scheme is optimal for perfect security:
each party receives a share whose size is equal to that of the secret, i.e., a field element.

In this thesis, we use Protocol 2.1 and Protocol 2.2 to denote the Shamir’s (t, n)-threshold
secret sharing scheme, assuming party Pi is the dealer.

Protocol 2.1 Generate Shamir’s Share [s]← ShamirShare(Zp, t, n, s)
1: party Pi randomly picks a1, a2, ..., at from Zp
2: foreach j ∈ {1, 2, ..., n} do
3: [s]j ← s+

∑t
`=1 a`j

`

4: send [s]j to party Pj
5: end for
6: return [s]

7

After the execution of Protocol ShamirShare, each party Pi will get its share denoted by
[s]i. To recover the secret, a qualified set with at leat t+ 1 parties is required. Let A ∈ Γ be a
qualified set with size t+ 1, the reconstruction step of Shamir’s (t, n)-threshold secret sharing
scheme is shown as follows:

Protocol 2.2 Open Shamir’s Share s← OpenShare(A, [s])

1: for each party Pi ∈ A, send [s]i to all parties
2: all parties compute s←

∑
Pi∈A

[s]i
∏

Pj∈A,j 6=i

−j
i−j

3: return s

Notation. For convenience, we assume there is a default setting for Sharmir’s secret shar-
ing scheme, i.e., Zp, t, n,A is known to all parties, and skip these arguments for protocol
ShamirShare and OpenShare, hence the above two protocols are called like this:
[s]← ShamirShare(s) and s← OpenShare([s])

2.2.3 Replicated Secret Sharing

Replicated Secret Sharing is another secret sharing scheme, it is not efficient, compared to
Shamir’s Secret Sharing. However, it is quite useful for noninteractively generating random
secrets. Assuming there are n parties P = {P1, ..., Pn}, and a threshold monotone access
structure Γ with threshold t < n. Let T = {T1, T2, ..., Tw} be the set of all maximal forbidden
set, i.e., T = {T ⊂ P ||T | = t}, w =

(
n
t

)
, and T ⊂ P(P)−Γ. The scheme for Γ over a finite field

Fq is defined as follows [CDI05]:

• Share Distribution. To share a secret s ∈ F, the dealer generates random element [s]Ri
for 1 6 i 6 w− 1 from Fq, and set [s]Rw to be s−

∑w−1
i=1 [s]Ri . To distribute the shares, the

dealer send [s]Ri to P\Ti for 1 6 i 6 w − 1.

• Share Reconstruction. Let A ⊆ P be a set of minimal qualified set, i.e., |A| = t + 1.
Parties in A poll their shares to get the entire vector ([s]R1 , ..., [s]

R
w), and compute s =∑w

i=1 [s]Ri .

We use [s]R to denote replicated share of s, and the shares hold by parties are denoted by
([s]R1 , ..., [s]

R
w). The above scheme is shown as Protocol 2.3 and Protocol 2.4, assuming party Pi

is the dealer, A is a qualified set with size t+ 1.

Protocol 2.3 Generate Replicated Share [s]R ← RShare(Zp, t, n, s)

1: party Pi picks [s]Ri for 1 6 i 6 w − 1 from Zp
2: [s]Rw ← s−

∑w−1
k=1 [s]Rk

3: foreach j ∈ {1, 2, ..., w} do
4: party Pi send [s]Rj to P\Tj
5: end for
6: return [s]R

After the distribution phase, each party Pj obtains a share vector Vj = ([s]Ri)Pj /∈Ti , with(
n−1
t

)
elements. For parties in Ti ∈ T , they cannot recover s, as exactly one share [s]Ri is

missing. And for smaller forbidden set, they miss miss at least one share to reconstruct the

8

secret. While for a qualified set, the secret can be recovered as s =
∑w

i=1 [s]Ri , since they can
combine their shares, and jointly obtain the entire vector ([s]R1 , ..., [s]

R
w). Thus the correctness

and privacy property hold for the scheme.

Protocol 2.4 Open Replicated Share s← ROpen(A, [s]R)

1: foreach party Pi ∈ A do
2: for each j s.t. Pi /∈ Tj , send [s]Rj to all parties
3: end for

4: all parties compute s←
w∑̀
=1

[s]R`

5: return s

Replicated sharing is very inefficient, but its shares can be locally converted to shares of any
LSS scheme [CDI05]. Let [s]R = ([s]R1 , ..., [s]

R
w) be the RSS share of a secret s ∈ Zp, Protocol

2.5 shows how to convert a RSS share [s]R to Shamir’s share [s] for the same access structure.

Protocol 2.5 Convert Replicated share to Shamir’s Share [s]← RSS2Shamir([s]R)

1: foreach i ∈ {1, 2, ..., n} in parallel do

2: party Pi compute [s]i ←
w∑

j=1,Pi /∈Tj
([s]Rj

∏
P`∈Tj

`−i
`)

3: end for
4: return [s]

For the correctness of Protocol RSS2Shamir, the reader can refer to [CDI05, Hoo12]. Pri-
vacy follows from the locality of conversion, and the converted shares cannot leak more infor-
mation than the original shares, as all computation are done locally.

2.3 Performance Analysis

To analyze the performance of our protocols in a practical setting, we build applications using
Virtual Ideal Functionality Framework (VIFF). VIFF is a general software framework for doing
secure multiparty computation [Gei10], which provides researchers and programmers with the
basic building blocks (or sub-protocols) as APIs to allow rapid prototyping of new protocols
and building practical applications.

This section provides a brief introduction to VIFF, and presents our experiment settings for
performance analysis.

2.3.1 Virtual Ideal Functionality Framework

The interface offered by VIFF is viewed as an ideal functionality FV IFF within the UC frame-
work. An implementation of this ideal functionality is called a runtime class in VIFF. There
are several runtime classes in VIFF, dealing with different security settings:

• Paillier Runtime. This is a special two-player runtime based on the homomorphic
Paillier cryptosystem [Pai99], which is secure against a passive (semi-honest) adversary.

• Passive Runtime. This runtime implements the BGW protocol [BGW88] for n players
(n > 2). It is secure against passive adversaries as long no more than n/2 of the parties
are corrupted.

9

• Active Runtime. This runtime offers security against active adversaries for n players
(n > 2), based on [DGKN09]. It can tolerate at most n/3 maliciously corrupted parties.

This thesis focus on passive adversaries, thus the Passive Runtime is used as the base (or start
point) for building privacy preserving data mining applications. Besides the basic functionality
implemented in these runtime classes, VIFF also provide extra useful functions that can be
incorporate into a runtime, for example, the Pseudorandom Secret Sharing (PRSS) module for
random secret generation, the mixin classes for secure integer comparison. Chapter 3 reviews
the basic protocols in Passive Runtime, together with other useful protocols.

VIFF was created at the University of Aarhus in Denmark in 2008, and it has been used for
several large applications which demonstrated its capability for secure multiparty computation
[BCD+09, Mau09, DK10, Hoo12]. This is the main reason that we choose VIFF to design and
build applications for privacy preserving data mining.

The notable application built using VIFF is the Nordic Sugar auction system for Danish
sugar beet farmers. With this system, trading sugar beets was possible without finding and
paying a trusted third party to manage the auction. The application was first implemented in
Java language by the SIMAP research project, and was successfully carried out in Denmark in
2008 [BCD+09]. Later, it was rewritten in Python language using VIFF, and was successfully
repeated in 2009 [Gei10].

2.3.2 Experiment Settings

In VIFF, there are several parameters that are used to config how a runtime class should work.
For performance analysis, we are mainly interested in the following runtime options:

• Bit Length. This parameter defines maximum bit length of input numbers for our
protocols. Usually a single field Zp is used for all protocols in an application, thus to
avoid integer overflow in Zp, the prime p is chosen to be large than (2`+1 + 2`+k+1), where
l is the bit length, k is a security parameter. The security security parameter is used to
ensure the integer comparison protocols (see Section 3.5) work correctly, and guarantee
statistical security (see Chapter 3).

• Players Setting. Players are the parties that run the secure multiparty computation
protocols. In our experiment, we have three players, and the threshold for secret sharing
scheme is set to 2, i.e., it is a linear (2, 3)-threshold secret sharing scheme. These three
players run the protocols on different network ports of the same computer, which is a HP
Elitebook 8540w laptop, with Intel Core i5 M540 CPU @2.53GHz (2 cores, 4 threads),
8GB memory, and a Ubuntu 10.04 64bit OS.

For efficient implementation, we used a boost extension to VIFF, which greatly improves
the performance of VIFF applications [Kel10].

10

Chapter 3

Basic Protocols

This chapter reviews some basic SMC protocols, which are used as building blocks for privacy
preserving data mining solutions in Chapter 4 and Chapter 5. We consider these protocols
under the typical setting of Shamir’s secret sharing scheme as described in Section 2.2, though
some of them can be also applied in the Threshold Homomorphic Cryptosystems. Most of the
protocols in this chapter are already implemented in VIFF.

We start with the basic SMC protocols for arithmetic operations in Section 3.1. The second
and third section shows how to generate random secret in an interactive way and non-interactive
way respectively. Some basic constructions for round efficiency are presented in Section 3.4.
Section 3.5 reviews several protocols for integer comparison. In Section 3.6, we propose a new
protocol for symmetric AND/OR function. A summary of protocols introduced in this chapter
is given in Section 3.7.

3.1 Secure Arithmetic

This section reviews SMC protocols for basic arithmetic operations, including linear combi-
nation, multiplication, inner product, and inverse. These protocols provide perfect privacy
against a passive adversary, for the correctness proof and security analysis, we refer readers to
[BGW88, Tof07, Hoo12]. The protocols in this section are already implemented in VIFF.

3.1.1 Linear Combination

Shamir’s (t, n)-threshold secret sharing scheme is a LSS scheme, it allows each party to locally
compute linear combinations of secrets and public values. Linear combination of secrets includes
the following operations:

• Addition of secrets ([c] ← [a] + [b]): Each party Pi locally computes its share of the
result [c]i = [a]i + [b]i.

• Addition of secret and public value ([c] ← [a] + α, α ∈ Fq): Each party Pi locally
computes its share of the result [c]i = [a]i + α.

• Multiplication of secret and public value ([c] ← [a] · α, α ∈ Fq): Each party Pi
locally computes its share of the result [c]i = [a]i · α.

Since the above operations can all be done locally, we simply use the + to denote addition
operation, and the · to denote the multiplication of secret and public value in this thesis.

11

3.1.2 Multiplication

Multiplication of secrets requires an interactive protocol, which is shown as Protocol 3.1. The
idea is from the multiplication protocol proposed in [BGW88]. Given two secrets [a], [b], each
party Pi computes a share [a]i[b]i. As a secret [a] is represented by a uniformly random t-degree
polynomial f in Shamir’s secret sharing scheme, the result polynomial of multiplication will
have a degree of 2t, and not uniformly random, thus [a]i[b]i is not the correct share of [ab].

To ensure the result polynomial has a degree of t, and be uniform random, the parties
need to interactively compute a new random t-degree polynomial h, where h(0) = ab. The
restriction 2t+1 6 n must hold, otherwise it would be impossible to reconstruct the result from
the 2t-degree polynomial.

Protocol 3.1 Multiplication of secrets [c]←Mul([a], [b])

Input: [a], [b], where a, b ∈ Zp
Output: [c], where c = a · b, c ∈ Zp
1: foreach i ∈ {1, 2, ..., 2t+ 1} in parallel do
2: Pi computes di ← [a]i · [b]i
3: Pi shares di into [di]← ShamirShare(di)
4: end for
5: foreach j ∈ {1, 2, ..., n} in parallel do

6: Pj computes [c]j ←
2t+1∑
i=1

([di]j
2t+1∏

`=1,`6=i

−`
i−`)

7: end for

Complexity Analysis. Protocol 3.1 for the multiplication of secrets requires one round and
one invocation. Note that only the first 2t + 1 parties are involved in the computation of di,
this can save some communication and computation cost. To further optimize communication
and computation load, it is possible to select any arbitrary subset of 2t+ 1 parties.

3.1.3 Inner Product

Let [a] = ([a1], [a2], ..., [am]) be a shared m-vector, which contains a list of m shared secrets. To
compute the inner product of two shared m-vector [a], [b], a naive way would to use protocol
Mul to compute a new m-vectors ([a1 · b1], [a2 · b2], ..., [am · bm]), and then add all elements in
the vector locally to get the final result. Protocol 3.2 shows how to extend the multiplication
protocol in [BGW88] to be able to compute any generalized inner product by adding local
computations only [Hoo12].

Protocol 3.2 Inner Product of secret [c]← Inner([a], [b])

Input: [a] = ([a1], [a2], ..., [am]), [b] = ([b1], [b2], ..., [bm])

Output: [c], where c =
m∑
j=1

aj · bj

1: foreach i ∈ {1, 2, ..., 2t+ 1} in parallel do

2: Pi computes di ←
m∑
j=1

[aj]i · [bj]i

3: Pi shares di into [di]← ShamirShare(di)
4: end for

5: [c]←
2t+1∑
i=1

([di] ·
2t+1∏

`=1,`6=i

−`
i−`)

12

Complexity Analysis. While the naive solution using protocol Mul requires m rounds and
m invocations, protocol Inner only needs one round and one invocation, which is much more
efficient than the naive solution.

3.2 Interactive Generation of Random Secret

Many SMC protocols require the ability to generate shared random secrets. There are two
different techniques for the generation of random secrets. This section presents the interac-
tive way to generate random secret [DFK+06, Tof07]. The non-interactive solutions based on
pseudorandom secret sharing (PRSS) is introduce in Section 3.3 [CDI05].

3.2.1 Shared Random Element

Protocol 3.3 is used to jointly compute a shared secret [r] for some unknown r ∈ Zp. The idea

is to compute r =
n∑
i=1

xi, where xi ∈ Zp is chosen uniformly random by Pi. If at least one party

Pi is honest, then at least one xi is uniformly random, thereby r is uniformly random.

Protocol 3.3 Shared random element [r]← Rand(Zp)
Input: Zp
Output: [r], where r ∈ Zp
1: foreach i ∈ {1, 2, ..., n} in parallel do
2: Pi picks a random xi ∈ Zp
3: Pi shares xi into [xi]← ShamirShare(xi)
4: end for

5: [r]←
n∑
i=1

[xi]

Complexity Analysis. Protocol Rand requires one round and one invocation.

3.2.2 Shared Random Element in Range

To generate a shared random element [r] with bounded bit size, where r ∈ {0, ..., 2m − 1},
Protocol 3.4 can be used. Let τ : Zn × [1..n] 7→ {0, 1} be a public function, s.t. ∀x ∈ Zn :∑n

i=1 τ(x, i) = x.

Protocol 3.4 Shared random element in range [r]← Rand2m(Zp,m)

Input: Zp, m
Output: [r], where r ∈ [0, ..., 2m − 1], r ∈ Zp
1: foreach i ∈ {1, 2, ..., n} in parallel do
2: ai ← b(2m − 1)/nc+ τ(2m − 1 mod n, i)
3: Pi picks a random xi from {0, ..., ai}
4: Pi shares xi into [xi]← ShamirShare(xi)
5: end for

6: [r]←
n∑
i=1

[xi]

13

The basic idea of protocol Rand2m is the same as Protocol Rand, namely to get the sum of
n random uniform integers. While in Protocol Rand2m, the random integer xi is chosen from
a bounded range, which is achieved by the public function τ .

