
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

10-2011

Secure Network Provenance Secure Network Provenance

Wenchao Zhuo
University of Pennsylvania

Qiong Fei
University of Pennsylvania

Arjun Narayan
University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania, ahae@cis.upenn.edu

Boon Thau Loo
University of Pennsylvania, boonloo@cis.upenn.edu

See next page for additional authors
Follow this and additional works at: https://repository.upenn.edu/cis_papers

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation

Wenchao Zhuo, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo, and Micah Sherr, "Secure

Network Provenance", . October 2011.

Zhuo, W., Fei, Q., Narayan, A., Haeberlen, A., Loo, B., & Sherr, M., Secure Network Provenance, 23rd ACM Symposium
on Operating Systems Principles (SOSP'11), Oct. 2011, doi: 10.1145/2043556.2043584
ACM COPYRIGHT NOTICE. Copyright © 2011 by the Association for Computing Machinery, Inc. Permission to make
digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1
(212) 869-0481, or permissions@acm.org.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/608
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.acm.org/10.1145/2043556.2043584
mailto:permissions@acm.org
https://repository.upenn.edu/cis_papers/608
mailto:repository@pobox.upenn.edu

Secure Network Provenance Secure Network Provenance

Abstract Abstract
This paper introduces secure network provenance (SNP), a novel technique that enables networked
systems to explain to their operators why they are in a certain state – e.g., why a suspicious routing table
entry is present on a certain router, or where a given cache entry originated. SNP provides network
forensics capabilities by permitting operators to track down faulty or misbehaving nodes, and to assess
the damage such nodes may have caused to the rest of the system. SNP is designed for adversarial
settings and is robust to manipulation; its tamper-evident properties ensure that operators can detect
when compromised nodes lie or falsely implicate correct nodes. We also present the design of SNooPy, a
general-purpose SNP system. To demonstrate that SNooPy is practical, we apply it to three example
applications: the Quagga BGP daemon, a declarative implementation of Chord, and Hadoop MapReduce.
Our results indicate that SNooPy can efficiently explain state in an adversarial setting, that it can be
applied with minimal effort, and that its costs are low enough to be practical.

Disciplines Disciplines
Computer Sciences

Comments Comments
Zhuo, W., Fei, Q., Narayan, A., Haeberlen, A., Loo, B., & Sherr, M., Secure Network Provenance, 23rd ACM
Symposium on Operating Systems Principles (SOSP'11), Oct. 2011, doi: 10.1145/2043556.2043584

ACM COPYRIGHT NOTICE. Copyright © 2011 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

Author(s) Author(s)
Wenchao Zhuo, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo, and Micah Sherr

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/608

http://doi.acm.org/10.1145/2043556.2043584
mailto:permissions@acm.org
https://repository.upenn.edu/cis_papers/608

Secure Network Provenance

Wenchao Zhou
University of Pennsylvania

Qiong Fei
University of Pennsylvania

Arjun Narayan
University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania

Boon Thau Loo
University of Pennsylvania

Micah Sherr
Georgetown University

ABSTRACT

This paper introduces secure network provenance (SNP), a
novel technique that enables networked systems to explain to
their operators why they are in a certain state – e.g., why a
suspicious routing table entry is present on a certain router,
or where a given cache entry originated. SNP provides net-
work forensics capabilities by permitting operators to track
down faulty or misbehaving nodes, and to assess the damage
such nodes may have caused to the rest of the system. SNP
is designed for adversarial settings and is robust to manip-
ulation; its tamper-evident properties ensure that operators
can detect when compromised nodes lie or falsely implicate
correct nodes.

We also present the design of SNooPy, a general-purpose
SNP system. To demonstrate that SNooPy is practical,
we apply it to three example applications: the Quagga
BGP daemon, a declarative implementation of Chord, and
Hadoop MapReduce. Our results indicate that SNooPy can
efficiently explain state in an adversarial setting, that it can
be applied with minimal effort, and that its costs are low
enough to be practical.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems; D.4.5
[Software]: Operating Systems—Reliability

General Terms

Algorithms, Design, Reliability, Security

Keywords

Accountability, Byzantine faults, Distributed systems, Evi-
dence, Provenance, Security

1. INTRODUCTION
Operators of distributed systems often find themselves need-
ing to answer a diagnostic or forensic question. Some part
of the system is found to be in an unexpected state – for
example, a suspicious routing table entry is discovered, or a

proxy cache is found to contain an unusually large number of
advertisements. The operators must determine the causes of
this state before they can decide on an appropriate response.
On the one hand, there may be an innocent explanation: the
routing table entry could be the result of a misconfiguration,
and the cache entries could have appeared due to a workload
change. On the other hand, the unexpected state may be the
symptom of an ongoing attack: the routing table entry could
be the result of route hijacking, and the cache entries could
be a side-effect of a malware infection. If an attack or mis-
configuration is discovered, the operators must determine its
effects, such as corrupted state or configuration changes on
other nodes, so that these nodes can be repaired and the
system brought back to a correct state.

In this paper, we consider forensics in an adversarial set-
ting, that is, we assume that a faulty node does not neces-
sarily crash but can also change its behavior and continue
operating. To be conservative, we assume that faults can
be Byzantine [24], i.e., a faulty node can behave arbitrar-
ily. This covers a wide range of faults and misbehavior, e.g.,
cases where a malicious adversary has compromised some of
the nodes, but also more benign faults, such as hardware
failures or misconfigurations. Getting correct answers to
forensic queries in an adversarial setting is difficult because
the misbehaving nodes can lie to the querier. For example,
the adversary can attempt to conceal his actions by causing
his nodes to fabricate plausible (but incorrect) responses to
forensic queries, or he can attempt to frame correct nodes
by returning responses that blame his own misbehavior on
them. Thus, the adversary can gain valuable time by mis-
directing the operators and/or causing them to suspect a
problem with the forensic system itself.

Existing forensic systems are either designed for non-
adversarial settings [43, 51] or require some trusted com-
ponents, e.g., a trusted virtual-machine monitor [3, 21], a
trusted host-level monitor [27], a trusted OS [29], or trusted
hardware [7]. However, most components that are avail-
able today are not fully trustworthy; OSes and virtual ma-
chine monitors have bugs, which a powerful adversary could
exploit, and even trusted hardware is sometimes compro-
mised [20]. We argue that it is useful to have alternative
techniques available that do not require this type of trust.

We introduce secure network provenance (SNP), a tech-
nique for building forensic systems that can operate in a
completely untrusted environment. We assume that the ad-
versary may have compromised an arbitrary subset of the
nodes, and that he may have complete control over these
nodes. On the one hand, this very conservative threat model
requires some compromises: an SNP system can only answer

queries about observable network state—i.e., state that has
directly or indirectly affected at least one correct node—
and its responses can be incomplete, although the missing
parts are always clearly identified. On the other hand, an
SNP system provides strong, provable guarantees: it ensures
that an observable symptom of a fault or an attack can al-
ways be traced to a specific event—passive evasion or active
misbehavior—on at least one faulty node, even when an ad-
versary attempts to prevent this.

Two existing concepts, data provenance and tamper-
evident logging, can provide a starting point for building
SNP systems. Data provenance [4, 51] tracks and records
data dependencies as data flows through the system. In the
context of distributed systems, network provenance [51] is
captured as a global dependency graph, where vertices are
data items that represent state at a particular node, and
edges represent local processing or message transmissions
across nodes. This graph can then be used to answer foren-
sic queries. Tamper-evident logging [17] can record data in
such a way that forgeries, omissions, and other forms of tam-
pering can be detected and proven to a third party.

However, as is often the case in computer security, a sim-
ple layering of these two concepts fails to achieve the de-
sired goal. If an existing network provenance system, say
ExSPAN [51], were combined with a system like PeerRe-
view [17] that supports tamper-evident logging, an adversary
could potentially subvert the resulting system by attacking
it twice. The first attack would corrupt the system’s internal
data structures; this would require a protocol violation that
PeerReview could detect, but not diagnose or repair. With
the data structures suitably damaged, the adversary could
then carry out the second attack without further protocol vi-
olations, and without leaving visible traces in the provenance
system. Thus, the second attack would be invisible.

We have designed SNooPy, a system that provides se-
cure network provenance by combining evidence-based dis-
tributed query processing with a novel provenance model
that is specially designed with fault detection in mind.
We have formalized SNP’s security properties, and we
have proven that SNooPy satisfies them. To demonstrate
SNooPy’s practicality and generality, we have implemented
a prototype, and we have applied it to three example ap-
plications: the Quagga BGP daemon [35], a declarative im-
plementation of Chord [26], and Hadoop MapReduce [12].
Our evaluation demonstrates SNooPy’s ability to solve real-
world forensic problems, such as finding the causes and
effects of BGP misconfigurations, DHT routing attacks,
and corrupt Hadoop mappers; our results also show that
SNooPy’s costs (additional bandwidth, storage, and com-
putation) vary with the application but are low enough to be
practical. In summary, we make the following contributions:

• A provenance graph for causal, dynamic, and historical
provenance queries that is suitable for SNP (Section 3);

• SNP, a method to securely construct network prove-
nance graphs in untrusted environments (Section 4);

• The design of SNooPy, a system that implements SNP
for the provenance graph presented earlier (Section 5);

• A proof of correctness for SNooPy (sketched here, and
included in the extended version of this paper [50]);

• An application of SNooPy to Quagga, Chord, and
Hadoop MapReduce (Section 6); and

• A quantitative evaluation (Section 7).

Why did that route
change just now?

Alice

Figure 1: Motivating scenario. Alice is running a
distributed system and observes some unexpected
behavior that may indicate a fault or an attack.

2. OVERVIEW
Figure 1 illustrates the scenario that we are addressing in
this paper. An administrator, here called Alice, is operat-
ing a distributed system – perhaps a cluster, a corporate
network, or a content distribution system. At some point,
Alice observes some unexpected behavior in the system and
decides to investigate whether the behavior is legitimate or
perhaps a symptom of a fault or an attack. Our goal is to
enable Alice to query the system about the causes and effects
of the unexpected behavior, and to obtain reliable results.

To achieve this goal, we extend each node in the system
with a monitoring component that maintains some forensic
information. We refer to the system that is being monitored
as the primary system and to our additional components as
the provenance system. To be useful to Alice, the provenance
system should have the following two high-level properties:

• When the queried behavior is legitimate, the system
should return a complete and correct explanation.

• When the queried behavior is a symptom of a fault or
misbehavior, the explanation should tie it to a specific
event on a faulty or misbehaving node.

By behavior, we mean a state change or a message trans-
mission on any node. We assume that Alice knows what
behavior is legitimate, e.g., because she knows which soft-
ware the system was expected to run.

2.1 Threat model
Since we would like to enable Alice to investigate a wide
range of problems, ranging from simple misconfigurations to
hardware faults and even clandestine attacks, we conserva-
tively assume Byzantine faults [24], i.e., that an adversary
may have compromised an unknown subset of the nodes,
and that he has complete control over them. Thus, the
non-malicious problems are covered as a special case. We
assume that the adversary can change both the primary sys-
tem and the provenance system on these nodes, and he can
read, forge, tamper with, or destroy any information they
are holding. We also assume that no nodes or components
of the system are inherently safe, i.e., Alice does not a priori
trust any node other than her own local machine.

Handling such a broad range of faults is challenging be-
cause Alice cannot be sure that any data she is receiving
is actually correct. When she queries a compromised node,
the adversary can cause that node to lie or equivocate. In
particular, he can try to forge a plausible explanation for the
symptoms Alice has observed, or he can try to make it ap-
pear as if the symptoms were caused by a different node. If

this is not prevented, Alice could overlook the attack entirely
or waste time trying to repair the wrong nodes.

