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Secure Multiple Amplify-and-Forward Relaying

with Co-Channel Interference
Lisheng Fan, Xianfu Lei, Nan Yang, Member, IEEE, Trung Q. Duong, Senior Member, IEEE, and George K.

Karagiannidis, Fellow, IEEE

Abstract—We investigate the impact of co-channel interference
on the security performance of multiple amplify-and-forward
(AF) relaying networks, where N intermediate AF relays assist
the data transmission from the source to the destination. The
relays are corrupted by multiple co-channel interferers, and
the information transmitted from the relays to destination can
be overheard by the eavesdropper. In order to deal with the
interference and wiretap, the best out of N relays is selected
for security enhancement. To this end, we derive a novel lower
bound on the secrecy outage probability (SOP), which is then
utilized to present two best relay selection criteria, based on
the instantaneous and statistical channel information of the
interfering links. For these criteria and the conventional max-
min criterion, we quantify the impact of co-channel interference
and relay selection by deriving the lower bound on the SOP.
Furthermore, we derive the asymptotic SOP for each criterion, to
explicitly reveal the impact of transmit power allocation among
interferers on the secrecy performance, which offers valuable
insights into practical design. We demonstrate that all selection
criteria achieve full secrecy diversity order N , while the proposed
in this paper two criteria outperform the conventional max-min
scheme.

Index Terms—Secure communications, co-channel interfer-
ence, relay selection, secrecy diversity order.

I. INTRODUCTION

Due to its broadcast nature, wireless transmission may be

overheard by eavesdroppers in the network, which brings out

the risk of information leakage. To prevent this leakage, secure

techniques, such as encryption and physical-layer security

(PLS) [1], have been widely investigated in the literature. In

the pioneering work by Wyner [2], the classical wiretap model

was proposed to analyze the secure communication. Then the

study on PLS has been extended over fading channels, such
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as Rayleigh and Nakagami-m [3]–[6]. In these works, impor-

tant metrics of secrecy performance, such as secrecy outage

probability (SOP) and secrecy capacity, have been studied. To

enhance the transmission security for multi-antenna systems,

antenna selection technique can be used to exploit the dynamic

nature among the multi-antenna fading channels [7].

Relaying technique has attracted increasingly attention in

the literature, since it extends the radio coverage and improves

the system capacity, without raising the transmit power [8]–

[11]. Hence, it is of vital importance to study the PLS in

relay networks [12]–[15]. There are two fundamental relaying

protocols: amplify-and-forward (AF) and decode-and-forward

(DF). For DF-aided relay networks, the system secure commu-

nication has been extensively studied, by deriving analytical

expressions for the SOP in [16]–[18]. In order to enhance

the security for multi-DF relay networks, these works [16]–

[18] used relay selection techniques to exploit the dynamic

nature among multi-relay fading channels. Compared with DF

relaying, it is, however, much more complicated to obtain

analytical SOP expressions for AF relay networks, since the

received signal-to-noise ratios (SNRs) at the destination and

eavesdroppers are represented in complex forms. In order

to deal with this issue, the authors in [19] analyzed the

intercept probability, which depends on the second-hop relay

channels only. However, this probability is just a special case

of the SOP, where the target secrecy data rate is set to

zero. Furthermore, the authors in [20] investigated the PLS

of multiuser multi-AF relay networks, and presented closed-

form expressions for the limiting behavior of SOP, assuming

a large transmit power.

One of the utmost concerns arising in wireless networks

is the existence of co-channel interference, due to the exces-

sive frequency reuse [21]–[25]. In [26], the authors studied

a relay network in the presence of co-channel interference

and analyzed the effect of interference power distribution1

on the network performance. For multi-AF relay networks

with co-channel interference, the relay selection aided by the

interfering channel parameters can be used to improve the

network transmission performance [27]. Recently, the impact

of co-channel interference on the secure communications has

received much attention. In [28], the authors studied the PLS

of multi-DF relay networks in the presence of co-channel

interference, by deriving the analytical and asymptotic SOP

expressions. To the best of our knowledge, no prior work

1As shown in [26], the interference power distribution refers to the transmit
power allocation among interferers, for a given total transmit power.
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has considered the secure communications of multi-AF re-

lay networks, taking into account the impact of co-channel

interference and relay selection.

In this paper, we study the secure communications of

multi-AF relay networks in the presence of an eavesdropper,

assuming that the N relays are disturbed by multiple co-

channel interferers. To tackle with the co-channel interference

and wiretap, relay selection is performed, such that the best

relay is chosen to enhance the network security. We study

the network secrecy performance by deriving the analytical

and asymptotic SOP expressions. The key contributions of this

paper are summarized as follows,

• To facilitate the secure performance evaluation, we derive

a novel lower bound on the SOP, which is valid for an

arbitrary transmit power.

