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Abstract. Collaborative optimization problems can often be modeled
as a linear program whose objective function and constraints combine
data from several parties. However, important applications of this model
(e.g., supply chain planning) involve private data that the parties cannot
reveal to each other. Traditional linear programming methods cannot be
used in this case. The problem can be solved using cryptographic pro-
tocols that compute with private data and preserve data privacy. We
present a practical solution using multiparty computation based on secret
sharing. The linear programming protocols use a variant of the simplex
algorithm and secure computation with fixed-point rational numbers,
optimized for this type of application. We present the main protocols as
well as performance measurements for an implementation of our solution.
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1 Introduction

The optimization of processes involving multiple parties can often be formulated
as a collaborative linear programming problem: minimize (or maximize) a lin-
ear objective function subject to a set of linear constraints, where the function
and the constraints are defined by combining data from all parties. This linear
program may include confidential data that the parties cannot reveal to each
other. For example, a linear program for supply chain planning uses business
data whose disclosure has negative effects on the participant’s negotiation posi-
tion and competition with other suppliers (e.g., production costs and available
capacity) [11]. The supply chain partners cannot use traditional methods to solve
the linear program, since this would reveal their confidential data.

Secure computation preserves input privacy using cryptographic protocols.
Roughly speaking, the protocols ensure that the output is correct and the com-
putation is carried out without revealing anything else besides the agreed upon
output. However, the high communication and computation overhead of crypto-
graphic protocols makes secure computation slower than usual computation with
public data. Moreover, finding efficient protocols for complex applications like
linear programming is a particularly challenging task. The solutions proposed so
far rely on variants of the simplex algorithm that use integer arithmetic [13,19].
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For non-trivial linear programs, these algorithms require computation with very
large integers (thousands of bits) and the protocols become impractical. Our
goal is to obtain more efficient protocols, suitable for practical applications.

Our contributions. We take a different approach to secure multiparty simplex, by
using computation with rational numbers in fixed-point representation, and we
provide a complete solution (all building blocks) as well as performance measure-
ments with a prototype implementation. The protocols are structured into three
main layers. The core layer consists of protocols for secure arithmetic in a field
and generation of secret random values. This layer could be instantiated using
different secure computation methods (e.g., secret sharing or homomorphic en-
cryption). We use multiparty computation based on secret sharing (semi-honest
model), which offers the most efficient protocols. The arithmetic layer offers
protocols for computation with boolean, integer, and rational (fixed-point) data
types. Finally, the protocols in the application layer carry out an oblivious com-
putation of the simplex algorithm with secret-shared input and output (a linear
program and its solution). The simplex protocol leaks only the number of itera-
tions and the termination condition (optimal solution or unbounded problem).

The complexity of a secure simplex iteration is dominated by several steps
that consist of many secure comparisons or multiplications executed in parallel.
Our approach to improving the performance of the protocol focuses on reducing
the communication complexity of these steps. The protocol is based on a simplex
variant that uses fixed-point arithmetic and needs a minimum number of com-
parisons and fixed-point multiplications. The design of the lower layer protocols,
the data encoding, the use of secure fixed-point arithmetic, and the design of
the simplex protocol contribute to achieving this goal.

Related Work. Secure linear programming protocols were proposed by Li and
Atallah [13] for the two-party case and by Toft [19] for the multiparty case.
Heuristics that apply simplex to “disguised” linear programs have both correct-
ness flaws and security problems [1], so we do not discuss them in the following.
We review the relevant features of the solutions in [13,19].

Both protocols use secure integer computation and the simplex algorithm.
Let � denote the bit-length of the integers in the initial tableau of the linear
program. The first protocol [13] is based on a simplified variant of simplex,
without divisions. An iteration of this algorithm can double the bit-length of the
values in the tableau (k = 2θ� bits after θ iterations, worst case). Therefore, the
protocol can solve only small linear programs that terminate in few iterations.

Toft’s protocol [19] uses a simplex variant [15] with the property that the
divisions computed in every iteration yield integer results. This algorithm has
important advantages: the computation can be carried out using secure integer
arithmetic; the values in the tableau are exact (no rounding errors) and do
not grow as fast as in the previous variant; secure division can be efficiently
computed in this particular case. However, the values still grow during the initial
iterations (up to k = θ� bits after θ iterations, worst case) and the growth levels
off at large bit-lengths, reaching thousands of bits for practical problems. This
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severely degrades the performance and limits the practical applications, since
the protocol has to use a data encoding that avoids overflow and hides the bit-
length variation throughout the computation. In particular, secure comparison
becomes impractical for inputs of thousands of bits.

We avoid this drawback by using a simplex variant with small tableau and
fixed-point arithmetic. The goal is to reduce the bit-length of the secret shares
by a factor of 10 and the input bit-length of all comparisons to 100 bits. Due
to the structure of the simplex algorithm the gains exceed by far the effects of
more complex fixed-point arithmetic. We use our general framework for secure
fixed-point computation introduced in [4], extending and adapting the protocols
for this type of application. In particular we use a different division protocol that
allows to efficiently compute many division operations with common divisor, so
that a simplex iteration computes a single reciprocal. Rounding errors for an
iteration are close to the resolution of the fixed-point representation.

Oblivious computation of simplex iterations is achieved in [13,19] using two
different methods. Li and Atallah use secret permutations of the rows and
columns of the tableau in each iteration. Toft introduces a secret indexing
method that allows to read or write entries in the tableau without revealing
the index. Our protocol uses secret indexing, which is simpler and more versa-
tile. We give more efficient solutions for secret reading and pivot selection.