2.2 Approach
Our approach to this challenge is to construct a distributed
data structure called the provenance graph which, at a high
level, tracks how data flows through the system. Data prove-
nance itself is not a new concept—it has been explored by
the database and the system community [4, 10, 19, 29, 47,
51]—but most existing provenance systems are designed for
non-adversarial settings and lack features that are necessary
for forensics. For example, existing systems focus on explain-
ing state that exists at query time (“Why does τ exist?”),
which would allow an adversary to thwart Alice’s investiga-
tion simply by deleting data that implicates him. To support
forensics, we additionally provide historical queries (“Why
did τ exist at time t?”) and dynamic queries (“Why did τ
(dis)appear?’); to assist with recovery, we also provide causal
queries (“What state on other nodes was derived from τ?”),
which can be used to determine which parts of the system
have been affected and require repair.

Our key contribution, however, is to secure the prove-
nance graph. Ideally, we would like to correctly answer Al-
ice’s queries even when the system is under attack. How-
ever, given our conservative threat model, this is not always
possible. Hence, we make the following two compromises:
first, we only demand that the system answer provenance
queries about behavior that is observable by at least one cor-
rect node [15]; in other words, if some of the adversary’s
actions never affect the state of any correct node, the sys-
tem is allowed to omit them. Second, we accept that the
system may sometimes return an answer that is incorrect
or incomplete, as long as Alice can a) tell which parts of
the answer are affected, and she can b) learn the identity
of at least one faulty node. In a forensic setting, this seems
like a useful compromise: any unexpected behavior that can
be noticed by Alice is observable by definition, and even a
partial answer can help Alice to determine whether a fault
or misbehavior has occurred, and which parts of the system
have been affected.

2.3 Provenance and confidentiality
If Alice can query any datum on any node, she can poten-
tially learn the full state of the entire system. Throughout
this paper, we will assume that Alice is authorized to have
this information. In centrally managed systems, there are
typically at least some individuals (e.g., the system adminis-
trators) who have that authority. Examples of such systems
include academic or corporate networks as well as infrastruc-
ture services—such as Akamai’s CDN—that are physically
distributed but controlled by a single entity.

In systems without central management, it is sometimes
possible to partition the state among different managers.
For example, in Amazon’s Elastic MapReduce service, the
owner of a given MapReduce job could be authorized to is-
sue queries about that specific job while being prevented
from querying jobs that belong to other customers. In other
cases, abstractions can be used to hide confidential details
from unauthorized queriers. SNP includes extensions to the
provenance graph that can selectively conceal how certain
parts of a node’s state were derived. As discussed in Sec-
tion 3.4, the resulting graph can be queried without disclos-
ing the node’s actual computation.

2.4 Strawman solutions
It is natural to ask whether our goals could be achieved by
using some combination of an existing fault detection sys-
tem, such as PeerReview [17], and/or an existing network
provenance system, such as ExSPAN [51]. However, a sim-
ple combination of these two systems is insufficient for the
following reasons.

Individually. In isolation, neither of the two systems can
achieve our goals. PeerReview can detect when nodes de-
viate from the algorithm they are expected to run, but it
provides no mechanisms for detecting or diagnosing prob-
lems that result from interactions between multiple nodes
(such as an instance of BadGadget [11] in interdomain rout-
ing), or problems that are related to nodes lying about their
local inputs or deliberately slowing down their execution.
ExSPAN captures the interactions among nodes via prove-
nance, but cannot detect when compromised nodes lie about
provenance.

Layering. A natural approach to addressing ExSPAN’s se-
curity vulnerabilities is simply to layer ExSPAN over Peer-
Review. However, this approach also fails to achieve the de-
sired security guarantees. First, PeerReview reports faults
with a certain delay; thus, a compromised node has a window
of opportunity in which it can corrupt the provenance graph.
Even if detection is nearly instantaneous, simply identifying
the faulty node is not sufficient: since the graph is itself
distributed, effects of the corruption can manifest in parts
of the provenance graph that are stored on other nodes, and
there is no way for the layered approach to detect this easily.
This means that once a fault is detected by PeerReview, the
results of further provenance queries (e.g., to find other com-
promised nodes, or to locate corrupted state) can no longer
be trusted, and the entire provenance system is rendered
unusable.

Our integrated solution. Achieving hard guarantees for
secure provenance requires rethinking both ExSPAN and
PeerReview. Instead of layering one system over the other,
we tightly integrate the process of provenance generation
and querying with the underlying fault detection system.
Providing secure network provenance involves a fundamen-
tal redesign of ExSPAN’s query and provenance model to
enable tamper-evident query processing and the generation
of evidence against faulty nodes, which can be used for fur-
ther investigations.

In the following sections, we not only demonstrate that
our integrated approach achieves the desired high-level prop-
erties introduced earlier at a cost that is low enough to
be practical, we also experimentally validate its usefulness
by performing forensic analysis on several existing applica-
tions. An additional benefit of this tight integration and
our richer provenance model is that we can naturally sup-
port richer forensic queries, such as historical, dynamic, and
causal provenance queries.

3. PROVENANCE GRAPH
In this section, we introduce our system model, and we de-
fine an ‘ideal’ provenance graph G, based on the true actions
of each node. Of course, if faulty nodes can lie about their
actions or suppress information, a correct node that is pro-
cessing a provenance query may not be able to reconstruct G
entirely. However, as we will show in the following sections,
SNP can reconstruct a close approximation Gν of G.

3.1 System model
For ease of exposition, we adopt a system model that is
commonly used in database systems to reason about data
provenance. In this model, the state of the primary system
is represented as tuples, and its algorithm is represented as
derivation rules [51], which describe how tuples are derived
from the system’s inputs. Few practical systems are explic-
itly built in terms of tuples and derivation rules, but this
is not required to apply SNP: in Section 5.3, we describe
three general techniques for extracting tuples and deriva-
tions from existing systems, and in Section 6 we report how
we applied these techniques to Quagga, Chord, and Hadoop
MapReduce.

Each node in a distributed system has its own set of tu-
ples, and derivation rules can span multiple nodes. For ex-
ample, the state of a router r might consist of tuples such as
link(@r,a) to show that r has a link to a, or route(@r,b,c)
to show that r knows a route to b on which the next hop is c.
Here, link and route are the names of specific relations, and
@r indicates that the tuple is maintained on r. The lower-
case letters are constants; we later use upper-case letters for
variables. Where the specific relation does not matter, we
simply write τ@n to denote a tuple τ on a node n.

Tuples can either be base tuples or derived tuples. Base
tuples correspond to local inputs that are assumed to be
true without derivations, e.g., a list of physical links that is
input to a routing protocol. Derived tuples are obtained
from other tuples through a derivation rule of the form
τ@n← τ1@n1 ∧ τ2@n2 ∧ · · · ∧ τk@nk. This is interpreted as
a conjunction: tuple τ should be derived on n whenever all τi

exist on their respective nodes ni, and τ should then continue
to exist until at least one of the τi disappears. (If a tuple
has more than one derivation, we can distinguish between
them using a logical reference counter.) When a derivation
rule spans multiple nodes, the nodes must notify each other
of relevant tuple changes: if a node i has a rule that depends
on a tuple τ@j, j must send a message +τ to i whenever τ
is derived or inserted as a base tuple, and j must send −τ to
i whenever τ is underived or removed. We require that all
derivations are finite and have no cyclic dependencies. This
can be achieved by carefully writing the derivation rules, and
it holds for our three example applications.

We assume that each node applies its rules deterministi-
cally. Thus, we can model the expected behavior of a node i
as a state machine Ai, whose inputs are incoming messages
and changes to base tuples, and whose outputs are messages
that need to be sent to other nodes. An execution of the
system can then be represented as a sequence of message
transmissions, message arrivals, base tuple insertions, and
base tuple deletions. We say that a node i is correct in an
execution e if i’s outputs in e are legal, given Ai and i’s
inputs in e. Otherwise we say that i is faulty in e.

Routing example. The derivation rule route(@R,C,B)

← link(@R,B) ∧ route(@B,C,D) expresses network reach-
ability in a router: a router R has route to C via B
(route(@R,C,B)) whenever it has a link to another router
B (link(@R,B)) that already has a route to C via some
third router D (route(@B,C,D)). Here, R, B, C, and D are
variables that can refer to any router. If we declare the link

tuples to be base tuples and add another rule to say that
each router has a route to its immediate neighbors, the re-
sulting system implements a simplified form of path-vector
routing [26].

3.2 Vertices and edges
Having explicit derivation rules makes it very easy to see
the provenance of a tuple: if a tuple τ was derived from
other tuples τ1, . . . , τk, then τ ’s immediate provenance sim-
ply consists of all the τi taken together. To capture transitive
provenance, we can define, for any execution e, a provenance
graph G(e) = (V (e), E(e)), in which each vertex v ∈ V (e)
represents a state or state change, and each edge (v1, v2) in-
dicates that v1 is part of the provenance of v2. The complete
explanation for the existence of a tuple τ in e would then be
a subtree that is embedded in G(e) and rooted at the vertex
that corresponds to τ . The leaves of this subtree consist of
base tuple insertions or deletions, which require no further
explanation.

V (e) consists of twelve vertex types. The following seven
types are used to represent local states and state changes:

• insert(n, τ, t) and delete(n, τ, t): Base tuple τ was
inserted/deleted on node n at time t;

• appear(n, τ, t) and disappear(n, τ, t): Tuple τ ap-
peared/disappeared on node n at time t;

• exist(n, τ, [t1, t2]): Tuple τ existed on node n during
interval [t1, t2]; and

• derive(n, τ, R, t) and underive(n, τ, R, t): Tuple τ
was derived/underived on n via rule R at time t.

In contrast to other provenance graphs, such as the one
in [51], the graph G we present here has an explicit rep-
resentation for state changes, which is useful to support dy-
namic queries. G also retains information about tuples that
no longer exist, which is necessary for historic queries; note
particularly that vertices such as delete, underive, and
disappear would not be necessary in a provenance graph
that contains only extant tuples. The timestamps t should
be interpreted relative to node n.

The remaining five vertex types are used to represent in-
teractions between nodes. For the purposes of SNP, it is
important that each vertex v has a specific node that is ‘re-
sponsible’ for it. (We will refer to this node as host(v).)
To achieve this property, derivations and underivations from
remote tuples must be broken up into a sequence of smaller
steps that can each be attributed to a specific node. For
example, when a rule τ1@i ← τ2@j is triggered, we do not
simply connect τ1’s derive vertex to τ2’s appear vertex;
rather, we say that the provenance of τ1’s derivation was i’s
belief that τ2 had appeared on j, which was caused by the
arrival of +τ2 on i, the transmission of +τ2 by j, and finally
the appearance of τ2 on j. Thus, if j’s message is later found
to be erroneous, i’s belief—and thus its derivation—is still
legitimate, and the error can be attributed to j. The specific
vertex types are the following:

• send(n, n′,±τ, t): At time t, node n sent a notification
to node n′ that tuple τ has appeared/disappeared; and

• receive(n, n′,±τ, t): At time t, node n received
a message from node n′ that tuple τ has ap-
peared/disappeared.

• believe-appear(n, n′, τ, t) and believe-disappear

(n, n′, τ, t): At time t, node n learned of the
(dis)appearance of tuple τ on node n′;

• believe(n, n′, τ, [t1, t2]): During [t1, t2], node n be-
lieved that tuple τ existed on node n′;

Finally, we introduce a color for each vertex v ∈ V (e). Col-
ors are used to indicate whether a vertex is legitimate: cor-
rect vertices are black, and faulty vertices are red. For ex-
ample, if a faulty node i has no tuple τ but nevertheless
sends a message +τ to another node, τ@i has no legitimate
provenance, so we use a red send vertex to represent the
transmission of +τ . In Section 4.2, we will introduce a third
color, yellow, for vertices whose true color is not yet known.