• Besides the traditional max-min criterion, we utilize the

newly derived lower bound on the SOP to present two

relay selection criteria, based on the instantaneous and

statistical channel information of the interfering links,

respectively.

• For each criterion, we derive an analytical lower bound

on the SOP, in order to investigate the system secrecy

performance.

• We present novel asymptotic results for the SOP with

high main-to-eavesdropper ratio (MER), which can be

efficiently used to determine the factors governing the

secrecy performance.

• Based on these asymptotic expressions, we provide key

insights into the network secrecy diversity order and the

impact of interference power distribution on the network

security.

The rest of the paper is organized as follows. Section II

introduces the system model of the secure multi-AF relay

networks in the presence of co-channel interference. In Section

III, we first derive a novel lower bound expression for the

SOP, and then we present the relay selection criteria. For each

criterion, Section IV provides the analytical lower bound of

SOP as well as the asymptotic expression, assuming high value

of MER. Simulations and numerical results are presented in

Section V to show the impact of co-channel interference and

relay selection on the network security. Finally, conclusions

are drawn in Section VI.

Notations: The notation CN (0, σ2) denotes a circularly

symmetric complex Gaussian random variable (RV) with zero

mean and variance σ2. We use fX(·) and FX(·) to represent

the probability density function (PDF) and cumulative density

function (CDF) of the RV X , respectively. The function,

E1(x) =
∫∞

x
e−t

t dt, is the exponential integral function [29],

while Pr[·] returns the probability, and E[·] denotes statistical

average.

II. SYSTEM MODEL

Fig. 1 depicts the system model of a two-phase multiple

AF relay network with co-channel interference, where the

source S communicates with the destination D with the help

of N intermediate AF relays, {Rn|1 ≤ n ≤ N}. Apart from

the additive white Gaussian noise (AWGN), the relays are

E
RN

S D

Eavesdropper link
Main link

Interfering link

R1

IMI1

Fig. 1. A network consisting of multiple AF relays with co-channel
interference and an eavesdropper.

corrupted by M co-channel interferers, {Im|1 ≤ m ≤ M}.

An eavesdropper, E, can overhear the message forwarded from

relays, which indicates a great threat to the communication

from S to D. Note that the network secrecy performance

becomes worse if multiple eavesdroppers exist in the network,

no matter whether the eavesdroppers decode the messages

in a colluding or non-colluding manner [20]. However, the

relay selection criteria and the secrecy performance analytical

framework proposed in this work can be easily extended to

the case of multiple eavesdroppers. We assume that D and

E are disturbed by the AWGN only. A severe shadowing

environment is considered, so that there is no direct link from

S to D or from S to E. Due to the size limitation, all nodes

in the network are equipped with a single antenna. To deal

with the wiretap channel and co-channel interference, the best

relay, Rn∗ , needs to be selected among N relays for enhancing

the network security. Before presenting the relay selection

criterion, we first formulate the two-phase data transmission

with co-channel interference at relays.

Suppose that Rn is selected for data transmission. In the

first phase, S sends signal xS to Rn in co-channel interference

environments. The received signal at Rn is given by

yRn
=

√
PhS,Rn

xS +
M
∑

m=1

√

PImhIm,Rn
xIm + nR, (1)

where P is the transmit power at S, hS,Rn
∼ CN (0, α) is

the channel coefficient of the S–Rn link, PIm and xIm are

the transmit power and signal of the interferer Im, hIm,Rn
∼

CN (0, ε) is the channel coefficient of the interfering Im–Rn

link, and nR ∼ CN (0, No) is the AWGN at Rn. As per the

rules of AF relaying, Rn amplifies yRn
using the factor

κn =

√

P

P |hS,Rn
|2 +∑M

m=1 PIm |hIm,Rn
|2 +No

. (2)
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The received signals at D and E from Rn in the second phase

can be respectively written as

yD = hRn,DκnyRn
+ nD, (3)

yE = hRn,EκnyRn
+ nE , (4)

where hRn,D ∼ CN (0, β1) and hRn,E ∼ CN (0, β2) denote

the channel coefficients of the Rn–D and Rn–E links, re-

spectively, and nD ∼ CN (0, No) and nE ∼ CN (0, No) are

the AWGN at D and E, respectively. Note that D and E only

receive signals, but not transmit. Hence, there is no channel

link between D and E. Using (1)–(4), the end-to-end signal-

to-interference-plus-noise ratios (SINRs) at D and E can be

written as

γD
n =

P̃un

1+
∑

M
m=1 P̃Imwmn

P̃ v1n

1 + P̃un

1+
∑

M
m=1 P̃Imwmn

+ P̃ v1n
, (5)

γE
n =

P̃un

1+
∑

M
m=1 P̃Imwmn

P̃ v2n

1 + P̃un

1+
∑

M
m=1 P̃Imwmn

+ P̃ v2n
, (6)

where P̃ = P/No and P̃Im = PIm/No denote the average

SNR at the source and interferer Im, respectively. For the

simplification of notation, let us denote un = |hS,Rn
|2,

v1n = |hRn,D|2, v2n = |hRn,E |2, and wmn = |hIm,Rn
|2 as

the associated channel gains.