Complexity Analysis. Protocol Rand2m has the same complexity with Protocol Rand: one
round and one invocation.

3.2.3 Shared Random Bit

Protocol 3.5 generates a shared random bit [b], where b ∈ {0, 1} ⊂ Zp. This protocol requires
a prime modulus p with the property that p ≡ 3 (mod 4). Protocol Rand is used to generate
a uniformly random value [r] which is then squared and opened. If the product is zero, the
protocol fails and retries, otherwise the parties compute the v = u(p+1)/4 = r(p+1)/2 = r(p−1)/2 ·r.
Note that r(p−1)/2 is the Legendre symbol (rp) = ±1 for r 6= 0, then b = 2−1 · (v−1 · r + 1) =

2−1 · (±1 · r−1 · r + 1) = 2−1 · (±1 + 1). Thus b = 1 if (rp) = 1, and b = 0 if (rp) = −1.

Protocol 3.5 Shared random bit [b]← RandBit(Zp)
Input: Zp, where p ≡ 3 mod 4
Output: [b], where b ∈ {0, 1} ⊂ Zp
1: [r]← Rand(Zp)
2: [u]←Mul([r], [r])
3: u← OpenShare([u])
4: if u = 0 then
5: abort and retry
6: else
7: v ← u(

p+1
4

)

8: [b]← 2−1 · (v−1 · [r] + 1)
9: end if

The value of Legendre symbol (rp) depends on whether r is quadratic residue or not, and
the probability that (rp) = 1 is 1/2 for r ∈ Z∗p, thus the bit b is uniformly random. The protocol

fails with probability 1/p, which is negligible for a large p that p > 2k, where k is a security
parameter.

Complexity Analysis. Protocol RandBit requires three rounds and three invocations.

3.2.4 Shared Random Invertible Element

Protocol 3.6 generates a non-zero shared random field element [r], and optionally its inverse
[r−1]. The parties use the protocol Rand to generate two shared random secrets [x] and [y], and
then reveal their product [x · y]. If the product is 0, the protocol fails and retries, while if not, a
non-zero shared random field element [r] and its inverse [r−1] can be obtained in a trivial way.

We use Rand∗ to denote the protocol that only generates a non-zero shared random field
element [r] without its inverse [r−1]. Note that the protocol fails with probability 2/p, when x
or y is zero.

14

Protocol 3.6 Shared random invertible element [r], [r−1]← RandInv(Zp)
Input: Zp
Output: [r], [r−1], where r ∈ Zp
1: [x]← Rand(Zp)
2: [y]← Rand(Zp)
3: [c]←Mul([x], [y])
4: c← OpenShare([c])
5: if c = 0 then
6: abort and retry
7: else
8: [r]← [x]
9: [r−1]← c−1 · [y]

10: end if

Complexity Analysis. The random secrets [x] and [y] can be generated in parallel, thus the
overall complexity is three rounds and four invocations.

3.3 Non-Interactive Generation of Random Secret

Random secret generation can be also achieved in a non-interactive way [CDI05], where the
parties can generate fresh random shares by local computation only, using a set of previously
distributed pseudo-random functions (PRFs). This technique is known as Pseudorandom Secret
Sharing (PRSS), which is implemented in VIFF as PRSS module. This section presents a
number of protocols for non-interactive generation of random secret from [CDI05], we refer
readers to [CDI05, Hoo12] for the correctness proof and security analysis of these protocols.

PRSS requires a set of PRFs, and these PRFs depends on a set of PRF keys, which are
previously distributed as replicated shares. This can be done by a trusted party, which is the
case in VIFF, or using an interactive protocol to jointly share them, as shown in Protocol 3.7.

Notation. Assume there are n parties P = {P1, ..., Pn}, and a threshold monotone access
structure Γ with threshold t < n. Let T = {T1, T2, ..., Tw} be the set of all maximal forbidden
set, i.e., T = {T ⊂ P ||T | = t}, w =

(
n
t

)
.

Protocol 3.7 Setup for Pseudorandom Secret Sharing [k]R ← SetupPRSS(Zp)
1: foreach i ∈ {1, 2, ..., n} do
2: Pi randomly picks ki from Zp
3: [ki]

R ← RShare(Zp, t, n, ki)
4: Pi locally computes [k]Rj ←

∑n
i=1 [ki]

R
j , where j such that Pi /∈ Tj

5: end for
6: return [k]R

The parties randomly picks ki ∈ Zp for 1 6 i 6 n, and distribute them using replicated
secret sharing scheme. Then each party Pi locally computes a consistent replicated sharing of
k =

∑n
i=1 ki. The replicated shares of k are used as the PRF keys.

15

3.3.1 Shared Random Element

Let H : Z×N→ Z be the pseudo-random function (PRF), ctr ∈ N is a static counter. Protocol
3.8 shows how to locally generate the RSS shares of a random secret [CDI05].

Protocol 3.8 Generate RSS Shares of a random element [r]R ← PRandRSS(Zp)
1: static ctr ← 0
2: static [k]R ← SetupPRSS(Zp)
3: foreach party Pi, i ∈ {1, 2, ..., n} do
4: [r]Rj ← H([k]Rj , ctr), where j such that Pi /∈ Tj
5: ctr ← ctr + 1
6: end for
7: return [r]R

In Protocol PRandRSS, each party Pi computes [r]Rj ← H([k]Rj , ctr), for all j such that

Pi /∈ Tj . It follows that [r]R is a consistent replicated sharing, where r =
∑w

j=1H([k]Rj , ctr),
thus r is uniformly random.

As shown in Section 2.2.3, the replicated share can be locally converted to Shamir’s share.
Hence the non-interactive generation of random field element can be achieved as follows.

Protocol 3.9 Generation of shared random element [r]← PRand(Zp)

1: [r]R ← PRandRSS(Zp)
2: [r]← RSS2Shamir([r]R)
3: return [r]

3.3.2 Shared Random Element in Range

Similarly to Protocol PRandRSS, Protocol 3.10 shows how to noninteractively generate repli-
cated shares of a random element with bounded bit size [CDI05]. Instead of using H, we define
a different PRF Hα : Z × N → {0, 1}α, which outputs a uniformly randomly chosen integer of
fixed α bit size. And suppose that the parties have agreed upon a static counter ctr ∈ N.

Each party Pi computes [r]Rj ← Hα([k]Rj , ctr), for all j such that Pi /∈ Tj . It follows that [r]R

is a consistent replicated sharing, where r =
∑w

j=1Hα([k]Rj , ctr), thus r has bit size α + logw
and its distribution is equal to the sum of w uniformly random numbers.

Protocol 3.10 Generate RSS Shares of a random element in range [r]R ←
PRand2mRSS(Zp, α)

1: static ctr ← 0
2: static [k]R ← SetupPRSS(Zp)
3: foreach party Pi, i ∈ {1, 2, ..., n} do
4: [r]Rj ← Hα([k]Rj , ctr), where j such that Pi /∈ Tj
5: ctr ← ctr + 1
6: end for
7: return [r]R

By using RSS2Shamir, we can get the Shamir shares of [r]R, as shown in Protocol 3.11.

16

Protocol 3.11 Generation of shared random element in range [r]← PRand2m(Zp, α)

1: [r]R ← PRandRSS(Zp, α)
2: [r]← RSS2Shamir([r]R)
3: return [r]

3.3.3 Pseudo Random Zero Sharing

Protocol 3.12 generates Shamir’s random shares of zero [0] using a random polynomial of degree
2t < n. The polynomial is defined as

z(x) =
w∑

i=1,Pj /∈Ti

pi(j)([r1]
R
j j + [r2]

R
j j

2 + ...+ [rt]
R
j j

t)

where pi(x) =
∏
Pj∈Ti

j−x
j , [ri]

R is a random replicated share (for 1 6 i 6 t), and z(0) = 0.

Protocol 3.12 Generation of shared random element in range [z]← PRandZero(Zp)
1: foreach i ∈ {1, 2, ..., t} do
2: [ri]

R ← PRandRSS(Zp)
3: end for
4: foreach j ∈ {1, 2, ..., n} do

5: [z]j ←
w∑

i=1,Pj /∈Ti
pi(j)([r1]

R
j j + [r2]

R
j j

2 + ...+ [rt]
R
j j

t)

6: end for
7: return [z]

The correctness proof and security analysis of Protocol PRandZero can be found in [CDI05,
Hoo12].

3.4 Basic Constructions for Round Efficiency

In secure multiparty computation protocols, round complexity is a dominant factor in the
execution time. To achieve better performance in practise, SMC protocols should be designed
with less rounds and invocations. This section presents some basic constructions that can be
used to reduce the round complexity. The Pseudorandom Secret Sharing (PRSS) introduce in
previous section is efficient, as it does not require any interactive communication (except for
the setup protocol), thus we will use this technique wherever possible in this thesis.

3.4.1 Multiplication with Public Output

Suppose the parties wish to reveal the product of two secrets, the obvious way is to se-
curely compute their product first by [c] ← Mul([a], [b]), and then open the product by
c ← OpenShare([c]). In this way, the complexity is 2 rounds and 2 invocations. Protocol
3.13 exploits the benefits of Protocol PRandZero, and achieve this goal with only one round
and one invocation. [z] is generated to ensure that any set of 2t values of mi is uniformly random
and does not depend on a and b. The protocol is proven to be secure in [CDI05].

17

Protocol 3.13 Multiplication with public output c←MulPub([a], [b])

1: [z]← PRandZero(Zp)
2: foreach i ∈ {1, 2, ..., 2t+ 1} in parallel do
3: Pi computes mi ← [a]i · [b]i + [z]i
4: Pi sends mi to all parties
5: end for

6: all parties compute c←
2t+1∑
i=1

mi

2t+1∏
j=1,j 6=i

−j
i−j

7: return c

Complexity Analysis. Protocol MulPub has the same complexity as Protocol Mul, namely
one round and one invocation.

3.4.2 Generation of Shared Random Bit using PRSS

Protocol 3.14 shows how to generate a shared random bit using the PRSS technique. The
basic idea is the same as Protocol RandBit, while Protocol PRandBit exploits the benefits of
protocol PRand and protocol MulPub.

Protocol 3.14 Generate Shared Random Bit using PRSS [b]← PRandBit(Zp)
Input: Zp, where p ≡ 3 mod 4
Output: [b], where b ∈ {0, 1} ⊂ Zp
1: [r]← PRand(Zp)
2: u←MulPub([r], [r])
3: if u = 0 then
4: abort and retry
5: else
6: v ← u−(

p+1
4

)

7: [b]← 2−1 · (v · [r] + 1)
8: end if

Complexity Analysis. Protocol PRandBit requires one round and one invocation, which is
more efficient compared to three rounds and two invocations required by Protocol RandBit.

3.4.3 Generation of Shared Random Invertible Element using PRSS

Protocol 3.15 shows how to generate a non-zero shared random field element [r], using PRSS
technique. The idea is basically the same with Protocol RandInv, namely to generate two
shared random secrets [x] and [y], and then reveal their product. Protocol MulPub is used here
to save one round and one invocation.

Note that the protocol fails with probability 2/p, when x or y is zero. In practice, a large
p is chosen such that probability 2/p negligible. We use PRand∗ to denote the protocol that
only generates a non-zero shared random field element [r] without its inverse [r−1].

18

Protocol 3.15 Generate Shared Random Invertible Element [r], [r−1]← PRandInv(Zp)
Input: Zp
Output: [r], [r−1], where r ∈ Zp
1: [x]← PRand(Zp)
2: [y]← PRand(Zp)
3: c←MulPub([x], [y])
4: if c = 0 then
5: abort and retry
6: else
7: [r]← [x]
8: [r−1]← c−1 · [y]
9: end if

Complexity Analysis. Protocol PRandInv requires one round and one invocation.

3.4.4 Inverse of Field Element

Let [a] be a shared integer in Zp, Protocol 3.16 shows how to securely compute the inverse of
a, which is denoted by [a−1] (a 6= 0). The idea is to compute and reveal b = a · r, where r is a
random secret. If b 6= 0, the parties can locally compute [a] · b−1, which is the inverse of [a].

Protocol 3.16 Invert of shared secret [a−1]← Inv([a])

Input: [a], where a 6= 0, a ∈ Zp
Output: [a−1], where a−1 · a = 1, a−1 ∈ Zp
1: [r]← PRand(Zp)
2: b←MulPub([a], [r])
3: if b = 0 then
4: abort and retry
5: else
6: [a−1]← b−1 · [r]
7: end if

Complexity Analysis. Protocol Inv requires one round and one invocation.

3.4.5 Generation of Bitwise Shared Random Secrets

Let [a] be a shared integer in Zp, we use [a]B = ([a`−1], ..., [a0]) to denote the secret shared bits

of a, where ` = dlog2(p)e, a0, ..., a`−1 ∈ {0, 1} ⊂ Zp and a =
∑`−1

i=0 ai2
i. Protocol 3.17 shows

how to compute a shared bounded element [r] and its bits [r]B, where r ∈ [0, 2m − 1].

Protocol 3.17 Bitwise shared random secret [r], [r]B ← PRandBitwise(Zp,m)

Input: m, where p > 2m

Output: [r], [r]B = ([rm−1], ..., [r0]), where r ∈ Zp, ri ∈ {0, 1} ⊂ Zp for 0 6 i < m
1: foreach i ∈ {0, ...,m− 1} in parallel do
2: [ri]← PRandBit(Zp) // generate m random shared bits [r]B
3: end for
4: [r]←

∑m−1
i=0 2i · [ri] // local combination to obtain [r]

5: [r]B ← ([rm−1], ..., [r0])
6: return [r], [r]B

19

The basic idea is that the parties first generate shared random bits using PRandBit and
then locally compute [r] ←

∑m−1
i=0 2i · [ri]. To void integer overflow in field Zp, the filed size p

must be larger than 2m.

Complexity Analysis. Since the complexity for protocol PRandBit is one round and one in-
vocation, and in step 2 the m random secret shared bits [r]B = ([rm−1], ..., [r0]) can be generated
in parallel, thus the overall complexity for this protocol is one rounds and m invocations.

3.4.6 k-ary Operation

A k-ary operation computes y = a1 � a2 � ... � ak = �ki=1 ai, where � denotes an associative
binary operator. We present a well known protocol to perform k-ary operation with logarithmic
rounds, as shown in Protocol 3.18.

Protocol 3.18 log(k) rounds operation [c]← LogkOp(�,a)

Input: �,a = (a1, a2, ..., ak)
Output: c = �ki=1 ai
1: foreach i ∈ {1, 2, ..., bk/2c} do
2: bi ← a2i � a2i−1
3: end for
4: if k is even then
5: c← LogkOp(�, (b1, b2, ..., bbk/2c))
6: else
7: c← LogkOp(�, (b1, b2, ..., bbk/2c, ak))
8: end if

Complexity Analysis. Assume the operation � requires α rounds and β invocations, then
the complexity of this protocol is αdlog(k)e rounds and β(k − 1) invocations. For convenience,
we use MulLogk to denote Protocol 3.18 when the operation � is multiplication. In this case,
the overall complexity would be dlog(k)e rounds and (k − 1) invocations.

