
SECURE OUTSOURCING OF SCIENTIFIC

COMPUTATIONS

Mikhail J. Atallah, K.N. Pantazopoulos, John R. Rice and Eugene H. Spa�ord

Department of Computer Sciences

Purdue University, West Lafayette, IN 47907, U.S.A.

email: fmja, jrrg@cs.purdue.edu

October 14, 1999

Abstract

We investigate the outsourcing of numerical and scienti�c computations using the following
framework: A customer who needs computations done but lacks the computational resources
(computing power, appropriate software, or programming expertise) to do these locally, would
like to use an external agent to perform these computations. This currently arises in many
practical situations, including the �nancial services and petroleum services industries. The
outsourcing is secure if it is done without revealing to the external agent either the actual data
or the actual answer to the computations. The general idea is for the customer to do some
carefully designed local preprocessing (disguising) of the problem and/or data before sending
it to the agent, and also some local postprocessing of the answer returned to extract the true
answer. The disguise process should be as lightweight as possible, e.g., take time proportional to
the size of the input and answer. The disguise preprocessing that the customer performs locally
to \hide" the real computation can change the numerical properties of the computation so that
numerical stability must be considered as well as security and computational performance. We
present a framework for disguising scienti�c computations and discuss their costs, numerical
properties, and levels of security. We show that no single disguise technique is suitable for a
broad range of scienti�c computations but their is an array of disguise techniques available so
that almost any scienti�c computation could be disguised at a reasonable cost and with very high
levels of security. These disguise techniques can be embedded in a very high level, easy-to-use
system (problem solving environment) that hides their complexity.

1

Contents

1 INTRODUCTION 3

1.1 Outsourcing and Disguise . 3
1.2 Related Work in Cryptography . 4
1.3 Other Di�erences Between Disguise and Encryption 5
1.4 Four Simple Examples . 6

1.4.1 Matrix multiplication . 6
1.4.2 Quadrature . 6
1.4.3 Edge detection . 7
1.4.4 Solution of a di�erential equation . 7

2 GENERAL FRAMEWORK 9

2.1 Need for Multiple Disguises . 9
2.2 Atomic Disguises . 9

2.2.1 Random objects . 10
2.2.2 Linear operator modi�cation . 11
2.2.3 Object modi�cation . 11
2.2.4 Domain and dimension modi�cation . 12
2.2.5 Coordinate system changes . 13
2.2.6 Identities and partitions of unity . 14

2.3 Key Processing . 16
2.4 Disguise Programs . 17

3 APPLICATIONS 21

3.1 Linear Algebra . 21
3.1.1 Matrix multiplications . 22
3.1.2 Matrix inversion . 23
3.1.3 Linear system of equations . 24
3.1.4 Convolution . 25
3.1.5 Hiding Dimensions in Linear Algebra Problems 26

3.2 Sorting . 27
3.3 Template Matching in Image Analysis . 28

3.3.1 The case f(x; y) = (x� y)2 . 28
3.3.2 The case f(x; y) = jx� yj . 30

3.4 String Pattern Matching . 32

2

4 SECURITY ANALYSIS 33

4.1 Breaking Disguises . 33
4.2 Attack Strategies and Defenses . 34

4.2.1 Statistical attacks . 34
4.2.2 Approximation theoretic attacks . 35
4.2.3 Symbolic code analysis . 36

4.3 Disguise Strength Analysis . 38
4.3.1 Matrix multiplication . 39
4.3.2 Numerical quadrature . 39
4.3.3 Di�erential equations . 40
4.3.4 Domains of functions . 44
4.3.5 Code disguises . 47

5 COST ANALYSIS 48

5.1 Computational Cost for the Customer . 48
5.2 Computational Cost for the Agent . 49

5.2.1 Preservation of problem structure . 49
5.2.2 Control of accuracy and stability . 50

5.3 Network Costs . 51

3

1 INTRODUCTION

1.1 Outsourcing and Disguise

Outsourcing is a general procedure employed in the business world when one entity, the customer,
chooses to farm out (outsource) a certain task to an external entity, the agent. We believe that
outsourcing will become the common way to do scienti�c computation [10, 11, 12, 23]. The reasons
for the customer to outsource the task to the agent can be many, ranging from a lack of resources
to perform the task locally to a deliberate choice made for �nancial or response time reasons. Here
we consider the outsourcing of numerical and scienti�c computations, with the added twist that the
problem data and the answers are to be hidden from the agent who is performing the computations
on the customer's behalf. That is, it is either the customer who does not wish to trust the agent
with preserving the secrecy of that information, or it is the agent who insists on the secrecy so as to
protect itself from liability because of accidental or malicious (e.g., by a bad employee) disclosure
of the con�dential information.

The current outsourcing practice is to operate \in the clear", that is, by revealing both data
and results to the agent performing the computation. One industry where this happens is the
�nancial services industry, where the proprietary data includes the customer's projections of the
likely future evolution of certain commodity prices, interest and ination rates, economic statistics,
portfolio holdings, etc. Another industry is the energy services industry, where the proprietary data
is mostly seismic, and can be used to estimate the likelihood of �nding oil or gas if one were to drill
in a particular geographic area. The seismic data is so massive that doing matrix computations
on such large data arrays is beyond the computational resources of even the major oil service
companies, which routinely outsource these computations to supercomputing centers.

We consider many science and engineering computational problems and investigate various
schemes for outsourcing to an outside agent a suitably disguised version of the computation in such
a way that the customer's information is hidden from the agent, and yet the answers returned by the
agent can be used to obtain easily the true answer. The local computations should be as minimal
as possible and the disguise should not degrade the numerical stability of the computation. We
note that there might be a class of computations where disguise is not possible, those that depend
on the exact relationships among the data items. Examples that come to mind include (a) ordering
a list of numbers, (b) typesetting a technical manuscript, or (c) visualizing a complex data set, (d)
looking for a template in an image. However, example (a) can be disguised [3], and disguising (d)
is actually a (quite nontrivial) contribution of this paper, so perhaps the others might be disguised
also. To appreciate the di�culty of (d), consider the obvious choice for hiding the image, i.e.,
adding a random matrix to it: What does one do to the template so that the disguised version of
the template occurs in the disguised version of the image? It looks like a chicken and egg problem:
If we knew where the template occurs then we could add to it the corresponding portion of the
images random matrix (so that the occurrence is preserved by the disguise), but of course we do

4

not know where it occurs { this is why we are outsourcing it in th �rst place.

1.2 Related Work in Cryptography

The techniques presented here di�er from what is found in the cryptography literature concerning
this kind of problem. Secure outsourcing in the sense of [1] follows an information-theoretic ap-
proach, leading to elegant negative results about the impossibility of securely outsourcing computa-
tionally intractable problems. In contrast, our methods are geared towards scienti�c computations
that may be solvable in polynomial time, (e.g., solution of a linear system of equations) or where
time complexity is unde�ned (e.g., the work to solve a partial di�erential equation is not related
to the size of the text strings that de�ne the problem). In addition, the cryptographic protocols
literature contains much that is reminiscent of the outsourcing framework, with many elegant pro-
tocols for cooperatively computing functions without revealing information about the functions'
arguments to the other party (cf. the many references in, for example, [30, 33]). The framework
of the privacy homomorphism approach that has been proposed in the past [29] assumes that the
outsourcing agent is used as a permanent repository of the data, performing certain operations on
it and maintaining certain predicates, whereas the customer needs only to decrypt the data from
the external agent's repository to obtain from it the real data. Our framework is di�erent in the
following ways:

� The customer is not interested in keeping data permanently with the outsourcing agent;
instead, the customer only wants to use temporarily its superior computational resources.

� The customer has some local computing power that is not limited to encryption and decryp-
tion. However, the customer does not wish to do the computation locally, perhaps because
of the lack of computing power or appropriate software or perhaps because of economics.

Our problem is also reminiscent of the server-aided computation work in cryptography, but there
most papers deal with modular exponentiations and not with numerical computing [4, 17, 19, 22,
21, 23, 24, 25, 31].

Our problems and techniques a�ord us (as will be apparent below) the exibility of using one-
time-pad kinds of schemes for disguise. For example, when we disguise a number x by adding to it
a random value r, then we do not re-use that same r to disguise another number y (we generate
another random number for that purpose). If we hide a vector of such x's by adding to each a
randomly generated r, then we have to be careful to use a suitable distribution for the r's (more
on this later). The random numbers used for disguises are not shared with anyone: They are
merely stored locally and used locally to \undo" the e�ect of the disguise on the disguised answer
received from the external agent. Randomness is not used only to hide a particular numerical
value, but also to modify the nature of the disguise algorithm itself, in the following way. For any
part of a numerical computation, we will typically have more than one alternative for performing

5

a disguise (e.g., disguising problem size by shrinking it, or by expanding it, in either case by a
random amount). Which method is used is also selected randomly.

Note that the above implies that, if our outsourcing schemes are viewed as protocols, then they
have the feature that one of the two parties in the protocol (the external agent) is ignorant of which
protocol the other party (the customer) is actually performing. This is the case even if the external
agent has the source code, so long as the customer's seeds (of the generators for the randomness)
are not known.

Throughout this paper when we use random numbers, random matrices, random permutations,
random functions (e.g., polynomials, splines, etc., with random coe�cients), etc.; it is assumed that
each is generated independently of the others, and that quality random number generation is used
(cf. [15, Chap. 23], [9, Chap. 12], 13, 20]).

The parameters, types, and seeds of these generators provide the keys to the disguises. We
show how to use a single key to generate multiple keys which are \independent" and which simplify
the mechanics of the disguise techniques. This key is analogous to the key in encryption but the
techniques are di�erent.

1.3 Other Di�erences Between Disguise and Encryption

The following simple example further illustrates the di�erence between encryption and disguise.
Consider a string F of text characters that are each represented by an integer from 1 to 256 (i.e.,
these are byte string). Suppose that F1 is an encryption of F with one of the usual encryption
algorithms. Suppose that F2 is a disguise of F that is created as follows: (1) Choose a seed (the
disguise key) for a uniform random number generator and create a sequence G of random integers
between 0 and 128, (2) Set F2 = F + G. Assume now that F is a constant (the single value 69)
string of length N and the agent wishes to discover the value of this constant. It is not possible
to discover from F1 the value 69 no matter how large N is. However, it is possible to discover 69
from F2 if N is large enough. Since G is uniform, the mean of the values of G converge to 64 as
N increases and thus, as N increases, the mean of F2 converges to 133 = 64 + 69 and the rate of
convergence is order 1=

p
N . Thus, when 1=

p
N is somewhat less than 1/2, we know that the mean

of F2 is 133 and that the character is 69. An estimate of N is obtained by requiring that 128/
p
N

be less than 1/2 or N be more than about 60{70,000.
The point of this example is that the encryption cannot be broken in this case without knowing

the encryption key | even if one knows the encryption method. However, the disguise can be broken
without knowing the key provided the disguise method is known. Of course, it follows that one
should not use a simplistic disguise and we provide disguise techniques for scienti�c computations
with security comparable, one believes, to that of the most secure encryptions.

6

1.4 Four Simple Examples

The nature and breadth of the disguises possible are illustrated by the following:

1.4.1 Matrix multiplication

Consider the computation of the product of two n�n matrices M1 and M2. We use �x;y to denote
the Kronecker delta function that equals 1 if x = y and 0 if x 6= y. The disguise requires six steps:

1. Create (i) three random permutations �1, �2, and �3 of the integers f1; 2; : : : ; ng, and (ii)
three sets of non-zero random numbers f�1; �2; : : : ; �ng, f�1; �2; : : : ; �ng, and f1; 2; : : : ; ng.

2. Create matrices P1, P2, and P3 where P1(i; j) = �i��1(i);j , P2(i; j) = �i��2(i);j , and P3(i; j) =

i��3(i);j . These matrices are readily invertible, e.g., P
�1
1 (i; j) = (�j)

�1���1

1
(i);j .

3. Compute the matrix X = P1M1P
�1
2 . We have X(i; j) = (�i=�j)M1(�1(i); �2(j)).

4. Compute Y = P2M2P
�1
3 .

5. Send X and Y to the agent which computes the product Z = XY = (P1M1P
�1
2)(P2M2P

�1
3)

= P1M1M2P
�1
3 and sends Z back.

6. Compute locally, in O(n2) time, the matrix P�1
1 ZP3, which equals M1M2.

This disguise may be secure enough for many applications, as the agent would have to guess
two permutations (from the (n!)2 possible such choices) and 3n numbers (the �i, �i, i) before it
can determine M1 or M2. This example is taken from [3] where the much more secure disguise of
Section 3.1.1 is presented. Both of these disguises require O(n2) local computation, which is the
minimum possible since the problem involve O(n2) data. The outsourced computations require
O(n3) operations.

1.4.2 Quadrature

The objective is to estimate

Z b

a
f(x)dx

with accuracy eps. The disguise is as follows:

1. Choose x1 = a, x7 = b and 5 ordered, random numbers xi in [a; b] and 7 values vi with
min jf(x)j �M1 �M2 � max jf(x)j. (M1 and M2 are only estimated roughly.)

7

2. Create the cubic spline g(x) with knots xi so that g(xi) = vi.

3. Integrate g(x) exactly from a to b to obtain I1.

4. Send g(x)+f(x) and eps to the agent for numerical quadrature and receive the value I2 back.

5. Compute I2 � I1 which is the answer.

All the computations made locally are simple, of �xed work, independent of eps, and depend weakly
on f(x). The random vectors and matrices of the previous example are replaced by a \random"
smooth function. One has to determine 12 random numbers in order to break the disguise.

