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Abstract

In this paper, we survey the basic paradigms and notions of secure multiparty computation
and discuss their relevance to the field of privacy-preserving data mining. In addition to re-
viewing definitions and constructions for secure multiparty computation, we discuss the issue
of efficiency and demonstrate the difficulties involved in constructing highly efficient protocols.
We also present common errors that are prevalent in the literature when secure multiparty
computation techniques are applied to privacy-preserving data mining. Finally, we discuss the
relationship between secure multiparty computation and privacy-preserving data mining, and
show which problems it solves and which problems it does not.

1 Introduction

Background. Privacy-preserving data mining considers the problem of running data mining
algorithms on confidential data that is not supposed to be revealed even to the party running the
algorithm. There are two classic settings for privacy-preserving data mining (although these are
by no means the only ones). In the first, the data is divided amongst two or more different parties,
and the aim is to run a data mining algorithm on the union of the parties’ databases without
allowing any party to view anyone else’s private data. In the second, some statistical data that is
to be released (so that it can be used for research using statistics and/or data mining) may contain
confidential data and so is first modified so that (a) the data does not compromise anyone’s privacy,
and (b) it is still possible to obtain meaningful results by running data mining algorithms on the
modified data set. In this paper, we will mainly refer to scenarios of the first type.

A classical example of a privacy-preserving data mining problem of the first type is from the
field of medical research. Consider the case that a number of different hospitals wish to jointly mine
their patient data for the purpose of medical research. Furthermore, let us assume that privacy
policy and law prevents these hospitals from ever pooling their data or revealing it to each other,
due to the confidentiality of patient records. In such a case, classical data mining solutions cannot
be used. Rather it is necessary to find a solution that enables the hospitals to compute the desired
data mining algorithm on the union of their databases, without ever pooling or revealing their data.
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Privacy-preserving data mining solutions have the property that the only information (provably)
learned by the different hospitals is the output of the data mining algorithm. This problem whereby
different organizations cannot directly share or pool their databases, but must nevertheless carry
out joint research via data mining, is quite common. For example, consider the interaction between
different intelligence agencies. For security purposes, these agencies cannot allow each other free
access to their confidential information (if they did, then a single mole in a single agency would have
access to an overwhelming number of sources). Nevertheless, as we all know, homeland security
also mandates the sharing of information! It is much more likely that suspicious behavior will be
detected if the different agencies were able to run data mining algorithms on their combined data.
Another example relates to data that is held by governments. In the late 1990s, the Canadian
Government held a vast federal database that pooled citizen data from a number of different
government ministries (this database was officially called the Longitudinal Labor Force File, but
became known as the “big brother” database). The aim of the database was governmental research
that arguably would improve the services received by citizens. However, due to privacy concerns
and public outcry, the database was dismantled, thereby preventing that “essential research” from
being carried out [46]. This is another example of where privacy-preserving data mining could be
used to balance between real privacy concerns and the need of governments to carry out important
research.

Secure computation and privacy-preserving data mining. There are two distinct problems
that arise in the setting of privacy-preserving data mining. The first is to decide which functions can
be safely computed, where safety means that the privacy of individuals is preserved. For example,
is it safe to compute a decision tree on confidential medical data in a hospital, and publicize the
resulting tree? This question is not the focus of this paper, but will be discussed briefly in Section 5.
For the most part, we will assume that the result of the data mining algorithm is either safe or
deemed essential. Thus, the question becomes how to compute the results while minimizing the
damage to privacy. For example, it is always possible to pool all of the data in one place and run
the data mining algorithm on the pooled data. However, this is exactly what we don’t want to do
(hospitals are not allowed to hand their raw data out, security agencies cannot afford the risk, and
governments risk citizen outcry if they do). Thus, the question we address is how to compute the
results without pooling the data, and in a way that reveals nothing but the final results of the data
mining computation.

This question of privacy-preserving data mining is actually a special case of a long-studied
problem in cryptography called secure multiparty computation. This problem deals with a setting
where a set of parties with private inputs wish to jointly compute some function of their inputs.
Loosely speaking, this joint computation should have the property that the parties learn the correct
output and nothing else, even if some of the parties maliciously collude to obtain more information.
Clearly, a protocol that provides this guarantee can be used to solve privacy-preserving data mining
problems of the type discussed above.

This paper. In this paper, we present a tutorial-like introduction to secure multiparty compu-
tation and discuss its applicability to privacy-preserving data mining. In Section 2 we begin with
a light introduction to the model of secure computation, how security is defined and why. This is
followed up with full definitions of security in a number of different models. This formal basis is cru-
cial when designing cryptographic protocols for any task, and in particular for privacy-preserving
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data mining. Experience shows that cryptographic protocols are extraordinarily hard to get right
and rigorous proofs of security are essential for avoiding subtle flaws that can result in breaches
of privacy. We stress that once an individual’s privacy is breached, there is no way that the clock
can be turned back. Thus, it is not possible to follow a hit-and-miss strategy whereby a heuristic
protocol is deployed and then later replaced if it is discovered that it is not “secure enough”. For
this reason, we strongly advocate a rigorous approach to this problem. We stress that if it is not
possible to construct protocols that are efficient enough in practice and that meet the given defi-
nitions of security, then one should search for a different definition of security that is more relaxed
(and one should not give up on the goal of having a rigorous proof of security relative to some
definition). In Section 2.2.5 we give some examples of how this can be achieved.

Having laid the definitional foundations of secure computation, in Section 3 we proceed to
describe the basic tools and paradigms used in constructing secure protocols. Since this paper
relates to privacy-preserving data mining, we focus on techniques for constructing highly efficient
protocols (and thus present the best techniques known to date for achieving high efficiency). Given
the tutorial-like nature of this paper, in Section 4 we also present some of the common errors that
can be found in the literature on privacy-preserving data mining. It is our hope that this will help
those new to the field to see the subtleties and difficulties that arise when constructing protocols
and proving their security.

By its nature, privacy-preserving data mining is a multidisciplinary field. As such, it is our
strong belief that it requires close cooperation between researchers and practitioners from the fields
of cryptography, data mining, public policy and law. Specifically, most cryptographers are not famil-
iar enough with how data mining really works (knowledge that is clearly necessary for constructing
helpful solutions), most data miners are not familiar enough with the subtleties of cryptography
and secure computation (making it difficult to construct rigorous cryptographic protocols), and
computer science researchers in general are often not familiar enough with the real privacy needs of
society. It is our hope that this paper will make the cryptography side of privacy-preserving data
mining more accessible to others and thereby contribute to a common language that can be used
by researchers from different fields.

We remark that for those readers just interested in understanding the basic notions of secure
multiparty computation, but with no interest in constructing protocols, it suffices to read Section 2.
Despite this, we suggest that such readers also read Section 3 because a deeper understanding is
obtained by seeing how secure multiparty computation protocols are actually constructed. Section 4
is of importance to those who wish to actually construct protocols and can be skipped by others.

Further reading. Although much of this paper can be read with very little background in cryp-
tography, we do assume familiarity with basic concepts like “computational indistinguishability”
when we present the formal definitions. An excellent survey by Goldreich [19] provides all of the
background necessary for reading this and more advanced papers. For those interested in going
a step further, we recommend [28] for a general introduction to cryptography, and [20, 21] for a
rigorous and in-depth study of the foundations of cryptography.
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2 Secure Multiparty Computation – Background and Definitions

2.1 Motivation and Highlights

Distributed computing considers the scenario where a number of distinct, yet connected, computing
devices (or parties) wish to carry out a joint computation of some function. For example, these
devices may be servers who hold a distributed database system, and the function to be computed
may be a database update of some kind. The aim of secure multiparty computation is to enable
parties to carry out such distributed computing tasks in a secure manner. Whereas distributed
computing classically deals with questions of computing under the threat of machine crashes and
other inadvertent faults, secure multiparty computation is concerned with the possibility of de-
liberately malicious behavior by some adversarial entity. That is, it is assumed that a protocol
execution may come under “attack” by an external entity, or even by a subset of the participating
parties. The aim of this attack may be to learn private information or cause the result of the com-
putation to be incorrect. Thus, two important requirements on any secure computation protocol
are privacy and correctness. The privacy requirement states that nothing should be learned beyond
what is absolutely necessary; more exactly, parties should learn their output and nothing else. The
correctness requirement states that each party should receive its correct output. Therefore, the
adversary must not be able to cause the result of the computation to deviate from the function
that the parties had set out to compute.

The setting of secure multiparty computation encompasses tasks as simple as coin-tossing and
broadcast, and as complex as electronic voting, electronic auctions, electronic cash schemes, contract
signing, anonymous transactions, and private information retrieval schemes. Consider for a moment
the tasks of voting and auctions. The privacy requirement for an election protocol ensures that no
parties learn anything about the individual votes of other parties, and the correctness requirement
ensures that no coalition of parties can influence the outcome of the election beyond just voting for
their preferred candidate. Likewise, in an auction protocol, the privacy requirement ensures that
only the winning bid is revealed (if this is desired), and the correctness requirement ensures that
the highest bidder is indeed the party to win (and so the auctioneer, or any other party, cannot
bias the outcome). Due to its generality, the setting of secure multiparty computation can model
almost every cryptographic problem.

To be even more concrete, let us consider the two-party problem of securely computing the
median. Here, we have two parties with separate input sets X and Y . The aim of the parties is
to jointly compute the median of the union of their sets X ∪ Y , without revealing anything about
each other’s set that cannot be derived from the output itself.1 Here, the parties’ private inputs
are X and Y , respectively, and their output is the median of X ∪Y . In order to obtain this output,
they run an interactive protocol which involves them sending messages to each other according to
some prescribed specification, and should result in them learning the output as desired.

Security in multiparty computation. As we have mentioned above, the model that we con-
sider is one where an adversarial entity controls some subset of the parties and wishes to attack the
protocol execution. The parties under the control of the adversary are called corrupted, and follow

1Note that some information may be learned from the output. For example, if the median of the union is a number
that is smaller than all of the values in X, and the sets are of the same size, then the parties will know that all of
values in Y are smaller than all of the values in X. Nevertheless, this is “allowed” because it is inherent in the
problem description – the parties must learn the output.
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the adversary’s instructions. Secure protocols should withstand any adversarial attack (where the
exact power of the adversary will be discussed later). In order to formally claim and prove that
a protocol is secure, a precise definition of security for multiparty computation is required. A
number of different definitions have been proposed and these definitions aim to ensure a number
of important security properties that are general enough to capture most (if not all) multiparty
computation tasks. We now describe the most central of these properties:

• Privacy: No party should learn anything more than its prescribed output. In particular, the
only information that should be learned about other parties’ inputs is what can be derived
from the output itself. For example, in an auction where the only bid revealed is that of the
highest bidder, it is clearly possible to derive that all other bids were lower than the winning
bid. However, this should be the only information revealed about the losing bids.

• Correctness: Each party is guaranteed that the output that it receives is correct. To continue
with the example of an auction, this implies that the party with the highest bid is guaranteed
to win, and no party including the auctioneer can alter this.

• Independence of Inputs: Corrupted parties must choose their inputs independently of the
honest parties’ inputs. This property is crucial in a sealed auction, where bids are kept
secret and parties must fix their bids independently of others. We note that independence of
inputs is not implied by privacy. For example, it may be possible to generate a higher bid,
without knowing the value of the original one. Such an attack can actually be carried out on
some encryption schemes (i.e., given an encryption of $100, it is possible to generate a valid
encryption of $101, without knowing the original encrypted value).

• Guaranteed Output Delivery: Corrupted parties should not be able to prevent honest parties
from receiving their output. In other words, the adversary should not be able to disrupt the
computation by carrying out a “denial of service” attack.

• Fairness: Corrupted parties should receive their outputs if and only if the honest parties also
receive their outputs. The scenario where a corrupted party obtains output and an honest
party does not should not be allowed to occur. This property can be crucial, for example, in
the case of contract signing. Specifically, it would be very problematic if the corrupted party
received the signed contract and the honest party did not.

We stress that the above list does not constitute a definition of security, but rather a set of require-
ments that should hold for any secure protocol. Indeed, one possible approach to defining security
is to just generate a list of separate requirements (as above) and then say that a protocol is secure
if all of these requirements are fulfilled. However, this approach is not satisfactory for the following
reasons. First, it may be possible that an important requirement was missed. This is especially
true because different applications have different requirements, and we would like a definition that
is general enough to capture all applications. Second, the definition should be simple enough so
that it is trivial to see that all possible adversarial attacks are prevented by the proposed definition.

The standard definition today (cf. [8] following [22, 4, 35]) therefore formalizes security in the
following general way. As a mental experiment, consider an “ideal world” in which an external
trusted (and incorruptible) party is willing to help the parties carry out their computation. In such
a world, the parties can simply send their inputs to the trusted party, who then computes the desired
function and passes each party its prescribed output. Since the only action carried out by a party is
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that of sending its input to the trusted party, the only freedom given to the adversary is in choosing
the corrupted parties’ inputs. Notice that all of the above-described security properties (and more)
hold in this ideal computation. For example, privacy holds because the only message ever received
by a party is its output (and so it cannot learn any more than this). Likewise, correctness holds
since the trusted party cannot be corrupted and so will always compute the function correctly.

