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Abstract. Large-scale problems in the physical and life sciences are being revo-
lutionized by Internet computing technologies, like grid computing, that make
possible the massive cooperative sharing of computational power, bandwidth,
storage, and data. A weak computational device, once connected to such a grid,
is no longer limited by its slow speed, small amounts of local storage, and limited
bandwidth: It can avail itself of the abundance of these resources that is available
elsewhere on the network. An impediment to the use of “computational outsourc-
ing” is that the data in question is often sensitive, e.g., of national security impor-
tance, or proprietary and containing commercial secrets, or to be kept private for
legal requirements such as the HIPAA legislation, Gramm-Leach-Bliley, or sim-
ilar laws. This motivates the design of techniques for computational outsourcing
in a privacy-preserving manner, i.e., without revealing to the remote agents whose
computational power is being used, either one’s data or the outcome of the com-
putation on the data. This paper investigates such secure outsourcing for widely
applicable sequence comparison problems, and gives an efficient protocol for a
customer to securely outsource sequence comparisons to two remote agents, such
that the agents learn nothing about the customer’s two private sequences or the
result of the comparison. The local computations done by the customer are linear
in the size of the sequences, and the computational cost and amount of com-
munication done by the external agents are close to the time complexity of the
best known algorithm for solving the problem on a single machine (i.e., quadratic,
which is a huge computational burden for the kinds of massive data on which such
comparisons are made). The sequence comparison problem considered arises in a
large number of applications, including speech recognition, machine vision, and
molecular sequence comparisons. In addition, essentially the same protocol can
solve a larger class of problems whose standard dynamic programming solutions
are similar in structure to the recurrence that subtends the sequence comparison
algorithm.

1 Introduction

Internet computing technologies, like grid computing [8], enable a weak computational
device connected to such a grid to be less limited by its inadequate local computa-
tional, storage, and bandwidth resources. However, such a weak computational device
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(PDA, smartcard, sensor, etc) often cannot avail itself of the abundant resources avail-
able on the network because its data is sensitive. A prime example of this is DNA
sequence comparisons: They are expensive enough to warrant remotely using the com-
puting power available at powerful remote servers and super-computers, yet sensitive
enough to give pause to anyone concerned that some unscrupulous person at the remote
site may leak the DNA sequences or the comparison’s outcome, or may subject the
DNA to a battery of unauthorized tests whose outcome could have such grave conse-
quences as jeopardizing an individual’s insurability, employability, etc. Techniques for
outsourcing expensive computational tasks in a privacy-preserving manner, are there-
fore an important research goal. This paper is a step in this direction, in that it gives a
protocol for the secure outsourcing of the most important sequence comparison com-
putation: The “string editing” problem, i.e., computing the edit-distance between two
strings. The edit distance is one of the most widely used notions of similarity: It is the
least-cost set of insertions, deletions, and substitutions required to transform one string
into the other. Essentially the same protocol can solve the larger class of comparisons
whose standard dynamic programming solution is similar in structure to that of string
editing. The generalizations of edit distance that are solved by the same kind of dynamic
programming recurrence relation as the one for edit distance, cover an even wider do-
main of applications. We use string editing here merely as the prototypical solution for
this general class of dynamic programming recurrences.

In various ways and forms, sequence comparisons arise in many applications other
than molecular sequence comparison, notably, in text editing, speech recognition, ma-
chine vision, etc. In fact the dynamic programming solution to this problem was inde-
pendently discovered by no fewer than fourteen different researchers [22], and is given a
different name by each discipline where it was independently discovered (Needleman-
Wunsch by biologists, Wagner-Fischer by computer scientists, etc). For this reason,
these problems have been studied rather extensively in the past, and form the object
of several papers [13, 14, 17, 21, 24, 22, 27], to list a few). The problems are typically
solved by a serial algorithm inΘ(mn) time and space, through dynamic programming
(cf. for example, [27]). When huge sequences are involved, the quadratic time com-
plexity of the problem quickly becomes prohibitively expensive, requiring considerable
power. Such super-computing power is widely available, but sending the data to such
remote agents is problematic if the sequence data is sensitive, the outcome of the com-
parison is to be kept private, or both. In such cases, one can make a case for a technology
that makes it possible for the customer to have the problem solved remotely but without
revealing to the remote super-computing sites either the inputs to the computation or its
outcome.

In other words we assume that Carol has two private sequencesλ andµ, and wants
to compute the similarity between these two sequences. Carol only has a weak com-
putational device that is incapable of performing the sequence comparison locally. In
order to get the result, Carol has to outsource the computation task to some external en-
tities, the agents. If Carol trusted the agents, she could send the sequences directly to the
external agents and ask them to compute the similarity on her behalf. However, if Carol
is concerned about privacy, it is not acceptable to send the sequences to external agents
because this would reveal too much information to these agents – both the sequences



and the result. Our result is a protocol that computes the similarity of the sequences yet
inherently safeguards the privacy of Carol’s data. Assuming the two external agents do
not conspire with each other against Carol by sharing the data that she sends to them,
they learn nothing about the actual data and actual result.