3.3 Example: Minimum cost routing

a

b c

d

e

6

2

3
5

1

3

5

10

As a simple example, consider the net-
work depicted on the right, which con-
sists of five routers that are connected
by links of different costs. Each router
attempts to find the lowest-cost path
to router d using a MinCost proto-
col. There are three types of tuples:
link(@X,Y,K) indicates that router X

has a direct link to router Y with cost K; cost(@X,Y,Z,K) in-
dicates that X knows a path to Y via Z with total cost K; and
bestCost(@X,Y,K) indicates that the cheapest path known
by X to Y has cost K. The link tuples are base tuples because
they are part of the static configuration of the routers (we
assume that routers have a priori knowledge of their local
link costs, and that links are symmetric), whereas cost and
bestCost tuples are derived from other tuples according to
one of three derivation rules: each router knows the cost of
its direct links (R1); it can learn the cost of an advertised
route from one of its neighbors (R2); and it chooses its own
bestCost tuple according to the lowest-cost path it currently
knows (R3).

Figure 2 shows an example of a provenance tree for the
tuple bestCost(@c,d,5). This tuple can be derived in two
different ways. Router c knows its direct link to d via
link(@c,d,5), which trivially produces cost(@c,d,d,5).
Similarly, router b derives cost(@b,d,d,3) via its direct
link with d, and since no other path from b to d offers a
lower cost, b produces the tuple bestCost(@b,d,3). b then
combines the knowledge along with link(@b,c,2) to derive
cost(@c,d,b,5) and communicates it to c.

3.4 Constraints and ‘maybe’ rules
We now introduce two extensions to the provenance graph.
The first extension is a second type of rule, called a ‘maybe’

rule and written τ@n
maybe
←−−−− τ1@n1 ∧ . . . ∧ τk@nk, which

stipulates that the tuple τ on node n may be derived from
tuples τ1@n1, . . . , τk@nk, but that the derivation is optional.
In other words, as long as all of the underlying tuples are
present, node n is free to decide whether or not to derive
τ , and it is free to change its decision while the underlying
tuples still exist. The rule merely describes τ ’s provenance
if and when it exists.

There are at least two situations in which ‘maybe’ rules are
useful. The first involves a node on which some rules or tu-
ples are confidential. In this case, the node can be assigned
two sets of rules: one full set for the actual computation
(without ‘maybe’ rules) and another to define provenance,
in which the confidential computation is replaced by ‘maybe’
rules. The second set can then be safely revealed to queriers.
Another situation involves a node with a black-box compu-
tation, for which only the general dependencies are known.
For example, a node n might choose a tuple τ from a set of
other tuples, but the details of the decision process might

EXIST(c, bestCost(@c,d,5), [t5=min(t3,t4), now])

DERIVE(c, bestCost(@c,d,5), R3, t4) DERIVE(c, bestCost(@c,d,5), R3, t3)

APPEAR(c, cost(@c,d,d,5), t4)

INSERT(c, link(@c,d,5), t4)

DERIVE(c, cost(@c,d,d,5), R1, t4)

APPEAR(b, bestCost(@b,d,3), t2)

BELIEVE-APPEAR(c, b, cost(@c,d,b,5), t3)

DERIVE(b, cost(@c,d,b,5), R2, t2)

EXIST(b, link(@b,c,2), [t1, now])

APPEAR(b, link(@b,c,2), t1)

RECEIVE(c, b, +cost(@c,d,b,5), t3)

SEND(b, c, +cost(@c,d,b,5), t2)

APPEAR(c, bestCost(@c,d,5), R3, t4)

APPEAR(c, link(@c,d,5), t4)

APPEAR(c, bestCost(@c,d,5), R3, t3)

INSERT(b, link(@b,c,2), t1)

APPEAR(b, cost(@c,d,b,5), R2, t2)

DERIVE(b, bestCost(@b,d,3), R3, t2)

APPEAR(b, cost(@b,d,d,3), t2)

INSERT(b, link(@b,d,3), t2)

DERIVE(b, cost(@b,d,d,3), R1, t2)

APPEAR(b, link(@b,d,3), t2)

Figure 2: Provenance of bestCost(@c,d,5) at c

not be known (e.g., because it is performed by a third-party
binary). In this case, ‘maybe’ rules can be used to infer
provenance by observing the set of tuples: if all the τi ex-
ist, we cannot predict whether τ will appear, but if τ does
appear, it must have been derived from the τi.

The second extension is intended for applications where
the presence of constraints prevents us from modeling the
state as completely independent tuples. For example, given
tuples α and β, an application might derive either a tuple γ
or a tuple δ, but not both. Modeling this with disjunctive
rules would lose important information: if tuple δ replaces
tuple γ, the appearance of δ and the disappearance of γ are
not merely independent events, they are causally related.
Thus, the explanation of δ’s appearance should include the
disappearance of γ. In G, we represent this by a direct edge
between the corresponding appear and disappear vertices.

3.5 Graph construction
Conceptually, we can think of the provenance graph G(e) as
being constructed incrementally as the execution e unfolds –
each new derivation, tuple insertion or deletion, or message
transmission/arrival causes some new vertices to be added
and/or existing believe and exist vertices to be updated.
In practice, our implementation does not store the vertices
and edges themselves; rather, it records only enough infor-
mation to securely construct the subgraphs of G(e) that are
relevant to a given query.

The extended version of this paper [50] specifies an al-
gorithm that computes G(e) for any execution e. We do
not present this algorithm here due to lack of space, but we
briefly state three of its key properties. The first property
says that the graph can be constructed incrementally:

Theorem 1 If an execution e1 is a prefix of an execution
e2, then G(e1) is a subgraph of G(e2).

This holds because, at least conceptually, G(e) contains ver-
tices and edges for all tuples that have ever existed; vertices
can be added but not removed. (Of course, our practical im-
plementation has only limited storage and must eventually
‘forget’ about old vertices and edges.) Theorem 1 makes it
possible to answer queries while the system is still running,
without risking an inaccurate result. Graph construction is
also compositional:

Theorem 2 To construct the vertices v ∈ V (e) with
host(v) = i, it is sufficient to run the algorithm on the
events that have occurred on i.

Briefly, this holds because G has been carefully designed to
be partitionable by nodes, and because derivations from re-
mote tuples (which span multiple nodes) have been split into
several steps that can each be attributed to a specific node.
Compositionality is crucial for a scalable implementation be-
cause it implies that each node’s subgraph of G can be re-
constructed independently. Thus, we need only reconstruct
those subgraphs that are relevant for a given query.

Finally, the graph construction algorithm uses the colors
appropriately:

Theorem 3 All the vertices v in G(e) with host(v) = i are
black if, and only if, i is correct in e.

Thus, if we encounter a red vertex in the provenance graph,
we know that the corresponding node is faulty or has mis-
behaved. The proofs for these theorems are included in [50].

4. SECURE NETWORK PROVENANCE
The definition of the provenance graph G in the previous sec-
tion assumes that, at least conceptually, the entire execution
e of the primary system is known. However, in a distributed
system without trusted components, no single node can have
this information, especially when nodes are faulty and can
tell lies. In this section, we define SNP, which constructs an
approximation Gν of the ‘true’ provenance graph G that is
based on information available to correct nodes.

4.1 Using evidence to approximate G
Although each node can observe only its own local events,
nodes can use messages from other nodes as evidence to rea-
son about events on these nodes. Since we have assumed that
messages can be authenticated, each received message m is
evidence of its own transmission. In addition, we can de-
mand that nodes attach some additional information ϕ(m),
such as an explanation for the transmission of m. Thus,
when a provenance query is issued on a correct node, that
node can collect some evidence ǫ, such as messages it has lo-
cally received, and/or messages collected from other nodes.
It can then use this evidence to construct an approximation
Gν(ǫ) of G(e), from which the query can be answered. For
the purposes of this section, we will assume that ϕ(m) de-
scribes the sender’s entire execution prefix, i.e., all of its local
events up to and including the transmission of m. Of course,
this would be completely impractical; our implementation in
Section 5 achieves a similar effect in a more efficient way.

4.2 Limitations
When faulty nodes are present, we cannot always guaran-
tee that Gν(ǫ) = G(e). There are four fundamental reasons
for this. First, ϕ(m) can be incorrect; for example, a faulty
node can tell lies about its local inputs. As a human inves-
tigator, Alice may be able to recognize such lies (so there
is still value in displaying all the available information), but
it is not possible to detect them automatically, since nodes
cannot observe each other’s inputs. Thus, the correspond-
ing vertices do not appear red in Gν . Note, however, that
a faulty node cannot lie arbitrarily; for example, it cannot
forge messages from other nodes.

Second, ϕ(m) can be incomplete. For example, if two
faulty nodes secretly exchange messages but otherwise act
normally, we cannot guarantee that these messages will ap-
pear in Gν because the correct nodes cannot necessarily ob-
tain any evidence about them. We can, however, be sure that

detectable faults [16] are represented in the graph. Briefly,
a detectable fault is one that directly or indirectly affects a
correct node through a message, or a chain of messages. Re-
call that, in our motivating scenario, we have assumed that
Alice has observed some symptom of the fault; any fault of
this type is detectable by definition.

Third, faulty nodes can equivocate, i.e., there can be two
messages m1 and m2 such that ϕ(m1) is inconsistent with
ϕ(m2). If a correct node encounters both m1 and m2, it can
detect the inconsistency, but it is not clear which of them (if
any) is correct and should appear in Gν . One approach is
to liberally use the color red for each vertex that is involved
in an inconsistency. However, this can lead to an excessive
amount of red coloring on equivocating nodes, which limits
the usefulness of Gν . Another approach, which we adopt
here, is to arbitrarily accept one of the explanations as true,
e.g., the one that appears first in ǫ, and to allow black for
the corresponding vertices. Alice can influence this choice
by reordering the messages in ǫ.

Finally, if ϕ is evaluated on demand, ϕ(m) can be unavail-
able. For example, a correct node that is trying to evaluate
a provenance query on ǫ might ask the sender of some m ∈ ǫ
for ϕ(m) but might not receive a response. This situation
is ambiguous and does not necessarily indicate a fault – for
example, the queried node could be slow, or the response
could be delayed in the network – so it is not a good basis
on which to color a vertex red. However, the only way to
avoid it reliably would be to proactively attach ϕ(m) to every
message, which would be prohibitively expensive. Instead,
SNP uses a third color (yellow) for vertices whose color is
not yet known. Yellow vertices turn black or red when the
response arrives. If a vertex v remains yellow, this is a sign
that host(v) is refusing to respond and is therefore faulty.

4.3 Definition: SNP
We say that an approximation Gν of G is monotonic if Gν(ǫ)
is a subgraph of Gν(ǫ+ ǫ′) for additional evidence ǫ′. This is
an important property because it prevents Gν from changing
fundamentally once additional evidence becomes available,
which could invalidate responses to earlier queries.

We define secure network provenance (SNP) to be a mono-
tonic approximation Gν of a provenance graph G that has
the following two properties in an untrusted setting. Gν is
accurate if it faithfully reproduces all the vertices on correct
nodes; in other words, if a vertex v on a correct node appears
in Gν(ǫ) then v must also exist in G, be colored black, and
have the same predecessors and successors. Gν is complete
if, given sufficient evidence ǫ from the correct nodes, a) each
vertex in G on a correct node also appears in Gν(ǫ), and b)
for each detectably faulty node, Gν(ǫ) contains at least one
red or yellow vertex.