The SOP with Rn is defined as the probability that the

difference of the data rate between the main and eavesdropper

links falls below a given threshold Rs, which is formulated as

Pn,out = Pr

[

1

2
log2(1 + γD

n )− 1

2
log2(1 + γE

n ) < Rs

]

(7)

= Pr

[

1 + γD
n

1 + γE
n

< γs

]

, (8)

where the term 1
2 in (7) is due to the two-phase data trans-

mission, and γs = 22Rs denotes the secrecy SNR threshold.

III. RELAY SELECTION

A. A Novel Lower Bound on the SOP

As observed from (5) and (6), the received SINRs, γD
n and

γE
n , share two common RVs, namely, un and wmn. As such,

it is not trivial to derive an exact analytical expression for the

SOP, since γD
n and γE

n are correlated RVs. To deal with this

issue, we note that the authors in [20] presented simplified

expressions for γD
n and γE

n , by assuming large transmit power

P . However, this is not applicable in practical scenarios, where

the terminals are limited powered, e.g., mobile devices or

sensor nodes. Next, we derive a novel lower bound on the

SOP. We first write Pn,out as

Pn,out = Pr









1 +
P̃un
1+zn

P̃ v1n

1+ P̃un
1+zn

+P̃ v1n

1 +
P̃un
1+zn

P̃ v2n

1+ P̃un
1+zn

+P̃ v2n

< γs









, (9)

where zn =
∑M

m=1 P̃Imwmn. Based on the following equali-

ties

1 +
P̃un

1+zn
P̃ v1n

1 + P̃un

1+zn
+ P̃ v1n

=
(1 + P̃un

1+zn
)(1 + P̃ v1n)

1 + P̃un

1+zn
+ P̃ v1n

, (10)

1 +
P̃un

1+zn
P̃ v2n

1 + P̃un

1+zn
+ P̃ v2n

=
(1 + P̃un

1+zn
)(1 + P̃ v2n)

1 + P̃un

1+zn
+ P̃ v2n

, (11)

we rewrite Pn,out in a more compact form as

Pn,out = Pr

[

(1 + P̃ v1n)(1 +
P̃un

1+zn
+ P̃ v2n)

(1 + P̃ v2n)(1 +
P̃un

1+zn
+ P̃ v1n)

< γs

]

,

= Pr

[

1 +
P̃un

1+zn

1 + P̃ v2n
< γs(1 +

P̃un

1+zn

1 + P̃ v1n
)

]

,

= Pr

[

P̃un

1+zn

1 + P̃ v2n
< (γs − 1) +

γs · P̃un

1+zn

1 + P̃ v1n

]

. (12)

Since

1

1 + P̃ v2n
<

γs − 1
P̃un

1+zn

+
γs

1 + P̃ v1n
, (13)

we further rewrite Pn,out as

Pn,out = Pr





1
γs−1
P̃un
1+zn

+ γs

1+P̃ v1n

< 1 + P̃ v2n



 . (14)

By applying the inequality2 [30]

1
1
x1

+ 1
x2

=
x1x2

x1 + x2
≤ min(x1, x2) (15)

into (14), a new lower bound expression of Pn,out is obtained

as

PLB

n,out = Pr

[

min

(

P̃ un

(γs − 1)(1 + zn)
,
1 + P̃ v1n

γs

)

< 1 + P̃ v2n

]

= Pr

[

min

(

un

(γs − 1)(1 + zn)
,
P̃r + v1n

γs

)

< P̃r + v2n

]

,

(16)

where P̃r = 1
P̃

. It is worthwhile to note that the lower bound

derived above can be used for the entire regime of transmit

power, thus being more applicable than the method given by

[20] for secrecy performance evaluation.

B. Selection Criterion

Relying on the newly derived lower bound on Pn,out in (16),

we next present the relay selection criterion to choose the best

relay Rn∗ in order to deal with the co-channel interference and

wiretap. In practical communication scenarios with passive

eavesdroppers, it is hard to acquire the instantaneous chan-

nel coefficients of eavesdropper links, and only the channel

coefficients of main and interfering links can be utilized to

2Note that the accuracy of the bound in (15) depends on the values of x1

and x2. Specifically, it is quite accurate when x1 is far from x2, while the
accuracy becomes worse when x1 is close to x2.
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perform relay selection. From (16), the best relay, Rn∗ , is

selected according to

n∗ = arg max
1≤n≤N

min
( un

(γs − 1)(1 + zn)
,
P̃r + v1n

γs

)

. (17)

According to this criterion, the system needs to know the in-

stantaneous channel coefficients of the interfering links, which

can be obtained in some communication systems through

dedicated feedback channels from the interferers. However, in

some other communication systems without such feedback, the

system is only able to know the statistical channel information

of interfering links. In this case, the best relay Rn∗ is selected

according to

n∗ = arg max
1≤n≤N

min
( un

(γs − 1)(1 + E(zn))
,
P̃r + v1n

γs

)

.