1.4.3 Edge detection

The objective is to determine the edges in a picture represented by an n� n array of pixel values
p(x; y) between 0 and 100,000 on the square 0 � x; y � 1. This disguise is as follows:

1. Set x1; y1 = 0, x10; y10 = 1, choose two sets of 8 ordered, random numbers with 0 < xi; yi < 1,
choose 100 random values 0 � vi;j � 50; 000, and choose four pairs (ai; bi) of positive, random
numbers with a1 = minai, a4 = max ai, b1 = min bi, b4 = max bi.

2. Create the bi-cubic spline s(x; y) so that s(xi; yj) = vij .

3. Determine the linear change of coordinates from (x; y) to (u; v) that maps the unit square
into the rectangle with vertices (ai; bi).

4. Send p(u(x; y); v(x; y)) + s(u(x; y); v(x; y)) to the agent for edge detection and receive the
image e(u; v) back showing the edges.

5. Compute e(x(u; v); y(u; v)) to obtain the edges.

This disguise uses the fact that adding a smooth pixel function to the image and making a smooth
change of coordinate does not add or delete any edges from the image. As in 1.4.1, the work of the
disguise is proportional to the size of the data for the computing (plus a small constant amount).
Here one must determine 124 random numbers in order to break the disguise.

1.4.4 Solution of a di�erential equation

The objective is to solve the two point boundary value problem

y00 + a1(x)y
0 + a2(x)y = f(x; y) y(a) = y0; y(b) = y1:

The disguise is as follows:

8

1. Choose a spline g(x) as in 1.4.2 above.

2. Create the function
u(x) = g00 + a1(x)g

0 + a2(x)g:

3. Send the problem

y00 + a1(x)y
0 + a2(x)y = f(x; y) + u(x) y(a) = y0 + u(a); y(b) = y1 + u(b)

to the agent for solution and receive z(x) back.

4. Compute z(x)� g(x) which is the solution.

This disguise applies the problem's mathematical operator to a known function and then combines
the real and the arti�cial problems. Here one must determine 12 random numbers to break the
disguise.

This paper is organized as follows. Section 2 presents the general framework for disguises and
most of the innovative approaches. These include:

� One time random sequences that are highly resistant to statistical attack.

� Random mathematical objects including matrices and vectors previously introduced in [3] plus
random functions, operators and mappings introduced here.

� Linear operator modi�cation to disguise computation involving operators.

� Mathematical object modi�cation using random objects to create disguises that are highly
resistant to approximation theoretical attacks.

� Domain/dimensional/coordinate system modi�cations to disguise computation via transfor-
mations.

� Identities and partitions of unity to create disguises highly resistant to symbolic code analysis
attacks.

� Master key/sub-key methodology that allows for a single key from which a large number of
independent sub-keys may be derived.

� Disguise programs which specify disguises concisely and retain the information exactly for
disguise inversion.

Section 3 discusses the application of these approaches to the following:

� Linear algebra (matrix multiplication, matrix inversion, systems of equations, convolutions).

9

� Sorting.

� String pattern matching.

� Template matching for images with least squares or `1 norms in minimal order time.

Section 4 presents an analysis of the strengths of the disguises and identi�es the three principal
avenues of attack (statistical, approximation theoretic and symbolic code analysis). Section 5
presents a discussion of the cost of the disguise process.

2 GENERAL FRAMEWORK

In this section we show why multiple disguise techniques are necessary and then identify �ve broad
classes of disguises. Within each class there may be several or many atomic disguises, the techniques
used to create complete disguises. The necessity for multiple disguises illustrates again the di�erent
nature of disguises and encryption. Multiple disguises require multiple keys and thus we present a
technique to use one master key from which many sub-keys may be generated automatically with
the property that the discovery of one sub-key does not compromise the master key or any other
sub-key. Finally, we present a notation of for disguise programs which use the atomic disguises to
create complete disguises.

2.1 Need for Multiple Disguises

We believe that no single disguise technique is su�cient for the broad range of scienti�c compu-
tations. The analogy with ordinary disguises is appropriate: one does completely di�erent things
to disguise an airplane hanger than one does to disguise a person. In a personal disguise one
changes their hair, the face, the clothes, etc., using several di�erent techniques. The same is true
for scienti�c computation.

If we consider just �ve standard scienti�c computations, quadrature, ordinary di�erential equa-
tions, optimization, and matrix multiplication, we see that none of the atomic disguises applies to
all �ve. We are unable to �nd a single mathematical disguise technique that is applicable to all
�ve.

2.2 Atomic Disguises

A disguise has three important properties:

� Invertibility: After the disguise is applied and the disguised computation made, one must be
able to recover the result of the original computation.

10

� Security: Once the disguise is applied, someone (the agent) without the key of the disguise
should not be able to discover either the original computation or its result. It must be
assumed the agent has all the information about the disguised computation. One can use
multiple agents to strengthen the security of a disguise but, ultimately, one must be concerned
that these agents might collaborate in an attempt to break the disguise.

� Cost: There is a cost to apply the disguise and a cost to invert it. The costs to outsource
the computation and to carry it out might be increased by the disguise. Thus, there are four
potential sources of cost in using disguises.

The ideal disguise is, of course, invertible, highly secure and cheap. We present disguises for
scienti�c computations that are invertible, quite secure and of reasonable cost. The cost of disguise
is often related to the size of the computation in some direct way. Not unexpectedly, we see that
increasing security involves increasing the cost.

2.2.1 Random objects

The �rst class of atomic disguise techniques is to create random objects: numbers, vectors, matrices,
functions, parameters, etc. These objects are \mixed into" the computation in some way to disguise
it. These objects are created in some way from random numbers which, in turn, use random number
generators. If the numbers are truly random, then they must be saved for use in the disguise and
inversion process. If they come from a pseudo random number generator, then it is su�cient to
save the seed and parameters of the generator.

We strongly advocate that the \identity" of the generator be hidden, not just the seed, if
substantial sequences from the generator are used. This can be accomplished by taking a few
standard generators (uniform, normal, etc.) and creating one time random sequences. To illustrate,
assume we have G1 = a uniform generator (with two parameters = upper/lower range), G2 =
normal generator (with two parameter = mean and standard deviation), G3 = exponential generator
(with two parameters = mean and exponent), and G4 = gamma generator (with two parameters =
mean and shape). Choose 12 random numbers; the �rst 8 are the parameters of the four generators
and the other four, �1, �2, �3 and �4 are used to create the one time random sequence

�1G1 + �2G2 + �3G3 + �4G4:

These random numbers must be scaled appropriately for the computation to be disguised. This is
rather straight forward and discussed in a more general context later. Note that in creating this
one set of random numbers, we use 16 sub-keys, the 8 parameters, the 4 coe�cients, and the 4
seeds of the generators.

Once one has random numbers then it is straight forward to create random vectors, matrices
and arrays for use in disguises. Objects with integer (or discrete) values such as permutations also
can be created from random numbers in a straight forward manner.

11

Functions play a central role in scienti�c computations and we need to be able to choose random
sets of them also. The technique to do this is as follows. Choose a basis of 10 or 30 functions for
a high dimensional space F of functions. Then choose a random point in F to obtain a random
function. The basis must be chosen with some care for this process to be useful. The functions
must have high linear independence (otherwise the inversion process might be unstable) and their
domains and ranges must be scaled compatibly with the computation to be disguised. The scaling
is straight forward (but tedious). We propose to make F a one time random space as illustrated
by the following example. Enclose the domain of the computation in a box (interval, rectangle,
box; : : : ; depending on the dimension). Choose a random rectangular grid in the box with 10 lines
in each dimension and assuring a minimum separation (say 3%). Create K sets of random function
values at all the grid points (including the boundaries), one set for each basis function desired.
These values are to be in the desired range. Interpolate these values by cubic splines to create K
basis functions. These functions are smooth (they have two continuous derivatives). Add to this
set of K basis functions a basis for the quadratic polynomials.

The approach illustrated above can be modi�ed to make many kinds of one time random spaces
of functions. If functions with local support are needed, just replace the cubic spline by Hermite
quintics. If the functions are to vary more in one part of the domain than the other, then re�ne
the grid in that part. If the functions are to be more or less smooth, then adjust the degree and
smoothness of the splines appropriately. The computational techniques for creating all these splines
(or piecewise polynomials) are given in the book by deBoor [9].

2.2.2 Linear operator modi�cation

Many scienti�c computations involve linear operators, e.g.,

linear equations: Solve Ax = b
di�erential equations: Solve y00 + cos(x)y0 + x2y = 1� xe�x

These operator equations are of the form Lu = b and can be disguised by changing the objects in
them (this is discussed later) or by exploiting their linearity. Linearity is exploited by randomly
choosing v like u, i.e., v is the same type of object, and then solving L(u+ v) = b+ Lv where Lv
is evaluated to be the same type as b. This disguises the solution buy still reveals the operator. It
will be seen later that, for equations involving mathematical functions, it is very advantageous to
choose v to be a combination of a random function and functions that appear in the equation. Thus
one could choose v(x) in the above di�erential equation to be vRan(x) + 4:2 cos(x) � 2:034xe�x.
This helps with disguises of the operator.

2.2.3 Object modi�cation

Scienti�c computations involve the objects discussed above which can often be manipulated by
addition or multiplication to disguise the computation. The related techniques of substituting

12

equivalent objects is discussed later. We illustrate these by examples.

1. Addition to integrals. To disguise the evaluation ofZ 1

0

p
x cos(x+ 3)dx

add a random function to
p
x cos(x+3). Note that the basis of the space F chosen in Section

2.2.1 makes it trivial to evaluate the integral of one of these functions.

2. Multiply by matrices. To disguise the solution of Ax = b choose two random diagonal matrices,
D1 and D2, compute B = D1AD2 and outsource the problem

By = D1b:

The solution x is then obtained from x = D2y.

2.2.4 Domain and dimension modi�cation

Many problems allow one to modify the domain or dimensions (matrix/vector problems) by expan-
sion, restriction, splitting or rearrangement. Each of these is illustrated.

1. Expansions. The evaluation of Z 1

0

p
x cos(x+ 3)dx

or solution of a problem of related type on [3,5]:

y0(x) = (x+ y)e�xy; y(3) = 1

can be modi�ed by expanding [0,1] to [0,2] or [3,5] to [2,5]. In the �rst case one selects a
random function u(x) from F with u(1) = cos(4), integrates it on [1,2] and extends

p
x cos(x+

3) to [0,2] using u(x). In the second case one chooses a random function u(x) from F with
u(3) = 1, u0(3) = 4e�3. One computes its derivative u0(x), its value u(2) and solves the
problem

y0(x) = (x+ y)e�xy on [3,5]
= u0(x) on [2,3]

with the initial condition y0(2) = u0(2).

2. Restriction. One can decrease the dimension of a linear algebra computation or problem by
having the customer perform a tiny piece of it and sending the rest to the agent. For example,
in solving Ax = b, one chooses an unknown at random, eliminates it by Gauss elimination
and then sends the remaining computation to the agent. This changes the order of the matrix
by 1 and, further, it modi�es all the remaining elements of A and b. This does not disguise
the solution except by hiding one unknown.

13

3. Splitting. Many scienti�c problems can be partitioned into equivalent subproblems simply by
splitting the domain. This is trivial in the case of quadrature and the linear algebra problem
Ax = b can split by partitioning

A =

A11 A12

A21 A22

!

and creating two linear equations

A11x1 = b1 �A12x2

(A22 �A21A
�1
11 A12)x2 = b2 �A�1

11 b1:

(See Section 3.1 for more on disguising the Ax = b problem.)

The di�erential equation problem

y0(x) = (x+ y)e�xy y0(3) = 1 on [3,5]

can be split into

y0(x) = (x+ y)e�xy y0(3) = 1; on [3,4]
y0(x) = (x+ y)e�xy y0(u) = as computed, on [4,5]

An important use of splitting problems is to be able to disguise the di�erent parts in di�erent ways
so as to strengthen the overall security of the disguise.

2.2.5 Coordinate system changes

Changes of coordinate systems are e�ective disguises for many scienti�c computations. They must
be chosen carefully, however; if they are too simple they do not hide much, if they are too complex
they are hard to invert. For discrete problems (e.g., linear algebra) permutations of the indices
play a similar role. Random permutation matrices are easy to generate and simple to apply/invert.
Disguises based on coordinate system changes are one of the few e�ective disguises for optimization
and solutions of nonlinear systems.

We illustrate the range of possibilities by considering a particular problem, disguising the two-
dimensional partial di�erential equation (PDE) problem

52f(x; y) + (6:2 + 12 sin(x+ y))f = g1(x; y) (x; y) in R
f(x; y) = b1(x; y) (x; y) in R1

f(x; y) = b2(x; y) (x; y) in R2
@f(x;y)
@x + g2(x; y)f(x; y) = b3(x; y) (x; y) in R3

14

Here R1, R2 and R3 comprise the boundary of R. To implement the change of coordinates, u =
u(x; y), v = v(x; y) one must be able to

(1) invert the change, �nd the functions x = x(u; v), y = y(u; v)
(2) compute derivatives needed in the PDE, e.g.,

@2f

@x2
=
@2f

@u2

@2u

@x2

!2

+
@f

@u

@2u

@x2
+
@2f

@v2

�
@v

@x

�2
+
@f

@v

@2u

@x2

The change of coordinates produces an equivalent PDE problem on some domain S in (u; v) space
of the form

P2
i;j=0 aij(u; v)

@i@i

@ui@uj f(u; v) = h1(u; v) (u; v) 2 S
f(u; v) = c1(u; v) (u; v) 2 S1
f(u; v) = c2(u; v) (u; v) 2 S2

d1(u; v)
@f(u;v)
@u + d2(u; v)

@f(u;v)
@v + d3(u; v)f(u; v) = c3(u; v) (u; v) 2 S3

Here S1, S2 and S3 are the images of R1, R2, R3 and the functions aij(u; v), h1(u; v), ci(u; v),
di(u; v) are obtained from substituting in the changes of variables and collecting terms.