3.4.7 Unbounded Fan-in Multiplication

Bar-Ilan and Beaver proposed a constant rounds solution for computing the prefix products
[cj] =

∏j
i=1 [ai] for 1 6 j 6 k in [BIB89], where ai 6= 0 for 1 6 i 6 k. The idea is to

generate non-zero random values [r1], ..., [rk] and compute their inverses [r−11], [r−12], ..., [r−1k],

and then compute and open m1 = a1r1, mi = r−1i−1airi for i = 2, ..., k. Hence [cj] =
∏j
i=1 [ai] =

[r−1j] ·
∏j
i=1mi.

Complexity Analysis. The multiplication in step 4 and step 6, can be performed in parallel
with the multiplication in protocol PRandInv, thus the overall complexity is 2 rounds and
3k − 1 invocations.

The price paid for obtaining a constant rounds solution in protocol PreMul is a substantial
increase of the communication and computation complexity. The prefix products can be also
achieved with log(k) rounds and k/2 log(k) invocations, using a generic protocol for prefix
operation [Hoo12], which requires less communication cost when log k 6 6, i.e., k 6 64.

20

Protocol 3.19 Unbounded fan-in multiplication [c]← PreMul([a])

Input: [a] = ([a1], [a2], ..., [ak]), where ai ∈ Zp, ai 6= 0 for 1 6 i 6 k

Output: [c] = ([c1], [c2], ..., [ck]), where [cj] =
∏j
i=1 [ai] for 1 6 j 6 k

1: foreach i ∈ {1, 2, ..., k} do
2: [ri], [r

−1
i]← PRandInv(Zp)

3: end for
4: m1 ←MulPub([a1], [r1])
5: foreach i ∈ {2, ..., k} do
6: [mi]←Mul([ri], [ai])
7: mi ←MulPub([mi], [r

−1
i−1])

8: end for
9: foreach j ∈ {1, ..., k} do

10: [cj]← [r−1j] ·
∏j
i=1mi

11: end for

3.5 Integer Comparison Protocols

This section shows how to construct protocols for comparing two secret inputs [x] and [y],
where x, y ∈ Zp, using previously discussed protocols as building blocks. We start with a public
equality test protocol in Section 3.5.1, which output public result, and then two equality test
protocols with secret output are given in Section 3.5.2 and Section 3.5.3, and the greater equal
than test protocol is presented in Section 3.1.

3.5.1 Equality Test with Public Result

Protocol 3.20 computes s = (x = y), given two secrets [x] and [y]. The idea is from [FH94],
namely to generate a shared random non-zero element [r], compute and reveal c = (x − y) · r.
Note that x = y if and only if (x − y)r = 0, thus s = (x = y) = (c = 0). Since r is uniformly
random in Z∗p, then (x − y)r is uniformly random in Zp, which hides x − y perfectly if it is
nonzero.

Protocol 3.20 Public Equality Test s← EqualPub([x], [y])

Input: [x], [y], where x, y ∈ Zp
Output: s, where s = (x = y), s ∈ {0, 1} ⊂ Zp
1: [r]← PRand∗(Zp)
2: c←MulPub([x]− [y], [r])
3: s← (c = 0)

Complexity Analysis. The protocol requires 2 rounds and 2 invocations.

While Protocol EqualPub can give the equality test result without revealing the value of x, y,
it leaks one bit information about x, y, namely whether they are equal or not. In some cases, we
also want to keep the equality test result secret, i.e., given two secret inputs [x], [y], to compute
a secret bit value [s], where s = (x = y) without revealing any information about the inputs.
This goal can be achieved by Protocol 3.21 in Section 3.5.2 and Protocol 3.22 in Section 3.5.3.

21

3.5.2 Probabilistic Equality Test

Nishide and Ohta proposed a probabilistic equality test protocol with a very small round com-
plexity in [NO07]. The basic idea is based on the property of quadratic residues as follows: if
a is zero, then (cp) = (rp) holds, where c = a + r, r is a random secret. If a is not zero, then
(cp) 6= (rp) holds with non-negligible probability.

The protocol requires p = 3 mod 4, which implies that Legendre symbol (−1p) = −1. The

parties compute cj = arj + bjr
′
j
2 for 1 6 j 6 k, where bj is shared random bit, rj , r

′
j are shared

random elements, and k is a security parameter such that (12)k is negligible.

Since bjr
′
j
2 is uniformly random, [cj] can be safely open without leaking any information

about a. Assuming cj is not a zero (If cj is a zero, the parties discard the cj and retry), if

a = 0, it is obvious that (
cj
p) = (

bjr
′
j
2

p) = bj . While in the case of a 6= 0, (
cj
p) = bj holds with

probability 1
2 , as arj is uniformly random. By doing the test k times, we can have s = 1 for

sure when a = 0, and s = 0 with a high probability 1− (12)k for sufficiently large k when a 6= 0.

Protocol 3.21 Probabilistic Equality Test [s]← ProbEqual([x], [y])

Input: [x], [y], where x, y ∈ Zp, p = 3mod 4, a security parameter k
Output: [s], where s = (x = y), s ∈ {0, 1} ⊂ Zp
1: [a]← [x]− [y]
2: foreach j ∈ {1, 2, ..., k} in parallel do
3: [bj]← 2 · PRandBit(Zp)− 1
4: [rj]← PRand(Zp)
5: [r′j]← PRand(Zp)
6: [cj]←Mul([a], [rj]) +MulLogk([bj], [r

′
j], [r

′
j])

7: cj ← OpenShare([cj])
8: if cj = 0 then
9: retry: go to Line 3

10: else
11: Jj ← c

(q−1)/2
j // Legendre symbol

12: [zj]← Jj · 2−1 · ([bj] + Jj)
13: end if
14: end for
15: [s]←MulLogk([z1], [z2], ..., [zk])

Complexity Analysis. The complexity of computing each component is as follows: one
round and k invocations for generating [bj], 3 rounds and 4k invocations for computing cj , and
log(k) rounds and k− 1 invocations for the last step. The total complexity is 4 + log(k) rounds
and 6k − 1 invocations.

Remark. In protocol ProbEqual, the random secret [rj] is generated to ensure that arj is
uniformly random, such that probability that (

cj
p) = bj is exactly 1

2 in the case of a 6= 0. Since
the absence of rj does not harm the privacy of a, we can skip the generation of [rj], which will

save us k invocations, and then cj = a+ bjr
′
j
2.

It has been shown that y = a + r is a quadratic residue with probability in the range
1
2 ± (3 +

√
p)/p, where a ∈ Zp, r is uniformly random in Zp [Per92]. The deviation part

(3 +
√
p)/p is negligible when p is a large prime number, which is the typical setting in our

22

SMC protocols. Thus in our case, we can roughly say that (
cj
p) = (

a+bjr
′
j
2

p) = bj holds with

probability 1
2 in the case of a 6= 0, and the overall error probability of protocol ProbEqual is

still negligible when rj is missing.

3.5.3 Bounded Equality Test

Protocol 3.22 shows how to perform equality test for two bounded secret [x], [y], where x, y ∈
[0, 2m−1] ⊂ Zp. The core idea is from the equality test protocol in [NO07]. The parties compute
and reveal c = x − y + r, where r is a random value. We note that c = r if and only if x = y.
Therefore, the parties compute whether all bits of c are the same as the bits of r.

In our protocol, since x, y are bounded in range [0, 2m − 1], we need to add 2m to avoid
modulo reduction in Zp when x < y. Thus the parties compute and reveal c = x− y + r + 2m,
and then test whether all bits of c are the same as [r′]B.

Protocol 3.22 Bounded Equality Test [s]← BoundEqual([x], [y])

Input: [x], [y] where x, y ∈ [0, 2m − 1] ⊂ Zp, p > 2m+k, where k is a security parameter
Output: [s], where s = (x = y), s ∈ {0, 1} ⊂ Zp
1: [r′], [r′]B ← PRandBitwise(Zp,m)
2: parse [r′]B as ([r′m−1], ..., [r

′
0])

3: [rd]← PRand2m(Zp, k)
4: [r]← 2m · [rd] + [r′]
5: c← OpenShare([x]− [y] + [r] + 2m)
6: foreach i ∈ {0, 1, ...,m− 1} do
7: [c′i]← 1− ci + (2ci − 1) · [r′i]
8: end for
9: [s]←MulLogk([c′0], [c

′
1], ..., [c

′
m−1])

Lemma 3.1 Protocol 3.22 outputs [s = (x = y)] for given [x], [y], provided that 0 6 x < 2m

and 0 6 y < 2m, x, y ∈ Zp.

Proof We distinguish two cases for Protocol 3.22, namely x = y, and x 6= y.
If x = y, then c = r + 2m, hence c ≡ r′ mod 2m, then ci = r′i for i ∈ {0, 1, ...,m− 1}.
Hence c′i = 2ci(ci − 1) + 1 = 1 for i ∈ {0, 1, ...,m− 1}, therefore s = 1.
If x 6= y, then there exist a bit position t such that ci 6= r′i, where t ∈ {0, 1, ...,m− 1}.
Hence if ct = 0, then r′t = 1, and c′t = 1− ct + (2ct − 1)r′t = 0, therefore s = 0
While if ct = 1, then r′t = 0, and c′t = 1− ct + (2ct − 1)r′t = 0, therefore s = 0
Therefore, Protocol 3.22 outputs [s = (x = y)].

Complexity Analysis. The complexity of computing each component is as follows: one
round and m invocations for generating [r′]B, one round and one invocation for OpenShare
and log(m) rounds and m− 1 invocations for computing [s] using MulLogk. Thus the overall
complexity is 2 + log(m) rounds and 2m invocations.

Remark. While Protocol ProbEqual has a constant round complexity and communication
complexity, which only depends on the security parameter k, the complexity of ProtocolBoundEqual
mainly determined by the bit length m of inputs. Protocol BoundEqual is designed for effi-
ciency in the case of small inputs. It performs better than Protocol ProbEqual for a small m
(m < k).

23

In the VIFF framework, the security parameter k is usually set to about 30 (to get a negligible
fail probability or to guarantee statistical security). Under this setting, Protocol BoundEqual is
preferred when the bit length of inputs is small than 30, and Protocol ProbEqual has advantage
for large inputs.

3.5.4 Greater Equal Than Test

Given two bounded secret inputs [x], [y], where x, y ∈ [0, 2m − 1] ⊂ Zp, Protocol 3.23 computes
[s = (x > y)]. This protocol is from [EFG+09], and implemented in VIFF by Toft.

Protocol 3.23 Greater Equal Than Test [s]← GEqualThan([x], [y])

Input: [x], [y], where x, y ∈ [0, 2m − 1] ⊂ Zp, a security parameter k, p > 2m+k + 2m

Output: [s], where s = (x > y), s ∈ {0, 1} ⊂ Zp
1: [r′], [r′]B ← PRandBitwise(Zp,m)
2: parse [r′]B as ([r′m−1], ..., [r

′
0])

3: [rd]← PRand2m(Zp, k)
4: [z]← [x]− [y] + [r′] + 2m

5: [d]← 2m · [rd] + [z]
6: d← OpenShare([d])
7: get the least m significant bits of d, let it be (dm−1, ..., d0)
8: [b]← PRandBit(Zp)
9: [c]← 1− 2 · [b]

10: [mask]← PRand∗(Zp)
11: [am]← 0
12: foreach j ∈ {m− 1, ..., 0} do
13: [ej]← [c] + [r′j]− dj + 3 · [aj+1]
14: [aj]← [aj+1] + [r′j] + dj − 2 · dj · [r′j]
15: end for
16: [em]← [c]− 1 + 3 · [a0]
17: [e]←MulLogk([mask], [e0], [e1], ..., [em])
18: e← OpenShare([e])
19: e′ ← (e 6= 0)
20: [u]← e′ + [b]− 2 · e′ · [b]
21: [s]← ([z]− d mod 2m − 2m · [u])/2m

The overall idea is to masking x − y, using a large random number r, and then comparing
the bits of x, y. Consider d′ = x−y+ 2m, it follows that d′m = 0⇔ x < y, where d′m is the most
significant bit of d′. As d′m = (d′ − (d′ mod 2m))/2m, the problem of comparing x, y becomes
to compute d′ mod 2m.

Let d = d′ + r, and r = r′ + 2m · rd, then

d′ mod 2m = ((d mod 2m)− (r mod 2m)) mod 2m

Note that if (d mod 2m) > (r mod 2m), then d′ mod 2m = (d mod 2m) − (r mod 2m),
else d′ mod 2m = (d mod 2m) − (r mod 2m) + 2m. We use an underflow bit u to indicate
whether (d mod 2m) < (r mod 2m). Hence

24

d′m = (d′ − (d′ mod 2m))/2m

= (x− y + 2m − (d mod 2m) + (r mod 2m)− u · 2m)/2m

= (x− y + 2m − (d mod 2m) + r′ − u · 2m)/2m

= (z − (d mod 2m)− u · 2m)/2m

We now show that step 7 to step 20 in Protocol 3.23 exactly computes u = (d mod 2m) < (r
mod 2m).

Proof If (d mod 2m) > (r mod 2m), then there exist a bit position t such that di = r′i for
m− 1 > i > t, and dt = 1, r′t = 0 ;
Hence ai = 0 for m− 1 > i > t+ 1, at = 3, ai > 0 for k − 1 > i > 0 ;
Then ei = c for m−1 > i > t+1, et = c−1, et−1 = c+3 > 0 for t−2 > i > 0, em = c−1+3 ·a0;
Hence if b = 0, then c = 1, hence et = 0, and e = 0, then e′ = 0, thus u = 0;
While if b = 1, then c = −1, hence et = −2, and e = 1, then e′ = 1, thus u = 0.

If (d mod 2m) = (r mod 2m), then di = r′i for m− 1 > i > 0;
Hence ai = 0 for m− 1 > i > 0, ei = c for m− 1 > i > 0, em = c− 1 ;
Hence if b = 0, then c = 1, hence em = 0, and e = 0, then e′ = 0, thus u = 0;
While if b = 1, then c = −1, hence em = −2, and e 6= 0, then e′ = 1, thus u = 0.

If (d mod 2m) < (r mod 2m), then there exist a bit position t such that di = r′i for m − 1 >
i > t+ 1, and dt = 0, rt = 1 ;
Hence ai = 0 for m− 1 > i > t+ 1, at = 3, ai > 0 for k − 1 > i > 0 ;
Then ei = c for m−1 > i > t+1, et = c+1, et−1 = c+3 > 0 for t−2 > i > 0, em = c−1+3 ·a0;
Hence if b = 0, then c = 1, hence ek = 2, and e 6= 0, then e′ = 0, thus u = 1;
While if b = 1, then c = −1, hence ek = 0, and e = 0, then e′ = 1, thus u = 1.