We also define a primitive called microquery that can
be used to navigate a SNP graph.1 microquery has two
arguments: a vertex v, and evidence ǫ such that v ∈ Gν(ǫ).
microquery returns one or two color notifications of the
form black(v), yellow(v), or red(v). If two notifications
are returned, the first one must be yellow(v). microquery

can also return two sets Pv and Sv that contain the pre-
decessors and successors of v in Gν(ǫ), respectively. Each
set consists of elements (vi, ǫi), where ǫi is additional evi-
dence such that vi and the edge between vi and v appear

1
microquery returns a single vertex; provenance queries

must invoke it repeatedly to explore Gν . Hence the name.

Query processor

Primary system Provenance systemUsers Alice

Application

Graph

recorder

Microquery

module

Query processor

Log

recorder module

Network

Figure 3: Architecture of a single SNooPy node

in Gν(ǫ + ǫi); this makes it possible to explore all of Gν

by invoking microquery recursively. We also require that
microquery preserve accuracy, that is, if host(v) is correct,
it must return black(v), as well as Pv and Sv.

4.4 Discussion
microquery is sufficient to achieve the goals we stated in
Section 2. Any system behavior that Alice can observe (such
as derivations, messages, or extant tuples) corresponds to
some vertex v in the provenance graph. Alice can then re-
cursively invoke microquery to learn the causes or effects
of v. To learn the causes of v, Alice can start at v and navi-
gate the graph backwards until she arrives at the legitimate
root causes (i.e., base tuples) or at some vertex that is col-
ored red. To learn the effects of v, Alice can navigate the
graph in the forward direction. The completeness of SNP
ensures that, when a detectable fault has occurred, even an
adversary cannot prevent Alice from discovering it. The ac-
curacy of SNP ensures that the adversary cannot cause Alice
to believe that a correct node is faulty.

Note that, if v is a vertex on a faulty node, it is possi-
ble that microquery returns only yellow(v), and nothing
else. This is a consequence of the final limitation from Sec-
tion 4.2, and it can prevent Alice from identifying all faulty
nodes, since she may not be able to navigate ‘past’ a yellow
vertex. However, Alice can still discover that a fault exists,
and she can identify at least one faulty or misbehaving node.
At worst, this provides a starting point for a more detailed
investigation by supplying evidence against the faulty node.
If the faulty node is able to be repaired and its prior ob-
servable actions can be verified to conform to its expected
behavior, then the node can be recolored black, and subse-
quent microquerys will identify whether faults exist(ed) on
other nodes.

5. THE SNOOPY SYSTEM
We next present the design of SNooPy, a system that imple-
ments secure network provenance for the provenance graph
G that was defined earlier in Section 3.

5.1 Architecture
SNooPy consists of three major building blocks: a graph
recorder, a microquery module, and a query processor (Fig-
ure 3). The graph recorder extracts provenance information
from the actions of the primary system (Section 5.3) and
stores it in a tamper-evident log (Section 5.4). The micro-
query module (Section 5.5) uses the information in this log to
implement microquery; it uses authenticators as a specific
form of evidence.

The query processor accepts higher-level (macro) queries,
such as simple provenance queries, but also causal, histor-
ical, or dynamic queries, and answers them by repeatedly
invoking microquery to retrieve the relevant part of the
provenance graph. In some primary systems, this graph can
be very large; therefore, queries can be parametrized with
a scope k, which causes the query processor to return only
vertices that are within distance k of the queried vertex.
For a discussion of scope in an actual usage scenario, see
Section 7.3.

5.2 Assumptions and requirements
SNooPy makes the following assumptions:

1. A message sent from one correct node to another is
eventually received, if retransmitted sufficiently often;

2. Each node i has a certificate that securely binds a key-
pair to the node’s identity;

3. Nodes have access to a cryptographic hash function,
and the signature of a correct node cannot be forged;

4. In the absence of an attack, messages are typically re-
ceived within at most time Tprop;

5. Each node has a local clock, and clocks are synchro-
nized to within ∆clock;

6. Apart from the ‘maybe’ rules, the computation on each
node is deterministic; and

7. Queriers are allowed to see any vertex and any edge in
the provenance graph.

The first three assumptions are needed for the tamper-
evident log. Assumption 2 prevents faulty nodes from chang-
ing their identity and from creating fictitious nodes; it could
be satisfied by installing each node with a certificate that is
signed by an offline CA. Assumption 3 is commonly assumed
to hold for algorithms like RSA and SHA-1. The next two as-
sumptions are for simplicity; there are ways to build tamper-
evident logs without them [17]. Both Tprop and ∆clock can
be large, e.g., on the order of seconds. The sixth assump-
tion is needed to efficiently store and verify the provenance
graph; it is also required for certain BFT systems [6], and
it can be enforced for different types of applications [17],
including legacy binaries [13]. The final assumption was al-
ready discussed in Section 2.3.

5.3 Extracting provenance
To generate the provenance graph, SNooPy must extract
information about events from the application to which it is
applied. Provenance extraction (or the more general prob-
lem of correlating changes to network state based on in-
coming/outgoing messages) is an ongoing area of active re-
search [29, 30] that is largely orthogonal to the main focus of
this paper. In SNooPy, we have found the following three
techniques useful for extracting provenance for the target
applications that we have examined:
Method #1: Inferred provenance. SNooPy can infer
provenance by transparently tracking data dependencies as
inputs flow through the system. Inferred provenance can be
applied when the dependencies are already explicitly cap-
tured in the programming language. We have applied this
method to a version of the Chord DHT written in a declar-
ative language (Section 6.1).
Method #2: Reported provenance. Following the ap-
proach from [29], applications can explicitly call methods in

SNooPy to report data dependencies. This requires modifi-
cations to the source code; also, key parts of the application
must be deterministic to enable the querier to verify that
provenance was reported correctly. We have applied this
method to the Hadoop MapReduce system (Section 6.2).
Method #3: External specification. When black-
box applications cannot use either of the previous two ap-
proaches, SNooPy can rely on an external specification of
how the application’s outputs are derived from its inputs.
SNooPy can then generate the provenance graph by observ-
ing the inputs and outputs. We have applied this method to
the Quagga BGP daemon (Section 6.3).

5.4 Graph recorder
The graph recorder stores the extracted provenance infor-
mation securely at runtime, so that it can later be used by
the microquery module when a query is issued.

Recall from Section 3 that our provenance graph G =
(V, E) is designed so that each vertex v ∈ V can be at-
tributed to a specific node host(v). Thus, we can partition
the graph so that each v ∈ V is stored on host(v). To en-
sure accuracy, we must additionally keep evidence for each
cross-node edge, i.e., (v1, v2) ∈ E with host(v1) 6= host(v2).
Specifically, host(v1) must be able to prove that host(v2)
has committed to v2, and vice versa, so that each node can
prove that its own vertex is legitimate, even if the other
node is compromised. Finally, according to assumption 6,
each node’s subgraph of G is completely determined by its
inputs, its outputs, and the behavior of its ‘maybe’ rules;
hence, it is sufficient to store messages, changes to base tu-
ples, and any (un)derivations that directly involve a ‘maybe’
rule. When necessary, the microquery module can recon-
struct the node’s subgraph of G from this information.

In the following, we will write σi(x) to indicate a signature
on x with i’s private key, and πi(x, y) to indicate a check
whether x is a valid signature on y with i’s private key. H(·)
stands for the hash function, and || for concatenation.
Logs and authenticator sets: SNooPy’s log is a simpli-
fied version of the log from PeerReview [17]. The log λi of a
node i consists of entries of the form ek := (tk, yk, ck), where
tk is a timestamp, yk is an entry type, and ck is some type-
specific content. There are five types of entries: snd and rcv

record messages, ack records acknowledgments, and ins and
del record insertions and deletions of base tuples and, where
applicable, tuples derived from ‘maybe’ rules. Note that log
entries are different from vertex types. Each entry is asso-
ciated with a hash value hk = H(hk−1 || tk || yk || ck) with
h0 := 0. Together, the hk form a hash chain. A node i can
issue an authenticator ak := (tk, hk, σi(tk ||hk)), which is
a signed commitment that ek (and, through the hash chain,
e1, . . . , ek−1) must exist in λi. Each node i stores the authen-
ticators it receives from another node j in its authenticator
set Ui,j .
Commitment: When a node i needs to send a mes-
sage m (+τ or -τ) to another node j, it first appends
a new entry ex := (tx, snd, (m, j)) to its local log.
Then it sends (m, hx−1, tx, σi(tx ||hx)) to j. When a
node j receives a message (m, a, b, c), j calculates h′

x :=
H(a || b || snd || (m, j)) and then checks whether the authen-
ticator is properly signed, i.e., πi(c, (b ||h

′

x)), and whether tx

is within ∆clock+Tprop of its local time. If not, j discards
the message. Otherwise, j adds (tx, h′

x, c) to its authentica-

tor set Uj,i, appends an entry ey := (k,rcv, (m, i, a, b, c)) to
λj , and sends (ack, tx, hy−1, ty, σj(ty ||hy)) back to i.

Once i receives (ack, a, b, c, d) from j, it first checks
its log to see whether there is an entry ex =
(a, snd, (m, j)) in its log that has not been acknowledged
yet. If not, it discards the message. i then calcu-
lates h′

y := H(b || c ||rcv || (m, i, hx−1, tx, σi(tx ||hx))), and
checks πj(d, (c ||h′

y)) and ty is within ∆clock+Tprop of its
local time. If not, i discards the message. Otherwise, i adds
(c, h′

y, d) to its authenticator set Ui,j and appends an entry
ez := (t,ack, a, b, c, d) to its log.

If i does not receive a valid acknowledgment within
2·Tprop, it immediately notifies the maintainer of the dis-
tributed system. Any such notification is a clear indication
of a fault: at least one of i, j, or the connection between
them must be faulty. Once the maintainer acknowledges
the notification, the problem is known and can be ignored
for the purposes of forensics. However, if the maintainer
has not received a notification and a query later uncovers a
snd without a matching ack, SNooPy can color the corre-
sponding send vertex red because the sender is clearly faulty.
Without the notification mechanism, this situation would be
ambiguous and could not be reliably attributed to i or j.
Retrieval: The graph recorder implements a primitive
retrieve(v, ai

k) which, when invoked on i := host(v) with
a vertex v and an authenticator ai

k of i, returns the prefix2

of the log in which v was generated. In essence, retrieve

implements the function ϕ from Section 4 but evaluates it on
demand. Typically, the prefix retrieve returns is the prefix
authenticated by ai

k, but if v is an exist or believe vertex
that exists at ek, the prefix is extended to either a) the point
where v ceases to exist, or b) the current time. (The special
case is necessary because an existing or believed tuple can
be involved in further derivations between ek and the time
it disappears, so its vertex may acquire additional outbound
edges.) If the prefix extends beyond ek, i must also return
a new authenticator that covers the entire prefix. A correct
node can always comply with such a request.

5.5 Microquery module
The microquery module implements microquery(v, ǫ). At
a high level, this works by 1) using ǫ to retrieve a log
prefix from host(v), 2) replaying the log to regenerate
host(v)’s partition of the provenance graph G, and 3) check-
ing whether v exists in it. If v exists and was derived cor-
rectly, its predecessors and successors are returned, and v is
colored black; otherwise v is colored red.