We use standard techniques for multiparty computation based on secret shar-
ing, similar to [6,7,14,18]. However, the protocols in [7,18] aim at providing
integer computation with perfect privacy and constant round complexity, while
our goal is fixed-point computation and lower communication complexity, for
more efficient parallel computation. We obtain important performance gains us-
ing a combination of techniques that includes additive hiding with statistical
privacy (instead of perfect privacy), protocols with logarithmic round complex-
ity (instead of constant round complexity), optimized data encoding (especially
for binary values), and non-interactive generation of shared random values [5].

2 Preliminaries

2.1 Linear Programming and the Simplex Algorithm

The simplex algorithm is the most popular method for solving linear programs
[2]. Its simple structure and the possibility to parallelize a large part of the
computation also makes it the best choice for secure linear programming.

We consider the task of solving the linear program shown in Eq. 1, for
b1, . . . , bm ≥ 0. We start by adding the slack variables xn+1, . . . , xn+m, to trans-
form Eq. 1 to the standard form with equality constraints shown in Eq. 2. A
feasible solution is a vector x1, . . . , xn+m ≥ 0 that satisfies the constraints. The
goal is to find an optimal solution that also maximizes the objective function.
A basis is a set of m indexes corresponding to variables whose coefficients in
the constraints are linearly independent vectors. A solution with null values for
non-basis variables is called basic solution. Observe that xj = 0 for j = 1, . . . , n
and xn+i = bi for i = 1, . . . , m is a basic feasible solution of Eq. 2.
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max
∑n

j=1 fjxj

subject to
∑n

j=1 aijxj ≤ bi i = 1, . . . , m

xj ≥ 0 j = 1, . . . , n

(1)

max
∑n

j=1 fjxj

subject to
∑n

j=1 aijxj + xn+i = bi i = 1, . . . , m

xj ≥ 0 j = 1, . . . , n + m

(2)

Simplex starts from an initial basic feasible solution and improves it by perform-
ing a sequence of iterations until it finds the optimal solution or detects that
the linear program is unbounded. In each iteration, a basis variable is replaced
by another variable and the linear program is re-written accordingly, using a
procedure called pivoting. Simplex uses a tableau representation of the linear
program. Two variants of tableau are shown in Fig. 1. The vectors S and U
contain the indexes of the current basis and non-basis variables, respectively.

x1 . . . xn xn+1 . . . xn+m

xS(1) a11 . . . a1n 1 . . . 0 b1

...
...

...
...

. . .
...

...
xS(m) am1 . . . amn 0 . . . 1 bm

F −f1 . . . −fn 0 . . . 0 0

xU(1) . . . xU(n)

xS(1) a11 . . . a1n b1

...
...

...
...

xS(m) am1 . . . amn bm

F −f1 . . . −fn 0

Fig. 1. Initial simplex tableau (left) and condensed tableau variant (right)

The computation can be carried out in many different ways. For secure sim-
plex, the choice of the algorithm depends on the complexity of the building
blocks and has a strong impact on performance. We considered different vari-
ants of plain and revised simplex. Variants for integer arithmetic work with very
large numbers, making secure comparison impractical and increasing the com-
munication overhead. The protocol presented in this paper uses an algorithm for
fixed point arithmetic and the condensed tableau in Fig. 1. This variant needs
a minimum number of secure comparisons and fixed-point multiplications. The
algorithm is described below. We denote V (i) the element of vector V at index
i and M(i, j) the element of matrix M at row index i and column index j.

1. Initialization: For i ∈ [1..m], j ∈ [1..n], set A(i, j) ← aij , F (j) ← fj ,

B(i)← bi, U(j)← j, S(i)← n + i. Set T ←
(

A B
−F 0

)

.

2. Iterations:
a) Get Pivot Column: Select c ∈ [1..n] such that T (m + 1, c) < 0. If no such c,

report “Optimal Solution” and exit. If more options, choose at random or
using Bland’s rule (minimum U(c)).

b) Get Pivot Row: Select r ∈ [1..m], such that T (r, c) > 0 and T (n+1, r)/T (r, c)
is minimal. If no such r, report “Unbounded Problem” and exit. If more
options, choose at random or using Bland’s rule (minimum S(r)).
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c) Update the tableau (pivoting):
T (i, j) ← T (i, j)− T (i, c)T (r, j)/T (r, c) i ∈ [1..m + 1]\{r}, j∈ [1..n + 1]\{c}
T (i, c) ← −T (i, c)/T (r, c) i ∈ [1..m + 1]\{r}
T (r, j)← T (r, j)/T (r, c) j ∈ [1..n + 1]\{c}
T (r, c)← 1/T (r, c)
U(c) ↔ S(r) (swap)

3. Final solution: For i ∈ [1..m] set xS(i) ← T (i, n+1). All other variables take
the value 0. The objective function takes the value T (m + 1, n + 1).

2.2 Core Protocols

Basic framework. Assume a group of n > 2 parties, P1, . . . , Pn, that communi-
cate on secure channels. Party Pi has private input xi and output yi, function
of all inputs. Multiparty computation using secret sharing proceeds as follows.
The parties use a linear secret sharing scheme to deliver shares of their private
inputs to the group. Thus, they create a distributed state of the computation
where each party has a share of each secret variable. Certain subsets of parties
can reconstruct a secret by pooling together their shares, while any other subset
cannot learn anything about it. The secret sharing scheme allows to compute
with shared variables. The protocols used for this purpose take on input shared
data and return shared data, and thus enable secure protocol composition.