Complexity Analysis. The complexity of computing each component is as follows: one
round and m invocations for generating [r′]B, one round and one invocation for OpenShare
and log(m + 2) rounds and m + 1 invocations for computing [e] using MulLogk. Thus the
overall complexity is 4 + log(m+ 2) rounds and 2m+ 4 invocations.

3.6 Symmetric Boolean Function

A symmetric Boolean function is a Boolean function whose value does not depend on the
permutation of its input bits, i.e., it depends only on the number of ones in the input. This
section presents two different solutions for computing symmetric Boolean functions, given k
shared inputs [a1], [a2], ..., [ak], where ai ∈ {0, 1} ⊂ Zp for 1 6 i 6 k, and k < p − 1. Section
3.6.1 presents the first solution, which is based on unbounded fan-in multiplication [DFK+06],
and the second solution using bounded equality test protocol is given in Section 3.6.2.

3.6.1 Unbounded Fan-in Symmetric Boolean Functions

A symmetric boolean function can be written as f(x1, ..., xk) = φ(1 +
∑k

i=1 [xk]) for some
function φ : {1, 2, ..., k + 1} → {0, 1}. By using Lagrange polynomial interpolation, we can
construct a polynomial of degree k with coefficients α0, ..., αk such that φ(x) =

∑k
i=0 αix

i for

25

all x ∈ {1, 2, ..., k + 1}. For example, in the case of the boolean function AND, the polynomial
satisfies the conditions φ(k + 1) = 1 and φ(x) = 0 for 1 6 x 6 k.

Based on the above observations, we can have a generic, efficient solution for secure com-
putation in constant rounds of any symmetric boolean function, as shown in Protocol 3.24
[DFK+06].

Protocol 3.24 Unbounded fan-in symmetric boolean function [s]← SymBool([a1], [a2], ..., [ak])

Input: [a1], [a2], ..., [ak], where ai ∈ {0, 1} ⊂ Zp for 1 6 i 6 k
Output: [s] where s = f(a1, a2, ..., ak)

1: [b]← 1 +
k∑
i=1

[ak]

2: ([b], [b2], ..., [bk])← PreMul([b], [b], ..., [b])

3: [s]← α0 +
k∑
i=1

αi[b
i]

Complexity Analysis. Only step 2 requires interaction, so complexity is the same as protocol
PreMul: 2 rounds and 3k − 1 invocations.

3.6.2 Symmetric AND/OR Operation Using Equality Test

Since the result of a symmetric Boolean function only depends only on the number of ones
in the input, the symmetric AND/OR operation can be performed using equality test. The
idea is that [s] = AND([a1], [a2], ..., [ak]) = [

∑k
i=1[ai] = k], and [s] = OR([a1], [a2], ..., [ak]) =

[1 − (
∑k

i=1[ai] = 0)]. We propose Protocol 3.25 and Protocol 3.26 for computing symmetric
AND and symmetric OR using protocol BoundEqual respectively.

Protocol 3.25 symmetric AND operation [s]← AND([a1], [a2], ..., [ak])

Input: [a1], [a2], ..., [ak], where ai ∈ {0, 1} ⊂ Zp for 1 6 i 6 k

Output: [s] where s =
∏k
i=1 ai

1: [s]← BoundEqual(
∑k

i=1[ai], k)

Protocol 3.26 symmetric OR operation [s]← OR([a1], [a2], ..., [ak])

Input: [a1], [a2], ..., [ak], where ai ∈ {0, 1} ⊂ Zp for 1 6 i 6 k

Output: [s] where s =
∑k

i=1 ai
1: [s]← 1−BoundEqual(

∑k
i=1[ai], 0)

Complexity Analysis. The above protocols only require a equality test for a bounded value,
where protocol BoundEqual is used, thus the complexity is 2 + log(log(k)) rounds and 2 log(k)
invocations. Compared to the 2 rounds and 3k − 1 invocations required by protocol SymBool,
our protocol requires much less communication cost, and the round complexity depends on
log(log(k)), which grows slowly when k increases. Overall, our protocols are more efficient than
protocol SymBool.

26

3.7 Summary

This chapter provides an overview of basic protocols for Shamir’s secret sharing scheme. Most of
the protocols are implemented in VIFF by VIFF development team, mainly located in the Pas-
siveRuntime Class in VIFF. The PassiveRuntime Class realizes the basic arithmetic operations
and non-interactive random secret generation using PRSS. For integer comparison, Protocol
ProbEqual and protocol GEqualThan are already existed in VIFF. Protocol BoundEqual are
AND, OR are proposed and added to VIFF by the author of this thesis.

Table 3.1 gives an overview of the protocol introduced in this chapter.

Protocol Round Invocation Security Method in VIFF

Mul 1 1 perfect Passive.mul
MulPub 1 1 perfect Passive.mul public
Inner 1 1 perfect Passive.in prod
Inv 1 1 perfect Passive.invert

Rand 1 1 perfect Not Defined
Rand2m 1 1 statistical Not Defined
RandInv 3 4 perfect Not Defined
RandBit 3 3 perfect Not Defined

PRand 0 0 perfect Passive.prss share random
PRandZero 0 0 perfect Passive.prss share zero
PRand2m 0 0 statistical Passive.prss share random max
PRandInv 1 1 perfect Not Defined
PRandBit 1 1 perfect Passive.prss share random
PRandBitwise 1 m perfect Not Defined

EqualPub 2 2 perfect Passive.equal public
ProbEqual 4 + log(k) 6k − 1 statistical ProbabilisticEqualityMixin
BoundEqual 2 + log(m) 2m statistical Not Defined
GEqualThan 4 + log(m+ 2) 2m+ 4 statistical ComparisonToft07Mixin

SymBool 2 3k − 1 perfect Not Defined
AND, OR 2 + log(log(k)) 2 log(k) statistical Not Defined

Table 3.1: Overview of basic protocols in Chapter 3

27

Chapter 4

Secure Frequent Itemset Mining

The goal of frequent itemset mining is to discover sets of items that frequently co-occur in
the transactional database. The original motivation for mining frequent itemset came from
market basket analysis, where the basic idea is to examine the customer behavior in terms of
the purchased products, and find out which items are frequently purchased together.

Frequent itemsets mining is a key component of many data mining tasks that rely on finding
frequent patterns such as association rules learning, sequence mining. This chapter gives two
secure frequent itemset mining solutions based on secure multiparty computation. We start
with the introduction of basic concepts of frequent itemset and Apriori algorithm in Section
4.1. Section 4.2 presents a secure Apriori protocol which outputs public frequent itemsets. In
Section 4.3, a fully secure Apriori protocol which generate secret outputs is given.

4.1 Frequent Itemset Mining

The problem of frequent itemset mining is defined as follows [AIS93]. Given a set of items
I = {I1, I2, ..., In} and a transactional database T = {T1, T2, ..., Tm} where each transaction
Ti consists of items from I. An itemset is a set which consists of items from I. The support
supp(X) of an itemset X is defined as the number of transactions in T that contain the itemset
X. An itemset is called frequent if its support is larger than a specified minimum support
MinSupp. The goal of frequent itemset mining is to find all frequent itemsets. Table 4.1 shows
an example transactional database and its frequent itemset [Lov12].

Transaction S1 S2 S3 S4

T1 1 0 1 0
T2 0 1 0 0
T3 0 0 0 1
T4 0 1 1 1
T5 0 1 1 0
T6 0 1 1 0
T7 1 1 1 1
T8 1 0 1 0
T9 1 1 1 0
T10 1 1 1 0

Frequent Itemset Support

(S1) 5
(S2) 7
(S3) 8
(S4) 3
(S1, S2) 3
(S1, S3) 5
(S2, S3) 6
(S2, S4) 2
(S3, S4) 3
(S1, S2, S3) 3
(S2, S3, S4) 2

Table 4.1: An example transactional database and its frequent itemsets

28

In the above example, the set of items I is {S1, S2, S3, S4}, and the minimum support
MinSupp is set to 2. Note that a frequent itemset has the property that any subset of a frequent
itemset is also frequent. In other words, if an itemset is not frequent, none of its supersets are
frequent. For example, all subsets of frequent itemset (S1, S2, S3) are also frequent.

There are many algorithms proposed in literature for frequent itemset mining, of which two
well known algorithms are Apriori and Eclat. It has been shown in [Jag10] that Apriori is faster
and better parallelizable than Eclat, thus we choose Apriori algorithm as the base to design
protocols for secure frequent itemset mining.

4.1.1 Apriori Algorithm

Apriori is probably the best-known algorithm to mine frequent itemsets, which uses a breadth-
first search strategy to count the support of itemsets [AS94]. Let Lk be set of frequent k-
itemsets, and Ck be set of candidate k-itemsets, where k-itemsets is a itemset having k items.
Each member in Lk and Ck has two two fields: itemset and support.

The basic idea of Apriori algorithm is that it first generates the set of frequent 1-itemsets,
and then runs the following cycle. Given the set of frequent (k− 1)-itemsets Lk−1, a candidate
generation function is used to generate a candidate set of potentially frequent k-itemsets Ck,
and then verifies which of those candidates are really frequent. Algorithm 4.1 presents the
pseudocode of Apriori, and the candidate generation function is presented in Algorithm 4.2.

Algorithm 4.1 Apriori algorithm for frequent itemsets mining

1: L1 = frequent 1-itemsets, k ← 2
2: while Lk−1 6= ∅ do
3: Ck ← AprioriGen(Lk−1) // Generate new candidates
4: foreach transaction t ∈ T do
5: Ct ← subset(Ck, t) // Candidates contained in t
6: for all candidates c ∈ Ct, c.support← c.support+ 1
7: end for
8: Lk ← {c ∈ Ck|c.support > MinSupp}
9: k ← k + 1

10: end while
11: return

⋃
k Lk

Algorithm 4.2 Apriori candidate generation algorithm Ck ← AprioriGen(Lk−1)

1: insert into Ck, select p.item1, ..., p.itemk−1, q.itemk−1 from p, q ∈ Lk−1
where p.item1 = q.item1, ..., p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1

2: foreach itemset c ∈ Ck do
3: foreach (k-1)-subset s ⊂ c do
4: if s /∈ Lk−1, delete c from Ck
5: end for
6: end for
7: return Ck

29

4.2 Secure Apriori Protocol

This section present a secure Apriori protocol for secure frequent itemset mining, based on the
Apriori algorithm. The input is a shared transactional database, as shown in Table 4.2, and
the outputs are public frequent itemsets.

Transactions Item I1 Item I2 · · · Item In

[T1] [t11] [t12] · · · [t1n]
[T2] [t21] [t22] · · · [t2n]

...
...

...
. . .

...
[Tm] [tm1] [tm2] · · · [tmn]

Table 4.2: A secret shared transactional database

Let I = {I1, I2, ..., In} be the given set of items, and [T] = {[T1], [T2], ..., [Tm]} be the shared
transactional database, which consists of transactions from all parties. The parties use Shamir’s
Secret Sharing Scheme as described in Section 2.2.2 to securely share their own transaction data.
Each shared transaction [Ti] = {[ti1], [ti2], ..., [tin]} is a n-bit-vector, where tij is a boolean value
(0 or 1) which represents the presence or absence of item Ij in transaction Ti. For convenience,
we define item vector [T:i] as the i-th column of the [T], i.e., [T:i] = {[t1i], [t2i], ..., [tmi]}.

Let Ck be the set of candidate frequent k-itemset, Lk be the set of frequent k-itemset, and
[Sk] be the set of support values for the itemsets in Lk, for 1 6 k 6 n.

4.2.1 Calculate the Support of an Itemset

In the original Apriori algorithm, the support of an itemset is obtained by traversing the whole
database T , which is inefficient in the case of secure frequent itemset mining, as the database
[T] is not public. To efficiently compute the support of an itemset, Protocol 4.3 can be used.
The basic idea is that the support of an itemset is exactly the inner product of item vectors for
each item in the itemset. For example, the support of itemset (S1, S2) in Table 4.1 is 3, which
can be calculated as (1, 0, 0, 0, 0, 0, 1, 1, 1, 1) · (0, 1, 0, 1, 1, 1, 1, 0, 1, 1) = 3.

Protocol 4.3 Calculate the Support of an Itemset [supp]← Supp([T], itemset)

Input: [T] = {[T1], [T2], ..., [Tm]}, I = {I1, I2, ..., In}, itemset = {item1, ..., iteml}
Output: [supp]
1: get the first item in itemset, let it be Ix. compute [v]← [T:x]
2: if l = 1 then
3: [supp]←

∑
[v]

4: else
5: for 2 6 j 6 l − 1 do
6: get the j-th item in itemset, let it be Iy
7: for 1 6 i 6 m do
8: [vi]←Mul([vi], [tiy])
9: end for

10: end for
11: get the last item in itemset, let it be Iz. compute [supp]← Inner([v], [T:z])
12: end if

Complexity Analysis. Protocol 4.3 requires m(l − 2) + 1 invocations for l > 1.

30

4.2.2 Check Minimum Support Requirement

Protocol CkSupp is used to select frequent k-itemsets from a set of candidate k-itemsets, by
checking whether the support value is larger than the minimum support MinSupp. It outputs
the set of frequent k-itemsets Lk, and the set of support values [Sk] for the itemsets in Lk

Protocol 4.4 Check Minimum Support Requirement Lk, [Sk]← CkSupp(Ck,MinSupp)

Input: Ck, MinSupp
Output: Lk, [Sk]
1: Lk ← ∅, [Sk]← ∅
2: foreach itemset ∈ Ck do
3: [supp]← Supp([T], itemset)
4: if OpenShare(GEqualThan([supp],MinSupp)) then
5: Lk ← Lk ∪ itemset
6: [Sk]← [Sk] ∪ [supp]
7: end if
8: end for
9: return Lk, [Sk]

4.2.3 Secure Apriori Protocol

The secure Apriori protocol is presented as Protocol 4.5, which outputs all the frequent itemsets
L, given the shared transactional database [T], set of items I, and minimum support MinSupp.
The support values of frequent itemsets are stored in [S], which can be reused for other mining
tasks, for example, the association rule learning, which is shown in 4.2.4.

In the protocol, AprioriGen algorithm is reused to generate the candidates set. This is
possible because the itemsets are public, only the support values are secret.

Protocol 4.5 Secure Apriori protocol L, [S]← SApriori([T], I,MinSupp)

Input: [T] = {[T1], [T2], ..., [Tm]}, I = {I1, I2, ..., In}, MinSupp
Output: L = {L1, L2, ...}, [S] = {[S1], [S2], ...}
1: C1 ← {{I1}, {I2}, ..., {In}}
2: L1, [S1]← CkSupp(C1,MinSupp)
3: k ← 2
4: while the size of Lk−1 is greater equal than k do
5: Ck ← AprioriGen(Lk−1)
6: Lk, [Sk]← CkSupp(Ck,MinSupp)
7: k ← k + 1
8: end while
9: return L = {L1, L2, ...}, [S] = {[S1], [S2], ...}

Security Analysis. Protocol 4.5 is secure in the sense that the input transactions are secret,
no information is leaked during the protocol running, except that the frequent itemsets are
public. An adversary can also see the order of frequent itemsets, namely the finding process of
each frequent itemset, but this does not harm privacy, as the information can also be deduced
from the output.