A completely general coordinate change is excellent in disguising the PDE problem. It changes
the domain and all its problem coe�cient functions (usually in complex ways). There are a number
of coordinate changes where the inverse is known explicitly, but these are few enough that restricting
oneself to them might weaken the security of disguise. For other coordinate changes the inverse
must be determined numerically. This process has been studied in some depth by Ribbens [26,
27] and reliable, e�cient procedures developed which can be used to create one time coordinate
changes using parameterized mappings with randomly chosen parameters.

An intermediate variation here is to make coordinate changes in the variables independently.
That is, we have u = u(x) and v = v(y). This approach substantially reduces the cost and
complexity of the change and yet allows for randomly parameterized one time coordinate changes.

2.2.6 Identities and partitions of unity

One class of attacks on disguises is to make a symbolic analysis of the computational codes in
order to separate the \random objects" from the original objects (see Section 4.3.3). Considerable
protection against such attacks can be achieved by using mathematical identities to disguise the
mathematical models involved in the computations. Examples of such identities include

15

a2 � ax+ x2 = (a3 + x3)=(a+ x)
log(xy) = log x+ log y
1 + x = (1� x2)=(1� x)

sin(x+ y) = sinx cos y + cos x sin y
cos2 x = sin2 y + cos(x+ y) cos(x� y)

p cosx+ q sin(y) =
p
p2 + q2 cos(x� cos�1(p=

p
p2 + q2))

sin(3(x + y)) = 3 sin(x+ y)� 4 sin3(x+ y)

Thus, if any component of these identities appears symbolically in a computation, the equivalent
expression can be substituted to disguise the problem. A general source of useful identities for
disguise comes from the basic tools for manipulating mathematics, e.g., changes of representation
of polynomials (power form, factored form, Newton form, Lagrange form, orthogonal polynomial
basis, etc.), partial fraction expansions or series expansions. The above classical identities are
purposely simple, disguises need complex identities, and these may be created by involving lessor
known functions and compositions. For example, the simple relations involving the Gamma, Psi
and Struve functions [2]

�(x+ 1) = x�(x); (x + 1) = (x) + 1=x;H1=2(x) = (2=�x)1=2(1� cos x)

can be combined with the above to produce

sin(x) = [sin((1 + 1=x) + x)� sin((1=x)) cos x]= cos((1=x))
log(x) = log �(x) + log(�(x+ 1)H1=2(x))� log(1� cos x) + 1=2 log(�x=2)

Identities which equal 1 are called partitions of unity and they can be used anywhere in a
computation. Examples include

sin2 x+ cos2 x = 1
sec2(x+ y)� tan2(x+ y) = 1

(tan x+ tan y)= tan(x+ y) + tan x tan y = 1
b1(r; x) + b2(r; s; x) + b3(r; s; x) + b4(s; x) = 1

where the bi are \hat" functions de�ned by

b1(r; x) = max(1� x=r; 0)
b2(r; s; x) = max(0;min(x=r; (s � x)=(s� r)))
b3(r; s; x) = max(0;min((x� r)=(s� r); (1� x)=(1 � s)))
b4(x; s) = max(0; (x � s)=(1� s))

each of which is a piecewise linear function with breakpoints at 0, r, s and/or 1. Generalizations of
this partition of unity are known for an arbitrary number of functions, arbitrary polynomial degree,

16

arbitrary breakpoints, and arbitrary smoothness (less than the polynomial degree). Partitions of
unity allow one to introduce unfamiliar and unrelated functions into symbolic expression. Thus the
second partition above becomes

sec2(y7(x) + u(1:07296; x)) � tan2(y7(x) + u(1:07296; x)) = 1

where y7(x) is the Bessel function of fractional order and u(1:07296; x) is the parabolic cylinder
function. The Guide to Available Mathematical Software [5] lists 48 classes of functions for which
library software is available.

Finally, we note that using functions and constants that appear in the original expression
strengthens disguises signi�cantly. Thus, if 2.70532, x2, cos(x) and log(x) initially appear in an
ordinary di�erential equation, one should use identities that involve these objects or closely related
ones, e.g., 1.70532, 2x2 � 1, cos(2x) or log(x+ 1). Recall in elementary trigonometry courses that
the establishment of identities is one of the most di�cult topics (even given the knowledge that
the two expressions are identical), so it is plausible that using several identities in a mathematical
model provides very high security.

One can also create one time identities as follows. There exists well known, reliable library
programs that compute the best piecewise polynomial approximation to a given function f(x)
with either speci�ed or variable breakpoints [8, 9]. The number of breakpoints and/or polynomial
degrees can be increased to provide arbitrary precision in these approximations. Thus given that

f(x) = sin(2:715x + 0:12346)=(1:2097 + x1:07654)

or that f(x) is computed by a 1000 line code, one can use these library routines to replace f(x) by a
code that merely evaluates a piecewise polynomial with \appropriate" coe�cients and breakpoints.
One time identities may also use the classical mathematical special functions that have parameters,
e.g., incomplete gamma and beta functions, Bessel function, Mathieu functions, spheroidal wave
functions, parabolic cylinder functions [2].

2.3 Key Processing

The atomic disguises usually involve a substantial number of keys (parameters of random numbers
generators, random numbers, etc.) that partly de�ne the disguise process. It is thus desirable
to avoid keeping and labeling these keys individually and we present a technique that uses one
master key to create an arbitrary number of derived sub-keys. Let K be the master key and ki,
i = 1; 2; : : : ; N be the sub-keys. The sub-keys ki are derived from K by a procedure P such as the
following. We assume K is represented as a long bit string (a 16 character key K generates 128
bits) and we have a random number generator G. For each i = 1; 2; : : : ; N we generate randomly a
bit string of length 128 and use it as a mask on the representation of K (i.e., we select those bits
of K where the random bit string is 1). For each i this produces a bit string of about 64 (in our

17

example) bits or a full word for a 64 bit computer. Thus, with a single key K and a �xed random
number generator G, we can create, say, many thousands of sub-keys so that

� Each ki is easily derived from K.

� Knowing even a substantial set of the ki gives no information about K even if the generation
procedure P is known.

Recall that many of the sub-keys are, in turn, seeds or parameters for a variety of random
number generators so that massive sets of random numbers can be used without fear of revealing
the master key or other sub-keys even if a statistical attack on this aspect of the disguise is successful
(which is very unlikely, see Section 4.2.1).

Implicit in this discussion is that we envisage a substantial problem solving environment, call
it Atri, for outstanding disguises which manages the disguise process and its inversion for the user.
Of course, one can do all this by hand and, if super-security is essential, this might be advisable as
one must assume a resourceful and determined attacker would have complete knowledge of Atri.

2.4 Disguise Programs

It should now be clear that outsourcing disguises involve several steps and that one must carefully
record the steps of the disguise process, as well as record the master key. At this point we ignore
cost issues, e.g., is it better to save random numbers used or to recreate them when needed? We
focus entirely on the questions of

� Specifying the disguise in reasonably e�cient ways.

� Retaining the information so the disguise can be inverted.

The second question is a subset of the �rst, in that it is often possible to invert a disguise without
knowing everything about a disguise. This is illustrated in the earlier simple examples (Section
1.3) where,

� (1.3.1) one does not need to know P2,

� (1..3.2) one does not need to know g(x), only I1 is needed.

It is clear that Atri should be built using, at least internally, a formal language for specifying
disguises and the process for inverting them. We do not attempt to de�ne such a language here,
but rather illustrate how such a language might appear to a user. First we observe that Atri must

� Provide direct access to the objects (variables) in the computations. These might be single
elements (numbers, arrays, functions; : : :) or compositions (expressions, equations, problems,
coordinate systems; : : :).

18

� Provide a set of procedures to generate random objects as in Section 2.2.1 with speci-
�ed attributes, e.g., size, dimension, smoothness, domain, random number generator type
(seed/parameters; : : :), etc.

� Allow old/new objects to be combined with appropriate (type dependent) operators (e.g.,
add, multiply, transform, substitute, insert, apply; : : :).

� Provide simple sequencing control of the disguise, outsourcing, retrieval and disguise inversion
actions.

To initially illustrate the nature of these programs, we express the simple examples of Section
1.3 as disguise programs. The informal language used is somewhat verbose in order to avoid de�ning
many details explicitly, it is intended to be self-explanatory.

Matrix Multiplication (1.3.1): M1 * M2

Matrix Key K = AmY+JennA-Tygar-BeaU, Sub Key k(i)
m = Dimension (M1)

Permutations (1:m), �1, �2 �3 using GUNIF (k(1))

Vector (1:m), �, �, using GUNIF (k(2), [1,2])

Matrix (1:m,1:m), P1, P2, P3

P1(i,j) = �(i) if �1(i) = j

= 0 otherwise

P2(i,j) = �(i) if �2(i) = j

= 0 otherwise

P3(i,j) = (i) if �3(i) = j

= 0 otherwise

Matrix (1:m,1:m), X, Y, Z, ANS

X = P1 * M1 * P2�1

X = P2 * M2 * P3�1

Outsource [Product, X, Y]

Return Z

ANS = P1�1 * Z * P3

19

Quadrature (1.3.2): Integrate f(x) on [a,b]

Master Key K = Quadrature of f(x) 1.3.2 a,b

Function f(x), h(x); Interval [a,b]

maxf = max(f,a,b); minf = min(f,a,b)

Vector (2:6), P using GUNIF (k(1), a, b)

P(1) = a; P(7) = b

Vector (1:7), V using GUNIF (k(2), minf, 2 * maxf)

Cubic spline g(x) with g(P(i)) = V(i) for i = 1:7

I1 = Integrate (g,a,b, exact)

h(x) = f(x) + g(x)

Outsource [Integrate, h, a, b, eps]

Return I2

ANS = I2 - I1

20

Edges (1.3.3): Find edges in photo Amalfi.10.29.97

Master Key K = Edges in Amalfi.10.29.97+ElmaGarMid

Photo Amalfi.10.29.97

(n,m) = Dimension (Amalfi.10.29.97)

r = Max (Amalfi.10.29.97)

(XCOR(1:4), YCOR(1:4)) = Corners (Amalfi.10.29.97)

Vector (1:10), X,Y

X(1) = XCOR(1); X(10) = XCOR(4); Y(1) = YCOR(1); Y(10) = YCOR(4)

X(2:9) = GUNIF (k(1), X(1), X(10))

Y(2:9) = GUNIF (k(2), Y(1), Y(10))

Array (1:10,1:10), V using GUNIF (k(3), 0, r)

Cubic spline S(x,y) with S(X(i), Y(j)) = V(i,j) for i,j = 1:10

H1 = (XCOR(4) - XCOR(1))/(n-1); H2 = (YCOR(4) - YCOR(1))/(m-1)

Array (1:n,1:m) SV

SV(i,j) = S(XCOR(1) + (i-1)*H1, YCOR(1) + (j-1)*H2) for i = 1:n, j = 1:m

Vector (1:4) A using GUNIF (k(1), 2, 4)

NUXCOR(1) = A(1); NUXCOR(4) = A(1) + A(2)

NUYCOR(1) = A(3); NUYCOR(4) = A(3) + 1/A(4)

NUXCOR(2) = NUXCOR(4); NUXCOR(3) = NUXCOR(1)

NUYCOR(2) = NUYCOR(4); NUYCOR(3) = NUYCOR(1)

S1 = A(2)/(XCOR(1) - XCOR(4))

S2 = 1/(A(4) * (YCOR(1)-YCOR(4))

I1 = A(1) - S1 * XCOR(1)

I2 = A(3) - S1 * YCOR(1)

MAPS: U = I1 + S1*X; V = I2 + S2*Y

Photo Sphoto = (SV, NUXCOR, NUYCOR, n, m)

Photo Amalfi2 = (array(Amalfi.10.27.97), NUXCOR, NUYCOR, n, m)

Photo Out = Sphoto + Amalfi2

Photo Outedges

Outsource [edges, Out]

Return Outedges

Photo Amalfi.edges = (Array (outedges), XCOR, YCOR, n, m)

21

Differential Equations (1.3.4): Solve 2 point BVP

Function Y(x), a1(x), a2(x), f(x), u(x)

Operator (L): L = y00 + a1(x) * y0 + a2(x) * y

Boundary Conditions: BC = (a, b, Y1, Y2)

ODE: Ly = f, BC

Master Key K = Addis+aBABA+Ethiopia.1948

maxf = max(f,a,b); minf = min(f,a,b)

Vector (2:6), P using GUNIF (k(1), a, b)

P(1) = a; P(7) = b

Vector (1:7), V using GUNIF (k(2), minf, 2*maxf)

Cubic spline g(x) with g(P(i)) = V(i) for i = 1:7

Boundary Conditions: BC2 (a, b, Y1 + u(a), Y2 + u(b))

ODE2: Ly = f + u, BC2

Outsource [Solve-ODE, ODE2, solution = z]

Return z(x)

ANS = z(x) - g(x)

We observe the following from these four simple disguises.

� Even simple disguises are rather complex.