(18)

Apart from the proposed selection criteria, the conventional

max-min criterion can also be used to select the best relay.

This criterion is mathematically expressed as

n∗ = arg max
1≤n≤N

min(un, v1n), (19)

which maximizes the minimum channel gain of the dual-hop

main link.

After relay selection, the lower bound on the SOP with

selected Rn∗ is given by

PLB

out = Pr

[

min

(

un∗

(γs − 1)(1 + zn∗)
,
P̃r + v1n∗

γs

)

< P̃r + v2n∗

]

. (20)

For the reader’s convenience, we next refer to the selection

criterion in (17), (18) and (19) as criterion I, II, and III, re-

spectively. For these three criteria, we will derive the analytical

expression for the SOP and the asymptotic SOP in the high

regime of MER.

IV. SECRECY OUTAGE PROBABILITY

A. Lower Bound for Criterion I

Based on the selection criterion in (17), we write the lower

bound on the SOP as

PLB

out = Pr

[(

max
1≤n≤N

min
( un

(γs − 1)(1 + zn)
,
P̃r + v1n

γs

)

)

< P̃r + v2n∗

]

. (21)

By defining θn as,

θn = min
( un

(γs − 1)(1 + zn)
,
P̃r + v1n

γs

)

, (22)

we rewrite PLB

out as

PLB

out = Pr
(

max
1≤n≤N

θn < P̃r + v2n∗

)

. (23)

Note that both un and v1n follow exponential distribution with

mean α and β1, respectively. The PDF of zn is given by [31]

fzn(z) =
∑

(i,j)

χi,j
(εPI<i>)

−j

(j − 1)!
zj−1e

− z
εPI<i> , (24)

where

∑

(i,j)

=

ρ(A)
∑

i=1

τi(A)
∑

j=1

, (25)

and A = diag(εP̃I1, εPI2, · · · , εP̃IM ). We denote ρ(A) as the

number of distinct diagonal elements, εP̃I<1> > εP̃I<2> >
· · · > εP̃I<ρ(A)> as the distinct diagonal elements in decreas-

ing order, τi(A) as the multiplicity of εP̃I<i>, and χi,j as

the (i, j)-th characteristic coefficient of A. From the above,

we obtain the CDF of θn∗ = max1≤n≤N θn in the following

theorem.

Theorem 1: The CDF of θn∗ is

Fθn∗
(θ) = 1−

N
∑

n=1

∑

(i,j)

nτi(A)
∑

k=1

(

N

n

)

(−1)n−1di,ke
n

P̃β1

× exp

[

−
(

−(
γs
β1

+
γs − 1

α
)nθ

)]

(

θ +
α

(γs − 1)εP̃I<i>

)−k

,

(26)

where

di,k =
1

[nτi(A)− k]!

dnτi(A)−k

dxnτi(A)−k

[

g(x)

×
(

x+
α

(γs − 1)εP̃I<i>

)k]

|x=− α

(γs−1)εP̃I<i>

, (27)

with

g(x) =
[

∑

(i,j)

χi,j

[

1 +
(γs − 1)εP̃I<i>

α
θ
]−j
]n

. (28)

Proof : See Appendix A.

From Theorem 1 and (23), we can write the lower bound on

the SOP for criterion I in eqs. (29)-(30), as shown at the top of

the next page, where [24, eq.(3.352.4)] and [24, eq.(3.353.2)]

are used to achieve the last equality and Ξ(a, b, k) is given by

Ξ(a, b, k) =























eabE1(ab), k = 1

1
(k−1)!

∑k−1
n=1(n− 1)!(−a)k−n−1b−n

+ (−a)k−1

(k−1)! e
abE1(ab), k ≥ 2

.

(31)

B. Lower Bound for Criteria II and III

We firstly express criterion II of (18) and III of (19) in a

unified way as

n∗ = arg max
1≤n≤N

min(un,
v1n + c1

c2
), (32)

where c1 = P̃r and c2 = γs

(γs−1)(1+εPIA) correspond to

criterion II, while c1 = 0 and c2 = 1 correspond to criterion

III. Note that in the existing works such as [20] and [32],
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PLB

out = 1−
N
∑

n=1

∑

(i,j)

nτi(A)
∑

k=1

(

N

n

)

(−1)n−1 di,k
β2

exp

[

−
(

−n(γs − 1)

P̃
(
1

α
+

1

β1
)

)]

×
∫ ∞

0

e−[ 1
β2

+n( 1
β2

+ γs−1
α

)]v2 1
(

v2 + P̃r +
α

(γs−1)εP̃I<i>

)k
dv2 (29)