More formally, the evidence for a vertex v is an authen-
ticator from host(v) that covers a log prefix in which v ex-
isted. When microquery(v, ǫ) is invoked on a node i, i first
outputs yellow(v) to indicate that v’s real color is not yet
known, and then invokes retrieve(v, ǫ) on j := host(v).
If j returns a log prefix that matches ǫ, i replays the pre-
fix to regenerate j’s partial provenance subgraph Gν(ǫ) | j.
This is possible because we have assumed that the compu-
tation is deterministic. If Gν(ǫ) | j does not contain v or
replay fails (i.e., the sent messages do not match the send

entries in the log, a send does not have a matching ack,
or the authenticators in the recv and ack entries do not
satisfy the conditions from Section 5.4), i outputs red(v);
otherwise it outputs black(v) and returns the predecessors

2In practice, SNooPy usually does not return an entire pre-
fix; see Section 5.6 for a list of optimizations.

and successors of v in Gν(ǫ). The additional evidence that
is returned for a send predecessor and a receive successor
consists of the authenticator from the rcv and ack entries,
respectively; the additional evidence for all other vertices is
the authenticator returned by retrieve, if any.

Consistency check: As described so far, the algorithm
colors a vertex v red when host(v) does not have a correct
‘explanation’ (in the form of a log prefix), and it colors v yel-
low if host(v) does not return any explanation at all. The
only remaining case is the one in which v’s explanation is in-
consistent with the explanation for one of its other vertices.
To detect this, i performs the following check: it determines
the interval I during which v existed during replay, and asks
all nodes with which j could have communicated during I
(or simply all other nodes) to return any authenticators that
were a) signed by j, and b) have timestamps in I. If such
authenticators are returned, i checks whether they are con-
sistent with the log prefix it has retrieved earlier; if not, i
outputs red(v).

5.6 Optimizations
As described so far, each SNooPy node cryptographically
signs every single message and keeps its entire log forever,
and each microquery retrieves and replays an entire log pre-
fix. Most of the corresponding overhead can be avoided with
a few simple optimizations. First, nodes can periodically
record a checkpoint of their state in the log, which must in-
clude a) all currently extant or believed tuples and b) for
each tuple, the time when it appeared. Thus, it is suffi-
cient for microquery(v, ǫ) to retrieve the log segment that
starts at the last checkpoint before v appeared, and start
replay from there. Note that this does not affect correctness
because, if a faulty node adds a nonexistent tuple τ to its
checkpoint, this will be discovered when the corresponding
exist or believe vertex is queried, since replay will then be-
gin before the checkpoint and end after it. If the node omits
an extant or believed tuple that affects a queried tuple, this
will cause replay to fail.

Second, nodes can be required to keep only the log seg-
ment that covers the most recent Thist hours in order to
decrease storage costs. To speed up queries, the querier can
cache previously retrieved log segments, authenticators, and
even previously regenerated provenance graphs. As we show
in Section 7, this reduces the overhead to a practical level.

Third, the overhead of the commitment protocol can be
reduced by sending messages in batches. This can be done
using a variant of Nagle’s algorithm that was previously used
in NetReview [14]: each outgoing message is delayed by a
short time Tbatch, and then processed together with any
other messages that may have been sent to the same desti-
nation within this time window. Thus, the rate of signature
generations/verifications is limited to 1/Tbatch per destina-
tion, regardless of the number of messages. The cost is an
increase in message latency by up to Tbatch.

5.7 Correctness
Next, we argue that, given our assumptions from Section 5.2,
SNooPy provides secure network provenance as defined in
Section 4.3—that is, monotonicity, accuracy, and complete-
ness. For lack of space, we present only informal theorems
and proof sketches here; the formal theorems and the proofs
can be found in the extended version of this paper [50].

Theorem 4 SNooPy is monotonic: if ǫ is a set of valid
authenticators and ai

k a valid authenticator, Gν(ǫ) is a sub-
graph of Gν(ǫ + ai

k).

Proof sketch: There are four cases we must consider. First,
the new authenticator ai

k can be the first authenticator from
node i that the querying node has seen. In this case, the
querying node will retrieve the corresponding log segment,
replay it, and add the resulting vertices to Gν . Since the
graph construction is compositional, this can only add to
the graph, and the claim holds. Second, a can belong to a
log segment SNooPy has previously retrieved; in this case,
Gν already contains the corresponding vertices and remains
unchanged. Third, a can correspond to an extension of an
existing log segment. In this case, the additional events are
replayed and the corresponding vertices added, and the claim
follows because the graph construction is compositional and
incremental. Finally, a’s log segment can be inconsistent
with an existing segment; in this case, the consistency check
will add a red send vertex to Gν . ✷

Theorem 5 SNooPy is accurate: any vertex v on a correct
node that appears in Gν(ǫ) must a) also appear in G, with the
same predecessors and successors, and b) be colored black.

Proof sketch: Claim a) follows fairly directly from the fact
that i := host(v) is correct and will cooperate with the
querier. In particular, i will return the relevant segment
of its log, and since the graph construction is deterministic,
the querier’s replay of this log will faithfully reproduce a sub-
graph of G that contains v. Any predecessors or successors
v′ of v with host(v′) = i can be taken from this subgraph.
This leaves the case where host(v′) 6= v. If v′ is a predeces-
sor, then it must be a send vertex, and its existence can be
proven with the authenticator from the corresponding snd

entry in λ. Similarly, if v′ is a successor, then it must be
a recv vertex, and the evidence is the authenticator in the
corresponding ack entry in λ.

Now consider claim b). Like all vertices, v is initially yel-
low, but it must turn red or black as soon as i := host(v)
responds to the querier’s invocation of retrieve, which will
happen eventually because i is correct. However, v can only
turn red for a limited number of reasons—e.g., because re-
play fails, or because i is found to have tampered with its
log—but each of these is related to some form of misbehav-
ior and cannot have occurred because i is correct. Thus,
since v cannot turn red and cannot remain yellow, it must
eventually turn (and remain) black. ✷

Theorem 6 SNooPy is complete: given sufficient evidence
ǫ from the correct nodes, a) each vertex in G on a cor-
rect node also appears in Gν(ǫ), and b) when some node is
detectably faulty, recursive invocations of microquery will
eventually yield a red or yellow vertex on a faulty node.

Proof sketch: Claim a) follows if we simply choose ǫ to in-
clude the most recent authenticator from each correct node,
which the querying node can easily obtain. Regarding claim
b), the definition of a detectable fault implies the existence
of a chain of causally related messages such that the fault
is apparent from the first message and the last message m
is received by a correct node j. We can choose v′ to be the
recv vertex that represents m’s arrival. Since causal rela-
tionships correspond to edges in G, Gν must contain a path
v′ →∗ v. By recursively invoking microquery on v′ and
its predecessors, we retrieve a subgraph of Gν that contains

this path, so the vertices on the path are queried in turn.
Now consider some vertex v′′ along the path. When v′′ is
queried, we either obtain the next vertex on the path, along
with valid evidence, or v′′ must turn red or yellow. Thus,
either this color appears before we reach v, or we eventually
obtain evidence of v. ✷

5.8 Limitations
By design, SNooPy is a forensic system; it cannot actively
detect faults, but rather relies on a human operator to spot
the initial symptom of an attack, which can then be investi-
gated using SNooPy. Investigations are limited to the part
of the system that is being monitored by SNooPy. We do
not currently have a solution for partial deployments, al-
though it may be possible to use the approach adopted by
NetReview [14] at the expense of slightly weaker guarantees.
SNooPy also does not have any built-in redundancy; if the
adversary sacrifices one of his nodes and destroys all the
provenance state on it, some parts of the provenance graph
may no longer be reachable via queries (though any discon-
nection points will be marked yellow in the responses). This
could be mitigated by replicating each log on some other
nodes, although, under our threat model, the problem can-
not be avoided entirely because we have assumed that any
set of nodes—and thus any replica set we may choose—could
be compromised by the adversary. Finally, SNooPy does
not provide negative provenance, i.e., it can only explain the
existence of a tuple (or its appearance or disappearance),
but not its absence. Negative provenance is known to be a
very difficult problem that is actively being researched in the
database community [28]. We expect that SNooPy can be
enhanced to support negative provenance by incorporating
recent results from this community.

5.9 Prototype implementation
We have built a SNooPy prototype based on components
from ExSPAN [51] and PeerReview [17], with several mod-
ifications. We completely redesigned ExSPAN’s provenance
graph according to Section 3, added support for constraints
and ‘maybe’ rules, and implemented the graph recorder and
the microquery module. Unlike ExSPAN, the provenance
graph is not maintained at runtime; rather, the prototype
records just enough information to reconstruct relevant parts
of the graph on demand when a query is issued. This is done
using deterministic replay, but with additional instrumenta-
tion to capture provenance. Since auditing in SNooPy is
driven by the forensic investigator, PeerReview’s witnesses
are not required, so we disabled this feature. It would not be
difficult to connect the prototype to a visualizer for prove-
nance graphs, e.g., VisTrails [45].

Macroqueries are currently expressed in Distributed Dat-
alog (DDlog), a distributed query language for maintaining
and querying network provenance graphs. All three methods
from Section 5.3 for extracting provenance are supported:
since the prototype is internally based on DDlog, it can di-
rectly infer provenance from any DDlog program, but it also
contains hooks for reporting provenance, as well as an API
for application-specific proxies.

6. APPLICATIONS
To demonstrate that SNooPy is practical, we have applied
our prototype implementation to three existing applications,
using a different provenance extraction method each time.

6.1 Application #1: Chord
To test SNooPy’s support for native DDlog programs, we
applied it to a declarative implementation [26] of the Chord
distributed hash table that uses RapidNet [37]. There are
several known attacks against DHTs, so this seems like an
attractive test case for a forensic system. Since ExSPAN can
automatically transform any DDlog program into an equiv-
alent one that automatically reports provenance, and since
RapidNet is already deterministic, no modifications were re-
quired to the Chord source code.

6.2 Application #2: Hadoop MapReduce
To test SNooPy’s support for reported provenance, we ap-
plied it to Hadoop MapReduce [12]. We manually instru-
mented Hadoop to report provenance to SNooPy at the
level of individual key-value pairs.

Our prototype considers input files to be base tuples.
The provenance of an intermediate key-value pair consists
of the arguments of the corresponding map invocation, and
the provenance of an output consists of the arguments of
the corresponding reduce invocation. The set of intermedi-
ate key-value pairs sent from a map task to a reduce task
constitutes a message that must be logged; thus, if there are
m map tasks and r reduce tasks, our prototype sends up to
2mr messages (a request and a response for each pair). To
avoid duplication of the large data files, we apply a trivial
optimization: rather than copying the files in their entirety
into the log, we log their hash values, which is sufficient to
authenticate them later during replay. Since we are mainly
interested in tracking the provenance of key-value pairs, we
treat inputs from the JobTracker as base tuples. It would
not be difficult to extend our prototype to the JobTracker
as well.

Individual map and reduce tasks are already deterministic
in Hadoop, so replay required no special modifications. We
did, however, add code to replay map and reduce tasks sepa-
rately, as well as a switch for enabling provenance reporting
(recall that this is only needed during replay). More specifi-
cally, we assign a unique identifier (UID) [19] to each of the
input, output and intermediate tuples, based on its content
and execution context (which indicates, for example, a tuple
τ is an input of map task m). The Hadoop implementation is
instrumented to automatically track cross-stage causalities.
This is achieved by adding edges between corresponding ver-
tices when tuples are communicated across stages (e.g. from
a map output file to a reducer). For the causalities within a
stage, users need to report them using a provided API, which
takes as arguments the UID of the output tuple, the UIDs
of the input tuples that contribute to the output, and the
execution context. The reported provenance information is
then passed to and maintained in the graph recorder.

Altogether, we added or modified less than 100 lines of
Java code in Hadoop itself, and we added another 550 lines
for the interface to SNooPy.

6.3 Application #3: Quagga
To test SNooPy’s support for application-specific proxies,
we applied it to the Quagga BGP daemon. BGP interdo-
main routing is plagued by a variety of attacks and mal-
functions [32], so a secure provenance system seems useful
for diagnostics and forensics. SNooPy could complement se-
cure routing protocols such as S-BGP [40]: it cannot actively
prevent routing problems from manifesting themselves, but

it can investigate a wider range of problems, including route
equivocation (i.e., sending conflicting route announcements
to different neighbors), replaying of stale routes, and failure
to withdraw a route, which are not addressed by S-BGP.