� The disguise procedure must be recorded carefully.

� Minor changes in the disguise programs (even if syntactically and semantically correct) change
the outsourced problem signi�cantly or, equivalently for a �xed outsourced problem, change
the original problem signi�cantly.

� The disguise acquires security both from the random numbers used and from the complexity
of the disguise process.

� The Atri environment should provide much higher level ways to specify disguises than these
examples use. It should, however, allow one to tailor a disguise in detail as these examples
illustrate.

3 APPLICATIONS

3.1 Linear Algebra

These disguise algorithms are taken directly from [3] except that the disguise of solving a linear
system has been modi�ed to enhance the numerical stability of the outsourcing process.

22

3.1.1 Matrix multiplications

A fairly satisfactory disguise is given in section 1.4.1. The following method provides even greater
security by adding in a dense random matrix. The following scheme hides a matrix by the sparse
random matrices Pi or their inverse, the resulting matrix is further hidden by adding a dense
random matrix to it. The details follow.

1. Compute matrices X = P1M1P
�1
2 and Y = P2M2P

�1
3 as in Section 1.4.1.

2. Select two random n� n matrices S1 and S2 and generate four random numbers �, , �0, 0

such that
(� +)(�0 + 0)(0� � �0) 6= 0

3. Compute the six matrices X + S1, Y + S2, �X � S1, �Y � S2, �
0X � 0S1, �

0Y � 0S2.
Outsource to the agent the three matrix multiplications

W = (X + S1)(Y + S2) (1)

U = (�X � S1)(�Y � S2) (2)

U 0 = (�0X � 0S1)(�
0Y � 0S2) (3)

which are returned.

4. Compute the matrices

V = (� +)�1(U + �W) (4)

V 0 = (�0 + 0)�1(U 0 + �00W) (5)

Observe that V = �XY + S1S2, and V
0 = �0XY + 0S1S2.

5. Outsource the computation
(0� � �0)�1(0V � V 0)

which equals XY (as can be easily veri�ed - we leave the details to the reader).

6. Compute M1M2 from XY by

P�1
1 XY P3 = P�1

1 (P1M1P
�1
2)(P2M2P

�1
3)P3 =M1M2:

23

3.1.2 Matrix inversion

The scheme we describe to invert the n � n matrix M uses secure matrix multiplication as a
subroutine.

1. Select random n� n matrix S. The probability that S is non-invertible is small, but if that
is the case then Step 4 below sends us back to Step 1.

2. Outsource the computation to the agent

M̂ =MS (6)

using secure matrix multiplication. Of course, after this step the agent knows neitherM , nor
S, nor M̂ .

3. Generate matrices P1, P2, P3, P4, P5 using the same method as for the P1 matrix in Steps 1
and 2 in Section 1.4.1. That is, P1(i; j) = ai��1(i);j , P2(i; j) = bi��2(i);j , P3(i; j) = ci��3(i);j ,
P4(i; j) = di��4(i);j , and P5(i; j) = ei��5(i);j , where �1, �2, �3, �4, �5 are random permutations,
and where the ai, bi, ci, di, ei are random numbers. Then compute the matrices

Q = P1M̂P�1
2 = P1MSP�1

2 (7)

R = P3SP
�1
4 (8)

4. Outsource the computation of Q�1 and, if it succeeds, return Q�1. If Q is not invertible, then
the agent returns this information. We know that at least one of S or M (possibly both) is
non-invertible. and we do the following:

(a) Test whether S is invertible by �rst computing Ŝ = S1SS2 where S1 and S2 are matrices
known to be invertible and outsource Ŝ to the agent for inverting.

Note: The only interest is whether Ŝ is invertible or not, not in its actual inverse. The
fact we discard S makes the choice of S1 and S2 less crucial than otherwise. Hence S1
and S2 can be generated so they belong to a class of matrices known to be invertible
(there are such classes). It is unwise to let S1 and S2 be the identity matrices, because
by knowing S the agent might learn how we generate these random matrices.

(b) If the agent can invert Ŝ then we know S is invertible, and hence thatM is not invertible.
If the agent says that Ŝ is not invertible, then we know that S is not invertible. In that
case we return to Step 1, i.e., choose another S, etc.

5. Observe that Q�1 = P2S
�1M�1P�1

1 and compute the matrix

T = P4P
�1
2 Q�1P1P

�1
5 :

It is easily veri�ed that T is equal to P4S
�1M�1P�1

5 .

24

6. Outsource the computation of
Z = RT

using secure matrix multiplication. Of course the random permutations and numbers used
within this secure matrix multiplication subroutine are independently generated from those
of the above Step 3 (using those of Step 3 could compromise security). Observe that

Z = P3SP
�1
4 P4S

�1M�1P�1
5 = P3M

�1P�1
5 :

7. Compute P�1
3 ZP5 which equals M�1.

The security of the above follows from:

1. The calculations of M̂ and Z are done using secure matrix multiplication, which reveals
neither the operands nor the results to agent A, and

2. The judicious use of the matrices P1; : : : ; P5 "isolates" from each other the three separate
computations that we outsource to A. Such isolation is a good design principle whenever
repeated usage is made of the same agent, so as to make it di�cult for that agent to correlate
the various subproblems it is solving (in this case three). Of course less care needs to be taken
if one is using more than one external agent.

3.1.3 Linear system of equations

Consider the system of linear equationsMx = b whereM is a square n�n matrix, b is an n-vector,
and x the vector of n unknowns. The scheme we describe uses local processing which takes time
O(n2) proportional to the size of the input.

1. Select a random n � n matrix B and a random number j 2 f1; 2; : : : ; ng. Replace the j-th
row of B by b. i.e. B = [B1; : : : ; Bj�1; b; Bj+1; : : : ; Bn].

2. Generate matrices P1, P2, P3 using the same method as for the P1 matrix in Steps 1 and 2
in Section 1.4.1. That is, P1(i; j) = ai��1(i);j , P2(i; j) = bi��2(i);j , P3(i; j) = ci��3(i);j , where
�1, �2, �3 are random permutations, and where the ai, bi, ci are random numbers.

3. Compute the matrices

M̂ = P1MP�1
2 (9)

B̂ = P1BP
�1
3 (10)

4. Outsource to the agent the solution of the linear system M̂x = B̂. If M̂ is singular then the
agent returns a message saying so, then we know M is singular. Otherwise the agent returns

X̂ = M̂�1B̂:

25

5. Compute X = P�1
2 X̂P3 which equals M�1B, since

P�1
2 X̂P3 = P�1

2 M̂�1B̂P3 = P�1
2 P2M

�1P�1
1 P1BP

�1
3 P3 =M�1B:

6. The answer x is the j-th column of X, i.e., x = Xj .

The security of this process follows from the fact that b is hidden through the expansion to a
matrix B, and then M and B are hidden through random scalings and permutations.

3.1.4 Convolution

Consider the convolution of two vectors M1 and M2 of size n, indexed from 0 to n� 1. Recall that
the convolution M of M1 and M2 is a new vector of size 2n� 1, denoted M =M1
M2, such that

M(i) =

min(i;n�1)X
k=0

M1(k)M2(i� k):

The scheme described below satis�es the requirement that all local computations take O(n) time.
1. Choose vectors S1, S2 of size n randomly. Also choose �ve positive numbers �, �, , �0, 0

such that
(� + �)(�0 + �0)(0� � �0) 6= 0:

2. Compute locally the six vectors �M1 + S1, �M2 + S2, �M1 � S1, �M2 � S2, �
0M1 � 0S1,

�0M2 � 0S2.

3. Outsource to the agent the three convolutions:

W = (�M1 + S1)
 (�M2 + S2) (11)

U = (�M1 � S1)
 (�M2 � S2) (12)

U 0 = (�0M1 � 0S1)
 (�0M2 � 0S2) (13)

which are returned.

4. Compute locally the vectors

V = (� + �)�1(�U + �W) (14)

V 0 = (�0 + �0)�1(�U 0 + �00W) (15)

Observe that V = ��M1
M2 + S1
 S2, and V
0 = ��0M1
M2 + 0S1
 S2.

5. Compute
��1(0� � �0)�1(0V � V 0);

which equals M1
M2.

26

3.1.5 Hiding Dimensions in Linear Algebra Problems

. The report [3] systematically describes in detail how to hide the dimensions of linear algebra
problems by either increasing or decreasing them. Here we describe their techniques in a less
detailed form. The basic ideas are seen from the multiplication of M1M2 where M1 and M2 are of
dimension a� b and b� c, respectively. First note that one can add k random rows to M1 and/or
k random columns to M2 and then just ignore the extra rows and/or columns generated in the
product. One may enlarge b by adding k columns to M1 and k rows to M2 which are related.
The simple relationship proposed in [3] is to take the odd-numbered extra columns of M1 and the
even-numbered rows of M2 to be identically zero. The other additional elements in M1 and M2

could be chosen randomly. The result is that the product of the augmented matrices is the same
as M1M2.

To reduce the dimensions a or c, one can merely partition M1 by rows or M2 by columns and
perform two smaller matrix multiplications. To reduce b one can partition both M1 and M2 of
compatible dimensions and then computeM1M2 by eight smaller matrix multiplications. The total
arithmetic work is unchanged.

To enlarge the dimension n in inverting the n � n matrix M one uses the same scheme as
for matrix multiplication and at step 4 the matrix Q is augmented by a k � k random matrix S

so that the matrix

Q 0
0 S

!
is reducible. The inversion of this larger matrix is done using the

matrix inversion algorithm which hides the special structure of the enlarged matrix. To reduce the
dimension n partition Q into

X Y
V W

!
:

If X and Y �WX�1V are invertible (and such a partition can be made) then the inverse of Q is
the partitioned matrix

X�1 +X�1V D�1WX�1 �X�1V D�1

�D�1WX�1 D�1

!
:

To decrease the dimension n in the linear system Mx = b one can use the scheme used for
matrix inversion. To enlarge n we create the system

M 0
0 S

!
x
y

!
=

b

Sy

!

where S is a k � k invertible matrix (say, random) and y is random vector. One then applies
the previous algorithm which hides the special structure of the enlarged matrix. The zero block
matrices above can be replaced by random matrices with a minor change in the right side.

27

To increase the dimension n of the problem M1
M2 one can merely pad the vectors M1 and
M2 by adding k zeros. To decrease the dimension we �rst note that M1
M2 can be replaced by
three convolutions of size n/2

(M
(even)
1 +M

(odd)
1)
 (M

(even)
2 +M

(odd)
2)

(M
(even)
1 �M

(odd)
1)
 (M

(even)
2 �M

(odd)
2)

M
(odd)
1
M

(odd)
2

whereM (odd), M (even) mean the vector of odd and even indexed elements of M , respectively. From
these convolutions one can easily �nd the products on the right side of the relationships

(M1
M2)
(odd) =M

(even)
1
M

(odd)
2 +M

(odd)
1
M

(even)
2

(M1
M2)
(even) =M

(even)
1
M

(even)
2 + Shift[M

(odd)
1
M

(odd)
2]

where Shift(x) shifts the vector x by one position.

3.2 Sorting

Consider the problem of sorting a sequence of numbers E = fe1; : : : ; eng. This can be outsourced
securely by selecting a strictly increasing function f : E ! R, such as

f(x) = �+ �(x+)3

where � > 0. The scheme we describe below assumes this particular f(x).

1. Choose �, �, and so that � > 0.

2. Choose a random sorted sequence � = f�1; : : : ; �lg of l numbers by randomly \walking" on
the real line from MIN to MAX where MIN is smaller than the smallest number in E and
MAX is larger than the largest number in E. Let � = (MAX �MIN)=n and the random
\walking" is implemented as follows.

(a) Randomly generate �1 from a uniform distribution in [MIN;MIN + 2�].

(b) Randomly generate �2 from a uniform distribution in [�1; �1 + 2�].

(c) Continue in the same way until you go past MAX. The total number of elements
generated is l.

Observe that � is sorted by the construction such that the expected value for the increment
is �, therefore the expected value for l is (MAX �MIN)=� = n.

28

3. Compute the sequences

E0 = f(E) (16)

�0 = f(�); (17)

where f(E) is the sequence obtained from E by replacing every element ei by f(ei).

4. Concatenate the sequence �0 to E0, obtaining W = E0 [�0. Randomly permute W before
outsourcing it to the agent, who returns the sorted result W 0.

5. Remove �0 from W 0 to produce the sorted sequence E0. This can be done in a linear time
since both W 0 and �0 are sorted.

6. Compute E = f�1(E0).

The above scheme reveals n since the number of items sent to the agent has expected value 2n.
To modify n, we can let � = (MAX �MIN)=m in Step 2, where m is a number independent
of n. The argument at the end of Step 2 shows that the expected value for the size of � is m,
therefore the size of the sequence the agent received is m+ n, and we can hide the size of problem
by expanding the size this way.

3.3 Template Matching in Image Analysis

Given an N �N image I and a smaller n� n image P , consider the computation of an (N � n+
1)� (N � n+ 1) score matrix CI;P is of the form

CI;P (i; j) =
n�1X
k=0

n�1X
k0=0

f(I(i+ k; j + k0); P ((k; k0)); 0 � i; j � N � n;

for some function f . Score matrices are often used in image analysis, speci�cally in template
matching, when one is trying to determine whether (and where) an object occurs in an image. A
small CI;P (i; j) indicates an approximate occurrence of the object P in the image I (a zero indicates
an exact occurrence). Frequent choices for the function f are f(x; y) = (x�y)2 and f(x; y) = jx�yj
[16, 18]. We consider how to securely outsource the computation of C for these two functions.