= 1−
N
∑

n=1

∑

(i,j)

nτi(A)
∑

k=1

(

N

n

)

(−1)n−1 di,k
β2

exp

[

−
(

−n(γs − 1)

P̃
(
1

α
+

1

β1
)

)]

Ξ
[ 1

β2
+ n(

1

β2
+

γs − 1

α
), P̃r +

α

(γs − 1)εP̃I<i>

, k
]

,

(30)

PLB

out =1− b1b3e
−

γs−1

P̃
( 1
α
+ 1

β1
)
∑

(i,j)

χi,j

(

α

ϑi

)j

Ξ

[

γs − 1

α
+

γs
β1

, P̃r +
α

ϑi
, j

]

−
N−1
∑

n=0

∑

(i,j)

b2nb3χi,je
−

γs−1

P̃
( 1
β1

+n+1
ζ

)

(

ζ

(n+ 1)ϑi

)j

× Ξ

[

γs
β1

+
(n+ 1)(γs − 1)

ζ
, P̃r +

ζ

(n+ 1)ϑi
, j

]

−
N−1
∑

n=0

∑

(i,j)

b1b4nχi,je
−

γs−1

P̃
( 1
α
+n+1

c2ζ
)

(

α

ϑi

)j

× Ξ

[

γs − 1

α
+

(n+ 1)γs
c2ζ

, P̃r +
α

ϑi
, j

]

−
N−1
∑

n1=0

N−1
∑

n2=0

∑

(i,j)

b2n1b4n2χi,je
−

γs−1

P̃ ζ
(1+n1+

n2+1
c2

)
(

ζ

(n2 + 1)ϑi

)j

× Ξ

[

(n1 + 1)(γs − 1)

ζ
+

(n2 + 1)γs
c2ζ

, P̃r +
ζ

(n2 + 1)ϑi
, j

]

, (43)

un∗ and v1n∗ were selected when c1 = 0, which means that

they are special cases of the present work. Using (32), we can

obtain the CDFs of un∗ and v1n∗ in the following theorem.

Theorem 2: The CDFs of un∗ and v1n∗ are given by

Fun∗
(x) = 1− b1e

− x
α −

N−1
∑

n=0

b2ne
−

(n+1)x
ζ , (33)

Fv1n∗
(x) = 1− b3e

− x
β1 −

N−1
∑

n=0

b4ne
−

(n+1)x
c2ζ , (34)

where

ζ =
αβ1

c2α+ β1
, (35)

b1 =

N−1
∑

n=0

N

(

N − 1

n

)

(−1)n
c2ζ

c2ζ + nβ1
e−

c1n

c2α , (36)

b2n = N

(

N − 1

n

)

(−1)n
( 1

n+ 1
− c2ζ

c2ζ + nβ1

)

e
(n+1)c1

β1 ,

(37)

b3 = 1−
N−1
∑

n=0

N

(

N − 1

n

)

(−1)n
( 1

n+ 1
− ζ

ζ + nα

)

e−
c1(n+1)

c2α ,

(38)

b4n = N

(

N − 1

n

)

(−1)n
( 1

n+ 1
− ζ

ζ + nα

)

e−
c1(n+1)

c2α .

(39)

Proof : See Appendix B.

From Theorem 2, we write the lower bound on the SOP for

criteria II and III as

PLB

out = Pr

[

min
( un∗

(γs − 1)(1 + zn∗)
,
P̃r + v1n∗

γs

)

< P̃r + v2n∗

]

(40)

= 1− Pr[un∗ ≥ (γs − 1)(1 + zn∗)(P̃r + v2n∗),

v1n∗ ≥ γs(P̃r + v2n∗)− P̃r] (41)

= 1−
∫ ∞

0

∫ ∞

0

[

1− Fun∗
[(γs − 1)(1 + zn∗)

× (P̃r + v2n∗)]
][

1− Fv1n∗
(γs(P̃r + v2n∗)− P̃r)

]

× fv2n∗
(v2n∗)fzn∗

(zn∗)dv2n∗dzn∗ . (42)

By using the PDF of zn∗ in (24) and fv2n∗
(v2n∗) = 1

β2
e−

v2n∗

β2 ,

and solving the integral, we obtain the analytical lower bound

on the SOP for criteria II and III in (43), as shown at the top

of this page, where ϑi = (γs − 1) εPI<i>. By setting c1 = P̃r

with c2 = γs

(γs−1)(1+εPIA) and c1 = 0 with c2 = 1 into the

above equation, we obtain the lower bound on the SOP for

criteria II and III, respectively.