The protocols offer perfect or statistical privacy, in the sense that the views
of protocol execution (all values learned by an adversary) can be simulated such
that the distributions of real and simulated views are perfectly or statistically
indistinguishable, respectively. Let X and Y be distributions with finite sample
spaces V and W and Δ(X, Y ) = 1

2

∑
v∈V

⋃
W |Pr(X = v) − Pr(Y = v)| the

statistical distance between them. We say that the distributions are perfectly
indistinguishable if Δ(X, Y ) = 0 and statistically indistinguishable if Δ(X, Y )
is negligible in some security parameter.

The basic framework uses Shamir secret sharing over a finite field F and allows
secure arithmetic in F with perfect privacy against a passive threshold adversary
able to corrupt t out of n parties. Essentially, in this model, the parties do not
deviate from the specified protocol and any t+1 parties can reconstruct a secret,
while t or less parties cannot distinguish it from random uniform values in F.
We assume |F| > n, to enable Shamir sharing, and n > 2t, for multiplication
of secret-shared values. We denote [x] a Shamir sharing of x and [x]F a sharing
in a particular field F. We refer the reader to [6] for a more formal and general
presentation of this approach to secure computation.

Complexity metrics. The running time of the protocols is (usually) dominated by
the communication between parties. We evaluate the complexity of the protocols
using two metrics that reflect different aspects of the interaction. Communication
complexity measures the amount of data sent by each party. For our protocols,
a suitable abstract metric is the number of invocations of a primitive during
which every party sends a share (field element) to the others. Round complexity
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Table 1. Secure arithmetic in a finite field F

Operation Purpose Rounds Invocations

[c]F ← [a]F + [b]F Add secrets 0 0

[c]F ← [a]F + b Add secret and public 0 0

[c]F ← [a]Fb Multiply secret and public 0 0

[c]F ← [a]F[b]F Multiply secrets 1 1

a← Output([a]F) Reveal a secret 1 1

[z]← Inner([X]F, [Y ]F) [
∑m

i=1 X(i)Y (i)]F 1 1

measures the number of sequential invocations and is relevant for the inher-
ent network delay, independent of the amount of data. Invocations that can be
executed in parallel count as a single round.

Shared random values. Secure computation often combines secret sharing with
additive or multiplicative hiding. For example, given a shared variable [x] the
parties jointly generate a shared random value [r], compute [y] = [x] + [r], and
reveal y = x + r. This is similar to one-time pad encryption of x with key r.

For a secret x ∈ Zq and random uniform r ∈ Zq we obtain Δ(x+r mod q, r) =
0, hence perfect privacy. Alternatively, for x ∈ [0..2k − 1], random uniform r ∈
[0..2k+κ−1], and q > 2k+κ+1 we obtain Δ(x+r mod q, r) < 2−κ, hence statistical
privacy with security parameter κ. This property holds for other distributions of
r that can be generated more efficiently. The variant with statistical privacy can
substantially simplify the protocols by avoiding wraparound modulo q, although
it requires larger q (hence larger shares) for a given data range.

We use Pseudo-random Replicated Secret Sharing (PRSS) [5] to generate
without interaction shared random values in F with uniform distribution and
random sharings of 0. Also, we use the integer variant RISS [8] to generate shared
random integers in a given interval and the ideas in [9] for share conversions.
To enable these techniques, we assume that numbers are encoded in Zq and q >
2k+κ+ν+1, where k is the required integer bit-length, κ is the security parameter,
ν = �log(

(
n
t

)
)�, n is the number of parties, and t is the corruption threshold.

Efficient inner product. Consider the following common task: given two shared
vectors [X ] = ([X(1)], . . . , [X(m)]) and [Y ] = ([Y (1)], . . . , [Y (m)]), X, Y ∈ F

m,
compute their inner product [z] = [

∑m
i=1 X(i)Y (i)]. A naive solution is to use the

multiplication protocol and compute [z] =
∑m

i=1[X(i)][Y (i)], with complexity 1
round and m invocations. We present an efficient protocol with perfect privacy
and complexity reduced to 1 invocation. Assume Shamir sharing for n parties
with threshold t < n/2. Denote [X(i)]j , [Y (i)]j , i ∈ [1..m], the input shares and
[z]j the output share of party Pj . The protocol, called Inner, proceeds as follows:

1. Party Pj , j ∈ [1..n], computes dj =
∑m

i=1([X(i)]j [Y (i)]j) and then shares dj

sending [dj ]k to party Pk, k ∈ [1..n].
2. Party Pk, k ∈ [1..n], computes the share [z]k =

∑
j∈J λj [dj ]k, where J ⊆

[1..n], |J | = 2t + 1, and {λj}j∈J is the reconstruction vector for J .
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Protocol Inner is a generalization of the classical protocol for secure multiplica-
tion in a field [12]. The proofs of correctness and security are similar.

Secret indexing. The purpose of secret indexing is to read/write a value from/to
an array without revealing the value and its index. Efficient secret indexing
can be achieved by encoding an index x ∈ [1..m] as a secret bitmask [V ] =
([V (1)], . . . , [V (m)]) such that V (i) = 1 for i = x and V (i) = 0 for i 
= x [19].
We use this technique to obtain oblivious computation of simplex iterations.

Protocols 2.1 and 2.2 allow secret reading and writing from/to a vector. The
secure multiplications re-randomize the shares, providing perfect privacy. Exten-
sion to a matrix is obvious. We call the protocols that read/write a column/row
SecReadCol, SecReadRow, SecWriteCol, and SecWriteRow. Protocol Inner reduces
the complexity of secret reading to 1 invocation (instead of m) for a vector of
length m, and to m (or n) invocations (instead of mn) for an m×n matrix. This
has a significant impact on the complexity of the simplex protocol.