31

4.2.4 Association Rule Learning

The result of secure Apriori protocol can be directly used for mining association rules. An
association rule is defined as an implication of the form X ⇒ Y , where X,Y are the subsets
of a frequent itemset Z, and X,Y 6= ∅, X ∪ Y = Z. The confidence of a rule is defined as
conf(X ⇒ Y) = supp(X ∪ Y)/supp(X). We are interested in the association rules whose
confidence is larger than a specified confidence threshold MinConf .

Protocol 4.6 shows how to check the confidence requirement for a rule, assuming Z is a
frequent itemset, X is a subset of Z. Since the itemsets are public, the support of a frequent
itemset can be obtained by looking up its index in the set L, and get the element from [S] with
the same index.

Protocol 4.6 Check the confidence threshold R← CkConf (X,Z,MinConf ,L, [S])

1: get the support of X, let it be [suppX]
2: get the support of Z, let it be [suppZ]
3: if OpenShare(GEqualThan([suppZ],MinConf · [suppX])) then
4: return R← (X,Z\X)
5: else
6: return R← NULL
7: end if

To find all the association rules from a secret shared transactional database [T], Protocol
4.7 is used. It first computes all frequent itemsets with the secure Apriori protocol, and then
generate and check the association rules for each frequent itemset.

Protocol 4.7 Association rule learning [R]← Associ([T], I,MinSupp,MinConf)

Input: [T] = {[T1], [T2], ..., [Tm]}, I = {I1, I2, ..., In}, MinSupp, MinConf
Output: R = {R1, R2, ...}, where Ri = (X,Y)
1: L, [S]← SApriori([T], I,MinSupp)
2: k ← 2, R← ∅
3: while Lk 6= ∅ do
4: foreach Z ∈ Lk do
5: foreach j ∈ {1, 2, ..., k − 1} do
6: get all the subset of I, with size j, let it be Subj
7: for each X ∈ Subj , R← R ∪ CkConf (X,Z,MinConf ,L, [S])
8: end for
9: end for

10: k ← k + 1
11: end while
12: return R

4.3 Fully Secure Frequent Itemset Ming

This section presents a fully secure frequent itemset mining solution in which the itemsets are
kept secret instead of public. To hide the content of an itemset, we use a shared n-bit-vector to
the itemset, where n is the total number of items that can appear in the database. The shared
n-bit-vector consists of boolean values (0 or 1) which represent the presence or absence of items
in the itemset. For example, the itemset (S1, S2) in Table 4.1 is represented by a 4-bit-vector
(1, 1, 0, 0).

32

Notation. Let I = {I1, I2, ..., In} be the given set of items, and [T] = {[T1], [T2], ..., [Tm]} be
the shared transactional database, as explained in Section 4.2. As the itemsets become secret,
we use [Ck] to denote the set of candidate k-itemset, and [Lk] to denote the set of frequent
k-itemset, for 1 6 k 6 n. The support values of frequent k-itemsets are stored in [Sk].

4.3.1 Secure Candidates Generation

Since the itemsets are secret, the AprioriGen function in original Apriori algorithm cannot
be reused now. To securely generate candidate itemsets, Protocol 4.9 is used. The basic idea
follows from the property of frequent itemset that any subset of a frequent itemset is also
frequent. For a potential frequent k-itemset, it can be represented by the union of (k − 1)
frequent (k − 1)-itemsets.

Let the set of frequent (k − 1)-itemset be [Lk−1] that having a itemsets. To generate the
set of candidate k-itemset, we first compute

(
a
k−1
)

itemsets, where each itemset is the union of
k− 1 frequent (k− 1)-itemset. A candidate k-itemset should have the size of k, i.e., the sum of
the shared n-bit-vector which represent the itemset should equal to k. Thus we verify the size
for each obtained itemset, and remove those itemsets whose size are not k. The union of sets
can be obtained by Protocol 4.8.

Protocol 4.8 Union of sets [y]← SetUnion([A])

Input: [A] = {[A1], [A2], ...[Aa]}, where [Ai] = {[Ai1], [Ai2], ..., [Ain]} is a shared n-bit-vector
Output: [y] = {[y1], [y2], ..., [yn]}
1: foreach j ∈ {1, 2, ..., n} do
2: [yj]← OR({[A1j], [A2j], ..., [Aaj]})
3: end for

Protocol 4.9 Secure candidate generation [Ck]← SGen([Lk−1])

Input: [Lk−1] = {[Z1], [Z2], ...[Za]}, where [Zi] is itemset represented by a shared n-bit-vector
Output: [Ck] = {[c1], [c2], ...}
1: [Ck]← ∅
2: initialize a set s = (1, 2, ..., a), let B = {B1, .., Bt} be all t =

(
a
k

)
combinations from s

where Bi = {Bi1, Bi2, ..., Bik} is a set of k elements from s
3: foreach i ∈ {1, 2, ..., t} do
4: [A]← {[ZBi1], [ZBi2], ..., [ZBik

]}
5: [itemset]← SetUnion([A])
6: sum← OpenShare(

∑
[itemset])

7: if sum = k then
8: [Ck]← [Ck] ∪ [itemset]
9: end if

10: end for

4.3.2 Calculate the Support of an Itemset

To calculate the support of an itemset, we traverse the whole database to check whether the
itemset is a subset of a transaction. Protocol 4.10 shows how to compute [s = (A ⊂ B)],
assuming A,B are two shared n-bit-vector. The basic idea is that if A ⊂ B, then the inner
product of A,B equal to the sum of A.

33

Protocol 4.10 Check Subset Relationship ([s])← SubSet([A], [B])

Input: [A] = {[a1], [a2], .., [an]}, [B] = {[b1], [b2], .., [bn]}
Output: [s]
1: [c]← Inner([A], [B])
2: [s]← BoundEqual([c],

∑
[A])

Using protocol SubSet, the the support of an itemset can be obtained as shown in Protocol
4.11.

Protocol 4.11 Calculate support of itemset ([supp])← SSupp([T], [itemset])

Input: [T] = {[T1], [T2], ..., [Tm]}, [itemset]
Output: [supp]
1: [supp]← 0
2: foreach i ∈ {1, ...,m} do
3: [supp]← [supp] + SubSet([itemset], [Ti])
4: end for

4.3.3 Check Minimum Support Requirement

To check minimum support requirement, Protocol 4.12 is used. The idea is the same as protocol
CkSupp, except that the frequent itemset are kept secret, and the support of an itemset is
calculated by using protocol SSupp. It outputs the set of frequent k-itemsets [Lk], and the set
of support values [Sk] for the itemsets in [Lk]

Protocol 4.12 Check minimum support [Lk], [Sk]← SCkSupp([T], [Ck],MinSupp)

1: [Lk]← ∅, [Sk]← ∅
2: foreach [itemset] ∈ [Ck] do
3: [supp]← SSupp([T], [itemset])
4: if OpenShare(GEqualThan([supp],MinSupp)) then
5: [Lk]← [Lk] ∪ [itemset]
6: [Sk]← [Sk] ∪ [supp]
7: end if
8: end for
9: return [Lk], [Sk]

4.3.4 Fully Secure Apriori Protocol

The fully secure Apriori protocol is presented as Protocol 4.13, which outputs all the frequent
itemsets [L], and their support values [S]. We first randomly add the single-item candidate
itemset {{[I1]}, {[I2]}, ..., {[In]}} to the set of size one candidate itemset [C1]. And then go
through the Apriori algorithm, but in a secure fashion. The output of fully secure Apriori
protocol is secret shared frequent itemset, and their secret shared support.

34

Protocol 4.13 Fully secure Apriori protocol [L]← SSApriori([T], I,MinSupp)

Input: [T] = {[T1], [T2], ..., [Tm]}, I = {I1, I2, ..., In}, MinSupp
Output: [L] = {[L1], [L2], ...}, [S] = {[S1], [S2], ...}
1: [C1]← {{[I1]}, {[I2]}, ..., {[In]}} // the order of itemset in C1 is randomized

2: [L1], [S1]← SCkSupp([T], [C1],MinSupp)
3: k ← 2
4: while the size of [Lk−1] is greater equal than k do
5: [Ck]← SGen(Lk−1)
6: [Lk], [Sk]← SCkSupp([T], [Ck],MinSupp)
7: k ← k + 1
8: end while
9: return [L] = {[L1], [L2], ...}, [S] = {[S1], [S2], ...}

Security Analysis. Protocol 4.13 is fully secure in the sense that both the input and output
are secret. An adversary can only know the number of frequent itemset, no information about
the itemset itself and its support is leaked through the computation. The secret output can be
used as secret input for other data mining task, such as association rules learning, or opened
public to a set of specified parties.

4.4 Performance Result

To test the performance of our protocols, we implemented them in VIFF, and conducted a
benchmarking experiment with the ‘SPECT’ datset and ‘KRKPA7’ datset from UCI Machine
Learning Repository [FA10]. We measure the overall execution time of our programs under the
experiment settings introduced in Section 2.3. The experiment result is shown in Table 4.3.

The ‘SPECT’ datset consists of 267 transaction, with 23 attributes, and the ‘KRKPA7’
datset consists of 3196 transaction, with 37 attributes (for detail description of the dataset, see
Section 5.3). For our experiment, we did some preprocessing to make each attribute binary,
such that we can treat each attribute as an item. And we choose 1000 transactions fromp the
‘KRKPA7’ datset to form a subsets ‘KRKPA7-1000’, as the ‘KRKPA7’ datset is too big for our
experiment.

Data Set MinSupp SApriori Associ SSApriori

SPECT-267 50% 1.94s 1.94s 42.05s
SPECT-267 40% 4.40s 4.58s 69.07s
SPECT-267 30% 19.25s 23.98s 218.91s
SPECT-267 25% 41.06s 54.90s 378.64s

KRKPA7-1000 50% 11.16s 13.32s 494.85s
KRKPA7-1000 40% 13.92s 17.50s 560.47s
KRKPA7-1000 30% 28.79s 41.83s 934.48s

Table 4.3: Performance Result of Secure Frequent Itemset Mining

We set different minimum support value (as the percentage of the size of data set) for
each data set. As expected, the running time of our protocols increases when the minimum
support value goes down. This is because the smaller the minimum support value is, the more
frequent itemsets needed to be computed. There is a natural tradeoff between privacy and

35

performance, the price paid for obtaining a fully secure frequent itemset mining solution in
Protocol SSApriori is significantly increased execution time.

36

Chapter 5

Secure Decision Tree Learning

Decision tree learning is a technique commonly used in data mining to create a predictive model
which maps observations about an item to conclusions about the item’s target value. Decision
trees used in data mining are of two main types, regression tree and classification tree. For
regression tree analysis, the predicted outcome can be a real number (numerical value), while
for classification tree analysis, the predicted outcome is a class (categorical value). This thesis
focuses on classification tree analysis, or classification by decision tree learning.

In this chapter, we first introduce the ID3 algorithm and splitting measures for building a
decision tree in Section 5.1, and then present our secure ID3 protocol for privacy preserving
decision tree learning in Section 5.2. Section 5.3 shows the benchmarking results of our protocols.

5.1 Decision Tree Learning

In decision tree learning, the input is a transactional database, that is, a database consist of
a set of transactions. Each transaction is described in terms of a set of non-class attributes
and a class attribute, where each attribute has a set of categorical attribute values that can
appear in each transaction. Table 5.1 shows an example transactional database containing
14 transactions [Qui86, WFH11]. There are 4 non-class attributes: ‘Outlook’, ‘Temperature’,
‘Humidity’, ‘Windy’, and a class attribute ‘Play Tennis’.

Day Outlook Temperature Humidity Windy Play Tennis

1 sunny hot high false no
2 sunny hot high true no
3 overcast hot high false yes
4 rainy mild high false yes
5 rainy cool normal false yes
6 rainy cool normal true no
7 overcast cool normal true yes
8 sunny mild high false no
9 sunny cool normal false no
10 rainy mild normal false yes
11 sunny mild normal true yes
12 overcast mild high true yes
13 overcast hot normal false yes
14 rainy mild high true no

Table 5.1: The Weather Problem

37

Given a transactional database, the aim of decision tree learning is to build a decision
tree that can be used to classify new transactions (predict the class attribute value for new
transactions by viewing only the non-class attributes values). A decision tree consists of nodes
and edges that connect nodes. Each non-leaf node is a test node and corresponds to a non-class
attribute, and the edges correspond to the possible values taken on by that attribute. Figure
5.1 shows the decision tree built from the database in Table 5.1.

Figure 5.1 The Decision Tree for Weather Problem

To make a decision, one starts at the root node, at each non-leaf node in the tree, test the
item’s corresponding attribute value to determine which edge to follow, until one reaches a leaf
node where a prediction can be made. A leaf node corresponds to the expected value of the
class attribute for a decision path from the root node to that leaf node. An example decision
path from Figure 5.1 would be:

If (‘Outlook’ = Sunny) and (‘Humidity’ = Normal) then ‘Play Tennis’ = Yes

5.1.1 ID3 Algorithm

ID3 (Iterative Dichotomiser 3) is a popular algorithm for decision tree learning, proposed by
Ross Quinlan [Qui86]. The overall approach of ID3 algorithm is to choose the attribute that best
classifies the transactions into their classes and then partition the transactions set according to
the values of that attribute. This process is recursively applied to each of the subsets produced
until “pure” nodes are found - a pure node contains elements of only one class - or until there
are no attributes left to consider.

Let T be the transactions set, R be the non-class attribute set, C be the class attribute.
The ID3 algorithm is shown as Algorithm 5.1.

38

Algorithm 5.1 ID3 Algorithm: ID3(R,C, T)

1: if R is empty then
2: return a leaf node tree with the class value assigned to most transactions in T
3: else if T consists of transactions which all have the same class value c then
4: return a leaf node with the value c
5: else
6: Determine the best attribute A that classifies the transactions in T
7: Create a non-leaf node for attribute A, let A = {a1, ..., am}
8: foreach ai ∈ A do
9: let T (ai) be the subset of T that have the value ai for attribute A

10: add edge ai to the node A, and go to ID3(R−A,C, T (ai))
11: end for
12: end if

The main task in ID3 algorithm is to determine the best attribute A that classifies the
transactions in T , at each node in the development of a decision tree. This relies on a measure
for goodness of split, that is, how well an attribute discriminates classes. To calculate an
attribute’s goodness of split at a particular node in the tree, the transactions set T can be set
out to a contingency table for the attribute [Min89]. Let A = {a1, ..., am}, C = {c1, ..., cn}, the
contingency table is illustrated in Table 5.2. The element xij in the table corresponds to the
number of transactions in T that have attribute value ai for attribute A and class value cj for
class C. xi: denotes the sum of i-th row elements, and x:j is the sum of j-th column elements.
The total number of transactions in T is N .

c1 c2 ... cn Total

a1 x11 x12 ... x1n x1:
a2 x21 x22 ... x2n x2:
...

...
...

. . .
...

...
am xm1 xm2 ... xmn xm:

Total x:1 x:2 ... x:n N

Table 5.2: The Contingency Table

Given a contingency table, we can have an overview of the attribute’s goodness of split. A
perfect attributeA would have each attribute value ai associated with only one class value cj , i.e.,
xij = xi:, namely that all rows in the contingency table would have only one non-zero element.
And a useless attribute would have the same elements in each row, i.e., xi2 = xi2 = ... = xin,
for 1 6 i 6 m, therefore the attribute can hardly split the transactions set.