3.3.1 The case f(x; y) = (x� y)2

In the scheme described all local processing takes time proportional to the size O(N2) of the input.

1. Select a random N � N matrix S1, and a random n � n matrix S2. Generate �ve positive
random numbers �, �, , �0, 0 such that

29

(� + �)(�0 + �0)(0� � �0 6= 0:

If the above is violated then we discard the numbers chosen and repeat the choice of �ve
numbers. Observe that there is zero probability that a random choice results in a violation
of the above condition, hence the random choice need not be repeated more than O(1) times
(in practice, once is usually enough).

2. Compute locally the six matrices of �I + S1, �P + S2, �I � S1, �P � S2, �
0I � 0S1,

�0P � 0S2.

3. Outsource to the agent the computation of three score matrices CX;Y , one for each pair X;Y
of matrices received:

W = C(�I+S1);(�P+S2) (1)

U = C(�I�S1);(�P�S2) (2)

U 0 = C(�0I�0S1);(�0P�0S2) (3)

which are returned.

4. Compute locally the matrices

V = (� + �)�1(�U + �W) (4)

V 0 = (�0 + �0)�1(�U 0 + �00W): (5)

��1(0� � �0)�1(0V � V 0);

The third matrix equals CI;P (as is easily veri�ed).

The security of the above scheme is based on the fact that the six matrices received by the
agent do not enable it to discover I or P , as the agent does not know the numbers �, �, , �0, 0

and the matrices S1, S2. The disguise program based on this algorithm is as follows:

30

Master Key K = Score.one.for.Amira-please, Sub Key k(i)

Matrix (1:N,1:N), S1 using GUNIF (k(1), [0,L])

Matrix (1:n,1:n), S2 using GUNIF (k(2), [0,L])

Until (� + �)(�0 + �0)(0� � �0) 6= 0 do

Real, �; �; ; �00 using GUNIF (k(3), [-1,1])

End do

Matrix (1:N,1:N), I1=�I+S1, I2=�I -S1, I3=�
0I -0S1

Matrix (1:n,1:n), P1=�P+S2, P2=�P -S2, P3=�
0P -0S2

Outsource [Compute score, C(I1,P1)]

Outsource [Compute score, C(I2,P2)]

Outsource [Compute score, C(I3,P3)]

Return W1, W2, W3
Matrix (1:N-n,1:N-n) V = (� + �)�1 (� W2 + � W1),

V0 = (�0 + �0)�1 (� W3 + �00 W1)
ANS = ��1(0� � �0)�1(0V - V0)

3.3.2 The case f(x; y) = jx� yj
The algorithm uses as a subroutine a two-dimensional version of the securely outsourced convolution
technique in Section 3.1.4. Let A be the alphabet, i.e., the set of symbols that appear in I or P .
For every symbol x 2 A we do the following:

1. We replace, in I, every symbol other than x by 0 (every x in I stays the same). Let Ix be
the resulting image.

2. We replace every symbol that is � x by 1 in P , and replace every other symbol by 0. Let Px
be the resulting image. Augment Px into an N �N matrix �x by padding it with zeroes.

3. Outsource the computation of the score matrix

Dx(i; j) =
n�1X
k=0

n�1X
k0

Ix(i+ k; j + k0)�x(k; k
0); 0 � i; j � N � n:

This is essentially a 2-dimensional convolution, and it can be securely outsourced using a
method similar to the one given in Section 3.1.4.

4. We replace, in P , every symbol other than x by 0 (every x in P stays the same). Let P 0

x be
the resulting image. Augment P 0

x into an N �N matrix �0

x by padding it with zeroes.

5. We replace every symbol that is < x by 1 in I, and every other symbol by 0. Let I 0x be the
resulting image.

31

6. Outsource the computation of the score matrix

D0

x(i; j) =
n�1X
k=0

n�1X
k0

I 0x(i+ k; j + k0)�x(k; k
0); 0 � i; j � N � n:

This is done securely as above.

7. Compute locally

CI;P =
X
x2A

(Dx +D0

x):

Thus the computation of CI;P for the case f(x; y) = jx � yj can be done by means of O(jAj)
two-dimensional convolutions (which can be securely outsourced). This is reasonable for small-size
alphabets (binary, etc.). However, for large alphabets, the above solution has a considerable extra
cost compared to computing CI;P directly. The number of convolutions can be reduced by using
convolutions only for symbols with many occurrences in I and P , and \brute force" (locally) for the
other symbols. However, this still has the disadvantage of having a considerable local computational
burden. Thus our solution for the case f(x; y) = jx� yj is less satisfactory, for large jAj, than our
solution for the case f(x; y) = (x� y)2.

This algorithm illustrates that \programming scienti�c disguises" requires a relatively complete
programming language which must be supported by the Atri system. Of course,as a problem solving
environment, Atri would have high level natural constructs to invoke such a common procedure as
this one. But, for novel situations, Atri also needs to provide the capability to write \ordinary"
procedural programs. The disguised program for this algorithm uses the external procedure called
2D-Convolution and the outsourced computations are in it. The disguise program is as follows:

32

Master Key = Sixteen-Twelve-Eight9403, Sub Key k(i)

Matrix (1:N,1:N), I

Matrix (1:n,1:n), P

For ` = 0 to L do

Matrix (1:N,1:N), I`(i,j) = 0 if I(i,j) 6= `
else I`(i,j) = `

Matrix (1:n,1:n), P`(i,j) = 1 if P(i,j) � `
else P`(i,j) = 0

Matrix (1:N,1:N), T`(i,j) = P` (i,j) if 1 � i; j � n
else T`(i,j) = 0

Comment: The first outsourcing occurs here

Invoke procedure [2D-Convolution, I`, T`]

Return Matrix (1:N-n,1:N-n) D`
End do

For ` = 0 L do

Matrix (1:N,1:N), I`(i,j) = 1 if I(i,j) < `
else I`(i,j) = 0

Matrix (1:n,1:n), P`(i,j) = 0 if P(i,j) 6= `
else P`(i,j) = P(i,j)

Matrix (1:N,1:N), T`(i,j) = P` (i,j) if 1 � i; j � n
else T`(i,j) = 0

Comment: The second outsourcing occurs here

Invoke procedure [2D-Convolution, I`, T`]

Return Matrix (1:N-n,1:N-n) D0`
End do

ANS CI;P = Sum [D` + D0` , ` = 0 to L]

Of course this disguise constitutes only a �rst step in the general secure outsourcing of image
analysis; the literature contains many other measures for image comparison and interesting new
ones continue to be proposed (for example, see [6] and the papers it references).

3.4 String Pattern Matching

Let T be a text string of length N;P be a pattern of length n(n � N), both over alphabet A. We
seek a score vector CT;P such that CT;P (i) is the number of positions at which the pattern symbols
equal their corresponding text symbols when the pattern is positioned under the substring of T
that begins at position i of T , i.e., it is

Pn�1
k=0 �T (k+i);P (i) where �x;y equals one if x = y and zero

otherwise.
For every symbol x 2 A we do the following:

33

1. Replace, in both T and P , every symbol other than x by 0, and every x by 1. Let Tx and Px
be the resulting text and pattern, respectively. Augment Px into an length N string �x by
padding it with zeros.

2. Outsource the computation of

Dx(i) =
n�1X
k=0

Ix(i+ k)�x(k); 0 � i � N � n:

This is essentially a convolution, and it can be securely outsourced using the method given
in Section 3.1.4. It is easily seen that CT;P equals

P
x2ADx.

4 SECURITY ANALYSIS

4.1 Breaking Disguises

The nature of disguises is that they may be broken completely (i.e., the disguise program is discov-
ered) or, more likely, they are broken approximately. That is, one has ascertained with some level
of uncertainty some or all of the objects in the original computation. For the example program
Quadrature (1.3.2) of Section 2l4, one might have ascertained.

Object Certainty
Computation = Integration 100%
Interval = [a; b] 100%
A1(x) with jf �A1j � 0:25 60%
A2(x) with jf �A2j � 0:05 8%
I3 with jI3�ANSj � 0:8 47%
I4 with jI4�ANSj � 0:1 4%
I5 with jI5�ANSj � 0:02 0.03%

Here A1(x) and A2(x) are functions that have been determined somehow. Thus we see that there
is a continuum of certainty in breaking a disguise which varies from 100% to none (no information
at all). Indeed, an attacker might not even be able to identify all the objects in the original
computation. On the other hand, an attacker might obtain all the essential information about the
original computation without learning any part of the disguise program exactly. The probabilistic
nature of breaking disguises comes both from the use of random numbers and the uncertainty in
the behavior of the disguise program itself (as mentioned earlier). Of course, an attacker could only
guess at the levels of certainty about the object information obtained.

34

This situation again illustrates the di�erence between disguise and encryption; in the latter one
usually goes quickly (even instantly) from no information to a compete break. Thus one cannot
expect to have precise measurements of the degree to which a disguise is broken or of the strength
of a disguise. Indeed, the strength is very problem dependent and even attacker dependent. For
one computation an attacker may be completely satis�ed with � 15% accuracy in knowledge about
the original problem while in another computation even � 0.01% knowledge is useless.

4.2 Attack Strategies and Defenses

Three rather unrelated attack strategies are discussed here. We exclude non-analytical strategies
which, for example, incorporate knowledge about the customer (e.g., the company does oil/gas
exploration and the customer's net address is department 13 in Mobile, Alabama), or which attempt
to penetrate (physically or electronically) the customer's premises. History suggests that the non-
analytical strategies are the most likely to succeed when strong analytical security techniques are
used.

4.2.1 Statistical attacks

Knowledge of the Atri environment or casual examination immediately leads the attacker to attempt
to derive information about the random number generators used. A determined attacker can check
all the numbers in the outsourced computation against all the numbers particular random generators
produce. This is an exhaustive match attack. While the cycle lengths of the generators are very
long, one cannot be complacent about the risk of this approach as we see teraops or petaops
computers coming into use. There are three defenses against this attack:

1. Use random number generators with (real and random) parameters. With 32 bit reals for two
parameters, this increases the cost of an exhaustive match of numbers by a factor of about
1014. This should be ample to defeat this attack. Note also that an exact match no longer
breaks the random number generator as sub-sequences from random sequences with di�erent
parameters will \cross" from time to time. On the other hand, sometimes one is constrained
in the choice of parameters, e.g., it might be necessary that the numbers generated \�ll" the
interval [0,1] and not go outside it.

2. Restart the random number generators from time to time with new sub-keys. Similarly, one
can change the random number generator used from time to time. Thus using a new seed for
every 1,000 or 10,000 numbers in a sequence of 10,000,000 numbers greatly reduces the value
of having identi�ed one seed or parameter set.

3. Use combinations of random number sequences as mentioned in Section 2.2.1. If certain
simple constraints are required, e.g., all values lie in [0,1], one can use a rejection technique
to impose such constraints.

35

In summary, we conclude that even modest care will prevent an exhaustive match attack from
succeeding.

An alternate attack is to attempt to determine the parameters of the probability distribution
used to generate a sequence of random numbers. We call this a parameter statistics attack and it is
illustrated by the simple example in Section 1.2. In general, one can estimate the moments of the
probability distribution by computing the moments of the sample sequence of generated random
numbers. The mean of the sample of size N converges to the mean of the distribution with an error
that behaves like O(1

p
N). This same rate of convergence holds for almost any moment and any

distribution likely to be used in a disguise. This rate of convergence is slow by not impossibly so,
a sample of 10,000,000 should provide estimates of moments with accuracy of about 0.03%. There
are three defenses against this attack:

1. Use random number generators with complex probability distribution functions. This forces
an attacker to estimate many di�erent moments; and also to estimate which moments (and
how many) are used. If problem constraints limit the parameters of a distribution, one can
often apply the constraints after the numbers are generated via rejection techniques, etc.

2. Restart the random number generator from time to time with new sub-keys. Restricting
sequences to only 10,000 per sub-key limits parameter estimation to about 1% accuracy;
shorter sequences limit parameter estimation accuracy even more.

3. Use random number generators whose probability distribution function contains multiple ran-
dom parameters, e.g., a cubic spline with �ve random breakpoints. Then, even the accurate
knowledge of several (many?) moments of the distribution function provides low accuracy
knowledge about the distribution function itself. This aspect of defense is related to approx-
imation theoretic attacks discussed next.

4.2.2 Approximation theoretic attacks

The disguise functions are chosen from spaces described in Section 2.2.1. Let F be the space of
these functions, u(x) be an original function, f(x) be a disguise function so that g(x) = u(x)+f(x)
is observable by the agent. The agent may evaluate g(x) arbitrarily and, in particular, the agent
might (if F were known) determine the best approximation g�(x) to g(x) from F . Then the
di�erence g�(x)� g(x) equals u�(x)� u(x) where u�(x) is the best approximation to u(x) from F .
Thus g�(x)� g(x) is entirely due to u(x) and gives some information about u(x). There are three
defenses against this attack:

1. Choose F to have very good approximating power so that the size of g�(x) � g(x) is small.
For example, if u(x) is an \ordinary" function, then including in F the cubic polynomials and
the cubic splines with 5 or 10 breakpoints (in each variable) gives quite good approximation

36

power. One would not expect k g�(x) � g(x) k = k u(x) k to be more than a few percent. If
u(x) is not \ordinary" (e.g., is highly oscillatory, has boundary layers, has jumps or peaks)
then care must be taken to include functions in F with similar features. Otherwise the agent
could discover a great deal of information about u(x) from g(x).