Protocol 2.1: [s]← SecRead([A], [V ])

[s]← Inner([A], [V ]) ; // 1 rnd, 1 inv1

return [s];2

Protocol 2.2: [A]← SecWrite([A], [V ], [s])

foreach i ∈ [1..m] do parallel1

[A(i)]← [A(i)] + [V (i)] ([s]− [A(i)]); // 1 rnd, m inv2

return [A];3

3 Arithmetic Protocols

Fixed-point representation. Fixed-point numbers are rational numbers repre-
sented as a sequence of digits split into integer and fractional parts by a vir-
tual radix point: x̃ = s · (de−2 . . . d0.d−1 . . . d−f ). For binary digits the value
is x̃ = s ·∑e−2

i=−f di2i, where s ∈ {−1, 1}, e is the length of the integer part
(including the sign bit), and f is the length of the fractional part. Denote
x̄ = s ·∑e+f−2

i=0 di2i and observe that x̃ = x̄ · 2−f , hence x̃ is encoded as an
integer x̄ scaled by the factor 2−f .

We define a fixed-point data type as follows. Let k, e, and f be integers such
that k > 0, f ≥ 0, and e = k − f ≥ 0. Denote Z〈k〉 = {x ∈ Z | − 2k−1 + 1 ≤
x ≤ 2k−1 − 1}. The fixed-point data type with resolution 2−f and range 2e is
the set Q〈k,f〉 = {x̃ ∈ Q | x̃ = x̄ · 2−f , x̄ ∈ Z〈k〉}. Intuitively, Q〈k,f〉 is obtained
by sampling the range of real values [−2e−1 + 2−f , 2e−1− 2−f ] at 2−f intervals.

Data encoding in a field. Any secret value in a secure computation has a data
type which is public information. Data types are encoded in a field F as follows.

Logical values false, true and bit values 0, 1 are encoded as 0F and 1F , re-
spectively. F can be a small binary field F2m or prime field Zq. This encoding
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Table 2. Secure fixed-point arithmetic: addition and multiplication

Fixed-point Op. Integer Op./ Secure Op. Abs. Error

Add c̃ = ã + b̃ ∈ Q〈k,f〉 c̄ = ā + b̄ δ = 0

(Subtract) ã, b̃ ∈ Q〈k,f〉 [c]← [a] + [b]

Multiply c̃ = ãb̃ ∈ Q〈k+f,2f〉 c̄ = āb̄ δ = 0

w/o scaling ã, b̃ ∈ Q〈k,f〉 [c]← [a][b]

Multiply c̃ = ãb̃ ∈ Q〈k,f〉 c̄ = trunc(āb̄, f) δ = δt2
−f

w/ scaling ã, b̃ ∈ Q〈k,f〉 [c]← TruncPr([a][b], k + f, f) |δt| < 1

Inner product c̃ =
∑m

i=1 ãib̃i c̄ = trunc(
∑m

i=1 āib̄i, f) δ = δt2
−f

A = (a1, . . . , am) ãi, b̃i, c̃ ∈ Q〈k,f〉 [x]← Inner([A], [B]) |δt| < 1
B = (b1, . . . , bm) [c]← TruncPr([x], k + f, f)

Multiply d̃ = ãb̃c̃ ∈ Q〈k,f〉 d̄ = trunc(āb̄c̄, 2f) δ = δt2
−f

double optim. ã, b̃, c̃, d̃ ∈ Q〈k,f〉 [c]← TruncPr([a][b][c], k + 2f, 2f) |δt| < 1

allows secure evaluation of boolean functions using secure arithmetic in F. Effi-
cient encoding of binary values is essential for reducing the complexity of shared
random bit generation, comparison, and other secure simplex building blocks.

Signed integers are encoded in Zq using fld : Z〈k〉 �→ Zq, fld(x̄) = x̄ mod q,
q > 2k. For any ā, b̄ ∈ Z〈k〉 and ∈ {+,−, ·} we have āb̄ = fld−1(fld(ā)fld(b̄)).
Moreover, if b̄|ā then ā/b̄ = fld−1(fld(ā) ·fld(b̄)−1). Secure arithmetic with signed
integers can thus be computed using secure arithmetic in Zq.

A fixed-point number x̃ ∈ Q〈k,f〉 is represented as a secret integer x̄ = x̃2f

encoded in Zq and public parameters that specify the resolution and the range,
f and e (or k = e + f). We define the map intf : Q〈k,f〉 �→ Z〈k〉, intf (x̃) = x̃2f .

We distinguish different representations of a number using the following sim-
plified notation: we denote x̃ a rational number of some fixed-point type Q〈k,f〉
and x̄ = x̃2f ∈ Z〈k〉 the integer value of its fixed-point representation; for se-
cure computation using secret-sharing we denote x = x̄ mod q ∈ Zq the field
element that encodes x̄ (and hence x̃) and [x] a sharing of x. The notation
x = (condition)? a : b means that the variable x is assigned the value a when
condition=true and b otherwise.

Fixed-point arithmetic. Tables 2 and 3 contain a summary of the main arithmetic
protocols used in simplex. Secure addition, subtraction, and comparison of fixed-
point numbers are immediate extensions of the integer operations. We need
additional protocols for multiplication and division.