Of course, in the “real world” there is no external party that can be trusted by all parties.
Rather, the parties run some protocol amongst themselves without any help. Despite this, a secure
protocol should emulate the so-called “ideal world”. That is, a real protocol that is run by the
parties (in a world where no trusted party exists) is said to be secure, if no adversary can do more
harm in a real execution than in an execution that takes place in the ideal world. This can be
formulated by saying that for any adversary carrying out a successful attack in the real world,
there exists an adversary that successfully carries out the same attack in the ideal world. However,
successful adversarial attacks cannot be carried out in the ideal world. We therefore conclude that
all adversarial attacks on protocol executions in the real world must also fail.

More formally, the security of a protocol is established by comparing the outcome of a real
protocol execution to the outcome of an ideal computation. That is, for any adversary attacking
a real protocol execution, there exists an adversary attacking an ideal execution (with a trusted
party) such that the input/output distributions of the adversary and the participating parties in
the real and ideal executions are essentially the same. Thus a real protocol execution “emulates”
the ideal world. This formulation of security is called the ideal/real simulation paradigm. In order
to motivate the usefulness of this definition, we describe why all the properties described above
are implied. Privacy follows from the fact that the adversary’s output is the same in the real
and ideal executions. Since the adversary learns nothing beyond the corrupted party’s outputs
in an ideal execution, the same must be true for a real execution. Correctness follows from the
fact that the honest parties’ outputs are the same in the real and ideal executions, and from the
fact that in an ideal execution, the honest parties all receive correct outputs as computed by the
trusted party. Regarding independence of inputs, notice that in an ideal execution, all inputs are
sent to the trusted party before any output is received. Therefore, the corrupted parties know
nothing of the honest parties’ inputs at the time that they send their inputs. In other words,
the corrupted parties’ inputs are chosen independently of the honest parties’ inputs, as required.
Finally, guaranteed output delivery and fairness hold in the ideal world because the trusted party
always returns all outputs. The fact that it also holds in the real world again follows from the fact
that the honest parties’ outputs are the same in the real and ideal executions.

We remark that the above informal definition is actually “overly ideal” and needs to be relaxed
in settings where the adversary controls a half or more of the participating parties (that is, in the
case that there is no honest majority). When this number of parties is corrupted, it is known that it
is impossible to obtain general protocols for secure multiparty computation that guarantee output
delivery and fairness (e.g. [11]). Therefore, the definition is relaxed and the adversary is allowed
to abort the computation (i.e., cause it to halt before termination), meaning that “guaranteed
output delivery” is not fulfilled. Furthermore, the adversary can cause this abort to take place
after it has already obtained its output, but before all the honest parties receive their outputs.
Thus “fairness” is not achieved. Loosely speaking, the relaxed definition is obtained by modifying
the ideal execution and giving the adversary the additional capability of instructing the trusted
party to not send outputs to some of the honest parties. Otherwise, the definition remains identical
and thus all the other properties are still preserved.
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Adversarial power. The above informal definition of security omits one very important issue:
the power of the adversary that attacks a protocol execution. As we have mentioned, the adversary
controls a subset of the participating parties in the protocol. However, we have not described the
corruption strategy (i.e., when or how parties come under the “control” of the adversary), the
allowed adversarial behavior (i.e., does the adversary just passively gather information or can it
instruct the corrupted parties to act maliciously), and what complexity the adversary is assumed
to be (i.e., is it polynomial-time or computationally unbounded). We now describe the main types
of adversaries that have been considered:

1. Corruption strategy: The corruption strategy deals with the question of when and how
parties are corrupted. There are two main models:

(a) Static corruption model: In this model, the adversary is given a fixed set of parties whom
it controls. Honest parties remain honest throughout and corrupted parties remain
corrupted.

(b) Adaptive corruption model: Rather than having a fixed set of corrupted parties, adaptive
adversaries are given the capability of corrupting parties during the computation. The
choice of who to corrupt, and when, can be arbitrarily decided by the adversary and may
depend on its view of the execution (for this reason it is called adaptive). This strategy
models the threat of an external “hacker” breaking into a machine during an execution.
We note that in this model, once a party is corrupted, it remains corrupted from that
point on.

An additional model, called the proactive model [40, 9], considers the possibility that parties
are corrupted for a certain period of time only. Thus, honest parties may become corrupted
throughout the computation (like in the adaptive adversarial model), but may later also
become honest again.

2. Allowed adversarial behavior: Another parameter that must be defined relates to the
actions that corrupted parties are allowed to take. Once again, there are two main types of
adversaries:

(a) Semi-honest adversaries: In the semi-honest adversarial model, even corrupted parties
correctly follow the protocol specification. However, the adversary obtains the internal
state of all the corrupted parties (including the transcript of all the messages received),
and attempts to use this to learn information that should remain private. This is a rather
weak adversarial model. However, there are some settings where it can realistically model
the threats to the system. Semi-honest adversaries are also called “honest-but-curious”
and “passive”.

(b) Malicious adversaries: In this adversarial model, the corrupted parties can arbitrarily
deviate from the protocol specification, according to the adversary’s instructions. In
general, providing security in the presence of malicious adversaries is preferred, as it
ensures that no adversarial attack can succeed. Malicious adversaries are also called
“active”.

3. Complexity: Finally, we consider the assumed computational complexity of the adversary.
As above, there are two categories here:
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(a) Polynomial-time: The adversary is allowed to run in (probabilistic) polynomial-time (and
sometimes, expected polynomial-time). The specific computational model used differs,
depending on whether the adversary is uniform (in which case, it is a probabilistic
polynomial-time Turing machine) or non-uniform (in which case, it is modeled by a
polynomial-size family of circuits). We remark that probabilistic polynomial-time is the
standard notion of “feasibly” computation; any attack that cannot be carried out in
polynomial-time is not a threat in real life.

(b) Computationally unbounded: In this model, the adversary has no computational limits
whatsoever.

The above distinction regarding the complexity of the adversary yields two very different
models for secure computation: the information-theoretic model [7, 10] and the computa-
tional model [45, 18]. In the information-theoretic setting, the adversary is not bound to any
complexity class (and in particular, is not assumed to run in polynomial-time). Therefore,
results in this model hold unconditionally and do not rely on any complexity or crypto-
graphic assumptions. The only assumption used is that parties are connected via ideally
private channels (i.e., it is assumed that the adversary cannot eavesdrop or interfere with the
communication between honest parties).

In contrast, in the computational setting the adversary is assumed to be polynomial-time. Re-
sults in this model typically assume cryptographic assumptions like the existence of trapdoor
permutations. These are assumptions on the hardness of solving some problem (like factoring
large integers) whose hardness has not actually be proven but is widely conjectured.2 We
note that it is not necessary here to assume that the parties have access to ideally private
channels, because such channels can be implemented using public-key encryption. However,
it is assumed that the communication channels between parties are authenticated; that is, if
two honest parties communicate, then the adversary can eavesdrop but cannot modify any
message that is sent. Such authentication can be achieved using digital signatures [24] and a
public-key infrastructure.

We remark that all possible combinations of the above types of adversaries have been considered
in the literature.

Feasibility of secure multiparty computation. The above-described definition of security
seems to be very restrictive in that no adversarial success is tolerated. Thus, one may wonder
whether it is even possible to obtain secure protocols under this definition, and if yes, for which dis-
tributed computing tasks. Perhaps surprisingly, powerful feasibility results have been established,
demonstrating that in fact, any distributed computing task can be securely computed. We now
briefly state the most central of these results; let m denote the number of participating parties and
let t denote a bound on the number of parties that may be corrupted:

1. For t < m/3 (i.e., when less than a third of the parties can be corrupted), secure multiparty
protocols with fairness and guaranteed output delivery can be achieved for any function in
a point-to-point network and without any setup assumptions. This can be achieved both in

2The unfortunate state of affairs is that the ability to unconditionally prove the hardness of solving such problems
would involve major breakthroughs in the area of computational complexity, and as such, seems currently out of
reach.

8



the computational setting [18] (assuming the existence of enhance trapdoor permutations3),
and in the information-theoretic (private channel) setting [7, 10].

2. For t < m/2 (i.e., in the case of a guaranteed honest majority), secure multiparty proto-
cols with fairness and guaranteed output delivery can be achieved for any function assuming
that the parties have access to a broadcast channel. This can be achieved in the computa-
tional setting [18] (with the same assumptions as above), and in the information-theoretic
setting [43].

3. For t ≥ m/2 (i.e., when the number of corrupted parties is not limited), secure multiparty
protocols (without fairness or guaranteed output delivery) can be achieved assuming that the
parties have access to a broadcast channel and in addition assuming the existence of enhanced
trapdoor permutations [45, 18, 21]. These feasibility results hold only in the computational
setting; analogous results for the information-theoretic setting cannot be obtained when t ≥
m/2 [7].

In summary, secure multiparty protocols exist for any distributed computing task. In the com-
putational model, this holds for all possible numbers of corrupted parties, with the qualification
that when no honest majority exists, fairness and guaranteed output delivery are not obtained. We
note that the above results all hold with respect to malicious adversaries. (The status regarding
adaptive versus static adversaries is more involved and is therefore omitted here.)

Challenges for secure multiparty computation. Given the aforementioned results, it may
seem that there are no challenges remaining for the field of secure multiparty computation. This
is far from the truth. In particular, the above are all feasibility results, meaning that their focus is
on establishing that secure computation (with some set of parameters) can be achieved. However,
if secure protocols are to be used in practice, protocols must be designed that are highly efficient.
This is especially true when the protocols are to be used on very large data sets. In such a case,
requiring a relatively heavy number-theoretic computation4 per bit of the input is something that
is completely infeasible (although computation on this scale is often considered to be efficient in
cryptography). We remark that there are many other open issues in the area of secure multiparty
computation (e.g., secure protocol composition in general network settings). However, we will focus
on issues of efficiency in this paper.

2.2 Definitions of Security

We will present two definitions below; one for the case of semi-honest adversaries and one for the
case of malicious adversaries. In both cases, we focus on the setting of static corruptions and no
honest majority. We will also only consider polynomial-time adversaries. For the sake of clarity
we present definitions for the two-party case only; the generalization to multiparty computation is
straightforward.

3see [21, Appendix C]
4A typical such computation is that of a modular exponentiation computing xa mod N , where x, a and N are all

very large numbers, on the scale of hundreds of digits each.
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2.2.1 Technical Preliminaries

We denote the security parameter by n; essentially, this parameter determines the length of crypto-
graphic keys (or more exactly the length of input needed to some hard problem so that real-world
adversaries cannot break the problem in a reasonable amount of time). We say that a function
µ(·) is negligible in n (or just negligible) if for every positive polynomial p(·) there exists an integer
N such that for all n > N it holds that µ(n) < 1/p(n). Note that an event that happens with
negligible probability happens so infrequently that we can effectively dismiss it.

All parties, including the adversary, run in time that is polynomial in n. We assume that each
party has a “security parameter tape” that is initialized to the string of n ones, denoted 1n, and
the parties then run in time that is polynomial in the input written on that tape. (The reason why
the security parameter is received as 1n rather than just the binary representation of n is due to
a technicality that we want the party to run in time that is polynomial in the length of its input.
Thus, we make the length of the security parameter input n by setting it to be 1n. This technicality
can be ignored.)

Let X(n, a) and Y (n, a) be random variables indexed by n and a (n here denotes the security pa-
rameter and a will typically represent the inputs to the protocol), and let X = {X(n, a)}n∈IN,a∈{0,1}∗
and Y = {Y (n, a)}n∈IN,a∈{0,1}∗ be distribution ensembles. We say that these two random variables
are computationally indistinguishable if no algorithm running in polynomial-time can tell them
apart (except with negligible probability). More precisely, we say that X and Y are computation-

ally indistinguishable, denoted X
c≡ Y , if for every non-uniform polynomial-time distinguisher D

there exists a function µ(·) that is negligible in n, such that for every a ∈ {0, 1}∗,

|Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]| < µ(n)

Thus, if X and Y are indistinguishable, it holds that for for every efficient distinguisher D and for
every positive polynomial p(), there exists an N such that for all n > N it holds that D cannot
distinguish between the two with probability better than 1/p(n). Therefore, X and Y are the same
for all intents and purposes. Typically, the distributions X and Y will denote the output vectors
of the parties in real and ideal executions, respectively. In this case, a denotes the parties’ inputs.
(The outputs of the parties are modeled as random variables since the operation of the parties is
typically probabilistic, depending on random coin tosses (or random inputs) used by the parties.)