Rather than instrumenting Quagga for provenance and
deterministic replay, we treated it as a ‘black box’ and im-
plemented a small proxy that a) transparently intercepts
Quagga’s BGP messages and converts them into SNooPy

tuples, and b) converts incoming tuples back to BGP mes-
sages. The proxy uses a small DDlog specification of only
four rules. The first rule specifies how announcements prop-
agate between networks, and the next two express the con-
straint that a network can export at most one route to each
prefix at any given time, as required by BGP. The fourth
rule is a ‘maybe’ rule (Section 3.4); it stipulates that each
route must either be originated by the network itself, or ex-
tend the path of a route that was previously advertised to
it. Due to the ‘maybe’ rule, we did not need to model the
details of Quagga’s routing policy (which may be confiden-
tial); rather, the proxy can infer the essential dependencies
between routes from the incoming and outgoing BGP mes-
sages it observes.

In addition to the four rules, we wrote 626 lines of code
for the proxy. Much of this code is generic and could be
reused for other black-box applications. We did not modify
any code in Quagga.

6.4 Summary
Our three application prototypes demonstrate that SNooPy

can be applied to different types of applications with rela-
tively little effort. Our prototypes cover all three prove-
nance extraction methods described in Section 5.3. More-
over, the three applications generate different amounts of
communication, process different amounts of data, have dif-
ferent scalability requirements, etc., so they enable us to
evaluate SNooPy across a range of scenarios.

7. EVALUATION
In this section, we evaluate SNooPy using our three applica-
tions in five different scenarios. Since we have already proven
that SNooPy correctly provides secure network provenance,
we focus mostly on overheads and performance. Specifically,
our goal is to answer the following high-level questions: a)
can SNooPy answer useful forensic queries? b) how much
overhead does SNooPy incur at runtime? and c) how ex-
pensive is it to ask a query?

7.1 Experimental setup
We examine SNooPy’s performance across five application
configurations: a Quagga routing daemon (version 0.99.16)
deployment, two Chord installations (derived from Rapid-
Net [37] v0.3), and two Hadoop clusters (version 0.20.2).

Our Quagga experiment is modeled after the setup used
for NetReview [14]. We instantiated 35 unmodified Quagga
daemons, each with the SNooPy proxy from Section 6.3, on
an Intel machine running Linux 2.6. The daemons formed
a topology of 10 ASes with a mix of tier-1 and small stub
ASes, and both customer/provider and peering relationships.
The internal topology was a full iBGP mesh. To ensure
that both the BGP traffic and the routing table sizes were
realistic, we injected approximately 15,000 updates from a
RouteViews [39] trace. The length of the trace, and thus

the duration of the experiment, was 15 minutes. In all ex-
periments, each node was configured with a 1,024-bit RSA
key.

We evaluated the Chord prototype (Section 6.1) in two
different configurations: Chord-Small contains 50 nodes
and Chord-Large contains 250 nodes. The experiments
were performed in simulation, with stabilization occurring
every 50 seconds, optimized finger fixing every 50 seconds,
and keep-alive messages every 10 seconds. Each simulation
ran for 15 minutes of simulated time.

In the Hadoop-Small experiment, we ran the prototype
described in Section 6.2 on 20 c1.medium instances on Ama-
zon EC2 (in the us-east-1c region). The program we used
(WordCount) counts the number of occurrences of each word
in a 1.2 GB Wikipedia subgraph from WebBase [46]. We
used 20 mappers and 10 reducers; the total runtime was
about 79 seconds. Our final experiment, Hadoop-Large,
used 20 c1.medium instances with 165 mappers, 10 reducers,
and a 10.3 GB data set that consisted of the same Wikipedia
data plus the 12/2010 Newspapers crawl from WebBase [46];
the runtime for this was about 255 seconds.

Quagga, Chord, and Hadoop have different characteristics
that enable us to study SNooPy under varying conditions.
For instance, Quagga and Chord have small messages com-
pared to Hadoop, while Quagga has a large number of mes-
sages. In terms of rate of system change, Quagga has the
highest, with approximately 1,350 route updates per minute.
In all experiments, the actual replay during query evaluation
was carried out on an Intel 2.66GHz machine running Linux
with 8GB of memory.

7.2 Example queries
To evaluate SNooPy’s ability to perform a variety of foren-
sic tasks as well as to measure its query performance, we
tested SNooPy using the following provenance queries, each
of which is motivated by a problem or an attack that has
been previously reported in the literature:

Quagga-Disappear is a dynamic query that asks why an
entry from a routing table has disappeared. In our scenario,
the cause is the appearance of an alternative route in an-
other AS j, which replaces the original route in j but, unlike
the original route, is filtered out by j’s export policy. This
is modeled after a query motivated in Teixeira et al. [44];
note that, unlike Omni, SNooPy works even when nodes
are compromised. Quagga-BadGadget query asks for the
provenance of a ‘fluttering’ route; the cause is an instance of
BadGadget [11], a type of BGP configuration problem.

Chord-Lookup is a historical query that asks which
nodes and finger entries were involved in a given DHT
lookup, and Chord-Finger returns the provenance of a
given finger table entry. Together, these two queries can
detect an Eclipse attack [42], in which the attacker gains
control over a large fraction of the neighbors of a correct
node, and is then able to drop or reroute messages to this
node and prevent correct overlay operation.

Hadoop-Squirrel asks for the provenance of a given key-
value pair in the output; for example, if WordCount produces
the (unlikely) output (squirrel,10000) to indicate that the
word ‘squirrel’ appeared 10,000 times in the input, this could
be due to a faulty or compromised mapper. Such queries
are useful to investigate computation results on outsourced
Cloud databases [34].

(squirrel, 10,000)

[Out@Red-3]

(squirrel, 4)

[In@Red-3]

(squirrel, 3)

[Shuffled from Map-7]

(squirrel, 9,993)

[In@Red-3]

(squirrel, 3)

[In@Red-3]

(squirrel, 4)

[Shuffled from Map-1]

(squirrel, 9,993)

[CombineOut@Map-3]

(squirrel, offset1)

[MapOut@Map-3]

(squirrel, offset2)

[MapOut@Map-3]

(squirrel, offset9,993)

[MapOut@Map-3]

(squirrel, offset3)

[MapOut@Map-3]

(squirrel, offset4)

[MapOut@Map-3]

(fileSplit1, offsetA)

[MapIn@Map-3]

(fileSplit1, offsetB)

[MapIn@Map-3]

(fileSplit1, offsetC)

[MapIn@Map-3]

……

(squirrel, 9,993)

[Shuffled from Map-3]

Intermediate MapOut

Reduce Side

Map Side

Figure 4: Example result of the Hadoop-Squirrel
macroquery (in a simplified notation).

7.3 Usability
In addition to the formal guarantees in Section 4, we also
need to demonstrate that SNooPy is a useful forensic tool
in practice. For this purpose, we executed each of the above
queries twice – once on a correct system and once on a system
into which we had injected a corresponding fault. Specifi-
cally, we created an instance of BadGadget in our Quagga
setup, we modified a Chord node to mount an Eclipse at-
tack by always returning its own ID in response to lookups,
and we tampered with a Hadoop map worker to make it
return inaccurate results. For all queries, SNooPy clearly
identified the source of the fault.

To illustrate this, we examine one specific example in more
detail, Figure 4 shows the output of the Hadoop-Squirrel
macroquery in which one of the mappers (Map-3) was con-
figured to misbehave: in addition to emitting (word, off-

set) tuples for each word in the text, it injected 9,991 addi-
tional (squirrel, offset) tuples (shown in red). A foren-
sic analyst who is suspicious of the enormous prevalence of
squirrels in this dataset can use SNooPy to query the prove-
nance of the (squirrel, 10000) output tuple. To answer
this query, SNooPy selectively reconstructs the provenance
subgraph of the corresponding reduce task by issuing a series
of microqueries, one for each immediate predecessor of the
(squirrel, 10000) tuple, and then assembles the results
into a response to the analyst’s macroquery. Seeing that
one mapper output 9,993 squirrels while the others only re-
ported 3 or 4, she can ‘zoom in’ further by requesting the
provenance of the (squirrel, 9993) tuple, at which point
SNooPy reconstructs the provenance subgraph of the corre-
sponding map task. This reveals two legitimate occurrences
and lots of additional bogus tuples, which are colored red.

Once the faulty tuples are identified, SNooPy can be used
to determine their effects on the rest of the system, e.g., to
identify other outputs that may have been affected by key-
value pairs from the corrupted map worker.

In this example, the analyst repeatedly issues queries with
a small scope and inspects the results before deciding which
query to issue next. This matches the usage pattern of prove-
nance visualization tools, such as VisTrails [5], which allow
the analyst to navigate the provenance graph by expanding
and collapsing vertices. The analyst could also use a larger
scope directly, but this would cause more subgraphs to be
reconstructed, and most of the corresponding work would be
wasted because the analyst subsequently decides to investi-
gate a different subtree.

 1

 4

 7

 10

 13

 16

 19

Quagga Chord
Small

Chord
Large

Hadoop
Small

Hadoop
Large

T
o

ta
l
tr

a
ff

ic
 (

n
o

rm
a

liz
e

d
 t

o
 b

a
s
e

lin
e

)

Acknowledgments
Authenticators
Provenance
Proxy
Baseline

Figure 5: Network traffic with SNooPy, normalized
to a baseline system without provenance.

7.4 Network traffic at runtime
SNooPy increases the network traffic of the primary system
because messages must contain an authenticator and be ac-
knowledged by the recipient. To quantify this overhead, we
ran all five experiments in two configurations. In the base-
line configuration, we ran the original Hadoop, Quagga, or
declarative Chord in RapidNet with no support for prove-
nance. In the SNooPy-enabled prototype, we measured the
additional communication overhead that SNooPy adds to
the baseline, broken down by cause, i.e., authenticators, ac-
knowledgments, provenance, and proxy.

Figure 5 shows the SNooPy results, normalized to the
baseline results. The overhead ranges between a factor of
16.1 for Quagga and 0.2% for Hadoop. The differences are
large because SNooPy adds a fixed number of bytes for
each message – 22 bytes for a timestamp and a reference
count, 156 bytes for an authenticator, and 187 bytes for an
acknowledgment. Since the average message size is small for
Quagga (68 bytes) and very large for Hadoop (1.08 MB),
the relative overhead for Quagga is higher, although in ab-
solute terms, the Quagga traffic is still low (78.2 Kbps with
SNooPy). Chord messages are 145 bytes on average, and
hence its overhead factor is in between Quagga and Hadoop.

The relative overhead of the Quagga proxy is high in part
because, unlike the original BGP implementation in Quagga,
the proxy does not combine BGP announcements and (po-
tentially multiple) withdrawals into a single message. How-
ever, the overhead can be reduced by enabling the message
batching optimization from Section 5.6. With a window size
of Tbatch= 100 ms, the number of messages decreases by
more than 80%, and the normalized overhead drops from
16.1 to 4.8, at the expense of delaying messages by up to
Tbatch.

In summary, SNooPy adds a constant number of bytes
to each message. Thus, the absolute overhead depends on
how many messages the primary system sends. The relative
increase in network traffic depends on the primary system’s
average message size.