2. Choose F to be a one time random space as described in Section 2.2.1. Since F itself is then
unknown, the approximation g�(x) cannot be computed accurately and any estimates of it
must have considerable uncertainty.

3. Approximate the function object u(x) by a high accuracy, variable breakpoint piecewise
polynomial. It is known [8] that this can be done e�ciently (using a moderate number
of breakpoints) and software exists to do this in low dimensions [9]. Then, one adds disguise
functions with the same breakpoints and di�erent values to the outsourced computation.

Underlying all these defenses is the fact that if F has good approximation power and moderate
dimension, then it is very hard to obtain any accurate information from the disguised functions.
This same e�ect is present in the defense against statistical attacks where the function to be hidden
is the probability density function of the random number generator.

4.2.3 Symbolic code analysis

Many scienti�c computations involve a substantial amount of symbolic input, either mathematical
expressions or high level programming language (Fortran, C, etc.) code. It is natural to pass this
code along to the agent in the outsourcing and this can compromise the security. An expression
COS(ANGLE2 * x - SHIFT) + BSPLINE(A; x) is very likely to be the original function (COS � � �)
plus the disguise (BSPLINE � � �) and they can be distinguished no matter how much the BSPLINE
function values behave like COS as a function. The symbolic information may be pure mathematics
or machine language or anything in between. Outsourcing machine language is usually impractical
and, in any case, provides minimal security. Fortran decompilers are able to reconstruct well over
90% of the original Fortran from machine language. Thus we must squarely address how to protect
against symbolic code analysis attacks on high level language or mathematical expression of the
computation. There are four general defenses against symbolic code analysis attacks:

1. Neuter the name information in the code. This means to delete all comments and to remove
all information from variable names (e.g., name them A followed by their order (a number)
of appearance in the code). This is an obvious, easy but important part of the defense.

2. Approximate the basic mathematical functions. The elementary built-in functions (sine, co-
sine, logarithm, absolute value, exponentiation; : : :) of a language are implemented by library
routines supplied by the compiler. There are many alternatives for these routines which can be

37

used (with neutered names or in-line code) in place of the standard names. One can also gen-
erate one time elementary function approximations for these functions using a combination of
a few random parameters along with best piecewise polynomial, variable breakpoint approx-
imations. In this way all the familiar elementary mathematical operators besides arithmetic
can be eliminated from the code.

3. Apply symbolic transformations. Examples of such transformations are changes of coordi-
nates, changes of basis functions or representations, and use of identities and expansions of
unity. Changes of coordinates are very e�ective at disguise but can be expensive to imple-
ment. Consider the potential complications in changing coordinates in code with hundreds or
thousands of lines. The other transformations are individually of moderate security value, but
they can be used in almost unlimited combinations so that the combinatorial e�ects provide
high security. For example, we transform the simple di�erential equation

y00 + x � cos(x)y0 + (x2 + log(x))y = 1 + x2

using only a few simple symbolic transformations such as

cos2 x� sin2 y = cos(x+ y) cos(x� y)
sec2(x+ y)� tan2(x+ y) = 1

(tan x+ tan y)= tan(x+ y) + tanx tan y = 1
1 + x = (1� x2)=(x� x)

sin(3(x+ y)) = 3 sin(x+ y)� 4 sin3(x+ y)
a2 � ax+ x2 = (a3 + x3)=(a + x)

plus straight forward rearranging and renaming. The result is quite complicated (Greek
letters are various constants that have been generated):

(� cos2 x� �)y00 + x[cos x=(cos(x+ 1))� cos x sin(x+ 1) tan(x+ 1)]�
[�� sin2 x+ � sin(x+ 1)� sin2 x sin(x+ 1)]y0

+[�(x cos x)2 � �(x+ log x) + � cos x log x2]�
[� sinx+ � tan x+ [� sinx+ � cos x+ �)= tan(x+ 2)]y

= (1 + x2)[sinx+ � cos x]

If we further rename and/or re-implement some of the elementary functions and replace the
variable names by the order in which the variable appears, this equation becomes

y00[x01 � x02(x) � x03]
+ y0[x04 � x=(x05 cos(x+ 1) + cos x � x06(x) tan(x+ 1)]�

[x07� sin2 x� x08(x) sin2 x+ x07 sin2(x+ 1)]
+ y[x01 � (x � x09(x))2 � x10(x + log x) + x11 cos x log x2]�

[x12 � x13(x) + x14 tan x+ (x15 sinx+ x16 cos x+ x17)]
= sinx+ x18 � (1 + x2) � x09(x) + x19(x) + x10 � x2 cos x

38

It is hard to say at this point how di�cult it would be for a person to recover the original
di�erential equation. It certainly would take a considerable e�ort, and this disguise uses
rather elementary techniques.

4. Use reverse communication. This is a standard technique [28] to avoid passing source code
into numerical computations and can be used to hide parts of the original computation.
Instead of passing the code for u(x) to the agent, one insists that the agent send x to the
customer who evaluates u(x) and returns the value to the agent; the agent never has access to
the source code. If u(x) is very simple, communication adds greatly to the cost of evaluating
it. But it is more likely that u(x) is complex (otherwise another disguise would be used) and
that the extra communication cost is not important.

4.3 Disguise Strength Analysis

A systematic or general analysis of the security of disguises is not practical at this time for two
reasons. First, the disguises are very problem dependent so each type of computation, perhaps even
each individual computation, must be analyzed using di�erent techniques. Second, disguises can be
of essentially unlimited complexity. And this complexity is not of a linear nature (e.g., a function
of the number of bits in the keys), but is a disorganized conglomeration of unrelated techniques.
The strengths of disguises is derived from this complexity but it also tends to defeat the analysis of
the resulting strength. Before one becomes uncomfortable with the strength of disguises, one must
realize that a determined agent will be able to apply enormous resources in attacks. It may be
feasible soon to analyze every code fragment to see if it computes a standard mathematical function
and, if so, use this to simplify the disguise. It may be feasible to generate systematically disguise
programs such as those in Section 2.3 (including choices for the numerical values of parameters)
and see if they generate the outsourced computation. Further, it is possible that some disguise
techniques that look strong now will become easy to defeat once they are studied in depth.

Nevertheless, we are optimistic that the complexity possible for disguises will allow this approach
to withstand attacks for the foreseeable future. This optimism comes from the analysis of just
three simple numerical computations given below. We note that it is harder to disguise simple
computations than complicated ones. We also note that historically one of the biggest sources of
weak security is that people become bored and lazy in applying security properly. Thus for the
disguise of complex computations, it is imperative that tools such as the Atri system be available
to minimize the e�ort of disguise and the risk of accidental holes in them.

To illustrate the strength possible for disguises and the analysis techniques one can use, we
consider disguises of three simple, common scienti�c computations.

39

4.3.1 Matrix multiplication

We use the disguise program of Section 2.4 modi�ed to (a) have controlled lengths of sequences
from random number generators, and (b) to use better disguised random number generators. Let L
be the maximum length for a sequence from a random number generator so thatM = dm=Le is the
number of distinct generators needed. Let GONE(A(i)), i = 1; 2; : : : ;M be one time random number
generators as described in Section 2.2.1. Each has a vector A(i) of 12 random parameters/seeds.
The fourth line of the Section 2.2.1 program can be replaced by

Vector (1:m) �; �;
M = d M/L e
For j=1 to M do

Vector (1:12) A(j) using GUNIF (k(j+1), [0,1])

Vector (1:L) T1, T2, T3 using GONE A(j))

�((j-1)L+i) = T1(i) for i = 1:L

�((j-1)L+i) = T2(i) for i = 1:L

((j-1)L+i) = T3(i) for i = 1:L

End do

This change in the program creates the non-zero vectors for the three matrices P1; P2; P3 used to
disguise M1 and M2.

An agent attacking this disguise receives X = P1 �M1 � P2�1 and Y = P2 �M2 � P3�1. The
only attack strategy possible is statistical. If the agent has no information about M1 and M2,
there is no possibility to determine M1 and M2. Not even the average size of their entries can be
estimated with any accuracy. Thus this disguise is completely secure. If it is possible that the agent
has external information about M1 and M2, then one should take steps to disguise that type of
information. For example, the class of problems one normally deals with might have some \typical"
sparsity, sign or size patterns. These patterns can also be disguised, but we do not discuss this
topic in this paper.

4.3.2 Numerical quadrature

We use the disguise program of Section 2.4 modi�ed to have a second disguise function added.
One potential weakness of the earlier disguise given is to an approximation theoretic attack. The
g(x) created is quite smooth and f(x) might not be. So we replace the 7th line of the program as
follows:

40

Cubic spline g1(x)=approximation (f,a,b, cubic spline, variable breaks, 1%)

Vector (1:L) x = breakpoints of g1(x)

Vector (1:L) R using GUNIF (k(3), 0.8, 1.31)

Cubic spline g2(x) with g2(X(i)) = R(i)*g(X(i)) for i = 1:L

Cubic spline g3(x) with g3(P(i)) = V(i) for i = 1:7

Cubic spline g(x) = g3(x) + g2(x)

This change e�ectively modi�es f(x) randomly by about 25% and then adds another, smooth
random function to it.

An agent attacking this disguise can try both approximation theoretic and code analysis strate-
gies. The disguise so far only protects against approximation theoretic attacks. We see no way
that the values of h(x) sent to the agent can lead to accurate estimation of the result, say better
than about 100% error. If we choose to protect against a code analysis attack using reverse com-
munication, then the security is complete. If we choose to protect against a code analysis attack
by replacing the f(x) by a high accuracy approximation, then the security is again complete. To
do this one just replaces 1% in the above code, by, say, eps and then de�nes

h(x) = g(x) + g2(x) + g3(x):

4.3.3 Di�erential equations

We assume that the di�erential equation is of the form

a1(x)y
00 + a2(x)y

0 + a3(x)y = a4(x) y(a) = y1; y(b) = y2:

If reverse communication is used for the evaluation of the functions ai(x) then no symbolic in-
formation about them is available to the agent. There is no opportunity for statistical attack so
the only feasible attack is approximation theoretic. Program (1.3.4) of Section 2.4 can be used to
disguise the solution y(x). If similar disguises are applied to the four functions ai(x), then neither
the solution nor problem could be discovered by the agent and the disguise would be completely
secure.

Since reverse communication can be expensive, we consider the alternative of using symbolic
disguise such as in item 3 of Section 4.2.3. A symbolic attack is made \bottom up", that is,
one attempts �rst to identify the elements (variables, constants, mathematical functions) of the
symbolic expressions. There are two approaches here:

* Program analysis. For example, deep in a subroutine one might set X137 = X09 and later,
in another subroutine set X11 = X137. This can be done either with constants or actual variables.
Or, one can replace sin(X11) by X12(X11) and implement X12 with machine code for sine; there
are several standard alternatives for this implementation.

41

* Value analysis. For example, one can check to see if the value of X9, 1=X9 or (X9)2 is the
same as any of the other constants in the program. Similarly, one can evaluate X12(x) for a wide
variety of x values and check to see if it is equal (or close) to sin(x), log(x), tan(x), x3, etc.

The use of program substitution or modi�cation can greatly increase the strength of a disguise.
Indeed, it is clear that if the symbolic code is lengthy, then a modest amount of program disguise
scattered about provides enormously strong security.

However, we focus our analysis on shorter symbolic forms such as the di�erential equation
program which are completely de�ned by a single symbolic equation and \simple" functions. That
is, how hard is it to break disguises based on introducing mathematical identities? The symbolic
code attacker would �rst check:

1. Which constants are related?

2. Which functions are standard mathematical functions?

For question 1, suppose that there are N constants ci in the equation and we ask if any ci is
r(cj) for a collection of relationship functions r. If the number of relationships r used is M , then
this checking requires evaluating NM constants and then testing if any pairs are equal. The latter
e�ort is work of order NM logM (using sorting) and values of N = 20, M = 500 are reasonable.
Thus, the relationship of pairs of constants could be determined by sorting them or using about
105 operations. Such a computation is well within the capability of the agent, so we assume there
is no security in binary constant disguises, i.e., if X1 = 1:108, X2 = sec(1.108) and X3 = �(1:108)
are present, then the agent will discover this fact.

Consider the next 3-way relationship such as

X03 = �2= cos(2); X15 = 1 + �; X12 = � tan(2)

which appear in the example at hand. In the notation used above, one considers if any ci is
ri(r2(cj)r3(ck)). The number of constants computed is M3N2 (perhaps 5 � 1010). The pairwise
comparison requires work of orderM3N2 log(MN) and the total comparison work is of the order of
M3N2 log(MN). With N = 20 and M = 500, this is a computation of order about 1012 (including
a factor of 10 or so for the function evaluations). This is a substantial, but not outrageous,
computation today and will be less formidable with each passing year. We believe that disguises
using 4-way relationships, e.g.,

X03 = �2�= cos(2);X15 = 1 + ��;X17 = � tan(2)H1=2(�);X23 =
�� �

log 2

will not be broken in the foreseeable future. We estimate the computational work to be the order
of 1016 operations assuming M = 500, N = 20.

42

There is another consideration in using values to discover relationships among constants: there
are only about 1010 di�erent 32-bit numbers and only about 108 of them in any one broad range of
sizes. Thus, the pairwise comparison approach must lead to many \accidental" matches, perhaps
100{1000 for 3-way relationships. Since each match is a starting point for a complex disguise attack,
each of these accidental matches initiates a lengthy additional analysis for the attacker. This means
that even 3-way relationships among constants provide a very high level of security.