2.2.2 Security in the Presence of Semi-Honest Adversaries

The model that we consider here is that of two-party computation in the presence of static semi-
honest adversaries. Such an adversary controls one of the parties (statically, and so at the onset of
the computation) and follows the protocol specification exactly. However, it may try to learn more
information than allowed by looking at the transcript of messages that it received. The definitions
presented here are according to Goldreich in [21].

Two-party computation. A two-party protocol problem is cast by specifying a random process
that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process as
a functionality and denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That
is, for every pair of inputs x, y ∈ {0, 1}n, the output-pair is a random variable (f1(x, y), f2(x, y))
ranging over pairs of strings. The first party (with input x) wishes to obtain f1(x, y) and the
second party (with input y) wishes to obtain f2(x, y). We often denote such a functionality by
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(x, y) 7→ (f1(x, y), f2(x, y)). For example, consider the oblivious transfer functionality where the
first party has a pair of strings (x0, x1) for input and the second party has a bit σ ∈ {0, 1}. The aim
of the protocol is for the second party to receive the message xσ (but it should not learn anything
about x1−σ and the first party should learn nothing about σ). This functionality is specified by
((x0, x1), σ) 7→ (λ, xσ), where λ denotes the empty string (specifying in this case that the sender
learns nothing). When the functionality f is probabilistic, we sometimes use the notation f(x, y, r),
where r is a uniformly chosen random tape used for computing f .

Privacy by simulation. Intuitively, a protocol is secure if whatever can be computed by a
party participating in the protocol can be computed based on its input and output only. This is
formalized according to the simulation paradigm. Loosely speaking, we require that a party’s view
in a protocol execution be simulatable given only its input and output. We remark that in the semi-
honest model, this definitional approach is equivalent to the ideal/real model approach described
above; see [21]. This then implies that the parties learn nothing from the protocol execution itself,
as desired.

Definition of security. We begin with the following notation:

• Let f = (f1, f2) be a probabilistic polynomial-time functionality and let π be a two-party
protocol for computing f .

• The view of the ith party (i ∈ {1, 2}) during an execution of π on input (x, y) and security
parameter n is denoted viewπi (n, x, y) and equals (1n, x, ri,mi

1, ...,m
i
t), where ri equals the

contents of the ith party’s internal random tape, and mi
j represents the jth message that it

received.

• The output of the ith party during an execution of π on input (x, y) and security parameter n
is denoted outputπi (n, x, y) and can be computed from its own view of the execution. Denote

outputπ(n, x, y) = (outputπ1 (n, x, y), outputπ2 (n, x, y)).

Note that viewπi (n, x, y) and outputπ(n, x, y) are random variables, with the probability taken over
the random tapes of all the parties.

In the definition below we quantify only over inputs x and y that are of the same length. Some
restriction on input lengths is required, and padding can be used to achieve this restriction; see
discussion in [21].

Definition 1 (security w.r.t. semi-honest behavior): Let f = (f1, f2) be a functionality. We say
that π securely computes f in the presence of static semi-honest adversaries if there exist probabilistic
polynomial-time algorithms S1 and S2 such that for every x, y ∈ {0, 1}∗ where |x| = |y|, we have:

{(S1(1n, x, f1(x, y)), f(x, y))}n∈IN

c≡ {(viewπ1 (n, x, y), outputπ(n, x, y))}n∈IN (1)

{(S2(1n, y, f2(x, y)), f(x, y))}n∈IN

c≡ {(viewπ2 (n, x, y), outputπ(n, x, y))}n∈IN (2)
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Equations (1) and (2) state that the view of a party can be simulated by a probabilistic polynomial-
time algorithm given access to the party’s input and output only. This can be seen by the fact that
S1 is given x and f(x, y) and must generate output that is indistinguishable from the view of
P1 in a real execution. We note that it is not enough for the simulator Si to generate a string
indistinguishable from viewπ

i (n, x, y). Rather, the joint distribution of the simulator’s output and
the functionality output f(x, y) must be indistinguishable from (viewπi (n, x, y), outputπ(n, x, y)).
This is necessary for probabilistic functionalities; see [8, 21] for a full discussion.

A simpler formulation for deterministic functionalities. In the case that the functionality f
is deterministic, a simpler definition can be used. We refer to [21, Section 7.2.2] for more discussion.

2.2.3 Security in the Presence of Malicious Adversaries

In this section, we consider malicious adversaries who may arbitrarily deviate from the specified
protocol. When considering malicious adversaries and the case of no honest majority (as in the
important case of two parties), there are certain undesirable actions that cannot be prevented.
Specifically, a party may refuse to participate in the protocol, may substitute its local input (and
use instead a different input) and may abort the protocol prematurely. One ramification of the
adversary’s ability to abort, is that it is impossible to achieve “fairness”. That is, the adversary
may obtain its output while the honest party does not. These adversarial capabilities are therefore
not prevented by the definition of security (formally, they are “allowed” by incorporating them in
the ideal execution as well). The definition below is formalized according to the ideal/real model
paradigm described above.

Execution in the ideal model. Let P1 and P2 be the parties and let I denote the indices of
the corrupted parties controlled by an adversary A. In principle, it is possible for zero, one or both
parties to be corrupted. However, for the sake of simplicity, we will consider the most important
case that either I = {1} or I = {2} (i.e., exactly one of the two parties is corrupted). An ideal
execution proceeds as follows:

Inputs: Each party obtains an input; the ith party’s input is denoted xi. The adversary A receives
an auxiliary input denoted z.

Send inputs to trusted party: The honest party Pj for j /∈ I sends its input xj to the trusted
party. The corrupted party Pi for i ∈ I (who is controlled by A) may either abort by replacing
the input xi with a special abort message, send its input xi, or send some other input of the
same length to the trusted party. This decision is made by A and may depend on the value
xi for i ∈ I and its auxiliary input z. Denote the inputs sent to the trusted party by (w1, w2)
(note that wi does not necessarily equal xi).

If the trusted party receives an input of the form abort from Pi, it sends abort to both parties
and the ideal execution terminates. Otherwise, the execution proceeds to the next step.

Trusted party sends outputs to adversary: The trusted party computes the pair of outputs
(f1(w1, w2), f2(w1, w2)) and sends fi(w1, w2) to the corrupted party Pi.

Adversary instructs trusted party to continue or halt: A sends either continue or abort to
the trusted party. If it sends continue, the trusted party sends fj(w1, w2) to the honest party
Pj . Otherwise, if A sends abort, the trusted party sends abort to party Pj .
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Outputs: The honest party always outputs the message it obtained from the trusted party. The
corrupted party outputs nothing. The adversary A outputs any arbitrary (probabilistic
polynomial-time computable) function of the initial input xi, the auxiliary input z, and the
output abort or fi(w1, w2) obtained from the trusted party.

Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a two-party functionality, where f = (f1, f2), let A
be a non-uniform probabilistic polynomial-time machine, and let I = {1} or I = {2} be the index
of the corrupted party. Then, the ideal execution of f on inputs (x1, x2), auxiliary input z to A and
security parameter n, denoted idealf,A(z),I(n, x1, x2)), is defined as the output pair of the honest
party and the adversary A from the above ideal execution.

Execution in the real model. We next consider the real model in which a real two-party
protocol π is executed (and there exists no trusted third party). In this case, the adversary A
sends all messages in place of the corrupted party, and may follow an arbitrary polynomial-time
strategy. In contrast, the honest party follows the instructions of π. (We assume that at least one
of the parties is honest, since we are not required to help a party that deviates from the protocol
and therefore if both parties are corrupt we are not required to provide any security guarantee.)

Let f be as above and let π be a two-party protocol for computing f . Furthermore, let A be a
non-uniform probabilistic polynomial-time machine and let I be the index of the corrupted party.
Then, the real execution of π on inputs (x1, x2), auxiliary input z to A and security parameter n,
denoted realπ,A(z),I(n, x1, x2), is defined as the output vector of the honest party and the adversary
A from the real execution of π. The auxiliary input z models side information that the adversary
may have and is important for obtaining meaningful notions of security (in reality, the adversary
may know part of the input or may at least know what inputs the honest party is unlikely to have;
such knowledge is auxiliary information and is included in z).

Security as emulation of a real execution in the ideal model. Having defined the ideal and
real models, we can now define security of protocols. Loosely speaking, the definition asserts that a
secure party protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated by saying that adversaries in the ideal model are able to simulate executions of
the real-model protocol. As in the semi-honest case, we will consider executions where the inputs
are of the same length.

Definition 2 (security w.r.t. malicious adversaries): Let f and π be as above. Protocol π is
said to securely compute f with abort in the presence of malicious adversaries if for every non-
uniform probabilistic polynomial-time adversary A for the real model, there exists a non-uniform
probabilistic expected polynomial-time adversary S for the ideal model, such that for every I, every
x1, x2 ∈ {0, 1}∗ such that |x| = |y|, and every auxiliary input z ∈ {0, 1}∗:{

idealf,S(z),I(n, x1, x2)
}
n∈IN

c≡
{
realπ,A(z),I(n, x1, x2)

}
n∈IN

We remark that the ideal-model adversary is denoted S because in security proofs it behaves as
a simulator (simulating a real protocol execution for A while it really interacts in the ideal model).
We also allow the ideal-model adversary to run in expected polynomial-time (rather than strict
polynomial-time) because this is often necessary for proving the security of efficient protocols.
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Notice that the security guarantees provided by Definition 2 are very strong. Essentially, the
adversary’s only possible attacks are to choose its input as it wishes (arguably, a legitimate strategy),
and cause an early abort in the protocol. In this light, the feasibility results that we surveyed in
Section 2.1 are truly amazing.

2.2.4 Modular Sequential Composition

Sequential composition theorems for secure computation are important for two reasons. First, they
constitute a security goal within themselves. Second, they are useful tools that help in writing
proofs of security. The basic idea behind these composition theorems is that it is possible to design
a protocol that uses an ideal functionality as a subroutine, and then analyze the security of the
protocol when a trusted party computes this functionality. For example, assume that a protocol
is constructed that uses the secure computation of some functionality as a subroutine. Then, first
we construct a protocol for the functionality in question and prove its security. Next, we prove
the security of the larger protocol that uses the functionality as a subroutine in a model where the
parties have access to a trusted party computing the functionality. The composition theorem then
states that when the “ideal calls” to the trusted party for the functionality are replaced by real
executions of a secure protocol computing this functionality, the protocol remains secure.

The f-hybrid model. The aforementioned composition theorems are formalized by considering
a hybrid model where parties both interact with each other (as in the real model) and use trusted
help (as in the ideal model). Specifically, the parties run a protocol π that contains “ideal calls”
to a trusted party computing a functionality f . These ideal calls are just instructions to send an
input to the trusted party. Upon receiving the output back from the trusted party, the protocol
π continues. We stress that honest parties do not send messages in π between the time that they
send input to the trusted party and the time that they receive back output (this is because we
consider sequential composition here). Of course, the trusted party may be used a number of times
throughout the π-execution. However, each time is independent (i.e., the trusted party does not
maintain any state between these calls). We call the regular messages of π that are sent amongst
the parties standard messages and the messages that are sent between parties and the trusted party
ideal messages.

Let f be a functionality and let π be a two-party protocol that uses ideal calls to a trusted party
computing f . Furthermore, let A be a non-uniform probabilistic polynomial-time machine and let
I be the set of corrupted parties. Then, the f -hybrid execution of π on inputs (x1, x2), auxiliary
input z to A and security parameter n, denoted hybridfπ,A(z),I(n, x1, x2), is defined as the output
vector of the honest parties and the adversary A from the hybrid execution of π with a trusted
party computing f .

Sequential modular composition. Let f and π be as above, and let ρ be a protocol. Consider
the real protocol πρ that is defined as follows. All standard messages of π are unchanged. When a
party Pi is instructed to send an ideal message αi to the trusted party, it begins a real execution
of ρ with input αi instead. When this execution of ρ concludes with output βi, party Pi continues
with π as if βi was the output received by the trusted party (i.e. as if it were running in the f -hybrid
model). The following theorem was proven in [8]:

Theorem 3 Let f be a two-party probabilistic polynomial-time functionality and let ρ be a protocol
that securely computes f with abort in the presence of malicious (resp., semi-honest) adversaries.
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Let g be a two-party functionality and let π be a protocol that securely computes g with abort in the
f -hybrid model in the presence of malicious (resp., semi-honest) adversaries. Then, πρ securely
computes g with abort in the presence of malicious (resp., semi-honest) adversaries.

The use of this composition theorem (and others similar to it) greatly simplifies proofs of
security. Instead of analyzing a large protocol and proving reductions to subprotocols, it suffices
to analyze the security of the large protocol in the idealized hybrid model.