7.5 Storage
Each SNooPy node requires some local storage for the graph
recorder’s log. Since the microquery module uses determin-
istic replay to partially reconstruct the provenance graph on
demand, we should generally expect the log to be at least
as large as a replay log, although SNooPy can sometimes
save space by referencing data that is already kept for other

 0

 0.2

 0.4

 0.6

 0.8

Quagga Chord
Small

Chord
Large

Hadoop
Small

Hadoop
Large

P
e

r-
n

o
d

e
 l
o

g
 g

ro
w

th
 (

M
B

/m
in

u
te

)
Index
Authenticators
Signatures
Messages

Figure 6: Per-node log growth in SNooPy, excluding
checkpoints.

reasons. To quantify the incremental storage cost, we ran
our five experiments in the SNooPy configuration, and we
measured the size of the resulting logs.

Figure 6 shows the average amount of log data that each
node produced per minute, excluding checkpoints. In abso-
lute terms, the numbers are relatively low; they range from
0.066 MB/min (Chord-Small) to 0.74 MB/min (Quagga).
We expect that most forensic queries will be about fairly re-
cent events, e.g., within one week. To store one week’s worth
of data, each node would need between 7.3 GB (Quagga) and
665 MB (Chord-Small). Note that, in contrast to proactive
detection systems like PeerReview [17], this data is merely
archived locally at each node and is only sent over the net-
work when a query is issued. Also, it should be possible
to combine SNooPy with state-of-the-art replay techniques
such as ODR [1], which produce very small logs.

The log contains copies of all received messages (for
Hadoop, references to files), authenticators for each sent and
received message, and acknowledgments. Thus, log growth
depends both on the number of messages and their size dis-
tribution. As a result, Figure 6 shows that log growth was
fastest for Quagga, given that its baseline system generates
the largest number of messages. In the case of Hadoop, our
proxy benefits from the fact that Hadoop already retains
copies of the input files unless the user explicitly deletes
them. Thus, the proxy can save space by merely referencing
these files from the log, and the incremental storage cost is
extremely low (less than 0.1 MB/minute). The size of the
input files was 1.2 GB for Small and 10.3 GB for Large. If
these files were not retained by Hadoop, they would have to
be copied to the log.

As described in Section 5.6, SNooPy can additionally
keep checkpoints of the system state. The size of a typi-
cal checkpoint is 25 kB for Chord and 64 MB for Quagga.
Since replay starts at checkpoint, more checkpoints result
in faster queries but consume more space. For Hadoop, the
equivalent of a checkpoint is to keep the intermediate files
that are produced by the Map tasks, which requires 207 MB
for Small and 682 MB for Large.

7.6 Computation
We next measured the computation cost imposed by
SNooPy. We expect the cost to be dominated by signature
generation and verification and, in the case of Hadoop, hash-
ing the input and output files (see Section 6.2). To verify
this, we used dstat to measure the overall CPU utilization
of a Quagga node with and without the SNooPy proxy; the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Quagga Chord
Small

Chord
Large

Hadoop
Small

Hadoop
Large

A
v
e

ra
g

e
 a

d
d

it
io

n
a

l
C

P
U

 l
o

a
d

(%
 o

f
a

 s
in

g
le

 c
o

re
)

SHA-1 hash
RSA verify
RSA sign

Figure 7: Additional CPU load for generating and
verifying signatures, and for hashing.

log and the checkpoints were written to a RAM disk to iso-
late computation from I/O overhead. Our results show an
average utilization of 5.4% of one core with SNooPy, and
0.9% without. As expected, more than 70% of the overhead
can be explained by the cost of signature generation and ver-
ification alone (in our setup, 1.3 ms and 66 µs per 1,024-bit
signature); the rest is due to the proxy logic.

To get a more detailed breakdown of the crypto over-
head in our three applications, we counted the number of
crypto operations in each configuration, and we multiplied
the counts with the measured cost per operation to estimate
the average additional CPU load they cause. As our results
in Figure 7 show, the average additional CPU load is below
4% for all three applications. For Quagga and Chord, the
increase is dominated by the signatures, of which two are re-
quired for each message – one for the authenticator and the
other for the acknowledgment. Hadoop sends very few mes-
sages (one from each mapper to each reducer) but handles
large amounts of data, which for SNooPy must be hashed
for commitment. Note that we do not include I/O cost for
the hashed data because the data would have been written
by the unmodified Hadoop as well; SNooPy merely adds a
SHA-1 hash operation, which can be performed on-the-fly as
the data is written.

The message batching optimization from Section 5.6 can
be used to reduce the CPU load. To evaluate this, we per-
formed an additional experiment with Quagga, and we found
that a window size of Tbatch= 100 ms reduced the total num-
ber of signatures by a factor of six. Message batching also
prevents the CPU load from spiking during message bursts,
since it limits the rate at which signatures are generated to
at most 1/Tbatch per destination.

7.7 Query performance
Next, we evaluate how quickly SNooPy can answer queries,
and how much data needs to be downloaded. Since the an-
swer depends on the query, we performed several different
queries in different systems. For each query, we measured
a) how much data (log segments, authenticators, and check-
points) was downloaded, b) how long it took to verify the
log against the authenticators, and c) how much time was
needed to replay the log and to extract the relevant prove-
nance subgraph. Figure 8 shows our results. Note that the
query turnaround time includes an estimated download time,
based on an assumed download speed of 10 Mbps.

The results show that both the query turnaround times
and the amount of data downloaded can vary consider-

 0

 4

 8

 12

 16

Quagga
Disappear

Quagga
BadGadget

Chord
Lookup
(Small)

Chord
Lookup
(Large)

Hadoop
Squirrel
(Small)

 0

 0.5

 1

 1.5

 2

 2.5

 60

 64

 68

 20

 20.5

 21

Q
u

e
ry

 t
u

rn
a

ro
u

n
d

 t
im

e
 (

s
)

T
ra

ff
ic

 (
M

B
)

Auth check
Replay
Download
Authenticators
Logs
Checkpoints

Figure 8: Query turnaround time (left bar) and data
downloaded to answer the query (right bar).

ably with the query. The Chord and Quagga-BadGadget
queries were completed in less than five seconds; the Quagga-
Disappear query took 19 seconds, of which 14 were spent
verifying partial checkpoints using a Merkle Hash Tree; and
the Hadoop-Squirrel query required 68 seconds, including 51
for replay. The download varied between 133 kB for Quagga-
BadGadget and 20.8 MB for Hadoop-Squirrel. The numbers
for Hadoop are larger because our prototype does not create
checkpoints within map or reduce tasks, and so must replay
a node’s entire task to reconstruct a vertex on that node.
Fine-grained checkpoints could be added but would require
more changes to Hadoop. Generally, there is a tradeoff be-
tween storage and query performance: finer-grained check-
points require more storage but reduce the size of the log
segments that need to be downloaded and replayed.

In summary, the downloads and query turnaround times
vary between queries but generally seem low enough to be
practical for interactive forensics.

7.8 Scalability
In our final experiment, we examine how SNooPy’s over-
head scales with the number of nodes N . We ran our Chord
experiment with a range of different system sizes between
N = 10 and N = 500 nodes, and we measured two of the
main overheads, traffic and log size, for each N . Figure 9
shows our results, plus the baseline traffic for comparison.

The results show that both overheads increase only slowly
with the system size. This is expected because, as discussed
in Sections 7.4 and 7.5, the overhead is a function of the
number and size of the messages sent. If the per-node traffic
of the application did not depend on N , the runtime over-
head would not depend on N either; however, recall that
Chord’s traffic increases with O(log N), as illustrated here
by the baseline traffic results, so the SNooPy overheads in
this experiment similarly grow with O(log N).

Note the contrast to accountability systems like PeerRe-
view [17] where the overhead itself grows with the system
size. This is because PeerReview uses witnesses to ensure
that each pair of authenticators from a given node is seen by
at least one correct node. SNooPy relies on the querier’s
node for this property (see Section 5.5) and, as a forensic
system, it does not audit proactively.

In summary, SNooPy does not reduce the scalability of
the primary system; its per-node overheads mainly depend
upon the number of messages sent.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500

P
e
r-

n
o
d
e
 t
ra

ff
ic

 (
B

y
te

s
/s

)

Number of nodes

Chord (SNP)
Chord (Baseline)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

P
e
r-

n
o
d
e
 l
o
g
 g

ro
w

th
 (

k
B

/m
in

u
te

)

Number of nodes

Chord (SNP)

Figure 9: Scalability for Chord: Total traffic (left)
and log size (right)

7.9 Summary
SNooPy’s runtime costs include a fixed-size authenticator
and acknowledgment for each message, processing power to
generate and verify the corresponding signatures, and stor-
age space for a per-node log with enough information to re-
construct that node’s recent execution. Some part of the log
needs to be downloaded and replayed when a query is issued.
In the three different applications we evaluated, these costs
are low enough to be practical. We have also described sev-
eral example queries that can be used to investigate attacks
previously reported in the literature, and we have demon-
strated that SNooPy can answer them within a few seconds.

8. RELATED WORK
Debugging and forensics: The main difference between
SNP and existing forensic systems is that SNP does not re-
quire trust in any components on the compromised nodes.
For example, Backtracker [21, 22] and PASS [29] require a
trusted kernel, cooperative ReVirt [3] a trusted VMM, and
A2M [7] trusted hardware. ForNet [41] and NFA [48] assume
a trusted infrastructure and collaboration across domains.
Other systems, such as the P2 debugger [43], ExSPAN [51],
Magpie [2], D3S [25], QI [33], Friday [9], and Pip [38] are
designed to diagnose non-malicious faults, such as bugs or
race conditions. When nodes have been compromised by an
adversary, these systems can return incorrect results.
Accountability: Systems like PeerReview [17] and Net-
Review [14] can automatically detect when a node deviates
from the algorithm it is expected to run. Unlike SNP, these
systems cannot detect problems that arise from interactions
between multiple nodes, such as BadGadget [11] in inter-
domain routing, or problems that are related to inputs or
unspecified aspects of the algorithm. Also, accountability
systems merely report that a node is faulty, whereas SNP
also offers support for diagnosing faults and for assessing
their effects on other nodes.
Fault tolerance: An alternative approach to the problem
of Byzantine faults is to mask their effects, e.g., using tech-
niques like PBFT [6]. Unlike SNP, these techniques require a
high degree of redundancy and a hard bound on the number
of faulty nodes, typically one third of the total. The two ap-
proaches are largely complementary and could be combined.
Proofs of misbehavior: Many systems that are designed
to handle non-crash faults internally use proofs of misbe-
havior, such as the signed confessions in Ngan et al. [31],
a set of conflicting tickets in sharp [8], or the pom mes-

sage in Zyzzyva [23]. In SNP, any evidence that creates
a red vertex in Gν essentially constitutes a proof of mis-
behavior, but SNP’s evidence is more general because it
proves misbehavior with respect to the (arbitrary) primary
system, rather than with respect to SNP or its implemen-
tation, e.g., SNooPy. Systems like PeerReview [17] can
generate protocol-independent evidence as well, but, unlike
SNP’s evidence, PeerReview’s evidence is not diagnostic: it
only shows that a node is faulty, but not what went wrong.
Network provenance: Systems like ExSPAN [51] describe
the history and derivations of network state that results from
the execution of a distributed protocol. SNP extends net-
work provenance to adversarial environments, and enhances
the traditional notion of network provenance by adding sup-
port for dynamic provenance and historical queries. The
support for historical queries includes some features from an
earlier workshop paper [49].
Secure provenance: McDaniel et al. [27] outlines re-
quirements for secure network provenance, emphasizing the
need for provenance to be tamper-proof and non-repudiable.
Sprov [18] implements secure chain-structured provenance
for individual documents; however, it lacks essential fea-
tures that are required in a distributed system, e.g., a con-
sistency check to ensure that nodes are processing messages
in a way that is consistent with their current state. Pedi-
gree [36] captures provenance at the network layer in the
form of per-packet tags that store a history of all nodes and
processes that manipulated the packet. It assumes a trusted
environment, and its set-based provenance is less expressive
compared to SNP’s graph-based dependency structure.