Finally, another level of complexity can be obtained by splitting constants. Thus the 1.108 used
above can be split three times by replacing X1 = 1:108, X2 = sec(1:108), X3 = �(1:108) with

X1 = :0634; X2 = 1:0446; X3 = X1 +X2
X4 = �:6925; X5 = 1:8005; X6 = sec(X4 +X5) = 1=(cosX4 cosX5� sinX4 sinX5)
X7 = 1:000; X8 = 0:108; X9 = �(X7 +X8)

which makes all the constants unique. The task of checking all pairs of sums is not insurmountable
but applying simple identities as follows makes the task of identifying the number 1.108 extremely
complex

X6 = 1=(cosX4 cosX5 � sinX4 sinX5)
X9 = X8 � �(X8)

For question 2, consider a function F (x) and we can ask: Is F one of the standard mathematical
functions? Is F (x) related to another function G(x)? First, we note that F (x) is parameterized
by a random real number �, e.g., sin(�x) or u(�; x) (the parabolic cylinder function), then it is
hopeless to identify F by examining its values. It requires at least 100 times as much e�ort to
compare two functions as it does two constants, and the parameter � increases the number of
potential equalities by a factor of about 108. Thus, checking 2-way relationships between standard
functions and parameterized functions is a computation of order 105 (what we had for constants)
times 100 times 108 or about order 1015.

Consider then the problem of deciding if F (x) is one of or related to one of the standard
mathematical functions Gi(x). There are perhaps 25{50 standard functions (

p
, sin, log, cosh,: : :)

and perhaps 5 times as many in simple relationships (1= log x, 1 + log x, 2 � log x, log(1 + x),
log(2 � x); : : :). Then there is the uncertainty in the range of arguments, so one might try �ve
ranges (e.g., [.1,.2], [1.5,1.8], [12,13], [210,215], [{1,1]). Thus, F (x) should be compared to a known
Gi(x) about 1000 times. If one comparison requires 1000 operations and there are 20 functions
F (x), then the total computing e�ort is the order of 20 � 1000 � 1000 = 2 � 107 operations. This is
easily done and there is no security in simple, single function disguises; a diligent agent will identify
every one of them.

Consider the next 2-way function disguises, e.g.,

X1(x) = cos(x) sin(x+ 1);X2(x) = cos(x)= tan(x+ 2);
X3(x) = (1 + x2) sin(x);X4(x) = cos(sin(x+ 1)):

43

There are perhaps 100 simple functions (as above), so the number of pairs is 104, the number of
simple combinations is �ve times this. Thus the work of 2 � 107 operations seen above increases
to the order of 1011 or 1012. Thus the use of 2-way function disguise provides strong security and
3-way function disguises, e.g.,

X1(x) = cos(x) sin(x+ 1)ex;X2(x) = cos(x)= tan(x+ 2);X3(x) = e�x(1 + x2) sinx;
X4(x) = x2 tan(x+ 2)= sin(x)

provides complete security.
Consider now the situation with no disguises of functions or constants are made or, equivalently,

when the agent is successful in breaking all these disguises. Question 3 is then:

3. How well can one identify the identities and/or partitions of unity used and remove them from
the problem?

The process needed here is essentially the same as simplifying mathematical expressions by using
manipulations and identities. This task is addressed some in symbolic computer systems and
is known to be a formidable challenge even for polynomials and the elementary mathematical
functions. We are aware of no thorough complexity analysis of mathematical simpli�cation, but
results relating the process to pattern matching suggest that the complexity is very high. The
original di�erential equation can be represented as a tree and the process of using identities and
simple manipulations is an expansion and rearrangement of this tree. It is plausible the expansion
process involves (a) some functions with random parameters, (b) some functions that already
appear in the expression, and (c) some completely unrelated common functions. Let us assume
that for each identity used there are 4 simple manipulations, e.g., combining terms, splitting terms,
rearrangements. The number of choices for (a) is enormous, but these functions might be clues to
simpli�cation by using the assumption they are unlikely to be part of the original problem. The
number of choices of identities for (b) is moderate but still substantial, perhaps 6{10 identities for
each original function. The number of choices for (c) is substantial, perhaps 100 distinct partitions
of unity exist involving the common functions. Many more can be obtained by simple manipulation.

Assume now that the di�erential equation is simple, involving, say 4 common functions. Assume
its tree representation has 10 nodes (4 of which cannot be modi�ed being the = and di�erential
operators). Further assume the disguise process uses N1 identities involving random functions,
N2 identities for each original function, and N3 identities involving unrelated functions. Finally,
assume that each identity is represented by a tree with 6 nodes. We obtain a rough estimate of
the number of possible trees for the disguise as follows. The tree has 10 + N1 + 4N2 + N3 \fat
nodes", a fat node represents an identity used. The number of choices for the N1 identities is,
say, 4 per function. The number of choices for the N2 identities is, say, 8. The number of choices
for the N3 identities is 4 per new function introduced. The �nal tree has 10 + 6(N1 + 4N2 + N3)
nodes. The possible number of disguise trees is enormous, perhaps the order of 4N1 � 8N2 � 4N3 . If

44

N1 = N2 = N3 = 3, there are about 106 possible trees, increasing 3 to 4 in these values gives more
than 108 trees. And this estimate does not include the e�ect of the simple manipulations. The
fact that the number of possibilities is so huge does not automatically mean the simpli�cation is
impossible. It does, however, suggest that the simpli�cation is a very formidable computation, one
that provides very strong security.

4.3.4 Domains of functions

Another view of symbolic code disguises and analysis comes from identifying domains of symbolic
functions. A domain is a collection of symbolic elements that are related naturally by having some
simple operations which transform one element of a domain into another. Examples include:

- Numbers: integer, real, complex. The operations are arithmetic.

- Polynomials: In one variable examples are x, x3; : : : ; 17 + 3x + 9x4; : : : : In several variables
examples are x, xy, xy2; : : : ; 9+3xy+6:042 x3y5z4; : : : : The operations are again arithmetic,
both numerical and polynomial (e.g., (x+ 2)2 = x2 + 4xy + 4y2).

- Algebraic: Examples in one variable include x1=2, x7=2; : : : ; 4 + x+ 1:03x3=2; : : :

x:073, x:146, x1:073, 2 + 7x:073 + 5:43x:292 + 18x2:146.

These domains are closed under multiplication by the \base element", i.e., by constants, by
x, by x or y, by x or particular fractional powers of x, respectively.

- Trigonometric: Examples in one variable include sinx, cos2 x, 17 + 3:1 sinx+ 14:2 cos2(3x)

This domain is closed under multiplication by \base elements" sinx and cosx, by constants
and by identities involving sines, cosines, tangents, cotangents, secants.

There are many other domains involving higher transcendental functions which have a natural
operations (particular to each domain) under which they are closed. Examples include hyperbolic
functions { exponentials, logarithms, Gamma, Bessel, etc. The span of an expression is the union
of the domains of the various elements (terms) in the expression. The span of a problem, equa-
tion, operator; : : : is the union of the spans of the expressions composing the problem, equation,
operator; : : : : The dimension of the span is the number of domains in the span.

The principal techniques for disguising an expression within a domain are:

#1 Use standard identities to eliminate all the original elements, e.g.

4 + 3:79x2 + 8x4) 1:729 + 2:271 + 3:74x2 + :05x2 + 6:204x4 + 1:796x4

) 1:729 + 2:271 + :05(x+ 1)(x � 1) + :05 + 6:204x4 + 1:796(x2 + 1)(x2 � 1) + 1:796

) 5:846 + :05(x+ 1)(x � 1) + 3:74x2 + 6:204x4 + 1:796(x2 + 1)(x+ 1)(x � 1)

) 5:846 + 1:801(x + 1)(x� 1) + 3:74x2 + 6:204x4 + 1:796(x2 + 1)(x+ 1)(x� 1)

45

#2 Use partitions of unity (e.g., cos2 x+ sin2 x = 1) to introduce new terms into the expression.
Thus

4 + 3:79 cos x+ 8 sin2 x) 1:729 + 2:271 + 3:79=sec x+ 4(1� cos 2x)

) 1:729 + 2:271(sin2 x+ cos2 x) + 3:79=sec x+ 4 + 4 sin2 x� 4=sec2x

#3 Use partitions of unity to introduce new domains into the expression. Thus

4:0 + 3:79x2) 1:729 + 2:271(sin2 x+ cos2 x) + 3:79(x � 1)(x+ 1) + 3:79

) 5:519 + 2:271 sin2 x+ 2:271(cos2 x� 1=sec2x) + 3:79(x � 1)(x+ 1)

We note that: (i) For constants there are no partitions of unity or other useful disguise identities
within the domain. (ii) For polynomials there are no partitions of unity as 1 is a polynomial.
However, factoring provides disguise opportunities. (iii) Partial fractions provide a way to easily

transform to rational functions. From 1=(x�2)+1=(x�4) we have 1 = (2x�2)
x2�2x�8 +

x+1
4�x . Using such

a partition of unity we can expand the domain of polynomials to the domain of rational functions.
It is clear that one can expand the complexity of an expression without limit. It is well known

that simplifying complex expressions is very di�cult. It is well known that one can replace common
terms (e.g., sinx,

p
x, log x) by polynomial or piecewise polynomial approximations that are highly

accurate and that there are multiple choices for doing this.

The basic scienti�c questions to be answered are:

Q1: How does one measure the strength of such disguises, e.g., what is the complexity of the
symbolic expression simpli�cation problem?

We believe that the answer to this question is not known but that experience shows that
this complexity grows very rapidly with number of terms and with the dimension of the
expression. Simpli�cation is an intrinsic problem for symbolic algebra systems and they
provide a number of tools to aid people in the process. Clever people using these tools often
have di�culty �nding suitably \simple" forms of expressions even when no direct e�ort has
been made to disguise the symbolic structure.

Q2: Given that one starts with a particular expression (k terms, dimension d) and wants a disguise
with K terms, how strong can the disguise be and how is the strongest disguise determined?

It is clear that Q2 is much harder than Q1, but it focuses the process of disguise clearly: One wants
to limit the size of the disguised expression while making the disguise as strong as possible.

Chieh-Hsien Tiao has developed the following scheme for automatically generating disguises
within a domain by combining random selections of partitions of unity (and other identities if
available) { including partitioning constants. This creates an algorithm for making symbolic dis-
guises.

46

Disguise Algorithm. Assume we are given a function f(x) and a collection C of m
di�erent sets of partitions of unity. All functions involved lie in a particular domain
and each set involves at most n functions, i.e., the collection is

C = fff(i; j)(x)gnj=1gmi=1
Let q be the disguise depth and d(x) the current disguised function. Then set d(x) =
f(x) and

For k = 1 to q do

(a) Randomly permute the positions of the elements of d(x).

(b) For each term in d(x) apply a partition of unity chosen randomly from C.

Make a �nal random permutation of the elements of d(x).

This algorithm expands the number of terms in d(x) exponentially in q, i.e., the �nal number
of terms in d(x) is of the order of t � nq where t is the number of terms in the original f(x).
The collection C and the random objects in steps (a) and (b) are the keys to this disguise. We
illustrate this algorithm with a simple example. Assume we want to disguise f(x) = x, and we
have 3 partitions of unity involving 2 functions each. ffcos2(x); sin2(x)g, fsec2(x);�tan2(x)g,
fx; 1� xgg. Choose q = 3 and set d(x) = x.

1. (a) With only one term d(x) = x, no permutation is needed here.

(b) Choose a random number in between 1 and 3, say 2.

(c) Apply the second partition of unity on x to obtain

d(x) = x � sec2(x)� x � tan2(x):

2. (a) Choose a random permutation of f1, 2g, say f2, 1g.
(b) Choose a random number for each term, say f2, 3g.
(c) Apply 2a and 2b to obtain

d(x) = �x � tan2(x) + x � sec2(x)
= �x � tan2(x) � sec2(x) + x � tan4(x) + x2 � sec2(x) + x � (1� x) � sec2(x):

3. (a) Choose a permutation of f1, 2, 3, 4g, say f3, 4, 1, 2g.
(b) Choose a random number for each term, say f3, 2, 3, 1g.

47

(c) Apply 3a and 3b to obtain

d(x) = x2 � sec2(x) + x � (1� x) � sec2(x)� x � tan2(x) � sec2(x) + x � tan4(x)
= x3 � sec2(x) + x2 � (1� x) � sec2(x) + x � (1� x) � sec4(x)

�x � (1� x) � sec2(x) � tan2(x)� x3 � tan2(x) � sec2(x)� x2 � (1� x) � tan2(x) � sec2(x)
+x � tan4(x) � cos2(x) + x � tan4(x) � sin2(x):

4. Choose a �nal random permutation, say f1, 3, 7, 6, 2, 5, 4, 8g to obtain

f(x) = x = x3 � sec2(x) + x � (1� x) � sec4(x)+
x � tan4(x) � cos2(x)� x2 � (1� x) � tan2(x) � sec2(x)+
x2 � (1� x) � sec2(x)� x3 � tan2(x) � sec2(x)�
x � (1� x) � sec2(x) � tan2(x) + x � tan4(x) � sin2(x)

= d(x):

5. The key to retrieve f(x) from d(x) is

f3,f1g,f2g,f2,1g,f2,3g,f3,4,1,2g,f3,2,3,1g,f1,3,7,6,2,5,4,8gg.

Questions that arise naturally include:

Q3: Under what circumstances is it advantageous to increase the span of the disguised expression?

Q4: Is the best choice (i.e., providing strongest disguise with a given number of terms) to reduce
everything to piecewise polynomials (i.e., include logic and constants). Note that one can
disguise the common routines for sinx, xa, ax, log x, etc., so their well-known constants are
not used directly.