C. Asymptotic SOP for Criterion I

In order to get insights into the system behavior for criterion

I, we present an asymptotic expression for the SOP, when high

MER is assumed. By applying the approximation of e−x ≃
1 − x and (1 + x)−n ≃ 1 − nx for small value of |x|, we

obtain the asymptotic CDF of θn as

Fθn(θ) ≃
( γs
β1

+
(γs − 1)(1 + εP̃IA)

α

)

θ, (44)
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where we also assume a large transmit power P , and P̃IA =
∑M

m=1 P̃Im denotes the total transmit power of interferers.

From the asymptotic Fθn(θ), we write the asymptotic SOP

for criterion I as

Pout ≃
(γs
β1

+
(γs − 1)(1 + εP̃IA)

α

)N
∫ ∞

0

vN2 fv2(v2)dv2

(45)

=
N !

λN

(

γs +
β1(γs − 1)(1 + εP̃IA)

α

)N

, (46)

where λ = β1

β2
is the MER, defined as the average channel

gain ratio of the main to the eavesdropper link. From (46),

we conclude that the secrecy diversity order is equal to the

number of relays, where the secrecy diversity order can be

defined as limλ→∞
− logPout

log λ . Hence, the network security can

be profoundly enhanced by increasing the number of relays.

Moreover, it is find that the asymptotic SOP depends on the

total transmit power of interferers, but not on the interference

power distribution.

D. Asymptotic SOP for Criteria II and III

We now provide the asymptotic SOP for criteria II and III

with high MER. By applying the approximation of e−x ≃
∑N

n=0
(−1)n

n! xn [29] for small value of |x|, we obtain the

asymptotic distributions of un∗ and v1n∗ as

Fun∗
(x) ≃

(x

ζ

)N β1

β1 + c2α
, (47)

Fv1n∗
(x) ≃

( x

c2ζ

)N c2α

β1 + c2α
, (48)

where we also assume a large transmit power P . Then the

asymptotic SOP for criteria II and III can be written by

Pout ≃ Pr
[

min
( un∗

(γs − 1)(1 + zn∗)
,
v1n∗

γs

)

< v2n∗

]

(49)

= 1− Pr
[

un∗ ≥ (γs − 1)(1 + zn∗)v2n∗ , v1n∗ ≥ γsv2n∗

]

(50)

=
(γs − 1)N

ζN
β1

β1 + c2α

∫ ∞

0

∫ ∞

0

(1 + zn∗)NvN2n∗

× fv2n∗
(v2n∗)fzn∗

(zn∗)dzn∗dv2n∗

+
γN
s

ζN
α

(β1 + c2α)c
N−1
2

∫ ∞

0

vN2n∗fv2n∗
(v2n∗)dv2n∗ . (51)

By applying the PDFs of zn∗ and v2n∗ , and then solving the

integral, we obtain the asymptotic SOP for criteria II and III

as

Pout ≃
N !

λN

(β1 + c2α

α

)N−1(β1(γs − 1)N

α
Tz +

γN
s

cN−1
2

)

,

(52)

where Tz = E{(1 + zn∗)N} =
∑N

n=0

∑

(i,j)

(

N
n

)

χi,j
(n+j−1)!
(j−1)! (εPI<i>)

n. By setting c2
to γs

(γs−1)(1+εPIA) and 1, we obtain the asymptotic SOP of

criteria II and III, respectively.

From the asymptotic expression, it is evident that criteria II

and III achieve the full secrecy diversity of order N . Hence,

the system secrecy performance is significantly enhanced by
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Fig. 2. Secrecy outage probability versus the transmit power P : Criterion I

increasing the number of relays. Moreover, it is found from

[33]–[35] that Tz is a Schur-convex function with respect to

the interference power vector [PI1 , PI2 , · · · , PIM ]. Hence, the

interference power distribution affects the SOP of criteria II

and III as follows: for a given total interference power, the

optimal secrecy performance is achieved with equal-power

interferers, while only one effective interferer3 leads to the

worst secrecy performance.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we present some simulation and numerical

results to demonstrate the impact of co-channel interference

and relay selection on the secrecy performance. All links in

the network experience Rayleigh flat fading. Without loss of

generality, the distance between the source S and destination

D is normalized to unity, and the relays are in between. Let

D denote the distance between the relays and D, so that α =
(1−D)−4 and β1 = D−4, where the path loss model with the

exponent of 4 is used. Note that the path loss model can be

used for the average channel gains of eavesdropping links. Let

DE denote the distance between the relays and E. Then ε is set

to D−4
E , and the associated MER is (D/DE)

−4. Since MER

is related to DE , and is a key factor that regulates the secrecy

performance, we prefer to use MER as a key parameter in the

simulations, which can actually reflect the value of DE since

DE = D · MER1/4. The average channel gain of interfering

links is set to one, and the target secrecy data rate Rs is set

to 0.5 bps/Hz, so that the associated secrecy SNR threshold

γs is 2.