9. CONCLUSION
This paper introduces secure network provenance (SNP),
a technique for securely constructing network provenance
graphs in untrusted environments with Byzantine faults.
SNP systems can help forensic analysts by answering ques-
tions about the causes and effects of specific system states.
Since faulty nodes can tell lies or suppress information, SNP
systems cannot always determine the exact provenance of a
given system state, but they can approximate it and give
strong, provable guarantees on the quality of the approxi-
mation.

SNooPy, our implementation of a SNP system, can query
not only the provenance of an extant state, but also the
provenance of a past state or a state change, which should be
useful in a forensic setting. For this, it relies on a novel, SNP-
enabled provenance graph that has been augmented with ad-
ditional vertex types to capture the necessary information.
To demonstrate that SNP and SNooPy are general, we have
evaluated a SNooPy prototype with three different example
applications: the Quagga BGP daemon, a declarative imple-
mentation of Chord, and Hadoop MapReduce. Our results
show that the costs vary with the application but are low
enough to be practical.

Acknowledgments

We thank our shepherd, Petros Maniatis, and the anony-
mous reviewers for their comments and suggestions. We
also thank Joe Hellerstein, Bill Marczak, Clay Shields, and
Atul Singh for helpful comments on earlier drafts of this pa-
per. This work was supported by NSF grants IIS-0812270,
CNS-0845552, CNS-1040672, CNS-1054229, CNS-1064986,

CNS-1065130, AFOSR MURI grant FA9550-08-1-0352, and
DARPA SAFER award N66001-11-C-4020. Any opinions,
findings, and conclusions or recommendations expressed
herein are those of the authors and do not necessarily re-
flect the views of the funding agencies.

10. REFERENCES

[1] G. Altekar and I. Stoica. ODR: Output-deterministic
replay for multicore debugging. In Proc. ACM
Symposium on Operating Systems Principles (SOSP),
Oct. 2009.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using Magpie for request extraction and workload
modelling. In Proc. USENIX Symposium on Operating
System Design and Implementation (OSDI), Dec.
2004.

[3] M. Basrai and P. M. Chen. Cooperative ReVirt:
adapting message logging for intrusion analysis.
Technical Report University of Michigan
CSE-TR-504-04, Nov 2004.

[4] P. Buneman, S. Khanna, and W.-C. Tan. Why and
where: A characterization of data provenance. In Proc.
International Conference on Database Theory (ICDT),
Jan. 2001.

[5] S. Callahan, J. Freire, E. Santos, C. Scheidegger,
C. Silva, and H. Vo. VisTrails: Visualization meets
data management. In Proc. ACM SIGMOD
Conference, June 2006.

[6] M. Castro and B. Liskov. Practical Byzantine fault
tolerance and proactive recovery. ACM Transactions
on Computer Systems (TOCS), 20(4):398–461, 2002.

[7] B.-G. Chun, P. Maniatis, S. Shenker, and
J. Kubiatowicz. Attested append-only memory:
Making adversaries stick to their word. In Proc. ACM
Symposium on Operating Systems Principles (SOSP),
Oct. 2007.

[8] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat.
SHARP: An architecture for secure resource peering.
In Proc. ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2003.

[9] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and
I. Stoica. Friday: Global comprehension for distributed
replay. In Proc. USENIX Symp. on Networked Systems
Design and Implementation (NSDI), Apr. 2007.

[10] T. J. Green, G. Karvounarakis, Z. G. Ives, and
V. Tannen. Update exchange with mappings and
provenance. In Proc. International Conference on Very
Large Data Bases (VLDB), Sept. 2007.

[11] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The
stable paths problem and interdomain routing.
IEEE/ACM Transactions on Networking (ToN),
10(2):232–243, Apr. 2002.

[12] Hadoop. http://hadoop.apache.org/.

[13] A. Haeberlen, P. Aditya, R. Rodrigues, and
P. Druschel. Accountable virtual machines. In Proc.
USENIX Symposium on Operating System Design and
Implementation (OSDI), Oct. 2010.

[14] A. Haeberlen, I. Avramopoulos, J. Rexford, and
P. Druschel. NetReview: Detecting when interdomain
routing goes wrong. In Proc. USENIX Symposium on
Networked Systems Design and Implementation
(NSDI), Apr. 2009.

http://hadoop.apache.org/

[15] A. Haeberlen and P. Kuznetsov. The Fault Detection
Problem. In Proc. Intl. Conference on Principles of
Distributed Systems (OPODIS), Dec. 2009.

[16] A. Haeberlen, P. Kuznetsov, and P. Druschel. The case
for Byzantine fault detection. In Proc. Workshop on
Hot Topics in System Dependability (HotDep), Nov.
2006.

[17] A. Haeberlen, P. Kuznetsov, and P. Druschel.
PeerReview: Practical accountability for distributed
systems. In Proc. ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2007.

[18] R. Hasan, R. Sion, and M. Winslett. Preventing
history forgery with secure provenance. ACM
Transactions on Storage (TOS), 5(4):1–43, 2009.

[19] R. Ikeda, H. Park, and J. Widom. Provenance for
generalized map and reduce workflows. In Proc.
Conference on Innovative Data Systems Research
(CIDR), Jan. 2011.

[20] B. Kauer. OSLO: Improving the security of Trusted
Computing. In Proc. 16th USENIX Security
Symposium, Aug 2007.

[21] S. T. King and P. M. Chen. Backtracking intrusions.
ACM Transactions on Computer Systems (TOCS),
23(1):51–76, 2005.

[22] S. T. King, Z. M. Mao, D. Lucchetti, and P. Chen.
Enriching intrusion alerts through multi-host
causality. In Proc. Annual Network and Distributed
Systems Security Symposium (NDSS), Feb. 2005.

[23] R. Kotla, L. A. M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. ACM
Trans. on Comp. Syst. (TOCS), 27(4), Dec. 2009.

[24] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Trans. on Prog. Lang. and
Systems (TOPLAS), 4(3):382–401, 1982.

[25] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang,
M. Wu, M. F. Kaashoek, and Z. Zhang. D3S:
debugging deployed distributed systems. In Proc.
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), Apr. 2008.

[26] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe,
and I. Stoica. Declarative Networking. CACM, 2009.

[27] P. McDaniel, K. Butler, S. McLaughlin, R. Sion,
E. Zadok, and M. Winslett. Towards a Secure and
Efficient System for End-to-End Provenance. In Proc.
USENIX Workshop on the Theory and Practice of
Provenance (TaPP), Feb. 2010.

[28] A. Meliou, W. Gatterbauer, K. M. Moore, and
D. Suciu. The complexity of causality and
responsibility for query answers and non-answers. In
Proc. International Conference on Very Large Data
Bases (VLDB), Aug. 2011.

[29] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun,
and M. Seltzer. Provenance-aware storage systems. In
Proc. USENIX Annual Technical Conference, 2006.

[30] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature
generation of exploits on commodity software. In Proc.
Annual Network and Distributed Systems Security
Symposium (NDSS), Feb. 2005.

[31] T.-W. Ngan, D. Wallach, and P. Druschel. Enforcing
fair sharing of peer-to-peer resources. In Proc.

International Workshop on Peer-to-Peer Systems
(IPTPS), Feb. 2003.

[32] O. Nordstroem and C. Dovrolis. Beware of BGP
attacks. ACM Comp. Comm. Rev. (CCR), Apr 2004.

[33] A. J. Oliner and A. Aiken. A query language for
understanding component interactions in production
systems. In Proc. International Conference on
Supercomputing (ICS), June 2010.

[34] H. Pang and K.-L. Tan. Verifying Completeness of
Relational Query Answers from Online Servers. ACM
Transactions on Information and System Security
(TISSEC), 11:5:1–5:50, May 2008.

[35] Quagga Routing Suite. http://www.quagga.net/.

[36] A. Ramachandran, K. Bhandankar, M. Bin Tariq, and
N. Feamster. Packets with provenance. Technical
Report GT-CS-08-02, Georgia Tech, 2008.

[37] RapidNet. http://netdb.cis.upenn.edu/rapidnet/.

[38] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul,
M. A. Shah, and A. Vahdat. Pip: Detecting the
unexpected in distributed systems. In Proc. USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), May 2006.

[39] RouteViews project. http://www.routeviews.org/.

[40] Secure BGP. http://www.ir.bbn.com/sbgp/.

[41] K. Shanmugasundaram, N. Memon, A. Savant, and
H. Bronnimann. ForNet: A distributed forensics
network. In Proc. Intl. Workshop on Mathematical
Methods, Models and Architectures for Computer
Networks Security (MMM-ACNS), Sept. 2003.

[42] A. Singh, M. Castro, P. Druschel, and A. Rowstron.
Defending against the Eclipse attack in overlay
networks. In Proc. ACM SIGOPS European Workshop,
Sept. 2004.

[43] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel.
Using queries for distributed monitoring and forensics.
In Proc. EuroSys Conference, Apr. 2006.

[44] R. Teixeira and J. Rexford. A measurement framework
for pin-pointing routing changes. In Proc. SIGCOMM
Network Troubleshooting Workshop, Sep 2004.

[45] Vistrails. http://www.vistrails.org/.

[46] The Stanford WebBase Project. http:
//diglib.stanford.edu/~testbed/doc2/WebBase/.

[47] J. Widom. Trio: A system for integrated management
of data, accuracy, and lineage. In Proc. Conference on
Innovative Data Systems Research (CIDR), Jan. 2005.

[48] Y. Xie, V. Sekar, M. Reiter, and H. Zhang. Forensic
analysis for epidemic attacks in federated networks. In
Proc. IEEE International Conference on Network
Protocols (ICNP), Nov. 2006.

[49] W. Zhou, L. Ding, A. Haeberlen, Z. Ives, and B. T.
Loo. TAP: Time-aware provenance for distributed
systems. In Proc. USENIX Workshop on the Theory
and Practice of Provenance (TaPP), June 2011.

[50] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo,
and M. Sherr. Secure network provenance. Technical
Report MS-CIS-11-14, University of Pennsylvania,
2011. Available at http://snp.cis.upenn.edu/.

[51] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and
Y. Mao. Efficient querying and maintenance of
network provenance at Internet-scale. In Proc. ACM
SIGMOD Conference, June 2010.

http://www.quagga.net/
http://netdb.cis.upenn.edu/rapidnet/
http://www.routeviews.org/
http://www.ir.bbn.com/sbgp/
http://www.vistrails.org/
http://diglib.stanford.edu/~testbed/doc2/WebBase/
http://diglib.stanford.edu/~testbed/doc2/WebBase/
http://snp.cis.upenn.edu/

	Secure Network Provenance
	Recommended Citation

	Secure Network Provenance
	Abstract
	Disciplines
	Comments
	Author(s)

	Introduction
	Overview
	Threat model
	Approach
	Provenance and confidentiality
	Strawman solutions

	Provenance Graph
	System model
	Vertices and edges
	Example: Minimum cost routing
	Constraints and `maybe' rules
	Graph construction

	Secure Network Provenance
	Using evidence to approximate G
	Limitations
	Definition: SNP
	Discussion

	The SNooPy System
	Architecture
	Assumptions and requirements
	Extracting provenance
	Graph recorder
	Microquery module
	Optimizations
	Correctness
	Limitations
	Prototype implementation

	Applications
	Application #1: Chord
	Application #2: Hadoop MapReduce
	Application #3: Quagga
	Summary

	Evaluation
	Experimental setup
	Example queries
	Usability
	Network traffic at runtime
	Storage
	Computation
	Query performance
	Scalability
	Summary

	Related Work
	Conclusion
	References