5.1.2 Splitting Measures

This section reviews various splitting measures for calculating an attribute’s goodness of split.
All these measures can be calculated from the contingency table [Min89]. We start with Quin-
lan’s information measure, which is the default and popular splitting measure used in ID3
algorithm [Qui86].

Information Measure
Information Measure computes the information gain based on entropy formula from information
theory: Entropy(X) = −

∑n
i=1 Pr(X = xi) logPr(X = xi) for a discrete random variable X

39

with possible values {x1, ..., xn} . First the entropy of the total transactions set T is calculated,
and then the entropy for each attribute value ai is calculated, which is added proportionally
to get total entropy for the split. Information Measure (IM) is then defined as the gain in
information, or decrease in entropy, brought by knowledge of the attribute:

IM = Entropy(T)−
m∑
i=1

|T (ai)|
|T |

Entropy(T (ai))

=
1

N
(
m∑
i=1

n∑
j=1

xij logxij −
m∑
i=1

xi: logxi: −
n∑
j=1

x:j logx:j +N logN) (5.1)

The attribute that yields the largest IM is selected as the best attribute for splitting. The
disadvantage of IM is that the transactions may be over-classified, since it has no concept of
statistical significance, therefore it attempts to produce a decision tree able to classify every
single transaction [Min89].

Since Quinlan’s original work, there have been a number of alternative splitting measures,
which can be used to replace IM in ID3 algorithm. Some of them are variant of IM , which
are also based on entropy function, for example, the G statistic, Gain-ratio measure [Min89].
Since it is difficult to implement a secure logarithm function, we will not use the entropy based
measure for our secure ID3 protocol. Instead of these, there are two simple and efficient ones,
Chi-squapre statistic χ2 and GINI index.

Chi-square (χ2) statistic
It has been shown in [Min87] that χ2 can be used as a splitting measure to select the best at-
tribute. The Chi-square (χ2) statistic calculates the degree of association between the non-class
attribute and class attribute. A larger χ2 indicates greater association, namely the attribute dis-
criminate the transactions well. Using the notations in Table 5.2, the formula for this function
is defined as follows:

χ2 =
m∑
i=1

n∑
j=1

(xij − Eij)2

Eij
=

m∑
i=1

n∑
j=1

(Nxij − xi:x:j)2

Nxi:x:j
(5.2)

where Eij = xi:x:j/N , i.e., the expected value for each element in the contingency table.
Comparing to Information Measure, the Chi-square (χ2) statistic favors two-valued attributes,
which leading to very narrow and large trees with many levels [Min87]. However, it is much
easier to compute, since the function only involves addition and multiplication operation, which
can be effectively implemented in secure multi-party computation.

Gini Index
Breiman et al. employed another measure called Gini Index to determine the best attribute in
[BFOS84]. They defined a Gini function to measures the ‘impurity’ of an attribute with respect
to the classes. Given the probability distribution Pi = Pr(X = xi) of a discrete random variable
X with possible values {x1, ..., xn}, the Gini function is Gini(X) = 1 −

∑n
i=1 Pi

2. Using the
notations in Table 5.2, the Gini Index (GI) for the given attribute is defined as the Gini value
of total transactions set T minus the weighted Gini value of each subset T (ai):

GI = Gini(T)−
m∑
i=1

|T (ai)|
|T |

Gini(T (ai)) =
1

N
(

m∑
i=1

n∑
j=1

xij
2

xi:
−

n∑
j=1

x:j
2

N
) (5.3)

40

Summary
Note that the row total xi: =

∑n
j=1 xij and column totals x:j =

∑m
i=1 xij could be zero, i.e.,

all elements in the i-th row or j-th column of the contingency table are zero. In this case, the
Entropy function and Gini function have no definition, as the variable X is no longer a discrete

random variable. And for the Chi-square (χ2) statistic,
n∑
j=1

(xij−Eij)
2

Eij
is indeterminate, as Eij

becomes zero. Thus for Equation 5.1, 5.2, 5.3, the i-th row elements xij are excluded from
calculation, if xi: = 0, and the j-th row elements xij are excluded from calculation, if x:j = 0

It has been shown that GI and IM are very similar, the difference between these two is
that the GI tries to create pure nodes with larger subset, while IM normally tries to create a
balanced tree [SM08]. The Gini Index is also simpler compared to Information Measure, and is
favorable to be used for a secure ID3 algorithm. We will implement both Chi-square χ2 statistic
and Gini Index in our Secure ID3 Protocol, which is presented in the next section.

For the given example transaction set in Table 5.1, the contingency tables and splitting
measure values for attribute ‘Outlook’, ‘Temperature’ , ‘Humidity’ and ‘Windy’ is shown in
Table 5.3. It is clear that all measures prefer ‘Outlook’ as the best attribute for splitting.

Outlook Yes No Total Temperature Yes No Total

Sunny 2 3 5 Hot 2 2 4
Overcast 4 0 4 Mild 4 2 6
Rain 3 2 5 Cool 3 1 4

Total 9 5 14 Total 9 5 14

Measures IM = 0.25, χ2 = 3.55, GI = 0.12 Measures IM = 0.03, χ2 = 0.57, GI = 0.02

Humidity Yes No Total Windy Yes No Total

High 3 4 7 True 6 2 8
Normal 6 1 7 False 3 3 6

Total 9 5 14 Total 9 5 14

Measures IM = 0.15, χ2 = 2.8, GI = 0.09 Measures IM = 0.05, χ2 = 0.93, GI = 0.03

Table 5.3: Example Contingency Tables and Splitting Measures

5.2 Secure ID3 Protocol

This section present a secure ID3 protocol for privacy preserving decision tree learning, using
the Chi-square statistic χ2 and GINI index as splitting measures.

5.2.1 Data Representation

In our privacy preserving decision tree learning solution, we assume the parties have agreed on
a fixed set of attributes, and each attribute has a fixed set of attribute values. The input is a
secret shared transactional database, which is contributed by all parties by sharing their own
transactions using Shamir’s Secret Sharing Scheme. The transactional database is represented
as a binary matrix, in which a bit represent the presence of an attribute value in a transaction.
Table 5.4 shows such a representation for the example in Table 5.1.

Let A = {A1, A2, ..., Ac} be the set of attributes, where Ai = {Ai1, Ai2, ..., Aim} for 1 6 i 6 c,
assuming there are m attribute values for attribute Ai, and the last attribute Ac is the class

41

Day
Outlook Temperature Humidity Windy Play

sunny overcast rainy hot mild cool high normal true false yes no

1 1 0 0 1 0 0 1 0 0 1 0 1
2 1 0 0 1 0 0 1 0 1 0 0 1
3 0 1 0 1 0 0 1 0 0 1 1 0
4 0 0 1 0 1 0 1 0 0 1 1 0
5 0 0 1 0 0 1 0 1 0 1 1 0
6 0 0 1 0 0 1 0 1 1 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...
...

14 0 0 1 0 1 0 1 0 1 0 0 1

Table 5.4: The Weather Problem

attribute. The secreted shared database is denoted by [T] = {[T1], [T2], ..., [Tl]}, assuming there
are l transactions in total. We use [Tij] to denote the bit in i-th row and j-th column of [T].

Since the attributes A is public, and the structure of transactional database [T] is known
to all parties, we can easily transform the database into attribute value vectors [V]. An at-
tribute value vector is shared l-bit-vector, which corresponds to the column labeled with the
attribute value in [T]. For example, the attribute value vector for ‘sunny’ in Table 5.4 is
{1, 1, 0, 0, 0, 0, ..., 0}.

Let [V] = {[V1], [V2], ..., [Vc]}, where [Vi] = {[Vi1], [Vi2], ..., [Vim]} for 1 6 i 6 c. We use [Vij]
to denote the attribute value vector for attribute value Aij in Ai. The attribute value vectors
[V] is obtained using Protocol 5.2.

Protocol 5.2 Create Attribute Value Vectors: [V]← AttrV ect([T], A)

Input: [T], A = {A1, A2, ..., Ac}, where Ai = {Ai1, Ai2, ..., Aim} for 1 6 i 6 c
Output: [V] = {[V1], [V2], ..., [Vc]}, where [Vi] = {[Vi1], [Vi2], ..., [Vim]} for 1 6 i 6 c
1: foreach i ∈ {1, ..., c} do
2: foreach j ∈ {1, ...,m} do
3: get the column position of attribute value Aij , let it be x
4: [Vij]← {[T1x], [T2x], ..., [Tlx]}
5: end for
6: [Vi]← {[Vi1], [Vi2], ..., [Vim]}
7: end for
8: [V] = {[V1], [V2], ..., [Vc]}

The decision tree T ′ = {P1, P2, ...} is represented by a set of public decision paths, and a
decision path Pi is a list of tree nodes, where a tree node is an attribute value. The last node
is a leaf node, which is a class attribute value. For example, the decision path from Figure 5.1
(If (‘Outlook’ = Sunny) and (‘Humidity’ = Normal) then ‘Play Tennis’ = Yes) is represented
by (sunny, normal, yes), and the decision tree for the given example would be:
{(sunny, normal, yes), (sunny, high, no), (overcast, yes), (rainy, true, no), (rainy, false, yes)}

Remark. If a natural representation of transactional database like the example in Table 5.1
is used, a lot of equality tests would be needed to obtain the attribute value vectors [V], as
shown in Protocol 5.3. The bit matrix representation of transactional database is much more
efficient than the natural representation.

42

Protocol 5.3 Create Attribute Value Vectors: [V]← CrAttrV ect([T], A)

Input: [T], A = {A1, A2, ..., Ac}, where Ai = {Ai1, Ai2, ..., Aim} for 1 6 i 6 c
Output: [V] = {[V1], [V2], ..., [Vc]}, where [Vi] = {[Vi1], [Vi2], ..., [Vim]} for 1 6 i 6 c
1: foreach i ∈ {1, ..., c} do
2: foreach j ∈ {1, ...,m} do
3: [Vij]← {ProbEqual(Aij , [T1i]), P robEqual(Aij , [T2i]), ..., P robEqual(Aij , [Tli])}

// or use Protocol BoundEqual
4: end for
5: end for

5.2.2 Create Contingency Table

As shown in Section 5.1, the contingency table is the basis for all splitting measures. In the
original ID3 algorithm, the table can be easily obtained by traversing the given database.
This is not efficient in the case of secure ID3 protocol, as the database becomes secret shared,
hence traversing database would requires a lot of secure equality tests. To efficiently compute
contingency table, we introduced the concept of path vector.

A path vector is a shared l-bit-vector, which is defined as the Hadamard product of all
attribute value vectors in the decision path. Given the path vector [pv] of a decision path p,
Protocol 5.4 is used to create the candidate path vectors for attribute Aa, which is a candidate
attribute for the next tree node to be added in p.

Protocol 5.4 Generate Candidate Path Vectors: [P ′v]← PathV ect([V], Aa, [pv])

Input: [V], Aa = {Aa1, Aa2, ..., Aam}, [pv]
Output: [P ′v], where [P ′v] = {[P ′v1], [P ′v2], ..., [P ′vm]}
1: foreach i ∈ {1, ...,m} in parallel do
2: foreach j ∈ {1, ..., l} in parallel do
3: [vj]←Mul([pvj], [Va,i,j])
4: end for
5: [P ′vi]← {[v1], [v2], ..., [vl]}
6: end for
7: [P ′v]← {[P ′v1], [P ′v2], ..., [P ′vm]}

Complexity Analysis. All the computation can be done in parallel, thus the round complex-
ity is one. This protocol requires m · l invocations, where m is the number of attribute values
in Aa. Generally, m is a small constant, hence the communication complexity is O(l), which is
linear to the size of transactional database.

To create the contingency table for attribute Aa, we first use Protocol 5.4 to generate can-
didate path vectors [P ′v], and then the element in contingency table is calculated as the inner
product of the candidate path vector and class attribute value vector, as shown in Table 5.5
and Protocol 5.5.

43

Attribute Value Ac1 Ac2 · · · Acn

Aa1 Inner([P ′v1], [Vc1]) Inner([P ′v1], [Vc2]) · · · Inner([P ′v1], [Vcn])
Aa2 Inner([P ′v2], [Vc1]) Inner([P ′v2], [Vc2]) · · · Inner([P ′v2], [Vcn])

...
...

...
. . .

...
Aam Inner([P ′vm], [Vc1]) Inner([P ′vm], [Vc2]) · · · Inner([P ′vm], [Vcn])

Table 5.5: Secure Computing Contingency Table

Protocol 5.5 Create Contingency Table: [X]← CrTab([V], [P ′v], Ac)

Input: [V], [P ′v] = {[P ′v1], [P ′v2], ..., [P ′vm]}, Ac = {Ac1, Ac2, ..., Acn}
Output: [X] = {[X1], [X2]...}, where [Xi] = {[xi1], ..., [xin]}
1: a← 1
2: foreach i ∈ {1, ...,m} do
3: foreach j ∈ {1, ..., n} do
4: [x′ij]← Inner([P ′vi], [Vcj])
5: end for
6: end for

Complexity Analysis. Protocol 5.5 requires m · n invocations.

5.2.3 Calculate χ2 Statistic and Gini Index

Protocol 5.7 and Protocol 5.8 illustrate how to calculate the χ2 statistic and Gini Index respec-
tively. They accept a contingency table [X] as input, and output the splitting measure value.
The output is represented by a fraction, namely two secret shared values, numerator [f1] and
denominator [f2], which are calculated based on the following equations:

χ2 =
m∑
i=1

n∑
j=1

(Nxij − xi:x:j)2

Nxi:x:j
=

m∑
i=1

n∑
j=1

(Nxij − xi:x:j)2(
m∏

k=1,k 6=i
xk:

n∏
k=1,k 6=j

x:k)

N
m∏
k=1

xk:
n∏
k=1

x:k

(5.4)

GI =
1

N
(
m∑
i=1

n∑
j=1

xij
2

xi:
−

n∑
j=1

x:j
2

N
) =

N
m∑
i=1

n∑
j=1

(xij
2

m∏
k=1,k 6=i

xk:)− (
n∑
j=1

x:j
2)(

m∏
k=1

xk:)

N2
m∏
k=1

xk:

(5.5)

Note that the row totals R = {R1, R2, ..., Rm} are all non-zero now, thus
n∏

k=1,k 6=j
x:k can be

computed as 1
x:j

n∏
k=1

x:k. This also applies to the case of column totals C = {C1, C2, ..., Cn}.

Since N is the total number of transactions, which is the same for each candidate attribute,
and we calculate splitting measures only for comparison, thus the N in the denominator part
of χ2 and the N2 in the denominator part of GI can be left out.

As explained in Section 5.1.2, the row total xi: and column total x:j could be zero, and
it should be excluded from calculation to avoid indeterminate result. To address this issue,
Protocol Zero2One is used to check the zeroness of the row total xi:. If it is zero, the row total

44

xi: is changed from zero to one. This transformation does not effect the computation result of
the above equations, as the protocol is only used for the calculation of product.