Figs. 2-4 illustrate the effect of transmit power P on the

SOP with λ = 30dB, where D = 0.5, No = 1, M = 3, and

N varies from 1 to 4. Specifically, Figs. 2, 3 and 4 correspond

to criteria I, II and III, respectively. The total transmit power

of interferers PIA is set to 10 dB, and un-equal interference

power distribution is used with PI1 = 7, PI2 = 2 and PI3 = 1.

In this work, we consider the transmit power of the source

3As shown in [26], one effective interferer indicates that one interferer uses
the total interference power to transmit signal, while the other interferes do
not transmit signals.
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and interferers normalized by the noise power, and hence

the relative unit of PIA is dB. As it is observed from these

figures, for each criterion and each number of relays, the lower

bound on SOP is close to the simulation results in the entire

region of P . This validates the effectiveness of the derived

lower bound expression. Moreover, the SOP for each criterion

is profoundly improved by increasing the number of relays,

as more relays can help strengthen the secure transmission.

The SOP can be also improved by increasing P . However,

this improvement is almost saturated for large P , since the

fixed main-to-eavesdropper ratio becomes the bottleneck of

the network security.

Figs. 5-7 demonstrate the impact of relay selection and

MER on the SOP with P = 40 dB, where M = 2 and the un-

equal interference power distribution is used with PI1 = 7,

PI2 = 2 and PI3 = 1. Specifically, Figs. 5, 6 and 7

correspond to criteria I, II and III, respectively. As can be

seen, for each criterion, the lower bound on SOP matches well

with the simulation result in the entire region of MER. This

also validates the effectiveness of the derived lower bound

expression. Moreover, the asymptotic result approaches the
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exact result with high MER, which corroborates the derived

asymptotic expression for each criterion. Furthermore, the

curve slope of SOP is in parallel with the number of relays,

indicating that the network secrecy diversity order is equal to
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Fig. 10. Impact of interference power distribution on SOP: Criterion III

N for each criterion.

Figs. 8-10 show the impact of interference power distri-

bution on the network SOPs of the three selection criteria,

where N = 4, M = 3 and the total interference power PIA is
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Fig. 11. Performance comparison among relay selection schemes.

fixed to 10 dB. Specifically, Figs. 8, 9 and 10 correspond to

criteria I, II and III, respectively. For comparison, we consider

three interference scenarios: the equal-power interferers with

PI1 = PI2 = PI3 = 10
3 , the distinct-power interferers with

[PI1 , PI2 , PI3 ] = [7, 2, 1], and the only one effective interferer

with [PI1 , PI2 , PI3 ] = [10, 0, 0]. As can be clearly observed

from Figs. 8-10 that the SOP of criterion I remains almost

unchanged with the three interference scenarios, indicating

that the network security is not affected by the interference

power distribution. In contrast, the secrecy outage probabilities

of criteria II and III are both affected by the interference

scenarios. In particular, the optimal secrecy performances

of criterion II and III can be achieved for the equal-power

interferers, while the secrecy performances become worst for

the only one effective interferer. Such observation validates the

insights into the asymptotic SOP expressions of criteria II and

III. We note that the interference power distribution imposes

a noticeable impact on the secrecy performance of criteria II

and III only in the high MER regime. This motivates us to

use the asymptotic SOP to evaluate the impact of interference

power distribution on the secrecy performances.

Fig. 11 compares the secrecy performances of the three

selection criteria versus MER, where N = 4, M = 3 and

the total interference power PIA is set to 10 dB. The un-equal

interference power distribution with PI1 = 7, PI2 = 2 and

PI3 = 1 is used. For comparison, we also present the simulated

SOP result of the relay selection scheme in [22]. As observed

from Fig. 11, we find that criterion I outperforms criterion II

by achieving lower secrecy outage probability, since the former

employs the instantaneous information of interfering links in

the relay selection. We then find that criterion II outperforms

criterion III, since the former incorporates different impact

from the two hops into the network security. Furthermore,

the selection scheme in [28] achieves higher secrecy outage

probability than the three selection investigated in this work.

This is because that the selection scheme proposed in [28] is

a partial relay selection scheme that relies on the second-hop

main channel only, for the sake of low complexity.

Fig. 12 illustrates the secrecy outage probabilities of the
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three selection criteria with respect to the number of interferers

M , where N = 3, P = 40 dB and λ = 30 dB. The number

of interferers varies from 1 to 5, and each interferer has the

equal transmit power of 3 dB. From this figure, we find that

for different number of interferers, criterion I outperforms cri-

terion II, and criterion II outperforms criterion III, which is in

accordance with the results in Fig. 11. Moreover, the network

secrecy performance becomes worse when M increases, since

more interferers deteriorate the forwarding ability of relays.

VI. CONCLUSIONS

In this paper, we studied the communication security of

multi-AF relay networks with co-channel interference. A novel

lower bound expression was developed for the network secrecy

outage probability, and then three selection criteria were

presented to select the best relay among multiple ones, in

order to deal with the co-channel interference and wiretap. For

each criterion, we derived an analytical lower bound on SOP

and also provided an asymptotic expression in the high MER

region. From this expression, we found that each criterion

achieves the full secrecy diversity order, and the interference

power distribution affects the SOP of criterion II and III.