Multiplication. Table 2 shows several cases of secure fixed-point multiplication
used in simplex. Let ã, b̃ ∈ Q〈k,f〉 and c̃ = ãb̃. We obtain the representation of c̃

with resolution 2−2f by integer multiplication, c̄ = āb̄ = ãb̃22f , and we can scale
down c̃ to resolution 2−f by truncation (when necessary). The truncation pro-
tocol TruncPr computes c̄/2f and rounds to the nearest integer with probability
1−α, where α is the distance to that integer [4]. The absolute error is with high
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Table 3. Complexity of arithmetic protocols (log(q1) ≈ κ)

Operation Protocol Rounds Invocations Field

�ā/2f�+ u [d]← TruncPr([a], k, f) 1 1 Zq

ā ∈ Z〈k〉, u ∈R {0, 1} 2 2f Zq1

TruncPr after precomp. 1 1 Zq

[d]← TruncPrN([a], k, f) 1 1 Zq

(ā < 0)?1 : 0, ā ∈ Z〈k〉 [s]← LTZ([a], k) 1 1 Zq

(ā > 0)?1 : 0, ā ∈ Z〈k〉 GTZ([a], k) = LTZ(−[a], k) 2 2k Zq1

log(k) + 1 2k − 3 F28

LTZ after precomp. 1 1 Zq

log(k) + 1 2k − 3 F28

x̃ ≈ 1/c̃ ∈ Q〈p+1,p〉 [x]← RecItNR([c], p) 3θ 3θ Zq

c̃ ∈ Q〈p+1,p〉
⋂

(0.5, 1) (using TruncPr) 2 2pθ Zq1

RecItNR after precomp. 3θ 3θ Zq

Normalization: c̄ = v̄x̄, ([c], [v])← Norm([x], k, f, p) 3 3 Zq

x̃ ∈ Q〈k+1,f〉, (using TruncPr) 2† 6k − 2p Zq1

c̃ ∈ Q〈p+1,p〉
⋂

(0.5, 1) 2 log(k) + 1 k + 1.5k log(k) F28

Norm after precomp. 3 3 Zq

2 log(k) + 1 k + 1.5k log(k) F28

probability |δt| ≤ 0.5, and always |δt| < 1. TruncPr provides statistical privacy,
while TruncPrN performs the same operation more efficiently but with weaker
protection of the discarded part (additive hiding with non-uniform random).
TruncPrN is sufficient for multiplications in simplex, since values less than 2−f

are negligible and the computation is carried out with extended precision (large
f). Note that the optimizations for inner product and double multiplication
shown in Table 2 are also important for improving the accuracy.

Reciprocal and division. Simplex needs an accurate and efficient protocol for
multiple division operations with the same positive divisor, ã1/b̃, . . . , ãm/b̃. This
can be achieved by computing ỹ = 1/b̃ followed by m parallel multiplications
z̃i = ãiỹ. Protocols 3.1, RecItNR, and 3.2, DivNR, follow this approach (the
division protocol in [4] is not suitable for this type of application).

Let c̃ ∈ Q〈p+1,p〉
⋂

(0.5, 1). RecItNR computes x̃ ≈ 1/c̃, x̃ ∈ Q〈p+1,p〉, for
secret-shared input and output. The protocol uses the Newton-Raphson method
and starts by computing the initial approximation x̃0 ≈ 1/c̃, x̃0 = 2.9142− 2c̃,
with relative error ε0 < 0.08578 (at least log2(ε0) = 3.5 exact bits) [10]. Each
iteration computes an improved approximation x̃i+1 = x̃i(2 − x̃ic̃). For exact
arithmetic (without truncation) the relative error after iteration i is εi = ε2i−1 =
ε2

i

0 . Intuitively, the number of exact bits doubles at each iteration, so p + 1
bits (δ < 2−p) are obtained after θ = �log p+1

3.5 � iterations. The error due to
computation of an iteration with limited precision is |δT | < 2−p. Since the error
introduced by an iteration decreases quadratically during next iterations, we
conclude that the output error of RecItNR is approximately bounded by 2−p.
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Let ã, b̃ ∈ Q〈k+1,f〉 and b̃ > 0. Protocol DivNR computes the quotient z̃ ≈ ã/b̃,
z̃ ∈ Q〈k+1,f〉, with secret-shared inputs and output. The protocol consists of
the following main steps: compute the normalized divisor c̃ ∈ Q〈p+1,p〉

⋂
(0.5, 1)

using the protocol Norm; compute the reciprocal x̃ ≈ 1/c̃ using the protocol
RecItNR; then compute the quotient z̃ ≈ ã/b̃ and scale it to obtain z̃ ∈ Q〈k+1,f〉.
A variant for multiple divisors repeats steps 4 and 5 for each divisor (parallel
computation).

Protocol 3.1: [x]← RecItNR([c], p)

(θ, α, β)← (�log p+1
3.5 �, fld(intp(2.9142)), fld(int2p(2.0)));1

[x]← α− 2[c];2

foreach i ∈ [1..θ] do3

[x]← [x](β − [x][c]);4

[x]← TruncPr([y], 3p, 2p);5

return [x];6

Protocol 3.2: [z]← DivNR([a], [b], k, f)

([c], [v])← Norm([b], k);1

[x]← RecItNR([c], k);2

[y]← [v][x];3

[z]← [a][y];4

[z]← TruncPr([z], 3k − f, 2k − f);5

return [z];6

Protocol Norm computes c̄ and v̄ such that 2k−1 ≤ c̄ < 2k and c̄ = b̄v̄, with
secret-shared input and outputs [4,17]. Let c̃ = c̄2−k and let 0 < m ≤ k such that
2m−1 ≤ b̄ < 2m. Observe that v̄ = 2k−m, c̃ ∈ Q〈k+1,k〉

⋂
(0.5, 1), and c̃ = b̃2f−m;

c̃ is the normalized input for RecItNR and v̄ the normalization factor. Steps 3-4
of DivNR compute z̃ = ãx̃2f−m ≈ ã/b̃ without loss of accuracy and then step 4
scales this value to obtain z̃ ∈ Q〈k+1,f〉. Observe that ãx̃2f−m2f = āx̄v̄2−(2k−f),
so the output z̄ = trunc(āx̄v̄, 2k − f) is the representation of z̃ with resolution
2−f . The output error of DivNR is upper bounded by 2−f .