2.2.5 Other Definitions of Security

The semi-honest and malicious models described above are the most standard. However, to some
extent, both of these models are problematic. First of all, the semi-honest model is too weak for
many settings. Would we accept an election protocol where any party who actively cheats can sway
the outcome, or learn individual parties’ votes? Thus, this model is more appropriate for settings
where the participating parties basically trust each other. However, they may have other reasons
for not joining all of their data. This is the case of hospitals who wish to carry out joint research on
their confidential patient records. Due to privacy laws they are not allowed to look at each others’
databases; however, they are basically honest. Thus, the semi-honest model is very suitable for
such settings. We remark that the security guaranteed in this model ensures that no inadvertent
leakage of information takes place. In particular, even if one of the hospital’s computers is broken
into after the protocol execution took place, it is guaranteed that nothing is revealed about the
other databases. Having said this, in many (if not most) cases of privacy-preserving data mining,
we do not and cannot trust the participants to not cheat (especially if they can easily do so without
getting caught). This leads to the conclusion that the malicious model is preferable, and indeed
from a security point of view this is definitely the case. However, when it comes to efficiency, the
malicious model poses great difficulties. In particular, although we already know that in principle
every efficient function can be securely computed in this model, until today we know of very few
interesting functions (e.g., functions that constitute non-trivial data-mining algorithms) that can be
securely computed in the presence of malicious adversaries and are even reasonably efficient. Thus
it is not clear that our goal of constructing privacy-preserving data mining protocols that can be
used in practice will be achieved if we limit ourselves to this model. Below, we briefly describe two
different definitions of security that provide lower guarantees, but are arguably sufficient in many
settings. Importantly, in both of these models it is possible to construct efficient secure protocols.

Guaranteeing privacy only. As we have discussed, the definition of security that follows the
ideal/real simulation paradigm provides strong security guarantees. In particular, it guarantees
privacy, correctness, independence of inputs and so on. However, in some settings, it may be
sufficient to guarantee privacy only. We warn that this is not so simple and in many cases it
is difficult to separate privacy from correctness. Nevertheless, privacy still provides a non-trivial
security guarantee. We will not present a general definition here, because this depends very much
on the function being computed. Nevertheless, we will present a definition for one specific function
in order to demonstrate how such definitions look. For this purpose, we consider the oblivious
transfer function. In this function, there is a sender S with a pair of input strings (x0, x1) and a
receiver R with an input bit σ. The output of the function is nothing to the sender and the string xσ
for the receiver. Thus, a secure oblivious transfer protocol has the property that the sender learns
nothing about σ while the receiver learns at most one of the strings x0, x1. Unfortunately, defining
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privacy here without resorting to the ideal model is very non-trivial. Specifically, it is easy to define
privacy in the presence of a malicious sender S∗; we just say that S∗ cannot distinguish the case
that R has input 0 from the case that it has input 1. However, it is more difficult to define privacy
in the presence of a malicious receiver R∗ because it does learn something. A naive approach to
defining this says that for some bit b it holds that R∗ knows nothing about xb. However, this value
of b may depend on the messages sent during the oblivious transfer and so cannot be fixed ahead
of time. Fortunately, for the case of two-message oblivious transfer (where the receiver sends one
message and the sender replies with a single message) it is possible to formally define this. The
following definition of security for oblivious transfer is based on [25] and states that replacing one
of x0 and x1 with some other x should go unnoticed by the receiver. The question of which of x0, x1

to replace causes a problem which is solved in the case of a two-message protocol by fixing the first
message; see below. (In the definition below we use the following notation: for a two-party protocol
with parties S and R, we denote by viewnS(S(a), R(b)) the view of S in an execution where it has
input a, and R has input b, and the security parameter is n. Furthermore, we denote by Sn(a; q) the
distribution over the message sent by S upon input a, security parameter n, and message received
q. When the protocol has two messages only and the first message q is sent by R, the message
S(a; q) defines R’s view in the execution.)

Definition 4 A two-message two-party probabilistic polynomial-time protocol (S,R) is said to be
a private oblivious transfer if the following holds:

• Correctness: If S and R follow the protocol then after an execution in which S has for input
any pair of strings x0, x1 ∈ {0, 1}n and R has for input any bit σ ∈ {0, 1}, the output of R
is xσ.

• Privacy for R: For every non-uniform probabilistic polynomial-time S∗ and every auxiliary
input z ∈ {0, 1}∗, it holds that

{viewnS∗(S∗(z), R(0))}n∈IN

c≡ {viewnS∗(S∗(z), R(1))}n∈IN .

• Privacy for S: For every non-uniform deterministic polynomial-time receiver R∗, every aux-
iliary input z ∈ {0, 1}∗, and every triple of inputs x0, x1, x ∈ {0, 1}n it holds that either:

{Sn((x0, x1);R∗(z))}n∈IN

c≡ {Sn((x0, x);R∗(z))}n∈IN

or
{Sn((x0, x1);R∗(z))}n∈IN

c≡ {Sn((x, x1);R∗(z))}n∈IN .

The way to view the above definition of privacy for S is that R∗’s first message, denoted R∗(z)
determines whether it should receive x0 or x1. If it determines for example that it should receive
x0, then the distribution over S’s reply when its input is (x0, x1) is indistinguishable from the
distribution when its input is (x0, x). Clearly this implies that R∗ cannot learn anything about x1

when it receives x0 and vice versa.
Note that when defining the privacy for S we chose to focus on a deterministic polynomial-time

receiver R∗. This is necessary in order to fully define the message R∗(z) for any given z, which in
turn fully defines the string xb that R∗(z) does not learn. By making R∗ non-uniform, we have that
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this does not weaken the adversary (since R∗’s advice tape can hold its “best coins”). We remark
that generalizing this definition to protocols that have more than two messages is non-trivial.

The above example demonstrates that it is possible to define “privacy only” for secure compu-
tation. However, it also demonstrates that this task can be very difficult. In general, when a party
does not receive output, this is easy. However, when a party does receive output, defining privacy
without resorting to the ideal model is problematic (and often it is not at all clear how it can be
achieved).

We conclude with one important remark regarding “privacy-only” definitions. As we have
mentioned, an important property of security definitions is a composition theorem that guarantees
certain behavior when the secure protocol is used as a subprotocol in another larger protocol. No
such general composition theorems are known for definitions that follow the privacy-only approach.
As such, this approach has a significant disadvantage.

Security in the presence of covert adversaries [3]. Recently, a new adversarial model was
introduced that lies between the semi-honest and malicious models. The motivation behind the
definition is that in many real-world settings, adversaries are willing to actively cheat (and as such
are not semi-honest), but only if they are not caught (and as such they are not arbitrarily malicious).
This is the case in many business, financial, political and diplomatic settings, where honest behavior
cannot be assumed, but where the companies, institutions and individuals involved cannot afford
the embarrassment, loss of reputation, and negative press associated with being caught cheating.
Clearly, with such adversaries, it may be the case that the risk of being caught is weighed against
the benefits of cheating, and it cannot be assumed that players would avoid being caught at any
price and under all circumstances. Accordingly, the definition explicitly models the probability
of catching adversarial behavior. The definition of security is based on the classical ideal/real
simulation paradigm with the following difference. For a value 0 < ε ≤ 1 (called the deterrence
factor), the definition guarantees that any attempt to “cheat” by an adversary is detected by the
honest parties with probability at least ε. Thus, provided that ε is sufficiently large, an adversary
that wishes not to be caught cheating, will refrain from attempting to cheat, lest it be caught doing
so. Note that the security guarantee does not preclude successful cheating. Indeed, if the adversary
decides to cheat then it may gain access to the other parties’ private information or bias the result
of the computation. The only guarantee is that if it attempts to cheat, then there is a fair chance
that it will be caught doing so. The above motivation is formulated within the ideal/real paradigm
and also has the benefits of a sequential composition theorem. Importantly, it has also been shown
that efficient protocols can be constructed under this definition; see [3] for more details.

3 Secure Multiparty Computation – Constructions

In this section, we survey some of the known constructions and techniques for building secure
protocols. With one exception we do not provide proofs of security but rather present very basic
intuition as to why security is achieved. We warn that such intuitive arguments are in no way to be
accepted as justification to the security of a protocol. We only allow ourselves this privilege here
because all of the protocols that we present here have been rigorously proven secure in the papers
that present them.
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3.1 Basic Building Blocks

We describe here some simple protocols that are often used as basic building blocks, or primi-
tives, of secure computation protocols. The protocols we describe here include oblivious transfer
and oblivious polynomial evaluation, which are two-party protocols, and homomorphic encryption,
which is an encryption system with special properties.

3.1.1 Oblivious Transfer

Oblivious transfer is a simple functionality involving two parties. It is a basic building block of
many cryptographic protocols for secure computation. (In fact, it was shown by Kilian [29] that
using an implementation of oblivious transfer, and no other cryptographic primitive, it is possible
to construct any secure computation protocol.)

We will use a specific variant of oblivious transfer, 1-out-of-2 oblivious transfer, which was
suggested by Even, Goldreich and Lempel [14] (as a variant of a different but equivalent type of
oblivious transfer that has been suggested by Rabin [42]). The protocol involves two parties, a
sender and a receiver, and its functionality is defined as follows:

• Input: The sender’s input is a pair of strings (x0, x1) and the receiver’s input is a bit σ ∈
{0, 1}.

• Output: The receiver’s output is xσ (and nothing else), while the sender has no output.

In other words, 1-out-of-2 oblivious transfer implements the function ((x0, x1), σ) 7→ (λ, xσ),
where λ denotes the empty string (i.e., no output).

Oblivious transfer protocols have been designed based on virtually all known assumptions which
are used to construct specific trapdoor functions (i.e. public key cryptosystems), and also based on
generic assumptions such as the existence of enhanced trapdoor permutations. There are simple and
efficient protocols for oblivious transfer which are secure only against semi-honest adversaries [14,
21]. In particular, one straightforward approach [14] is for the receiver to generate two random
public keys, a key Pσ whose decryption key it knows, and a key P1−σ whose decryption key it does
not know.5 The receiver then sends these two keys to the sender, which encrypts x0 with the key P0

and encrypts x1 with the key P1, and sends the two results to the receiver. The receiver can then
decrypt xσ but not x1−σ. Intuitively, it is obvious that the sender does not learn anything about
σ, since its view in the protocol can be easily simulated: the only message it receives includes two
random public keys. As for the sender’s privacy, if the receiver follows the protocol it only knows
one private key and can therefore only decrypt one of the inputs. We also assume the encryption
scheme to be semantically secure [23].6 Therefore, in the simulation, given the receiver’s input σ
and its output xσ, we can send it a message containing an encryption of σ with the public key Pσ
and an encryption of a random value using the public key p1−σ. The receiver cannot distinguish
the second value from an encryption of x1−σ, since it does not know the corresponding private key.

It is a little more challenging to construct oblivious transfer protocols which are secure against
malicious adversaries. In order to adapt the oblivious transfer protocol described above we must en-
sure that the receiver chooses the public keys appropriately. This can be done using zero-knowledge

5The actual secure protocol is different because we don’t always know how to sample a public key without knowing
its secret key. Nevertheless, this gives the flavor of the construction.

6Namely, even if it known that an encryption is of one of only two possible messages m0, m1, it is infeasible to
identify the plaintext with probability significantly better than 1/2. See [23] for a precise definition.
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proofs that are used by the receiver to prove that it chooses the keys correctly. Fortunately, there
are very efficient proofs for this case: an efficient two-message oblivious transfer protocol fol-
lowing this paradigm was presented by Bellare and Micali and proved secure in the random oracle
model [6]. Oblivious transfer protocols with similar overhead that provide privacy against malicious
adversaries (as in Definition 4), were presented in [2, 36] (based on the Decisional Diffie-Hellman
assumption), and later generalized in [25] to use smooth projective hashing with a special property
(and as a result can be based on the Nth Residuosity assumption, or the Quadratic Residuosity
assumption).

Oblivious transfer is often the most computationally intensive operation of secure protocols,
and is repeated many times. Each invocation of oblivious transfer typically requires a constant
number of invocations of trapdoor permutations (i.e. public-key operations, or exponentiations).
It is possible to reduce the amortized overhead of oblivious transfer to one exponentiation per a
logarithmic number of oblivious transfers, even for the case of malicious adversaries [36]. It was
also shown how to extend oblivious transfer Lin the sense that one has to compute in advance a
small number of oblivious transfers, and can then compute an essentially unlimited number of
of transfers at the cost of computing hash functions alone [26, 39]. (All these results are proved
secure in the random oracle model. In this model, it is assumed that the parties have access to
an external party who computes a random function for them. Once a protocol is proven secure
under this assumption, the external random function is replaced by some concrete cryptographic
hash function, and the security of the concrete scheme follows from heuristic arguments about the
random-looking behavior of the hash function. See [28, Section 13.1] for a detailed discussion about
this model.)

We note that some of the oblivious transfer protocols described above are proved secure us-
ing definitions which are weaker than Definition 2 (namely they are not proven according to the
real/ideal simulation paradigm but can be proven under a definition like Definition 4). When such
protocols are used as primitives in other protocols, it is not possible to simply plug them into
Theorem 3 and analyze security in the hybrid model. Rather, it is required to use more intricate
security proofs in order to prove security.