Protocol 5.6 Zero to One Test: [y]← Zero2One([x])

Input: [x] = {[x1], ..., [xn]}
Output: [y] = {[y1], ..., [yn]}
1: foreach i ∈ {1, ..., n} do
2: [yi]← [xi]+ProbEqual([xi], 0) // or use BoundEqual
3: end for

Complexity Analysis. The communication complexity of Protocol 5.6 is n · (6k − 1) invo-
cation when Protocol ProbEqual is used, and n · (2m) when Protocol BoundEqual is used.

Remark. If the parties can accept to leak the zeroness information about row total xi:, then
Protocol EqualPub can be used, which is more efficient, as the communication complexity
reduces to 2n invocations.

Protocol 5.7 Calculate χ2 statistic: {[f1], [f2]} ← X2([X])

Input: [X] = {[X1], [X2], ..., [Xm]}, where [Xi] = {[xi1], [xi2], ..., [xin]} for 1 6 i 6 m
Output: {[f1], [f2]} // fraction: numerator [f1], denominator [f2]

1: [R]← {
n∑
j=1

[x1j],
n∑
j=1

[x2j], ...,
n∑
j=1

[xmj]} // Row totals, R = {R1, R2, ..., Rm}

2: [C]← {
m∑
i=1

[xi1],
m∑
i=1

[xi2], ...,
m∑
i=1

[xin]} // Column totals, C = {C1, C2, ..., Cn}

3: [N]←
∑

[R], [f1]← 0
4: [R′]← Zero2One([R]) // R′ = {R′1, R′2, ..., R′m}
5: [Jr]←MulLogk([R′])
6: [C ′]← Zero2One([C]) // C ′ = {C ′1, C ′2, ..., C ′m}
7: [Jc]←MulLogk([C ′])
8: [J]←Mul([Jr], [Jc])
9: for i ∈ {1, ...,m}, [R−1i]← Inv([R′i])

10: for j ∈ {1, ..., n}, [C−1j]← Inv([C ′j])
11: foreach i ∈ {1, ...,m} do
12: [Ai]←Mul([J], [R−1i])
13: foreach j ∈ {1, ..., n} do
14: [t]← Inner({N,−[Ri]}, {[xij], [Cj]})
15: [Bj]←Mul([t], [t])
16: end for
17: [Di]← Inner({[C−11], ..., [C−1n]}, {[B1], ..., [Bn]})
18: end for
19: [A]← {[A1], ..., [Am]}, [D]← {[D1], ..., [Dm]}
20: [f1]← Inner([A], [D])
21: [f2]← [J]

45

Protocol 5.8 Calculate Gini Index: {[f1], [f2]} ← GI([X])

Input: [X] = {[X1], [X2], ..., [Xm]}, where [Xi] = {[xi1], [xi2], ..., [xin]} for 1 6 i 6 m
Output: {[f1], [f2]} // fraction: numerator [f1], denominator [f2]

1: [R]← {
n∑
j=1

[x1j],
n∑
j=1

[x2j], ...,
n∑
j=1

[xmj]} // Row totals, R = {R1, R2, ..., Rm}

2: [C]← {
m∑
i=1

[xi1],
m∑
i=1

[xi2], ...,
m∑
i=1

[xin]} // Column totals, C = {C1, C2, ..., Cn}

3: [N]←
∑

[R], [f1]← 0
4: [R′]← Zero2One([R]) // R′ = {R′1, R′2, ..., R′m}
5: [Jr]←MulLogk([R′])
6: for i ∈ {1, ...,m}, [R−1i]← Inv([R′i])
7: foreach i ∈ {1, ...,m} do
8: [Ai]←Mul([Jr], [R

−1
i])

9: [Bi]← Inner([Xi], [Xi])
10: end for
11: [A]← {[A1], ..., [Am]}, [B]← {[B1], ..., [Bm]}
12: [f1]← Inner({[N],−[Jr]}, {Inner([A], [B]), Inner([C], [C])})
13: [f2]← [Jr]

Complexity Analysis. Protocol X2 requires 2mn+ 4m+ 2n− 1 invocations, while Protocol
GI only needs 4m+ 2 invocations, which is more efficient, compared to Protocol X2.

After the splitting measure value for each attribute is obtained, we need a protocol to se-
curely compare these values. Protocol 5.9 compares a list of fraction numbers [x], and output
the index position of the largest fraction. The basic idea of this protocol is that if a

b > c
d then

a · d > b · c.

Protocol 5.9 Compare Fractions: I ← ArgMax([x])

Input: [x] = {([f11], [f12]), ..., ([fn1], [fn2])} // a list of n fraction
Output: i // the index position of the largest fraction
1: i← 1, ([f1], [f2])← ([f11], [f12])
2: foreach j ∈ {2, ..., n} do
3: [t]← GEqualThan(Inner(([f1], [f2]), ([fj2],−[fj1])), 0)
4: [i]← [i] +Mul([t], j − [i])
5: [f1]← [f1] +Mul([t], [fj1]− [f1])
6: [f2]← [f2] +Mul([t], [fj2]− [f2])
7: end for
8: i← OpenShare([i])

Complexity Analysis. The complexity is mainly determined by Protocol GEqualThan. Since
n is the number of candidate attributes, which is usually a small constant, thus the communi-
cation complexity is O(m), where m is the bit length of inputs.

5.2.4 Complete Decision Path

Protocol 5.10 is used to complete a decision path, i.e., to add a leaf node to current path. It
returns a finished path with the leaf node be the class attribute value that is associated with
the most transactions.

46

Protocol 5.10 Complete Decision Path: c← PathEnd([V],A, p, [pv])

Input: [V], A = {A1, A2, ..., Ac}, p, [pv], where Ac = {Ac1, ..., Acn}
Output: p′

1: foreach j ∈ {1, ..., n} do
2: [xj]← Inner([pv], [Vcj])}
3: end for
4: i← ArgMax([x1], ..., [xn])
5: p′ ← p ∪Aci

There are two situations in which we want to stop the growing of current path, and finish
it early. One situation is that there is no attributes left to be selected to split the tree. And
the second situation is that the number of transactions under current path is too small, and
it is better to stop the growing early to avoid long decision paths. Protocol 5.11 is used to
check the second situation, it returns a public value s to indicate whether current path p reach
stopping threshold. The threshold is the minimum number of transactions that each decision
path should have.

Protocol 5.11 Check Stopping Condition: s← CkStop(p, [pv], threshold)

Input: [V], A = {A1, A2, ..., Ac}, p, [pv]
Output: s
1: [s]← GEqualThan(

∑
[pv], threshold)

2: s← OpenShare([s])

Protocol 5.12 is to check whether all transactions under the given path p have the same
class value. If so, the decision path should become complete, the protocol returns a public value
c = 1, and a new path ending with a leaf node. In this case, let the last non-leaf node in p
be Aij , the row for Aij in the contingency table of attribute Ai would have only one non-zero
element, i.e., the row total should be equal to one of the element in the row. Note that Protocol
CkEnd only opens the equality test result, it will not leak information about the transactions
under current path p.

Protocol 5.12 Check Decision Path: c, p′ ← CkEnd([V], A, p, [pv])

Input: [V], A = {A1, A2, ..., Ac}, p, [pv], where Ac = {Ac1, ..., Acn}
Output: c, p′

1: c← 0, p′ ← p
2: foreach j ∈ {1, ..., n} do
3: [xj]← Inner([pv], [Vcj])}
4: end for
5: [s]←

∑n
j=1[xj]

6: foreach j ∈ {1, ..., n} do
7: if OpenShare(ProbEqual([xj], [s])) then
8: c← 1, p′ ← p ∪Acj
9: end if

10: end for

47

5.2.5 Double Field Setting

Generally, all sub-protocols in a secure multiparty computation protocol use the same finite field
Zp, and the field is large enough to hold any possible integers occurred during the computation.
Logically, the larger the field is, the more computation time is needed. In the secure ID3
protocol, the large integers occurs in Protocol GI and X2, where the Gini Index and χ2 statistic
are calculated as fractions. The optimistic estimate of the possible largest integer should be
less than (N2)(N/c)2c for Protocol GI and (N2)(N/c)4c for Protocol X2, where N is the total
number of transactions, and c is the number of class attribute values.

While such a large prime p is only needed for the calculation of splitting measures, for other
sub-protocols, a much smaller prime p′ is enough. If the whole protocol use the same finite
field Zp, it would greatly increase the computation work of other sub-protocols. To address this
issue, we proposed to use a double field setting, i.e., a large field for Protocol GI and X2, and
a small filed for other tasks.

To convert share between different fields, Protocol 5.13 is used. Suppose [s] is a secret in
field Zp, we want to obtain a secret [s′] in another field Zp′ , such that s = s′. The idea is to
generate two random secrets [r] and [r′], such that r = r′ and r ∈ Zp, r′ ∈ Zp′ . Then the parties
open r + s, and compute [s′] = r + s− [r′].

Protocol 5.13 Convert share between different fields : [s′]← ConvertShare([s], k)

Input: [s], k, where s ∈ Zp, k is a security parameter
Output: [s′], where s′ ∈ Zp′
1: generate [r], [r′] from Zp and Zp′ respectively, such that r = r′

[r]← PRand2m(Zp, k), [r′]← PRand2m(Zp′ , k)
2: t← OpenShare([r] + [s])
3: [s′]← t− [r′]

5.2.6 Overview of Secure ID3 Protocol

The overall approach for secure ID3 protocol is to generate a set of unfinished decision paths
after a best attribute is chosen, and then determine the next node for each unfinished decision
path, until it reaches a leaf node, i.e., the current decision path becomes complete. The secure
ID3 protocol is shown in Protocol 5.14. It first transform the database into attribute value
vectors using AttrV ect, and initialize the set of unfinished paths U and the set of path vectors
[Pv]. Then it deals with each unfinished path in U , trying to complete the path or extend it
by adding non-lead nodes. The finished paths are added to the decision tree T ′, and unfinished
paths are added back to U after a splitting.

48

Protocol 5.14 Secure ID3 Protocol: T ′ ← SID3([T],A)

Input: [T] = {[T1], [T2], ..., [Tl]}, A = {A1, A2, ..., Ac}, threshold
Output: T ′

1: [V]← AttrV ect([T], A)
2: Initialize T ′ = ∅, U = {p}, where p = ∅
3: Initialize [Pv] = {[pv]}, where [pv] = {[1], [1], ..., [1]}, an l-vector with all [1]
4: while U is not empty do
5: get a path p from U , delete it from U
6: get its path vector [pv] from [Pv], delete it form [Pv]
7: B ← A\{p,Ac} // candidate attribute set
8: if CkStop(p, [pv], threshold) or B is empty then
9: p′ ← PathEnd([V], A, p, [pv])

10: T ′ ← T ′ ∪ p′ // add a complete path to the tree
11: else
12: c, p′ ← CkEnd([V], A, p, [pv])
13: if c then
14: T ′ ← T ′ ∪ p′ // add a complete path to the tree
15: else
16: let the number of attributes in B be z
17: foreach j ∈ {1, ..., z} do
18: let the j-th attribute in B be Ai
19: [P ′vj]← PathV ect([V], Ai, [pv]) // generate candidate path vectors
20: [X]← CrTab([V], [P ′vj], Ac) // create contingency table

// Protocol ConvertShare is used here for double field setting
21: [Mj]← GI([X]) // or use Protocol X2
22: end for
23: i← ArgMax({[M1], ..., [Mz]})
24: Let the i-th attribute in B is Ay
25: [Pv]← [Pv] ∪ [P ′vi]
26: foreach a ∈ Ay do
27: p′ ← p ∪ a // extend p with new attribute value
28: U ← U ∪ p′ // add the new path p′ to path set U
29: end for
30: end if
31: end if
32: end while

For double field setting, Protocol ConvertShare is is used after the creation of contingency
table. The elements in contingency table are converted from a small field to a big field.

Security Analysis. Protocol 5.14 is secure in the sense that the input transactions are secret,
and no information about the transaction content is leaked. An adversary can see the process
of building a decision tree, but this does not harm the privacy, as anyone has the output can
deduce that information from the output.

Complexity Analysis. The complexity of secure ID3 protocol is mainly determined by two
parts, the generation of candidate path vectors (Protocol PathV ect) and selecting attributes
to be added as tree nodes (Protocol ArgMax). Protocol PathV ect requires O(l) invocations,

49

and Protocol ArgMax requires O(m), where l is the size of transactional database, and m is
the bit length of inputs.

5.3 Performance Result

This section presents the experiment results of secure ID3 protocol. We implemented the
protocols in VIFF, and conducted a benchmarking experiment with the following data sets
from UCI Machine Learning Repository [FA10]. We measure the overall execution time of our
programs under the experiment settings introduced in Section 2.3. The threshold for early
stopping is set to 5% of the size of input dataset.

• SPECT. Data on cardiac Single Proton Emission Computed Tomography (SPECT) im-
ages. It has 267 SPECT image sets (patients), classified into two categories: normal and
abnormal, based on 23 binary attributes.

• Scale. Balance Scale Weight & Distance Database. Each transaction is classified as
having the balance scale tip to the right, tip to the left, or be balanced. The non-class
attributes are the left weight, the left distance, the right weight, and the right distance.
Each attribute has five categorical values. This data set has 625 transactions in total.

• Car. Car Evaluation Database has the following six attributes: buying price (4 attribute
values), price of the maintenance (4 attribute values), number of doors (4 attribute values),
capacity in terms of persons to carry (3 attribute values), the size of luggage boot (3
attribute values), and estimated safety of the car (3 attribute values). This data set has
1728 transactions in total.

• KRKPA7. Chess (King+Rook versus King+Pawn) Data Set, which is used to describe
a Chess End-Game, where the pawn is on a7, and it is the King+Rook’s side (white) to
move. It has 36 attributes and 3196 transactions in total, each transaction is classified
into two classes: White can win and White can not win.

To compare the efficiency of two different field settings (Single Field, Double Field), and
two equality test protocols (BoundEqual, ProbEqual), we tested the program for four possible
combinations, as shown in Table 5.6. For the single field setting, the bit length is set to
log2(N

2)(N/c)4c, which is enough to cover the largest integer. A much smaller bit length 10 is
used in the double field setting for the small field, and the big field use the same bit length as
the single field setting.

Data Size Bit Len.
Single Field Double Field

ProbEqual BoundEqual ProbEqual BoundEqual

SPECT 267 45 bit 235s 198s 235s 173s
Scale 625 65 bit 43s 39s 41s 36s
Car 1728 92 bit 109s 108s 104s 95s

Table 5.6: Performance Result of Different Settings for Secure ID3 Protocol

As expected, using double field setting instead of single field setting achieves better perfor-
mance. And Protocol BoundEqual performs better than Protocol ProbEqual, this is because
the bit length 10 is much smaller than the security parameter in VIFF (see Section 3.5.3). It is
clear that using Double Field + BoundEqual Protocol is the best combination for secure ID3
protocol.

50

The results in Table 5.6 are obtained by using Gini Index as splitting measure. To compare
the performance of Gini Index and χ2 statistic in secure ID3 protocol, we measures the execution
time of our program under the Double Field + BoundEqual Protocol setting, as illustrated in
Table 5.7.