RecItNR and DivNR do not open any secret-shared value and their building
blocks provide perfect or statistical privacy. The number of iterations depends
only on public configuration parameters, hence it can be revealed. We conclude
that the two protocols offer statistical privacy.

4 Secure Simplex Protocol

Protocol 4.1, Simplex, solves linear programs using the algorithm and the build-
ing blocks presented in the previous sections. The inputs are the secret-shared
values of the linear program: the matrix [A] and the vectors [B] and [F ]. The
output consists of a public value indicating the termination state, optimal or un-
bounded, a secret-shared array [X ] containing the solution, and the optimum [z]
of the objective function. The protocol reveals only the number of iterations and
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the termination condition. The tableau, pivot indexes, and related variables are
protected throughout the computation using the techniques discussed in Section
2.2. For a passive adversary that corrupts t < n/2 parties, the building blocks
provide perfect or statical privacy. By the composition theorem in Chapter 4 of
[3] we conclude that the simplex protocol provides statistical privacy.

Complexity is shown in the protocol specifications by annotating the rele-
vant steps; for better clarity, we assume a generic comparison protocol with
complexity ρ rounds and μ invocations. For a vector V and matrix M we de-
note: V (i..j) = (V (i), . . . , V (j)); M(i, ·) the row i; M(·, j) the column j. Angle
brackets are used to specify the number of elements, e.g., V 〈m〉, M〈m, n〉.

Protocol 4.1 initializes the tableau [T ] and the basis and non-basis index
vectors [S] and [U ], performs the simplex iterations, and then extracts from
the final tableau the optimal solution (if it exists). The iterations are computed
by Protocol 4.2. The computation is structured into several sub-protocols that
select the pivot’s column and row (GetPivCol and GetPivRow) and then update
the tableau [T ] (UpdTab) and the vectors [S] and [U ] (UpdVar).

Protocol 4.1: (result, [X ], [z])← Simplex([A], [B], [F ])
Input: [A〈m, n〉], [B〈m〉], [F 〈m〉].
Output: result ∈ {Opt, Unb}; [X〈n〉] and [z] if result = Opt.

[T ]←
(

[A] [B]
−[F ] [0]

)

;
1

([S], [U ])← InitVar(m, n);2

([T ], [S], result)← Iteration([T ], [S], [U ]);3

if result = Unb then return Unb;4

[X ]← GetSolution([T (·, n + 1)], [S]);5

return (Opt, [X ], [T (m + 1, n + 1)]);6

Protocol 4.2: ([T ], [S], result)← Iteration([T ], [S], [U ])
Input: [T 〈m + 1, n + 1〉], [S〈m〉], [U〈n〉];
Output: [T 〈m + 1, n + 1〉], [S〈m〉]; result ∈ {Opt, Unb};
repeat forever1

([V ], s)← GetPivCol([T (m + 1, 1..n)]); // protocol 4.52

if s = 0 then return ([T ], [S], Opt);3

[C]← SecReadCol([T ], [V ]); // 1 rnd, m + 1 inv4

([W ], s)← GetPivRow([T (1..m, n + 1)], [C]); // protocol 4.65

if s = 0 then return ([T ], [S], Unb);6

[R]← SecReadRow([T ], [W ]); // 1 rnd, n + 1 inv7

[p]← SecRead([R], [V ]); // 1 rnd, 1 inv8

[T ]← UpdTab([T ], [C], [R], [V ], [W ], [p]); // protocol 4.89

([S], [U ])← UpdVar([S], [U ], [V ], [W ]); // 2 rnd, m + n + 2 inv10

end11

The iterations terminate when the algorithm finds the optimal solution or
determines that the linear program is unbounded. Termination is detected by the
pivot selection protocols, which report that no pivot exists (s = 0). Protocol 4.3,
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GetSolution, extracts the solution from the tableau by assigning X(S(i))← B(i)
for i ∈ [1..m] and 0 to the other elements; it uses secret indexing and the protocol
Int2BitMask [17] that converts secret integers to secret bitmasks.

Protocol 4.3: [X ]← GetSolution([B], [S])
Input: [B〈m〉], [S〈m〉];
Output: [X〈n + m〉];
foreach i ∈ [1..n + m] do [X(i)]← 0;1

foreach i ∈ [1..m] do parallel2

[V ]← Int2BitMask([S(i)], m + n); // 3 rnd, 3(m + n) − 4 inv3

SecWrite([X ], [V ], [B(i)]); // 1 rnd, m + n inv4

return [X ]; // decision variables: [X(1)], . . . , [X(n)]5

The vectors [S] and [U ] are initialized by InitVar with the indexes of the initial
basis and non-basis variables. At each iteration, the basis variable with index
[S([W ])] is replaced by the non-basis variable with index [U([V ])]. Protocol 4.4
updates [S] and [U ] by swapping the corresponding entries.

Protocol 4.4: ([S], [U ])← UpdVar([S], [U ], [V ], [W ])
Input: [S〈m〉], [U〈n〉], [V 〈n〉], [W 〈m〉]
Output: [S〈m〉], [U〈n〉] (updated)
[s]← SecRead([S], [W ]); // 1 rnd, 1 inv1

[u]← SecRead([U ], [V ]); // + 1 inv2

[S]← SecWrite([S], [W ], [u]); // 1 rnd, m inv3

[U ]← SecWrite([U ], [V ], [s]); // + n inv4

return ([S], [U ]);5

Pivot selection. Protocol 4.5, GetPivCol, finds the index of the pivot’s column by
selecting a negative entry in the cost vector F ; it returns a public bit s indicating
if the pivot column was found or not and a secret bitmask [V ] that encodes the
column’s index. If none of the F values is negative then s = 0; simplex has found
the optimal solution and terminates. Otherwise, s = 1 and [V ] encodes the index
of the first negative entry1.