An efficient oblivious transfer protocol. We now present the protocol of [36] and prove that
it achieves privacy, as formalized in Definition 4. (Readers who are not interested in the details of
the implementation of oblivious transfer can proceed to Section 3.1.2.)

Protocol 5

• Input: The sender has a pair of strings (m0,m1) and the receiver has a bit σ.

• Auxiliary input: The parties have the description of a group G of order n, and a generator g
for the group; the order of the group is known to both parties.

• The protocol:

1. The receiver R chooses a, b, c ∈R {0, . . . , n− 1} and computes γ as follows:

(a) If σ = 0 then γ = (ga, gb, gab, gc)
(b) If σ = 1 then γ = (ga, gb, gc, gab)

R sends γ to S.
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2. Denote the tuple γ received by S by (x, y, z0, z1). Then, S checks that z0 6= z1. If they are
equal, it aborts outputting ⊥. Otherwise, S chooses random u0, u1, v0, v1 ∈R {0, . . . , n−1}
and computes the following four values:

w0 = xu0 · gv0 k0 = (z0)u0 · yv0

w1 = xu1 · gv1 k1 = (z1)u1 · yv1

S then encrypts m0 under k0 and m1 under k1. For the sake of simplicity, assume that
one-time pad type encryption is used. That is, assume that m0 and m1 are mapped to
elements of G. Then, S computes c0 = m0 · k0 and c1 = m1 · k1 where multiplication is
in the group G.
S sends R the pairs (w0, c0) and (w1, c1).

3. R computes kσ = (wσ)b and outputs mσ = cσ · (kσ)−1.

The security of Protocol 5 rests on the decisional Diffie-Hellman (DDH) assumption that states
that tuples of the form (ga, gb, gc) where a, b, c ∈R {0, . . . , n− 1} are indistinguishable from tuples
of the form (ga, gb, gab) where a, b ∈R {0, . . . , n− 1} (recall that n is the order of the group G that
we are working in). This implies that an adversarial S∗ cannot discern whether the message sent
by R is (ga, gb, gab, gc) or (ga, gb, gc, gab) and so R’s input is hidden from S∗. The motivation for S’s
privacy is more difficult and it follows from the fact that – informally speaking – the exponentiations
computed by S completely randomize the triple (ga, gb, gc). Interestingly, it is still possible for R
to derive the key kσ that results from the randomization of (ga, gb, gab). None of these facts are
evident from the protocol itself but are demonstrated below in the proof. We therefore proceed
directly to prove the following theorem:

Theorem 6 Assume that the decisional Diffie-Hellman problem is hard in G with generator g.
Then, Protocol 5 is a private oblivious transfer, as in Definition 4.

Proof: The first requirement of Definition 4 is that of correctness, and we prove this first. Let
m0,m1 be S’s input and let σ be R’s input. The message sent by S to R is wσ = xuσ · gvσ and
cσ = mσ · kσ where kσ = (zσ)uσ · yvσ . Correctness follows from the fact that:

(wσ)b = xuσ ·b · gvσ ·b = g(a·b)·uσ · gb·vσ = zuσσ · yvσ = kσ

where the third equality is due to the fact that zσ = gab. Thus, R recovers the key kσ and can
compute (kσ)−1 and mσ = cσ · (kσ)−1.

Next, we prove the requirement of privacy for R. Recall that this requirement is that S∗’s view
when R has input 0 is indistinguishable from its view when R has input 1. Now, the view of an
adversarial sender S∗ in Protocol 5 consists merely of R’s first message γ. By the DDH assumption,
we have that {

(ga, gb, gab)
}
a,b∈R{1,...,n−1}

c≡
{

(ga, gb, gc)
}
a,b,c∈R{1,...,n−1}

Now, assume by contradiction that there exists a probabilistic polynomial-time distinguisher D and
a non-negligible function ε such that∣∣∣Pr[D(ga, gb, gab, gc) = 1]− Pr[D(ga, gb, gc, gab) = 1]

∣∣∣ ≥ ε(n)
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where a, b, c ∈R {0, . . . , n− 1}. Then, by subtracting and adding Pr[D(ga, gb, gc, gd) = 1] we have:∣∣∣Pr[D(ga, gb, gab, gc) = 1]− Pr[D(ga, gb, gc, gab) = 1]
∣∣∣

≤
∣∣∣Pr[D(ga, gb, gab, gc) = 1]− Pr[D(ga, gb, gc, gd) = 1]

∣∣∣
+
∣∣∣Pr[D(ga, gb, gc, gd) = 1]− Pr[D(ga, gb, gc, gab) = 1]

∣∣∣
where a, b, c, d ∈R {0, . . . , n− 1}.

Therefore, ∣∣∣Pr[D(ga, gb, gab, gc) = 1]− Pr[D(ga, gb, gc, gd) = 1]
∣∣∣ ≥ ε(n)

2
(3)

or ∣∣∣Pr[D(ga, gb, gc, gd) = 1]− Pr[D(ga, gb, gc, gab) = 1]
∣∣∣ ≥ ε(n)

2
. (4)

Assume that Eq. (3) holds. We construct a distinguisher D′ for the DDH problem that works as
follows. Upon input γ = (x, y, z), the distinguisher D′ chooses a random d ∈R {0, . . . , n − 1} and
hands D the tuple γ′ = (x, y, z, gd). The key observation is that on the one hand, if γ = (ga, gb, gc)
then γ′ = (ga, gb, gc, gd). On the other hand, if γ = (ga, gb, gab) then γ′ = (ga, gb, gab, gd). Noting
that in this last tuple c does not appear, and c and d are distributed identically we have that
γ′ = (ga, gb, gab, gc). Thus,∣∣∣Pr[D′(ga, gb, gab) = 1]− Pr[D′(ga, gb, gc) = 1]

∣∣∣
=
∣∣∣Pr[D(ga, gb, gab, gc) = 1]− Pr[D(ga, gb, gc, gd) = 1]

∣∣∣
≥ ε(n)

2

in contradiction to the DDH assumption. A similar analysis follows in the case that Eq. (4)
holds. It therefore follows that ε must be a negligible function. The proof of R’s privacy is
concluded by noting that (ga, gb, gab, gc) is exactly the distribution over R’s message when σ = 0
and (ga, gb, gc, gab) is exactly the distribution over R’s message when σ = 1. Thus, the privacy of
R follows from the DDH assumption over the group in question.7

It remains to prove privacy for the sender S. Let γ = (x, y, z0, z1) denote R∗(z)’s first message,
and let a and b be such that x = ga and y = gb. If z0 = z1 then S sends nothing and so clearly
the requirement in Definition 4 holds. Otherwise, let τ ∈ {0, 1} be such that zτ 6= gab (note that
since z0 6= z1 it cannot be that both z0 = gab and z1 = gab). The sender S’s security is based on
the following claim:

Claim 3.1 Let x = ga, y = gb and zτ = gc 6= gab. Then, given a, b and c, the pair of values
(wτ , kτ ) where wτ = xuτ · gvτ and kτ = (zτ )uτ · yvτ is uniformly distributed when uτ , vτ are chosen
uniformly in {0, . . . , n− 1}.

7One may wonder why we bothered to provide such a detailed proof. After all, isn’t it clear that if (ga, gb, gab)
is indistinguishable from (ga, gb, gc) then it must hold that (ga, gb, gab, gc) is indistinguishable from (ga, gb, gc, gab)?
Our answer to this is an unequivocal NO ! Seemingly intuitive arguments in cryptography are often incorrect and
thus full proofs are necessary to avoid error.
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The proof of this claim is implicit in [38, 44] in the context of a “randomized reduction” of the
DDH problem, and we will not reprove it here. Now, given this claim it follows that kτ is uniformly
distributed, even given wτ (and k1−τ , w1−τ ). Thus, kτ ·mτ is distributed identically to kτ ·m for
every m,mτ ∈ G. This completes the proof of the sender’s privacy.

3.1.2 Homomorphic Encryption

A homomorphic encryption scheme is an encryption scheme which allows certain algebraic op-
erations to be carried out on the encrypted plaintext, by applying an efficient operation to the
corresponding ciphertext. In addition, we require in this paper that the encryption scheme be se-
mantically secure (see Footnote 6). In particular, we will be interested in additively homomorphic
encryption schemes: Here, the message space is a ring (or, more commonly, a field). There exists an
efficient algorithm +pk whose input is the public key of the encryption scheme and two ciphertexts,
and whose output is Epk(m1) +pk Epk(m2) = Epk(m1 +m2). (Namely, it is easy to compute, given
the public key alone, the encryption of the sum of the plaintexts of two ciphertexts.) There is
also an efficient algorithm ·pk, whose input consists of the public key of the encryption scheme, a
ciphertext, and a constant c in the ring, and whose output is c ·pk Epk(m) = Epk(c ·m).

An efficient implementation of an additive homomorphic encryption scheme with semantic se-
curity was given by Paillier [41]. In this cryptosystem the encryption of a plaintext from [1, N ],
where N is an RSA modulus, requires two exponentiations modulo N2. Decryption requires a single
exponentiation. The Damg̊ard-Jurik cryptosystem [13] is a generalization of the Paillier cryptosys-
tem which encrypts messages from the range [1, N s] using computations modulo N s+1, where N is
an RSA modulus and s a natural number. It enables more efficient encryption of larger plaintexts
than Paillier’s cryptosystem (which corresponds to the case s = 1). The security of both schemes
is based on the decisional composite residuosity assumption.

3.1.3 Oblivious Polynomial Evaluation

The problem of oblivious polynomial evaluation (OPE) involves two parties, a sender and a receiver.
The input of the sender is a polynomial Q of degree k over some finite field F , namely a polynomial
Q(z) =

∑k
i=0 aiz

i (the degree of the polynomial, which we will denote as k, is public). The input
of the receiver is an element z ∈ F . After the protocol is run, the receiver outputs Q(z) without
learning anything else about Q, while the sender learns nothing. In other words, OPE implements
the functionality (Q, z) 7→ (λ,Q(z)), where λ is the empty output. The major motivation for
oblivious polynomial evaluation is the fact that the output of a k degree random polynomial is
(k+1)-wise independent; this is very useful in the construction of cryptographic protocols. Another
motivation is that polynomials can be used for approximating functions that are defined over the
Real numbers.

The OPE problem was introduced in [37], where an efficient solution based on oblivious trans-
fer was also presented. We will briefly describe here a simpler protocol based on homomor-
phic encryption (this protocol is secure in the semi-honest model and achieves privacy – but
not simulatable security – in the face of a malicious adversary). This protocol works in the
following way: The receiver defines a homomorphic encryption system with semantic security
for which only the receiver knows the decryption key. The receiver than sends the encryptions
E(z), E(z2), . . . , E(zk) to the sender. The sender uses the homomorphic properties to compute
E(Q(z)) = (ak ·pk E(zk)) +pk · · ·+pk (a1 ·pk E(z)) +pk E(a0), and sends this encrypted value to the
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receiver. The receiver decrypts it and obtains Q(z). This protocol requires O(k) communication
and computation. It is secure against semi-honest adversaries since it is easy to simulate the views
of each of the parties given their inputs and outputs (in particular, the sender only sees encryptions
that were carried out using a semantically secure encryption scheme).

3.2 Generic Constructions

There are generic protocols that implement secure computation for any probabilistic polynomial-
time function. These protocols are different for a scenario in which there are two parties, and for
the multiparty scenario where there are m > 2 parties.

3.2.1 The Two-Party Case

Secure computation in the two-party case can be efficiently implemented by a generic protocol due
to Yao [45]. The protocol (or rather, simple variants of it) are proved to be secure, according to
Definitions 1 and 2, against both semi-honest and malicious adversaries [32, 33].

Denote the two parties participating in the protocol as Alice (A) and Bob (B), and denote their
respective inputs by x and y. Let f be the function that they wish to compute (for simplicity, assume
that Bob alone learns the value f(x, y)). The protocol is based on expressing f as a combinatorial
circuit with gates expressing any function g : {0, 1} × {0, 1} → {0, 1} (including simple or, and
and not gates). Note that it is known that any polynomial-time function can be expressed as a
combinatorial circuit of polynomial size. The input to the circuit consists of the bits of the inputs
x and y, and the output of the circuit is the value f(x, y).

The protocol is based on evaluating this circuit. The number of rounds of the protocol is
constant. Its communication overhead depends on the size of the circuit, while its computation
overhead depends on the number of input wires (more specifically, it requires running one oblivious
transfer protocol for every input wire of party B, and, in addition computing efficient symmetric
encryption/decryption functions for each gate of the circuit). A more detailed analysis of the
overhead of the protocol is given below. More details on the protocol, and a proof of security can
be found in [32]. We now provide a high level description of Yao’s protocol.