Data Size Bit Len. Gini Index Bit Len. χ2 Statistic

SPECT 267 45 bit 173s 73 bit 205s
Scale 625 65 bit 36s 112 bit 43s
Car 1728 92 bit 95s 162 bit 119s

KRKPA7 3196 66 bit 1079s 110 bit 1112s

Table 5.7: Performance Result of Gini Index and χ2 Statistic in Secure ID3 Protocol

Though Protocol GI has less complexity than Protocol X2, their performance in secure
ID3 protocol is more or less the same, Protocol GI only has slight advantages. This is because
the execution time is mainly determined by the generation of candidate path vectors (Protocol
PathV ect) and selecting attributes to be added as tree nodes (Protocol ArgMax). Table 5.8
shows the execution time of Protocol PathV ect and Protocol ArgMax in secure ID3 protocol.

Data Size Bit Len. PathV ect ArgMax GI SID3

SPECT 267 45 bit 106.2s 36.4s 10.5s 173s
Scale 625 65 bit 22.1s 5.5s 1.1s 36s
Car 1728 92 bit 73.4s 9.4s 0.8s 95s

KRKPA7 3196 66 bit 990.1s 43.8s 5.5s 1079s

Table 5.8: Performance of Sub-protocols in Secure ID3 Protocol

51

Chapter 6

Conclusions

In this thesis, we considered using secure multiparty computation for privacy preserving data
mining. More specifically, the problem of secure frequent itemset mining and secure decision
tree learning are addressed.

With regard to secure multiparty computation, our protocols are based on threshold secret
sharing schemes. The protocols are implemented in the Virtual Ideal Functionality Framework
and tested with data set from UCI Machine Learning Repository.

We started with reviewing existed basic protocols that are used as building blocks for com-
plex protocols. For efficient computation, we proposed a new equality test protocol for bounded
secrets, and protocols for symmetric AND/OR operation based on our equality test protocol.

In Chapter 4, we show how to build protocols for secure frequent itemset mining, based on
the Apriori algorithm. Two secure frequent itemset mining protocols are given, one outputs
public frequent itemsets and the other one generate secret outputs. There is a natural tradeoff
between privacy and performance, the price paid for obtaining a fully secure frequent itemset
mining solution is significantly increased execution time.

Chapter 5 presents a secure ID3 protocol for privacy preserving decision tree learning, based
on the ID3 algorithm. To avoid the secure computation of logarithm function, we considered
using χ2 statistic and Gini Index instead of information measure used in original ID3 algorithm.
The experiment result shows χ2 statistic is more efficient than Gini Index. In addition, we
considered using a double setting for secure ID3 protocol to improve performance.

6.1 Further Research

Based on our work, the following topics may be interesting for further research.

• Fully secure ID3 protocol. The secure ID3 protocol in Chapter 5 outputs public
decision tree. In some cases, the parties may want to keep the result secret as well, hence
it is interesting to have a fully secure ID3 protocol.

• Efficient implementation. Our protocols are implemented using VIFF, which is based
on Python programming language. As an interpreted language, Python is slower than
compiled language such as C/C++. In addition, VIFF uses Twisted library for network
communication, which may introduce extra cost. An ad-hoc application can be designed
for improving efficiency of our protocols.

52

Bibliography

[AIS93] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of
items in large databases. In Proceedings of the 1993 ACM SIGMOD international
conference on Management of data, SIGMOD ’93, pages 207–216, New York, NY,
USA, 1993. ACM.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of the 20th International Conference on Very Large Data
Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994. Morgan Kauf-
mann Publishers Inc.

[AY08] C. C. Aggarwal and P. S. Yu. A general survey of privacy-preserving data mining
models and algorithms. In C. C. Aggarwal and P. S. Yu, editors, Privacy-Preserving
Data Mining: Models and Algorithms, pages 11–52. Springer, 2008.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen,
Jakob Pagter, Michael Schwartzbach, and Tomas Toft. In Roger Dingledine and
Philippe Golle, editors, Financial Cryptography and Data Security, pages 325–343,
Berlin, Heidelberg, 2009. Springer-Verlag.

[Bea92] Donald Beaver. Foundations of secure interactive computing. In Proceedings of
the 11th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’91, pages 377–391, London, UK, UK, 1992. Springer-Verlag.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. Stone. Classification and regres-
sion trees. Belmont, CA: Wadsworth International Group, 1st edition, 1984.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. 20th Symposium on
Theory of Computing (STOC ’88), pages 1–10, New York, 1988. A.C.M.

[BIB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In Proceedings of the eighth annual ACM Sympo-
sium on Principles of distributed computing, PODC ’89, pages 201–209, New York,
NY, USA, 1989. ACM.

[Bla79] G.R. Blakley. Safeguarding cryptographic keys. In Proceedings of the National
Computer Conference 1979, volume 48 of AFIPS Conference Proceedings, pages
313–317, 1979.

[BTW12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party
computation for financial data analysis. In Proceedings of the Sixteenth International
Conference on Financial Cryptography and Data Security, FC ’12, 2012.

53

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science
(FOCS ’01). IEEE Computer Society, 2001.

[CAS12] Cassandra project. http://www.cassandra-project.eu/, 2012.

[CDI05] R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. In Proceedings of the Second in-
ternational conference on Theory of Cryptography, TCC’05, pages 342–362, Berlin,
Heidelberg, 2005. Springer-Verlag.

[CDN01] R. Cramer, I. Damg̊ard, and J.B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Advances in Cryptology—EUROCRYPT ’01, volume
2045 of Lecture Notes in Computer Science, pages 280–300, Berlin, 2001. Springer-
Verlag. Full version eprint.iacr.org/2000/055, October 27, 2000.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing
and achieving simultaneity in the presence of faults. In Proceedings of the 26th
Annual Symposium on Foundations of Computer Science, SFCS ’85, pages 383–
395, Washington, DC, USA, 1985. IEEE Computer Society.

[DFK+06] I. Damg̊ard, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft. Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In Proc. 3rd Theory of Cryptography Conference (TCC 2006), volume
3876 of Lecture Notes in Computer Science, pages 285–304, Berlin, 2006. Springer-
Verlag.

[DGKN09] Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asyn-
chronous multiparty computation: Theory and implementation. In Proceedings of
the 12th International Conference on Practice and Theory in Public Key Cryptog-
raphy: PKC ’09, Irvine, pages 160–179, Berlin, Heidelberg, 2009. Springer-Verlag.

[DK10] Ivan Damg̊ard and Marcel Keller. Secure multiparty aes. In Radu Sion, editor, Fi-
nancial Cryptography and Data Security, volume 6052 of Lecture Notes in Computer
Science, pages 367–374. Springer Berlin Heidelberg, 2010.

[DN03] I. Damg̊ard and J.B. Nielsen. Universally composable efficient multiparty com-
putation from threshold homomorphic encryption. In Advances in Cryptology—
CRYPTO ’03, volume 2729 of Lecture Notes in Computer Science, pages 247–264,
Berlin, 2003. Springer-Verlag.

[EFG+09] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft.
Privacy-preserving face recognition. In Proceedings of the 9th International Sym-
posium on Privacy Enhancing Technologies, PETS ’09, pages 235–253, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[FA10] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[FH94] Matthew K. Franklin and Stuart Haber. Joint encryption and message-efficient
secure computation. In Proceedings of the 13th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’93, pages 266–277, London, UK,
UK, 1994. Springer-Verlag.

54

http://www.cassandra-project.eu/

[Gei10] Martin Geisler. Cryptographic Protocols: Theory and Implementation. PhD thesis,
Aarhus University, Denmark, February 2010.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game - or - a
completeness theorem for protocols with honest majority. In Proc. 19th Symposium
on Theory of Computing (STOC ’87), pages 218–229, New York, 1987. A.C.M.

[Hoo12] Sebastiaan de Hoogh. Design of Large Scale Applications of Secure Multiparty
Computation: Secure Linear Programming. PhD thesis, Eindhoven University of
Technology, the Netherlands, July 2012.

[IKS+07] Ali İnan, Selim V. Kaya, Yücel Saygın, Erkay Savaş, Ayça A. Hintoğlu, and Albert
Levi. Privacy preserving clustering on horizontally partitioned data. Data Knowl.
Eng., 63(3):646–666, December 2007.

[Jag10] Roman Jagomägis. Secrec: a privacy-aware programming language with applica-
tions in data mining. Master’s thesis, UNIVERSITY OF TARTU, Estonia, July
2010.

[JW05] Geetha Jagannathan and Rebecca N. Wright. Privacy-preserving distributed k-
means clustering over arbitrarily partitioned data. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining,
KDD ’05, pages 593–599, New York, NY, USA, 2005. ACM.

[KC04] Murat Kantarcıoğlu and Chris Clifton. Privacy-preserving distributed mining of
association rules on horizontally partitioned data. IEEE Trans. on Knowl. and
Data Eng., 16(9):1026–1037, September 2004.

[Kel10] Marcel Keller. viff boost extension. http://lists.viff.dk/pipermail/

viff-devel-viff.dk/2010-August/000847.html, 2010.

[Kil88] J. Kilian. Founding crytpography on oblivious transfer. In Proceedings of the
twentieth annual ACM symposium on Theory of computing, STOC ’88, pages 20–
31, New York, NY, USA, 1988. ACM.

[Lov12] Radu Lovin. Data mining 101: Part 3 - mining frequent patterns (max-
imal and closed frequent itemsets). http://www.dataminingarticles.com/

closed-maximal-itemsets.html, 2012.

[LP00] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Proceedings
of the 20th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’00, pages 36–54, London, UK, UK, 2000. Springer-Verlag.

[LP09] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving
data mining. The Journal of Privacy and Confidentiality, 1(1):59–98, 2009.

[Mau09] A. Mauland. Realizing distributed rsa using secure multiparty computations. Mas-
ter’s thesis, Norwegian University of Science and Technology, Norwegian, July 2009.

[Min87] J. Mingers. Expert systems - rule induction with statistical data. Journal of the
Operational Research Society, 38(1):39–47, January 1987.

[Min89] J. Mingers. An empirical comparison of selection measures for decision-tree induc-
tion. Machine Learning, 3(4):319–342, March 1989.

55

http://lists.viff.dk/pipermail/viff-devel-viff.dk/2010-August/000847.html
http://lists.viff.dk/pipermail/viff-devel-viff.dk/2010-August/000847.html
http://www.dataminingarticles.com/closed-maximal-itemsets.html
http://www.dataminingarticles.com/closed-maximal-itemsets.html

[MR92] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In Proceedings
of the 11th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’91, pages 392–404, London, UK, UK, 1992. Springer-Verlag.

[NO07] T. Nishide and K. Ohta. Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In Proceedings of the 10th international
conference on Practice and theory in public-key cryptography, PKC’07, pages 343–
360, Berlin, Heidelberg, 2007. Springer-Verlag.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology—EUROCRYPT ’99, volume 1592 of Lecture Notes in
Computer Science, pages 223–238, Berlin, 1999. Springer-Verlag.

[Per92] René Peralta. On the distribution of quadratic residues and nonresidues modulo a
prime number. Mathematics of Computation, 58(197):pp. 433–440, January 1992.

[Qui86] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, March 1986.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In Proc. 21st Symposium on Theory of Computing (STOC ’89),
pages 73–85, New York, 1989. A.C.M.

[Sch11] Berry Schoenmakers. Multiparty computation. In Henk C. A. van Tilborg and
Sushil Jajodia, editors, Encyclopedia of Cryptography and Security, pages 812–815.
Springer, 2nd edition, 2011.

[Sch12] Berry Schoenmakers. Cryptographic protocols. Lecture Notes, 2012.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[SM08] Saeed Samet and Ali Miri. Privacy preserving id3 using gini index over horizontally
partitioned data. In Proceedings of the 2008 IEEE/ACS International Conference
on Computer Systems and Applications, AICCSA ’08, pages 645–651, Washington,
DC, USA, 2008. IEEE Computer Society.

[Tof07] Tomas Toft. Primitives and Applications for Multi-party Computation. PhD thesis,
Aarhus University, Denmark, March 2007.

[VCKP08] Jaideep Vaidya, Chris Clifton, Murat Kantarcıoğlu, and A. Scott Patterson.
Privacy-preserving decision trees over vertically partitioned data. ACM Trans.
Knowl. Discov. Data, 2(3):14:1–14:27, October 2008.

[VKC08] Jaideep Vaidya, Murat Kantarcıoğlu, and Chris Clifton. Privacy-preserving näıve
bayes classification. The VLDB Journal, 17(4):879–898, July 2008.

[WFH11] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning
Tools and Techniques. Elsevier, 3rd edition, 2011.

[Yao82] A. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symposium on
Foundations of Computer Science (FOCS ’82), pages 160–164. IEEE Computer
Society, 1982.

56

	Title
	Acknowledgement
	Table of Contents
	Introduction
	Cryptographic Concepts
	Related Work
	Thesis Structure

	Secure Multiparty Computation
	Security Model
	Indistinguishability
	Composability
	Complexity Analysis

	Basic Framework
	Secret Sharing Scheme
	Shamir's Secret Sharing
	Replicated Secret Sharing

	Performance Analysis
	Virtual Ideal Functionality Framework
	Experiment Settings

	Basic Protocols
	Secure Arithmetic
	Linear Combination
	Multiplication
	Inner Product

	Interactive Generation of Random Secret
	Shared Random Element
	Shared Random Element in Range
	Shared Random Bit
	Shared Random Invertible Element

	Non-Interactive Generation of Random Secret
	Shared Random Element
	Shared Random Element in Range
	Pseudo Random Zero Sharing

	Basic Constructions for Round Efficiency
	Multiplication with Public Output
	Generation of Shared Random Bit using PRSS
	Generation of Shared Random Invertible Element using PRSS
	Inverse of Field Element
	Generation of Bitwise Shared Random Secrets
	k-ary Operation
	Unbounded Fan-in Multiplication

	Integer Comparison Protocols
	Equality Test with Public Result
	Probabilistic Equality Test
	Bounded Equality Test
	Greater Equal Than Test

	Symmetric Boolean Function
	Unbounded Fan-in Symmetric Boolean Functions
	Symmetric AND/OR Operation Using Equality Test

	Summary

	Secure Frequent Itemset Mining
	Frequent Itemset Mining
	Apriori Algorithm

	Secure Apriori Protocol
	Calculate the Support of an Itemset
	Check Minimum Support Requirement
	Secure Apriori Protocol
	Association Rule Learning

	Fully Secure Frequent Itemset Ming
	Secure Candidates Generation
	Calculate the Support of an Itemset
	Check Minimum Support Requirement
	Fully Secure Apriori Protocol

	Performance Result

	Secure Decision Tree Learning
	Decision Tree Learning
	ID3 Algorithm
	Splitting Measures

	Secure ID3 Protocol
	Data Representation
	Create Contingency Table
	Calculate 2 Statistic and Gini Index
	Complete Decision Path
	Double Field Setting
	Overview of Secure ID3 Protocol

	Performance Result

	Conclusions
	Further Research

	Bibliography