Protocol 4.5: ([V ], s)← GetPivCol([F ])
Input: [F 〈n〉];
Output: [V 〈n〉], s ∈ {0, 1};
foreach i ∈ [1..n] do parallel1

[D(i)]← LTZ([F (i)], k); // ρ rnd, nμ inv2

s← 1− EQZPub(
∑n

i=0[D(i)]); // 1 rnd, 1 inv3

if s = 0 then return ([D], s);4

[V ]← SelectFirst([D]); // log(n) rnd, n log(n)/2 inv5

return ([V ], s);6

1 An implementation of the pivot selection protocols has to take into account the
roundoff errors, e.g., by evaluating LTZ([a] + δ, k) instead of LTZ([a], k) where δ > 0
is an estimate of the maximum error.
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c0 c1 c0b
′
1 c1b

′
0 Output Constraints Selection

≤ 0 ≤ 0 ≤ 0 ≤ 0 1 None applicable b0/c0

0 None applicable b1/c1

> 0 ≤ 0 > 0 ≤ 0 1 b1/c1 not applicable b0/c0

≤ 0 > 0 ≤ 0 > 0 0 b0/c0 not applicable b1/c1

> 0 > 0 ≥ 0 ≥ 0 1 b0/c0 < b1/c1 b0/c0

0 b1/c1 ≤ b0/c0 b1/c1

Fig. 2. Constraint comparison using CompCons

EQZPub([v]) is a simple equality test with public output [16] and returns
(v = 0)? 1 : 0. SelectFirst([D]) computes the secret bitmask of the minimum
index i such that D(i) = 1 [17].

The index of the pivot’s row is determined by Protocol 4.6, GetPivRow. The
protocol computes argmini{B(i)

C(i) | C(i) > 0}. If none of the C values is strictly
positive, it returns s = 0; the simplex protocol terminates and reports that the
linear program is unbounded. Otherwise, s = 1 and [W ] is a secret bitmask that
encodes the index of the pivot’s row.

Protocol 4.6: [W ], s← GetPivRow([B], [C])
Input: [B〈m〉], [C〈m〉].
Output: [W 〈m〉], s ∈ {0, 1}.
foreach i ∈ [1..m] do parallel1

[D(i)]← GTZ([C(i)]); // ρ rnd, mμ inv2

s← 1− EQZPub(
∑m

i=0[D(i)]); // 1 rnd, 1 inv3

if s = 0 then return ([D], s);4

foreach i ∈ [1..m] do parallel5

[B′(i)]← [B(i)] + (1− [D(i)])2f ;6

[W ]← MinCons([B′], [C], m); // 	log(m)
(ρ + 3) rnd, (m− 1)(μ + 5) inv7

return ([W ], s);8

Protocol 4.7: [s]← CompCons([b′0], [c0], [b′1], [c1])

[x]← [b′0][c1]− [b′1][c0]; // 1 rnd, 2 inv1

[s]← LTZ([x], k + f); // ρ rounds, μ inv2

return [s];3

GetPivRow uses the following method. Steps 1-4 select the relevant constraints
by computing the secret bitmask [D], D(i) = (C(i) > 0)? 1 : 0, i ∈ [1..m]. If
D is null the protocol terminates and reports that no pivot row was found.
Steps 5-7 compute the secret bitmask [W ] that encodes argmini{B′(i)

C(i) }, where
B′(i) = B(i) if C(i) > 0 and B′(i) > 0 if C(i) ≤ 0. Replacing B(i) with B′(i)
avoids the combination C(i) ≤ 0 (non-applicable constraint) and B(i) = 0 when
the constraints are compared by Protocol 4.7, CompCons. The selection done by
CompCons is shown in Figure 2. The complexity of CompCons can be reduced
by modifying LTZ to scale down the input to resolution 2−f before comparison,
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without interaction [16]. The constraint comparison in [19] uses a similar method
to avoid division, but for C(i) ≤ 0 sets B′(i) = ∞, i.e., greater than any value,
and C′(i) = 1. The method used in Protocol 4.6 is more efficient (it eliminates
1 round and m + n invocations) and reduces the risk of overflow.

The protocol MinCons computes argmini{B′(i)
C(i) } by combining CompCons and

a generic protocol that finds the index of the minimum value in a vector of length
m in �log(m)� steps using m− 1 comparisons [19].

Update of the tableau. Protocol 4.8 updates the secret-shared tableau without
revealing the position of the pivot. The computation can be carried out for dif-
ferent trade-offs between accuracy and efficiency. The solution shown as Protocol
4.8 achieves low complexity with minimum effects on accuracy (i.e., close to the
best accuracy for a given fixed-point representation, δ < 2−f). Division is com-
puted by multiplication with the reciprocal of the pivot as in Protocol 3.2, and
with a single final scaling, in order to minimize rounding errors.

The complexity of the protocol is reduced by adapting the algorithm in
Section 2.1 as follows. Let r and c be the indexes of the pivot’s row and col-
umn, respectively, and p = T (r, c). The tableau is updated by computing:

R′(c)← p + 1; R′(j)← T (r, j), j ∈ [1..n + 1]\{c};
C′(r)← (p− 1)/p; C′(i)← T (i, c)/p, i ∈ [1..m + 1]\{r};
T (i, j)← T (i, j)− C′(i)R′(j), i ∈ [1..m + 1], j ∈ [1..n + 1].