Encoding the circuit. Yao’s protocol works by having one of the parties (say Alice) first generate
an “encrypted” or “garbled” circuit computing f , and send its representation to Bob. The encrypted
circuit is generated in the following way:

• First, Alice “hardwires” her input into the circuit, generating a circuit computing f(x, ·).

• Alice then assigns to each wire i of the circuit two random (“garbled”) values (W 0
i ,W

1
i )

corresponding to values 0 and 1 of the wire (the random values should be long enough to be
used as keys to a symmetric encryption scheme, e.g. 128 bits long).

• For every gate g (say, computing the value of wire k as a function of wires i and j) Alice
prepares a table Tg that encrypts the garbled value of the output wire using the garbled values
of the two input wires as keys. The table has four entries, one entry for every combination of
input values, and each entry contains the encryption of the garbled value of the corresponding
value of the output wire. For example, in an or gate, the garbled input value W 0

i ,W
1
j are

used as keys for encrypting the garbled output value W 1
k . (The encryption is carried out using
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a semantically secure symmetric encryption scheme. Note that such schemes can be realized
in practice by primitives such as block ciphers and are therefore very efficient.) The table
enables computation of the garbled output of g, from the garbled inputs to g. Furthermore,
given the two garbled inputs to g, the table does not disclose information about the output
of g for any other inputs, nor does it reveal the values of the actual input bits.

Before proceeding, we present a concrete example of a garbled AND gate. Let the input wires
to the gate be labeled 1 and 2, and let the output wire be labeled 3. We thus choose 6 random
128-bit strings (symmetric encryption keys) W 0

1 ,W
1
1 ,W

0
2 ,W

1
2 ,W

0
3 ,W

1
3 and compute the following

four encryptions, based on the gate’s truth table:

Wire 1 input Wire 2 input Wire 3 output Garbled value
0 0 0 EW 0

1
(EW 0

2
(W 0

3 ))
0 1 0 EW 0

1
(EW 1

2
(W 0

3 ))
1 0 0 EW 1

1
(EW 0

2
(W 0

3 ))
1 1 1 EW 1

1
(EW 1

2
(W 1

3 ))

Observe that when the output value is 0 the key that is encrypted is W 0
3 , and when the output value

is 1 the key that is encrypted is W 1
3 . Furthermore, given W 0

1 and W 1
1 (for example), it is possible to

correctly decrypt EW 0
1
(EW 1

2
(W 0

3 )) to obtain W 0
3 , but it is impossible to decrypt any other entry of

the table. We remark that the encryption scheme used has the property that it is possible for the
decryption process to detect that it has received an incorrect decryption. Thus, given one garbled
value per input wire and the four encryptions of the garbled gate in random order, Bob attempts
to decrypt them all. Exactly one will decrypt correctly and he will thus receive exactly one of
the garbled values on the output wire (but not the other). The interesting property here is that
Bob receives the correct garbled value for the output wire without knowing anything about the
computation he has carried out. In particular, he has no idea what values are associated with the
garbled values and what gate he has computed. Nevertheless, it is guaranteed that he has correctly
computed the gate. As we have mentioned above, garbled gates are prepared for all gates in the
circuit.

The representation of the circuit includes the wiring of the original circuit (namely, a mapping
from inputs or gate outputs to gate inputs), the tables Tg, and tables that translate the garbled
values of the output wires of the circuit to actual 0/1 values. In this form the representation reveals
nothing but the wiring of the circuit, and therefore Bob learns nothing from this stage. (We assume
that the wiring of the circuit is not secret, which is obviously the case if the function f is public
and the only secret information of Alice is her input x. If the wiring of the circuit implementing f
is secret and is known only to Alice, it can be encoded by representing the circuit as part of Alice’s
input and letting the parties evaluate a universal circuit, i.e. a circuit whose input is (〈f, x〉, y) and
whose output is f(x, y).)

Encoding Bob’s input. The tables described above enable the computation of the garbled
output of any gate from its garbled inputs. Therefore given these tables and the garbled values of
the input wires of the circuit, it is possible to compute the garbled values of the output wires of
the circuit and then translate them to actual values. In order for Bob to compute the circuit, he
must obtain the garbled values of all input wires. This is achieved by having Bob and Alice run a
1-out-of-2 oblivious transfer protocol for each input wire of Bob. In these protocol executions Alice
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is the sender, and her inputs are the two garbled values of this wire, and Bob is the receiver, and
his input is his input bit associated with that wire. As a result of the oblivious transfer protocol
Bob learns the garbled value of his input bit and learns nothing about the garbled value of the
other bit, and Alice learns nothing.

Computing the circuit. The full protocol for computing the circuit starts by letting the parties
execute the oblivious transfer stage. Afterwards Alice sends Bob the description of the garbled
circuit as detailed above, and the garbled values of her input wires. Bob now has sufficient infor-
mation to compute the output of the circuit by his own. After computing f(x, y), he can send this
value to Alice if she requires it.

To show that the protocol is secure we must prove that the parties learn nothing that cannot
be computed in the ideal model, namely computed based on the input and output only. This proof
is provided in [32] for the case of semi-honest adversaries (and in [33] for a variant of this protocol,
which handles the case of malicious adversaries). The main observation regarding the security of
each gate is that the function used to encrypt gate entries ensures that without knowledge of the
correct keys, i.e. garbled values of input wires, the encrypted values of the gate look random.
Therefore, for every gate it holds that knowledge of one garbled value of each of the input wires
discloses only a single one of the four key combinations of garbled input values, and therefore only
a single garbled output value of the gate; while Bob cannot distinguish the other garbled value
from random. As for the security of the complete circuit, the oblivious transfer protocol ensures
that Bob learns only a single garbled value for each input wire, and Alice does not learn which
value it was. Inductively, Bob can compute only a single garbled output value of each gate, and in
particular only a single output of the circuit. We stress that the method in which the tables were
constructed hides the values of intermediate results (i.e. of gates inside the circuit).

It is possible to adapt the protocol for circuits in which gates have more than two inputs, and
even for wires with more than two possible values (which are possible since there is no need for
a physical realization of the circuit, and might enable the construction of more compact circuits).
The size of the table for a gate with ` inputs, where each input can have d values is d`.

Overhead. The overhead of the protocol described above involves: (1) Alice and Bob engaging
in an oblivious transfer protocol for every input wire of the circuit that is associated with Bob’s
input, (2) Alice sending Bob tables of size linear in the size of the circuit, and (3) Bob decrypting a
constant number of ciphertexts for every gate of the circuit (this is the cost incurred in evaluating
the gates).

The computation overhead is dominated by the oblivious transfer stage, since the evaluation
of the gates uses symmetric encryption which is very efficient compared to oblivious transfers that
require modular exponentiations (this holds for small circuits; if the circuit is large then the circuit
computation may begin to dominate). The computation overhead is therefore roughly linear in
the length of Bob’s input. The number of rounds of the protocol is constant (namely, the variant
described here has two rounds using the two-round oblivious transfer protocols of [14, 21, 36]).
The communication overhead is linear in the size of the circuit. (The variant of the protocol
described in [33], which provides security against malicious adversaries, requires sending s copies of
the circuit in order to limit the probability of cheating to be exponentially small in s. See also [27]
for a different variant, which provides security against malicious adversaries at the cost of applying
public key operations for every gate.)
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A major factor dominating the overhead is, therefore, the size of the circuit representation of f .
There are many functions for which we do not know how to create linear size circuits (e.g. functions
computing multiplications or exponentiations, or functions that use indirect addressing). However,
there are many other functions, notably those involving additions and comparisons, which can be
computed by linear size circuits. The size of the input should also be reasonable. For example, we
cannot expect that two parties, each of them holding a database with millions of entries, could run
the protocol for computing a function whose inputs are the entire databases.

We note that an implementation of Yao’s protocol exists (the Fairplay project [34]). This
system receives as input a description of a function in a high-level language, and generates a circuit
computing it, and two programs, one for each of the parties, implementing Yao’s protocol for this
circuit.

3.2.2 The Multiparty Case

As we described in Section 2.1, there are well known constructions which enable a set of m >
2 parties to compute any function of their inputs without revealing any other information. As
with Yao’s protocol these constructions are based on expressing the function as a circuit and
applying a secure computation protocol to this circuit. These protocols are pretty efficient if the
resulting circuit is of reasonable size, but they do have some drawbacks compared to the two-party
protocol: For example, some of the protocols require public-key operations (rather than symmetric
key operations) for every gate of the circuit, some have a number of rounds which is linear in the
size of the circuit (rather than a constant number of rounds), all protocols require communication
between every pair of the m participating parties, and some of them require the use of a broadcast
channel.

The multiparty construction of Goldreich, Micali and Wigderson [18] is based on describing
the function as a binary circuit (or rather, a circuit with addition and multiplication gates over
GF [2]), and starting from a state in which each party knows a share of each input wire. The
protocol requires every pair of parties to run a short computation (e.g., an oblivious transfer) for
each multiplication gate of the circuit. The number of rounds is therefore linear in the depth of
the circuit, and the communication is O(m2k|C|), for a circuit C and security parameter k. If the
number of corrupt parties t is smaller than m/3 then the construction provides security against
malicious adversaries, with fairness and guaranteed delivery. If t < m/2 this level of security can
be achieved if there is access to a broadcast channel. Otherwise (m/2 ≤ t < m), security can
be provided against malicious adversaries, but without fairness and guaranteed delivery. There
exists a construction, due to Beaver, Micali and Rogaway [5], which runs in a constant number of
rounds. Like the construction of [18] it is based on assuming the existence of trapdoor permutations.
The construction is somewhat more intricate: it includes a first stage in which the parties jointly
construct garbled tables for each gate, and a second stage in which these gates are evaluated without
additional communication.

The constructions of Ben-Or, Goldwasser and Wigderson [7], and of Chaum, Crépeau and
Damg̊ard [10] are based on the assumption that a private channel exists between every pair of
parties (in this respect they are different than the constructions described above, which are based
on cryptographic assumptions). We will describe here the basic properties of the construction of [7]:
The construction work by first describing the function as an arithmetic circuit over an arbitrary ring,
with addition and multiplication gates (note that Binary circuits are a special case of arithmetic
circuits). The protocol starts where each party knows a share (over the ring) of each input wire,
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and ends with each party knowing a share of each output wire. Addition gates are computed locally
by every party, while multiplication gates require each pair of parties to exchange message. This
results, like in the protocol of [18], in a number of rounds which is linear in the depth of the circuit,
and total communication of O(m2k|C|). However, unlike the protocols of [18, 5], there is no need
to compute public-key operations, but rather the computation involves only simple additions and
multiplications. Security against malicious adversaries is provided as long as t < m/3, and against
semi-honest adversaries as long as t < m/2.

Threshold decryption. Threshold decryption is an example of a multiparty functionality. The
setting includes m parties and an encryption scheme. It is required that any m′ < m of the parties
are able to decrypt messages, while any coalition of strictly less than m′ parties learns nothing
about encrypted messages. This functionality can, of course, be implemented using generic con-
structions, but there are specific constructions implementing it for almost any encryption scheme,
and these are far more efficient than applying the generic constructions to compute this function-
ality. Interestingly, threshold decryption of homomorphic encryption can be used as a primitive
for constructing a very efficient generic protocol for secure multiparty computation, with a com-
munication overhead of only O(mk|C|) bits (see [16] for a construction secure against semi-honest
adversaries, and [12] for a construction secure against malicious adversaries).

3.3 Specialized Constructions

Although generic constructions for secure computation can, in principle, efficiently compute any
polynomial function, the resulting overhead is often unacceptable. This might be due to the size
of the circuit computing the function, or to the fact that each input value (or sometimes, as in
the two-party case, each input bit) incurs expensive operations such as input sharing or computing
an oblivious transfer. In general, when considering semi-honest adversaries and a reasonably sized
circuit, the protocols are reasonably efficient. However, when considering malicious adversaries
these protocols are typically not practical even for small circuits.

We describe in this section three specialized constructions which are considerably more efficient
than applying generic constructions to the same functions. The constructions we describe are secure
against semi-honest adversaries, although for some of them there exist variants which are secure
against malicious adversaries. The constructions are based on the use of homomorphic encryption,
oblivious polynomial evaluation, and on reducing the computed function to simpler functionalities
and analyzing the resulting protocol in the hybrid model (as in Theorem 3). For each function, we
describe the overhead of applying a generic construction, and then describe the basic details of the
specialized construction and its overhead.