Simulations and numerical results were presented to validate

the proposed studies and verify the obtained insights on the

system.

APPENDIX A

PROOF OF THEOREM 1

The CDF of θn = min
(

un

(γs−1)(1+zn)
, P̃r+v1n

γs

)

is given by

Fθn(θ) = Pr
[

min
( un

(γs − 1)(1 + zn)
,
P̃r + v1n

γs

)

≤ θ
]

(A.1)

= 1− Pr
[ un

(γs − 1)(1 + zn)
> θ,

P̃r + v1n
γs

> θ
]

.

(A.2)

Since v1n is independent of un and zn, we can further write

Fθn(θ) as

Fθn(θ) = 1− Pr
[

un > (γs − 1)(1 + zn)θ
]

× Pr
[

v1n > (γsθ − P̃r)
]

(A.3)

= 1−
[

∫ ∞

0

∫ ∞

(γs−1)(1+zn)θ

fun
(un)fzn(zn)dundzn

]

×
∫ ∞

γsθ−P̃r

fv1n(v)dv. (A.4)

By applying the PDFs of un, zn and v1n into the above

equation and then solving the integral, we can obtain the CDF

of θn as

Fθn(θ) = 1− e
1

P̃β1
−
(

γs
β1

+ γs−1
α

)

θ∑

(i,j)

χi,j

[

1 +
θ(γs − 1)εP̃I<i>

α

]−j

.

(A.5)

Since θn is independent of each other, we can write the CDF

of θn∗ = max1≤n≤N θn by using the order statistics as,

Fθn∗
(θ) =

[

1− e
1

P̃β1 e−( γs
β1

+ γs−1
α

)θ̃
∑

(i,j)

χi,j

×
[

1 +
(γs − 1)εP̃I<i>

α
θ
]−j
]N

(A.6)

= 1−
N
∑

n=1

(

N

n

)

(−1)n−1e
n

P̃β1 e−( γs
β1

+ γs−1
α

)nθ

×
[

˜∑

(i,j)

χi,j

[

1 +
(γs − 1)εP̃I<i>

α
θ
]−j
]n

. (A.7)

By applying [24, eq. (2.102)] into the above equation, we can

arrive at the CDF of Fθn∗
(θ), as shown in (26) of Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

From the selection criterion in (32), we now compute the

CDF of un∗ as

Fun∗
(x) =

N
∑

n=1

Pr
[

un ≤ x,min(un,
v1n + c1

c2
) ≥

max
1≤m≤N,m ̸=n

φm

]

, (B.1)

where φm = min(um, v1m+c1
c2

). Due to the symmetry among

N relays, we can rewrite Fun∗
(x) as

Fun∗
(x) = N Pr

[

u1 ≤ x,min(u1,
v11 + c1

c2
) ≥ φm∗

]

,

(B.2)

where φm∗ = max2≤m≤N φm. The CDF of φm is derived as

Fφm
(φ) = Pr

[

min(um,
v1m + c1

c2
) ≤ φ

]

(B.3)

= 1− Pr(um > φ) · Pr(v1m > c2φ− c1). (B.4)

We now consider the two cases of 0 < φ < c1
c2

and φ ≥ c1
c2

,

respectively. When 0 < φ < c1
c2

, c2φ − c1 < 0 and hence

v1m > c2φ− c1 always holds. In this case, Fφm
(φ) becomes

Fφm
(φ) = 1− e−

φ
α . (B.5)
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On the other hand, when φ ≥ c1
c2

, c2φ − c1 ≥ 0 holds, and

Fφm
(φ) becomes

Fφm
(φ) = 1− e−

φ
α e−

c2φ−c1
β1 . (B.6)

From the above CDF of φm, we can write the CDF of φm∗

as

Fφm∗
(φ) =



















































(1− e−
φ
α )N−1 =

N−1
∑

n=0

(

N − 1

n

)

(−1)ne−
nφ
α ,

0 < φ < c1
c2
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where ζ is defined in (35). From (B.2), we can further write

Fun∗
(x) as

Fun∗
(x) = N

∫

c1
c2

0

fφm∗
(φ)

∫ x

φ

fu1(u1)du1dφ

+N

∫ ∞

c1
c2

fφm∗
(φ)
[

∫ x

φ

fu1(u1)du1 ·
∫ ∞

c2φ−c1

fv1(v1)dv1

]

dφ.

(B.7)

By applying the distributions of φm∗ , u1 and v1 into the above

equation, and then solving the integral, we can arrive at the

CDF of un∗ , as shown in (33) of Theorem 2. Similarly, we

can obtain the CDF of v1n∗ , as shown in Theorem 2. In this

way, we have completed the proof of Theorem 2.
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