Protocol 4.8: [T ]← UpdTab([T ], [C], [R], [V ], [W ], [p])
Input: [T 〈m + 1, n + 1〉], [C〈m + 1〉], [R〈n + 1〉], [V 〈n〉], [W 〈m〉]; [p].
Output: [T 〈m + 1, n + 1〉] (updated).
[y]← Rec([p], k); // protocol 4.91

[R′]← SecWrite([R], [V ], [p] + 2f); // 1 rnd, n inv2

[C′]← SecWrite([C], [W ], [p]− 2f ); // + m inv3

foreach i ∈ [1..m + 1] do parallel4

[C′(i)]← [C′(i)][y]; // 1 rnd, m + 1 inv5

foreach i ∈ [1..m + 1], j ∈ [1..n + 1] do parallel6

[T ′(i, j)]← [C′(i)][R′(j)]; // 1 rnd, (m + 1)(n + 1) inv7

[T ′(i, j)]← TruncPrN([T ′(i, j)], 3k, 2k); // 1 rnd (m + 1)(n + 1) inv8

[T (i, j)]← [T (i, j)]− [T ′(i, j)];9

return [T ];10

Protocol 4.9: [y]← Rec([p], k)

([c], [v])← Norm([p], k); // see Table 31

[x]← RecItNR([c], k); // see Table 32

[y]← [v][x]; // 1 rnd, 1 inv3

return [y];4

The protocol computes R′ and C′ in 2 rounds and 2m + n + 1 invocations
(steps 2-5), then T ′(i, j)← C′(i)R′(j) in 2 rounds and 2(m+1)(n+1) invocations
(steps 7-8, multiplication and scaling) and, finally, T (i, j)← T (i, j)− T ′(i, j).
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The cost of achieving best accuracy per iteration is a larger modulus, log(q) >
3k. The modulus can be reduced to log(q) > 2k by scaling down C′ before step
7 and/or by computing 1/p with precision k′ < k.

5 Performance Evaluation and Conclusions

We implemented and tested the simplex protocol using our Java libraries for
secure computation. We measured the running time of the protocol for five pro-
cesses (parties) running on different PCs (Intel Core Duo, 1.8 GHz) with full
mesh interconnection topology. The experiments were carried out in an isolated
network for two settings: Ethernet LAN with 100 Mbps links and WAN with 10
Mbps links. The average round-trip time of the WAN was 40 ms. The LAN ex-
periments show the protocol performance for low network delay, while the WAN
experiments show the effects of higher network delay and lower bandwidth.

Figure 3 shows the running time of an iteration for log(q) = 288 bits, k =
2f = 80 bits, and linear programs of several sizes: m = n = 25, m = n = 50,
m = n = 100. To reduce the number of rounds, all the shared random bits
needed by an iteration (for comparisons and reciprocal) are generated in parallel
by an initial precomputation phase. Moreover, the running time can be reduced
by executing the precomputation in parallel with the previous iteration.
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LAN WAN
25× 25 50× 50 100× 100 25× 25 50× 50 100× 100

Precomputation 1.05 2.00 3.93 3.19 6.08 12.08
Select pivot column 0.22 0.37 0.65 0.67 1.44 2.52
Select pivot row 0.52 0.83 1.40 1.82 3.06 5.41
Update the tableau 0.29 0.65 2.17 1.75 4.88 16.90

Fig. 3. Running time (seconds) for secure simplex iterations
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The simplex algorithm in Section 2.1 can be modified to carry out the com-
putation using integer pivoting [15,19]. Correctness and accuracy of our protocol
were verified using an implementation (for public data) of the algorithm with in-
teger pivoting, which performs the same pivot operations with exact arithmetic.

A simplex protocol for this variant of the algorithm can easily be obtained
by adapting the protocols in Section 4. The main difference is the update of the
tableau using secure integer arithmetic instead of fixed-point arithmetic. This
protocol is more efficient than the variant in [19] (e.g., 2m + n comparisons
instead of 3m+n and 2mn multiplications for the update of the tableau instead
of 3m(n + m)). However, they are both affected by the growth of the values in
the tableau, that can reach thousands of bits for linear programs with tens of
variables and constraints [19]. The experiments showed a large increase of the
running time for pivot selection and precomputation (comparisons) and for the
update of the tableau (large shares) even for log(q) = 1024 bits.

The tests show that our approach offers an important performance gain and
suitable accuracy for secure linear programming. The main performance bottle-
neck is the secure comparison. Our comparison protocol [16] provides statistical
privacy and performs most of the computation in a small field, hence with low
overhead (Table 3). By encoding binary values in small fields and using efficient
share conversions, the amount of data exchanged is reduced from O(k2) bits
(when integer and binary values are encoded in the same field) to O(k). The
simplex algorithm used by the protocol needs only 2m+n comparisons (instead
of 3m+n when using the large tableau to select the pivot) and fixed-point arith-
metic can reduce their input bit-length by a factor of 10 with respect to integer
pivoting. Nevertheless, most of the precomputation time and pivot selection time
shown in Fig. 3 is due to comparisons. Further performance improvement would
require secure comparison with sublinear complexity; currently, in the multiparty
setting, this can be achieved only by trading off privacy for efficiency.

The solutions presented in this paper can be applied to other simplex variants
(e.g., revised simplex) and to protocols for general linear programs (finding an
initial basic feasible solution). The building blocks can be used in other appli-
cations with similar requirements (accurate secure computation with rational
numbers or computation with many parallel operations). These are topics of on-
going research, in parallel with the improvement of secure fixed-point arithmetic.
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