Q5: Can one analyze the simplest disguise problem, namely that for constants. Given C1, C2,
C3; : : : ; Ck and C�, is there a way to write C� = �1C1 + �2C2 + : : : + �kCk where the �k
are \small" integers, i.e., �M � �i � M . If the complexity of determining the �k can be
found and is relatively \di�cult", then this would be good indication that disguises based on
symbolic substitutions are hard to break. Exhaustive search requires (2M)k trials, soM = 20
and k = 6 requires 1010 checking operations.

4.3.5 Code disguises

There is another class of disguises which can further add to the security of symbolic disguises.
These are not based on mathematical methods but rather on programming language (code) trans-
formations. These techniques are called code obfuscations and are primarily intended to provide
\watermarks" for codes, i.e., to change the code in such a way that it computes the same thing
but is di�erent from the original code. The changes made must be both unique to each version

48

and di�cult to reverse engineer. In other words, the original code must be di�cult to obtain from
the obfuscated code. A review and taxonomy of these techniques are given in [7]. These obfusca-
tions can be applied to the actual computer programs for the symbolic portions of an outsourced
computation and further increase the security of the symbolic content.

In summary, our analysis of disguise strength shows that:

� Reverse communication provides complete security.

� Disguises of constants provide strong to complete security.

� Disguises of functions with random parameters provide complete security.

� The di�culty of mathematical simpli�cation (removal of identities) provides very strong,
probably complete, security.

� The use of code obfuscation techniques provides another level of security for symbolic dis-
guises.

These conclusions depend, of course, on the e�ort put into the disguise. Only moderate e�ort
is needed to achieve these conclusions, substantial e�orts will provide complete security. The
combined e�ect of these analyses suggests that even modest e�ort may provide complete security.

5 COST ANALYSIS

We have identi�ed four components of the cost of disguise and these are analyzed here.

5.1 Computational Cost for the Customer

A review of the disguise techniques proposed shows that all of them are a�ordable in the sense that
the computation required of the customer is proportional to the size of the problem data. For some
computations, e.g., solving partial di�erential equations or optimization, the cost can be several,
even 5 or 10, times the size of the problem data. However, these are computations where the
solution cost is not at all or very weakly related to the problem data, i.e., very large computations
are de�ned by small problem statements.

The principal cost of the customer is, in fact, not computational, but in dealing with the complex
technology of making good disguises. The envisaged Atri problem solving environment is intended
to minimize this cost and it is plausible that an average scientist or engineer can quickly learn to
create disguises that provide complete security.

49

5.2 Computational Cost for the Agent

A review of the disguise techniques shows that some disguises might dramatically increase the
computational cost for the agent. Since the customer is probably paying this cost, this is our
concern. The e�ects are problem dependent and in many (most?) cases the disguise has a small
e�ect on the agent's computational cost.

None of the disguise techniques proposed change the basic type of the computation. Thus,
numerical quadrature is not reposed as an ordinary di�erential equations problem. Nor do we
propose to disguise a linear system of equations as a nonlinear system. Such disguises might
provide high security, but they are not necessary. But the nature (and cost) of a computation is
sometimes a�ected greatly by fairly small perturbations in the problem.

5.2.1 Preservation of problem structure

We de�ne problem structure to include all those aspects of a problem which a�ect the applicability
of software or problem solving techniques or which strongly a�ect the cost of using a technique.
Examples of structure that are important to preserve in disguises are:

1. Sparsity. In optimization and partial di�erential equation problems the sparsity pattern of
an array can reect important information about the problem. One can usually change the
sparsity by applying some \solution preprocessing" such as augmenting or reducing the num-
ber of variables. However, these changes, especially augmentation, might have a substantial
negative impact on the e�ciency of solution algorithms. Just how much impact appears to
be dependent on the speci�c problem and its disguise.

2. Function smoothness and qualitative behavior. Function smoothness and other qualitative
behaviors (e.g., rapid oscillations or boundary layers) could provide important information
about a problem. These behaviors also have an important impact on the e�ciency of many
algorithms, even rendering some of them ine�ective. Thus the disguise should mimic these
behaviors whenever possible (the third item in Section 4.2.2 presents a way to do this).
Further the disguise should not introduce any such behavior if this could have a substantial
negative impact on algorithm e�ciency or applicability.

3. Geometric simplicity. Geometry is sometimes a very important part of the critical infor-
mation about a computation so it is important to disguise it using domain augmentation,
splitting or transformations. All of these can introduce problem features leading to increased
computational cost. For example, introducing a reentrant corner into the domain of a par-
tial di�erential equation problem can make the computation more expensive by orders of
magnitude. Disguise techniques must be careful to avoid such changes in the geometry.

50

4. Problem simplicity. Some simple problems allow exceptionally e�cient solution techniques,
e.g.,

uxx + uyy + 2u = f(x; y) (x; y) in rectangle

can be solved by FFT methods. One can disguise the solution or map the rectangle into a
similar one and still use the FFT method; other disguise techniques are likely to make the
FFT method unusable and to require a substantially more expensive computation for the
solution.

Since problem structure can be a very important attribute of a computation from the security
standpoint, care must be taken to disguise this structure as well. We see from the examples above
that the disguise of structure can have a large negative impact on the cost of the computation. In
most cases the structure can be disguised without this impact if care is taken. The case of extremely
simple computations seems to present the hardest challenge to disguise well while maintaining
e�cient computation. In some of these cases it may be necessary to make the computation more
expensive. Most of these computations are \cheap" due to their simplicity, so perhaps the extra
cost for security will be tolerable.

5.2.2 Control of accuracy and stability

A computation is unstable if a small change in it makes a large change in its result. Care must be
taken so that disguises do not introduce instability. There are two typical cases to consider:

1. The original computation is stable. This means that moderate perturbations can be made
safely, but how does one measure \moderate"? There is no general technique to estimate
quickly and cheaply the stability of computations. Since the disguises involve \random" or
\unpredictable" changes, it is highly unlikely that a disguise introduces instability. But highly
unlikely does not mean never. For some computations, stability can be estimated well, and
with low cost, during the computations. Agents providing outsourcing service should provide
stability estimates for such computations. For other computations the customer may need to
estimate and control the stability of the computation.

2. The original computation is not very stable. This means that moderate, even minor, per-
turbations are unsafe if made in the \wrong direction". Even if the disguise perturbs the
computation in a \safe direction" (making it more stable), the consequence is that the in-
version process of the disguise becomes unstable. The agent would correctly state that the
computation is stable. If the customer is not aware of the potential instability in the disguise
inversion, a complete loss of accuracy could occur with no warning.

51

Of course, we should always hold the customer responsible for understanding the stability
properties of the original problem. It is the \duty" (at least the goal) of the numerical algorithms
to preserve whatever stability that exists in the computation presented to them. They should also
report any large instability that they sense. Since the disguise and its inversion is the hands of
the customer, the agent has no additional responsibility. One can envisage that the Atri system
could provide the user with tools and aids to assist in the evaluation of the e�ects of disguises on
stability.

5.3 Network Costs

The disguises can increase the network tra�c costs by increasing (1) the number of data objects
to be transmitted, and (2) the bulk of the data objects. A review of the disguises proposed in this
paper shows that the number of objects is rarely changed much from the original computation.
However, the bulk of the individual objects might change signi�cantly. Coordinate changes and
the use of identities can change functions from expressions with 5{10 characters to ones with many
dozens of characters. This increase is unlikely to be important as in most computations with
symbolic function data, the size of the data is very small compared to the size of the computation
and thus the network cost of the input data is negligible. The disguise techniques used for integers
at the end of Section 1.2 increased their length from 8 bits to 9 bits; similar schemes could increase
their length from 1 byte to 2 bytes. This might double the network costs for some computations.
The network cost in returning the result is less likely to be increased, but it can be for some
computations.

In summary, we conclude that:

� Customer costs for disguise are reasonable and linear in the size of the computation data.
The principal cost is in the \intellectual" e�ort needed to make good disguises.

� Agent costs have a minimal increase unless the customer changes the problem structure. The
control of problem structure increases the intellectual e�ort of the customer. There might be
especially simple computations where good disguise requires changing the problem structure.

� Network cost increases vary from none to modest, rarely will this cost be doubled.

References

1. M. Abadi, J. Feigenbaum, and J. Killian. On hiding information from an oracle, J. of Com-
puter and System Sciences, 39, (1989), 21{50.

2. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions, Appl. Math. Series
55, Nat. Bur. Stnds., U.S. Govt. Printing O�ce, (1964).

52

3. M.J. Atallah, K.N. Pantazopoulos, and E.H. Spa�ord. Secure outsourcing of some computa-
tions, Department of Computer Sciences, CSD-TR-96-074, Purdue University, (1996).

4. P. Beguin and J-J. Quisquater. Fast server-aided RSA signatures secure against active attacks,
CRYPTO, (1995), 57{69.

5. R.F. Boisvert, S.E. Howe, and D.K. Kahaner. GAMS: A framework for the management of sci-
enti�c software, ACM Trans. Math. Software, 11, (1995), 313{355. http://gams.nist.gov/

6. M. Boninsegna and M. Rossi. Similarity measures in computer vision, Pattern Recognition
Letters, 15, (1994), 1255{1260.

7. C. Collberg, C. Thomborson and D. Low. A taxonomy of obfuscating transformations, Tech.
Rpt. 148, Department Computer Science, University of Auckland, (1988).

8. C. deBoor and J.R. Rice. An adaptive algorithm for multivariate approximation giving opti-
mal convergence rates, J. Approx. Theory, 25, (1979), 337{359.

9. C. deBoor. A Practical Guide to Splines, SIAM Publications, (1978).

10. B. Dole, S. Lodin, and S.E. Spa�ord. Misplaced trust: Kerberos 4 session keys. In Proceedings
of the 4th Symposium on Network and Distributed System Security, IEEE Press, (1997), 60{
71.

11. T. Drashansky, A. Joshi, and J.R. Rice. SciAgents { An agent based environment for dis-
tributed, cooperative scienti�c computing, Proc. 7th Intl. Conf. Tools with Arti�cial Intel.,
IEEE Press, (1995), 452{459.

12. T. Drashansky, S. Weerawarana, A. Joshi, R. Weerasinghe, and E.N. Houstis. Software ar-
chitecture of ubiquitous scienti�c computing environments for mobile platforms, Department
of Computer Sciences, CSD-TR-95-032, (1995).

13. D.E. Eastlake, S.D. Crocker, and J.I. Schiller. RFC-1750 Randomness Recommendations for
Security, Network Working Group, (1994).

14. E. Gallopoulos, E.N. Houstis, and J.R. Rice. Computer as thinker/doer: Problem solving
environments for computational science, IEEE Comp. Sci. Eng., 1, (1994), 11{23.

15. S. Gar�nkel and E.H. Spa�ord. Practical UNIX & Internet Security, O'Reilley & Associates,
Second Edition, (1996).

16. R.C. Gonzalez and R.E. Woods. Digital Image Processing, Addison-Wesley, Reading, MA,
(1992).

53

17. S-J. Hwang, C-C. Chang, W-P. Yang. Some active attacks on fast server-aided secret com-
putation protocols for modular exponentiation, Cryptography: Policy and Algorithms, LNCS
1029, (1996), 215{228.

18. A.K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cli�s, N.J.,
(1989).

19. S-I. Kawamura and A. Shimbo. Fast server-aided secret computation protocols for modular
exponentiation. In Proceedings of IEEE J. on Selected Areas in Communications, 11, (1993),
778{784.

20. D.E. Knuth. The Art of Computer Programming, Volume 2, Addison Wesley, Second Edition,
(1981).

21. C-S. Laih and S-M. Yen. Secure addition sequence and its application on the server-aided
secret computation protocols, AUSCRYPT, (1992), 219{230.

22. C-H. Lim and P.J. Lee. Security and performance of server-aided RSA computation protocols,
CRYPTO, (1995), 70{83.

23. T. Matsumoto, K. Kato, and H. Imai. Speeding up secret computations with insecure auxil-
iary devices, CRYPTO, (1988), 497{506.

24. B. P�tzmann and M. Waidner. Attacks on protocols for server-aided RSA computation,
EUROCRYPT, (1992), 153{162.

25. J-J. Quisquater and M. de Soete. Speeding up smart card RSA computations with insecure
co-processors, Smart Card 2000, North Holland, (1991), 191{197.

26. C.J. Ribbens. A fast adaptive grid scheme for elliptic partial di�erential equations, ACM
Trans. Math. Softw., 15, (1989), 179{197.

27. C.J. Ribbens. Parallelization of adaptive grid domain mappings. In Parallel Processing for
Scienti�c Computing, (G. Rodrique, ed.), SIAM, Philadelphia, (1989), 196{200.

28. J.R. Rice. Numerical Methods, Software, and Analysis, Second Edition, Academic Press,
(1993), Section 7.6.D.

29. R.L. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, (R.D. DeMillo, ed.), Academic Press, (1978), 169{177.

30. B. Schneider. Applied Cryptography, Wiley, Second Edition, (1996).

54

31. A. Shimbo and S. Kawamura. Factorization attacks on certain server-aided computation
protocols for the RSA secret transformation, Electronic Letters, 26, (1990), 1387{1388.

32. D.R. Stinson. Cryptography: Theory and Practice, CRC Press, Boca Raton, FL, (1995).

33. G.J. Simmons, ed., Contemporary Cryptology: The Science of Information Integrity, IEEE
Press, (1992).

55