3.3.1 Set Intersection

Consider two parties, Alice and Bob, who each have a set of k items drawn from a large domain of
size N . Denote Alice’s and Bob’s sets as x1, . . . , xk and y1, . . . , yk, respectively. The parties wish to
compute the intersection of their two sets, without revealing any other information. This problem
was investigated in [17] and is denoted as the set intersection problem or as the private matching
problem (the multiparty case was investigated in [30]).
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Private equality test. As a warm-up, consider the simpler case where each party has a single
item (k = 1). The function outputs 1 if the inputs of the two parties are equal (namely, x = y),
and 0 otherwise. A simple way to implement this function is using Yao’s protocol, applied to
a circuit which compares each bit of Alice’s input to the corresponding bit of Bob’s input and
outputs the result of applying an and operator to the results of these comparisons. The circuit is
of reasonable size, O(logN) gates, and therefore the resulting protocol is quite efficient. There are
several alternative solutions to this problem, with similar overhead [15, 37].

Let us also describe another solution to the private equality test problem, which is based on
the use of homomorphic encryption: Let Alice define a homomorphic encryption system for which
only she knows the private key. She then encrypts x and sends the encryption E(x) to Bob. Bob
chooses a random value r and uses the homomorphic properties to compute (E(x)+pkE(−y))·pkr =
E((x − y) · r), and sends this result back to Alice. Alice decrypts this message, and outputs 1 if
and only if the decrypted value is equal to 0. Note that if x = y then Bob indeed sends Alice an
encryption of 0. If, on the other hand, x 6= y, Bob sends to Alice an encryption of a random value
(generated by multiplying x− y by the random value r). Alice, therefore, does not learn anything
about y except for whether it is equal to x. (This is proved according to Definition 1, by showing
that given Alice’s input and output it is easy to simulate her view in the protocol: Indeed, if the
output is x = y we know that the message that Alice receives is an encryption of 0, and if the
output is x 6= y the message she receives is an encryption of a random value.) Bob does not learn
anything about x, since we assume the encryption system to be semantically secure.

Set intersection. Solving the set intersection problem is more involved than private equality
testing since each item in Alice’s set might be equal to any of Bob’s items, and therefore a simple
reduction to private equality testing requires O(k2) comparisons (comparing each of Alice’s inputs
to all of Bob’s inputs) which we would like to avoid. A straightforward circuit comparing the sets is
of size O(k2 logN) and an alternative method of similar complexity but using OPE was presented
in [37]. (There are also simple constructions which use only O(k) public key operations, but are
only proved in the random oracle model.)

An efficient protocol for set intersection, due to [17], can be based on homomorphic encryption:
Let Alice define a homomorphic encryption system for which only she knows the private key. Alice
then defines a polynomial P of degree k whose roots are her inputs, namely

P (y) = (x1 − y)(x2 − y) · · · (xk − y) =
k∑
i=0

αiy
i.

The coefficients of the polynomial are α0, . . . , αk. Alice then encrypts each of the coefficients of
the polynomial and sends these encrypted values to Bob. Note that for each yi in Bob’s list he can
compute

(E(αk) ·pk y
k
i ) +pk (E(αk−1) ·pk y

k−1
i ) +pk · · ·+pk (E(α1) ·pk yi) +pk E(α0) = E(P (yi)).

Bob will actually pick a random value ri for each yi in his list, and compute E(r · P (yi) + yi). If
yi is equal to an element in Alice’s list then this is an encryption of yi, whereas otherwise it is
an encryption of a random element. Bob sends the k resulting encryptions to Alice, who decrypts
them. If any of the decrypted values is in her input set, she decides that this value is in the
intersection. It is easy to see that, as in the private equality test, no information is revealed except
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for the identities of the items in the intersection (the proof here, too, is by showing a simulation
satisfying Definition 1).

The major computational overhead of this protocol is the multiplication of the homomorphically
encrypted values by constants, which is implemented using exponentiations, and is repeated O(k2)
times in the protocol. The protocol can be changed, using hashing, to essentially require only
O(k) exponentiations, and O(k) communication (the exact asymptotic expression involves also a
log log k expression, but for any feasible value of k it is bounded by a small constant). Variants
of the protocol exist, which compute only the size of the intersection, or which indicate if the size
of the intersection is greater than some threshold. The basic protocol is secure only against semi-
honest adversaries. There is also a variant which is secure against malicious adversaries, but it is
analyzed in the random oracle model (see [17] for details of all these variants).

3.3.2 Computing the Median

Assume now that Alice and Bob each have a list of n distinct numerical values from a domain
of size N . They wish to compute the median of the union of their two lists, while revealing no
other information. More generally, they might wish to compute the kth ranked element (i.e, the
kth largest element) in this union (the median is the case where k = n because overall there are
2n values). Applying any of the generic constructions requires using all input bits of each of the
parties, and therefore has an overhead of at least Ω(n logN). This overhead might be too large if
the parameters are large (say, if the lists include millions of items). We will describe here a protocol,
due to [1], which has a sublinear overhead of O(log n logN) (or O(log k logN) in the general case).

The protocol is based on reducing the computation of the median to log n secure comparisons
of logN bit numbers. Namely, it is a reduction to a simpler protocol in which each party has a
private input, and the output is 1 if and only if Bob’s item is greater than Alice’s item. (This
function is known as the millionaires problem. Applying Yao’s generic protocol to solve it results
in a protocol which uses O(logN) oblivious transfers and O(logN) communication.)

The protocol for computing the median works in the following way: Alice and Bob separately
compute the median value of their own lists, which we will denote as mA and mB (we assume that
the lengths of the list are powers of two, and define the median of a list of length n = 2i to be
the item ranked 2i−1 in the list). The parties run the secure comparison protocol to find out if
mA < mB. If this is the case, Alice removes all items smaller or equal to mA from her list, while
Bob removes all items in his list which are greater than mB. If the result is that mA > mB then
each party removes the other half of his/her list. It is easy to see that the length of the lists is
reduced by a factor of 2 by this computation. It is also straightforward to verify that the median
of the union of the two original lists is guaranteed to be in the short lists which remain after this
step (this observation holds since every item that is removed is guaranteed to be smaller than more
than half of the items, or greater than at least half of the items). Given these two observations, we
apply this computation again to the new lists, and repeat this step log 2n times until we are left
with a single item, which is guaranteed to be the median of the union of the original lists.

The analysis above establishes the correctness and the overhead of the protocol. We should
also convince ourselves in its security. It is sufficient to show that, assuming that the number of
elements held by each party is public information, Alice (and similarly Bob), given its own input
and the value of the median, can simulate the execution of the protocol in the hybrid model, where
the comparisons are carried out by a trusted party (the proof follows by the Theorem 3 – the
composition theorem). Consider the simulation of the first step of the protocol: We know Alice’s
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input and also the final output – the median of the union of the lists. Since this value must be in the
lists which are retained for the second step, we can easily deduce the result of the first comparison.
Namely, if the median is strictly greater than mA then mA < mB (and therefore Alice removes all
items smaller or equal to mA). Otherwise mA > mB. We can therefore simulate the first step.
Similarly, we can simulate all steps of the protocol. A similar argument holds for Bob’s part in
the protocol. The interested reader can consult [1] for a detailed description and analysis of the
protocol, and also for variants for the case of malicious adversaries, and for the multiparty case.

3.3.3 Computing ID3

ID3 is a basic algorithm for constructing decision trees, which are a tool for solving the classification
problem in machine learning and data mining. The input to a classification problem is a structured
database in which each row represents a transaction and each column is an attribute taking on
different values (for example, each row could represent a patient, and each column a different
symptom). One of the attributes in the database is designated as the class attribute (e.g., it could
denote whether the patient has a certain disease). The goal is to use the database in order to
predict the class of a new transaction by viewing only the non-class attributes.

A decision tree is a rooted tree in which each internal node corresponds to an attribute, and
the edges leaving it correspond to the possible values taken on by that attribute. The leaves of the
tree contain the expected class value for transactions matching the path from the root to that leaf.
Given a decision tree, one can predict the class of a new transaction by traversing the nodes from
the root down. The value of the leaf at the end of this path is the expected class value of the new
transaction.

The ID3 algorithm is used to design a decision tree based on a given database. The tree is
constructed top-down in a recursive fashion. At the root, each attribute is tested to determine
how well it alone classifies the transactions. The “best” attribute is then chosen and the remaining
transactions are partitioned by it. ID3 is then recursively called on each partition, i.e. on a smaller
database containing only the appropriate transactions, and without the splitting attribute.

The central principle of ID3 is to choose the best predicting attribute by checking which attribute
reduces the information (in the information-theoretic sense) of the class-attribute to the greatest
degree. Namely, choose the attribute that maximizes the information gain, defined as the difference
between the entropy of the class attribute, and the entropy of the class attribute given the value
of the chosen attribute. This decision rule results in a greedy algorithm that searches for a small
decision tree consistent with the database. (Note that we only discuss the basic ID3 algorithm, and
assume that each attribute is categorical and has a fixed set of possible values.)

Privacy preserving distributed computation of ID3. The setting we examine involves two
parties, each with a database of different transactions, where all transactions have the same set
of attributes (this scenario is also denoted as a “horizontally partitioned” database). The parties
wish to compute a decision tree by applying the ID3 algorithm to the union of their databases. An
efficient privacy preserving protocol for this problem was described in [31]. We describe its basic
details below, and refer the reader to [31] for the complete solution.

Applying Yao’s generic protocol encounters some major obstacles: The size of the databases is
typically very large (e.g., it is common to have millions of transactions) and invoking an oblivious
transfer protocol per input bit is too costly. In addition, the circuit representation of ID3 is very
large, since the basic step of the algorithm, repeated multiple times per node, involves computing the
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difference between two entropy values (each defined as
∑
pi log(pi), where each pi is the fraction

of transactions in which the class attribute, and possibly other attributes, have certain values).
Computing the logarithm function, which is defined over the Real numbers, is also problematic,
since most cryptographic protocols compute functions over finite fields. Running ID3 also involves
many rounds, where each round depends on the results of the previous rounds, and therefore a
naive circuit implementation could require an encoding of many copies of each step, each one
corresponding to a specific result of the previous rounds.

Computing ID3. The secure protocol is based on the observation that each node of the tree can
be computed separately, with the output made public, before continuing to the next node. This is
true since the assignments of attributes to each node are part of the output and may therefore be
revealed. The computation starts from the root of the tree. Once the attribute of a given node has
been found, both parties can separately partition their remaining transactions accordingly for the
coming recursive calls. As a result, the protocol is reduced to privately finding the attribute of a
node, namely the attribute with the highest information gain.

Let A be some attribute obtaining values a1, ..., am and let T (aj) be the subset of transactions
obtaining value aj for A. Let TA(aj) and TB(aj) be the corresponding subsets in Alice’s and Bob’s
inputs (therefore, T (aj) = TA(aj) ∪ TB(aj)). The computation which quantifies the information
gain in identifying the class of a transaction in T given the value of A involves expressions of the
form |T (aj)|

|T | and log |T (aj)|
|T | , where |T | is the size of the database. The value |T | is constant and can

therefore be ignored, since we are only interested in comparing values to each other. The main
challenge is in computing the logarithm function, namely computing log(TA(aj) + TB(aj)) where
TA(aj) is known to Alice and TB(bj) is known to Bob. (More accurately, the parties compute two
shares, ZA and ZB, which are random under the constraint that ZA +ZB = log(TA(aj) +TB(aj)).)
The logarithm function can be approximated using the Taylor approximation, which is essentially
a polynomial. This computation can be securely computed using oblivious polynomial evaluation.
The actual details of the protocol are quite intricate. We refer the interested reader to [31] for
details.

3.3.4 Main techniques

A review of the specialized constructions that were described in this section shows that they were
based on some basic principles:

• A protocol can reveal intermediate results to the parties, if these intermediate results are
computable from the final output. This principle was used in the construction of the protocols
for computing ID3 and for computing the median.

• Homomorphic encryption can be used to perform operations on encrypted data. This is useful
for analyzing data while preserving privacy (as was done in the set intersection protocol).

• Oblivious polynomial evaluation is another useful tool for analyzing and manipulating data
while preserving privacy (as was done in the ID3 protocol).
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4 Common Errors in Applications of Secure Computation

There are common errors which often occur when designing secure protocols. Protocols in which
these errors exist cannot, of course, be proven secure according to the definitions of Section 2.
There are, however, multiple examples of published protocols which suffer from these errors. We
would like to use this section to highlight some of these errors, in order to inform readers of common
pitfalls in the design of secure protocols.

4.1 Semi-honest Behavior does not Preclude Collusions

Assuming that adversaries are semi-honest does not ensure that no two parties collude. The “semi-
honest adversary” assumption merely ensures that an adversary follows the protocol, and only
tries to learn information from messages it received during protocol execution. It is still possible,
however, that the adversary controls more than a single party and might use the information it
learns from all the parties it controls.

Consider, for example, the following protocol run between n parties, denoted P1, . . . , Pn. The
parties have private inputs x1, . . . , xn and they wish to compute the sum x1+ · · ·+xn. The protocol
starts by P1 choosing a random value r and sending x1 + r to P2 (assume that the computations
are done in a finite field). Each party Pi, for 2 ≤ i < n receives a message mi from Pi−1, and sends
the message mi+1 = mi + xi to Pi+1. Finally, Pn sends mn + xn to P1, who subtracts r from this
value and publishes the result (which indeed equals x1 + · · ·+ xn).

This protocol is indeed secure against semi-honest parties as long as no two parties collude.
However, an adversary controlling parties Pi and Pj , where j > i + 1, can learn the sum xi+1 +
· · ·+ xj−1 by computing mj−1 −mi. This is something that cannot be learned in the ideal model
(given only the overall sum), even when an adversary controls Pi and Pj , and thus this protocol is
not secure.

4.2 Input Dependent Flow

Consider the following example: Two parties run a protocol to decide if their two inputs are equal
(assume that each input is of length k). The protocol works by running a simpler protocol which
compares two bits. The input to this simpler protocol is a pair of bits taken from the same location
in both inputs. The first comparison is of the most significant bits of both inputs, and afterwards
successive bits are compared, until a difference is found or it is decided that the two inputs are
equal. Note that this protocol executes only a single comparison if the two inputs differ in their
most significant bit, but might perform more comparisons (say, k comparisons if the inputs differ
only in their least significant bit). The protocol therefore leaks information: If it exits after i
comparisons the parties can conclude that the i− 1 most significant bits of their inputs are equal.
This is information that cannot be deduced in the ideal model where the parties are only told if
the inputs are equal or not equal.

The source of the error in the protocol above is that the flow of the protocol (namely, the decision
which parts of it to execute), depends on the private input of the parties. Consequently, the flow
cannot be simulated by Alice given her input and output alone (even if the output shows that Alice’s
input is different than Bob’s, it does not tell her the first location in which the inputs differ). The
protocol, therefore, is not secure according to Definition 1 (or any reasonable definition).
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Note that the flow of execution in the protocol for computing the median and the protocol for
computing ID3, discussed above, depends on the results of previous computations in the protocol.
(For example, in the median protocol the decision which parts of the inputs will be removed depends
on the result of the previous comparisons executed in the protocol.) However, in these protocols the
control flow decisions can be simulated given the output of the computed function (e.g., given the
median value), and therefore they do not contradict the security of the protocol. It is important to
note that sometimes it is not trivial to identify whether the flow of execution can be simulated by
the output alone. For example, exchanging the order of two consecutive steps in the ID3 protocol
(both of which returning a leaf node and then terminating the protocol) results in a protocol which
cannot be simulated (see [31, page 13]).

4.3 Deterministic Encryption Reveals Information

A common misconception is that encrypting data, or hashing it, using any encryption system or
hash function, keeps the data private. To show why this is not necessarily true consider the following
example, which illustrates an incorrect solution to the private matching problem of Section 3.3.1:
Alice and Bob each have a list of k items, x1, . . . , xk and y1, . . . , yk, respectively. They wish
to compute the intersection of their lists without revealing any other information. They use a
deterministic hash function H which is believed to be collision intractable (and therefore suitable
for cryptographic applications). Each party applies H to each of the k items in his or her list, and
then they publish the resulting lists: H(x1), . . . ,H(xk) and H(y1), . . . ,H(yk). If a value occurs
in both lists, they conclude that it corresponds to an item which appeared in the intersection of
the two original lists. This solution indeed finds the intersection of the lists, but it might provide
additional information if it is known that items in the list come from a relatively small domain:
Bob can, for example, apply H to each possible value of x1, and check whether the result is equal
to the value H(x1) published by Alice. If this equality holds, Bob can deduce that he found x1.

The problem exists if the domain is sufficiently small to enable one to exhaustively apply H to
each item of the domain, or if the domain has limited min-entropy. For example, if Alice’s items are
known to be names of people Bob can exhaustively apply H to every possible name, ordering his
guesses according to the popularity of the names. We stress that although concrete attacks exist if
the domain is (or may be) sufficiently small, the problem arises even for a large domain (unless one
assumes that the function H is a random oracle). In particular, when a concrete hash function is
applied to a large random value, it is still possible that partial information on the input is leaked,
again revealing something that cannot be deduced in the ideal model.

The root of the problem is the use of a deterministic function (be it a hash function or a
deterministic encrypting scheme such as textbook RSA). One should therefore never apply a de-
terministic function to an item and publish the result. Instead, a semantically secure encryption
scheme must be used. Unfortunately, this rules out a number of “simple and efficient” protocols
that appear in the literature (indeed, these protocols are not and cannot be proven secure).

4.4 Security Proofs

It is tempting to prove security by stating what constitutes a “bad behavior” or an “illegitimate
gain” by the adversary, and then proving that this behavior is impossible. Any other behavior or
gain is considered benign and one need not bother with it. This approach is often easier than the
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use of simulation based proofs. The latter might also be considered overly cautious in preventing
some far-fetched adversarial scenarios, whose gain to the adversary is unclear.

Consider, for example, a protocol in which Alice receives an encrypted message. We might
assume that the only possible bad behavior is for her to try and decrypt the message, and that the
only illegitimate gain she might obtain is learning information about the encrypted value. The use
of a semantically secure encryption scheme should prevent this behavior. Assume, however, that
Alice participates in an auction protocol and that the encrypted message contains another party’s
bid. Alice’s goal might be to generate an encrypted bid which is only slightly higher than the other
bid. The use of a semantically secure encryption system might not prevent this attack (especially
if the encryption scheme is homomorphic).

It is hard to predict what type of corrupt behavior an adversary might take and thus dangerous
to disregard any other behavior that we have not thought of as useless for the adversary. Indeed,
real world attackers often act in ways which were not predicted by the designers of the system they
attack. It is also hard to define what constitutes a legitimate gain by the adversary, and allow it
while preventing illegitimate or harmful gains. The notion of “harmful” might depend on a specific
application or a specific scenario, and even then it might be very hard to define. We therefore
urge protocol designers to prove security according to the simulation based definitions of Section 2,
which prevent any attack which is not possible in an idealized scenario.

5 Secure Computation and Privacy-Preserving Data Mining

As we have seen, it is possible to securely compute every efficient functionality! Given this very
strong result, it is tempting to state that the problems of privacy-preserving data mining are
all solved in principle. Of course, it is still necessary to construct protocols that are efficient
enough to be used in practice, but at least we know that “polynomial-time” solutions always exist.
Unfortunately, this view of the role of secure computation in privacy-preserving data mining is far
from accurate. The main reason for this is the following very important observation:

The field of secure multiparty computation deals with the question of how to securely
compute a functionality, but does not ask the question of whether the functionality should
be computed in the first place.

Stated differently, secure multiparty computation tells us that for any functionality, it is possible
to compute it without revealing anything beyond the output. However, it does not consider the
question of how much information about the input is revealed by that output. Take the example of
computing the “average”. A secure protocol can compute the average of parties’ salaries without
revealing anything beyond the output. However, if two parties run the protocol, then each party can
compute the other party’s salary exactly (given its own salary and the average). Thus, even though
the protocol revealed nothing, the output itself reveals everything. This implies that although
secure computation is an extraordinarily powerful tool and one that is very helpful in the field
of privacy-preserving data mining, it can only be applied once it has been determined that the
function in question is “safe” (i.e., the function output does not reveal sensitive information). This
latter question – of what functions can be safely computed – is the focus of the field of “privacy”.
We stress that we do not belittle the role of secure computation in privacy-preserving data mining
in any way. Rather, we see the fields of privacy and secure computation as complementary: the
first is needed to decide that a given function is safe, and the second is needed in order to compute
the function so that it remains safe (i.e., by using secure computation we are guaranteed that only
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the output is revealed and so the determination that the function is safe suffices for saying that it
can be computed).

Privacy and statistics. Another area where privacy is crucial is that of public statistics. One
classic case is that of the Census bureau that needs to publicize tables that sum up each census.
This task is extremely dangerous because census questionnaires contain much sensitive information
and it is crucial that it not be possible to identify a single user in the publicized tables. In this area,
it seems that secure computation is not of much help. In particular, it seems that the function being
computed is the tables and there is no need to use any cryptography once the tables are deemed safe.
Although this may seem obvious, we stress it because it is often suggested that rather than have the
Census bureau release the tables, let them run secure protocols with individuals and organizations
who wish to carry out research on the census data. This suggestion is not helpful at all, in part due
to the following two reasons. First, allowing citizens to obtain arbitrary statistics on the census
data can be much more problematic than providing the data in the form of carefully prepared
tables (maliciously prepared statistical queries can be used to target an individual citizen’s data).
Second, the Census bureau is a public body and as such must act in a transparent manner. The
fact that some (or much) of the census results can be verified by comparing them to other studies
means that the public has confidence in the accuracy of the census results. However, if secure
protocols are run separately (in secret) between organizations seeking data and the Census bureau,
this transparency is lost. Having said this, we strongly believe that the rigorous approach that is
typical to cryptography will be instrumental in providing satisfactory solutions to the questions of
privacy in this setting.

Applying secure computation. We conclude by remarking that even in cases where secure
computation can be used, one must be careful in how it is applied. Specifically, we make the
argument here that it is crucial to understand what the exact privacy concerns are when applying
secure computation to privacy-preserving data mining problems. Consider an online shopping
scenario in which a user’s shopping habits are recorded. By applying data mining techniques, these
records can be used to improve customer experience by offering her products that are likely to be
of interest. One example of the successful use of this technique is that of Amazon.com who offer
products to customers based on their previous purchases and searches (and on information gathered
from other customers as well). If such a technique is used in a broad manner in which all of a
user’s buying habits are aggregated together, then this naturally raises privacy concerns. This is
because what we consume says a lot about who we are. Thus, anyone with access to all of this
information immediately knows a lot about our interests and habits. Despite this, there can be
considerable gain to the consumer by applying data mining techniques here. Targeted advertising,
when done well, can bring to our attention products that we really are interested in purchasing
and may therefore provide significant benefit. It therefore seems that we must choose between the
desire to keep our personal information to ourselves and the desire to use that information to our
benefit.

Given the background we have provided above in this paper, it is not hard to reach the con-
clusion that the ultimate solution here is just to run a secure computation protocol where each
consumer holds their purchase history and personal interests and each online store holds an al-
gorithm that takes users’ purchase history and creates a personalized shopping catalog. Ignoring
issues of efficiency, such a protocol seems to solve all problems. On the one hand, the consumer is
provided with a personalized catalog that is based on her interests. On the other hand, the online
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store learns nothing about the consumer’s private purchase history.
The problem with the above solution is that it does not address the real privacy concern that

arises in the scenario of online shopping and users’ purchase histories. In particular, although
technology for personalizing shopping catalogs can be useful and positive, it can also be used for
unfair price discrimination. For example, if a user’s profile shows that they do not “shop around”
and usually buy as soon as they find what they are interested in, then the shopping site may charge
the user higher prices. Now, price discrimination is often considered a positive economic force as
it enables sellers to charge more to those willing to pay more and less to others. However, in our
example there is an inherent asymmetry: the seller has a lot of information about the buyer and
what they are willing to pay. In contrast, the buyer does not have equivalent information about
what price the seller is willing to sell for. To make things worse, the buyer is not even aware that
the seller has her purchase profile and typically assumes that she is being charged just like everyone
else. This lack of symmetry between the buyer and seller creates an unfair disadvantage to the
buyer. Notice now that the secure computation solution that we suggested above does not solve
this problem! This is because the algorithm that the seller inputs to the protocol is part of its
input, and so may determine rules for unfair price discrimination. Of course, the solution is very
simple: the algorithm used by the seller must be public. It can thereby be scrutinized for elements
of unfair price discrimination before a consumer agrees to use it. We are therefore not claiming
that secure computation doesn’t solve the problem. Rather, we are arguing that one needs to take
care that the true concerns are addressed before implementing a solution. Fortunately, given the
modeling of secure computation, it suffices to be convinced that the ideal-model functionality solves
the privacy problem at hand (and one does not need to look at a complex protocol).

6 Future Challenges

Cryptographic protocols for secure computation achieved remarkable results: it was shown that
generic constructions can be used to compute any function securely, and it was also demonstrated
that some functions can be computed even more efficiently using specialized constructions. Still, a
secure protocol for computing a certain function will always be more costly than a naive protocol
that does not provide any security.

Cryptographers seek to make secure protocols as efficient as possible in order to minimize
the performance gap between secure and naive protocols. Yet, another possible goal could be to
examine the objective of secure computation. The current definitions of security provide very strong
guarantees: minimal loss of information in the face of strong adversaries. As we have mentioned
above, in some cases it makes sense to relax the definition of security in order to achieve security.
We stress that this is always preferable to the approach of suggesting a highly efficient protocol that
is not proven secure under any model. Such relaxations can come in many forms, from relaxing
the adversary’s power to allowing some leakage of information. We believe that further research in
this area is crucial for the development of secure and efficient protocols in this field. Of course, this
must go hand in hand with research on privacy in general and the question of what information
leakage is acceptable and what is not.
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