The dynamic programming recurrence relation that subtends the solution to this
problem, also serves to solve many other important related problems (either as special
cases, or as generalizations that have the same dynamic programming kind of solution).
These include the longest common subsequence problem, and the problem of approxi-
mate matching between a pattern sequence and text sequence (there is a huge literature
of published work for the notion of approximate pattern matching and its connection
to the sequence alignment problem). Any solution to the general sequence comparison
problem could also be used to solve these related problems. For example, our protocol
can enable a weak PDA to securely outsource the computation of theUnix command

diff file1 file2| wc

to two agents where the agents learn nothing aboutfile1, file2, and the result.
We now more precisely state the edit distance problem, in which the cost of an

insertion or deletion or substitution is a symbol-dependent non-negative weight, and the
edit distance is then theleast-costset of insertions, deletions, and substitutions required
to transform one string into the other. More formally, if we letλ be a string of lengthn,
λ = λ1 . . . λn andµ be a string of lengthm, µ = µ1 . . . µm, both over some alphabetΣ.
There are three types of allowededit operationsto be done onλ: insertion of a symbol,
deletion of a symbol, and substitution of one symbol by another. Each operation has a
cost associated with it, namelyI(a) denotes the cost of inserting the symbola, D(a)
denotes the cost of deletinga, andS(a, b) denotes the cost of substitutinga with b. Each
sequence of operations that transformsλ into µ has acostassociated with it (which is
equal to the sum of the costs of the operations in it), and the least-cost of such sequence
is theedit-distance. Theedit pathis the actual sequence of operations that corresponds
to the edit distance. Our outsourcing solution allows arbitraryI(a), D(b), andS(a, b)
values, and we give better solutions for two special cases: (i)S(a, b) = |a− b|, and (ii)
unit insertion/deletion cost andS(a, b) = 0 if a = b andS(a, b) = +∞ if a 6= b (in
effect forbidding substitutions).

The rest of paper is organized as follows. We begin with a brief introduction of
previous work in Section 2. Then we describe some building blocks in Section 3. In
Section 4, we present the secure outsourcing protocol for computing string edit distance.
Section 5 extends the protocol so as to compute the edit path. Section 6 concludes.

2 Related Work

Recently, Atallah, Kerschbaum, and Du [2] developed an efficient protocol for sequence
comparisons in the secure two-party computation framework in which each party has
a private string; the protocol enables two parties to compute the edit distance of two
sequences such that neither party learns anything about the private sequence of the other
party. They [2] use dynamic programming to compare sequences, but in an additively
split way – each party maintains a matrix, the summation of two matrices is the real



matrix implicitly used to compute edit distance. Our protocol directly builds on their
work, but is also quite different and more difficult in the following ways:

– We can no longer afford to have the customer carry out quadratic work or com-
munication: Whereas in [2] there was “balance” in that all participants had equal
computational and communication power, in our case the participant to whom all
of the data and answer belong is asymmetrically weaker and is limited to alinear
amount of computation and communication (hence cannot directly participate or
help in each step of the quadratic-complexity dynamic programming solution).

– An even more crucial difference is the special difficulty this paper’s framework
faces in dealing with the costs table, that is, the table that contains the costs of
deleting a symbol, inserting a symbol, and substituting one symbol by another:
There is a quadratic number of accesses to this table, and the external agents cannot
be allowed to learn which entry of the table is being consulted (because that would
leak information about the inputs), yet the input owner’s help cannot be enlisted
for such table accesses because there is a quadratic number of them (recall that the
owner is limited to linear work and communication – which is unavoidable).

Secure outsourcing of sequence comparisons adds to a growing list of problems con-
sidered in this framework (e.g. [4, 10, 12, 15, 19, 3], and others). We briefly review these
next. In the server-aided secret computation literature (e.g. [4, 10, 12, 15, 19], to list a
few), a weak smartcard performs public key encryptions by “borrowing” computing
power from an untrusted server, without revealing to that server its private information.
These papers deal primarily with the important problem of modular exponentiations.
The paper [3] deals primarily with outsourcing of scientific computations.

In the the privacy homomorphism approach proposed in [20], the outsourcing agent
is used as a permanent repository of data, performing certain operations on it and main-
taining certain predicates, whereas the customer needs only to decrypt the data from
the agent to obtain the real data; the secure outsourcing framework differs in that the
customer is not interested in keeping data permanently with the external agents, instead,
the customer only wants to temporarily use their superior computational power.

Du and Atallah have developed several models for secure remote database access
with approximate matching [6]. One of the models that is related to our work is the
secure storage outsourcing model where a customer who lacks storage space outsources
her database to an external agent. The customer needs to query her database from time
to time without revealing to the agent the queries and the results. Several protocols for
other distance metrics were given, including Hamming distance, theL1 andL2 distance
metrics. All these metrics considered in [6] were between strings that havethe same
lengthas each other – it is indeed a limitation of the techniques in [6] that they do not
extend to the present situation where the strings are of different length and insertions
and deletions are part of the definition. This makes the problem substantially different,
as the edit distance algorithm is described by a dynamic program that computes it, rather
than as a simple one-line mathematical expression to be securely computed.



3 Preliminaries

Giving the full-fledged protocol would make it too long and rather hard to comprehend.
This section aims at making the later presentation of the protocol much crisper by pre-
senting some of the ideas and building blocks for it ahead of time, right after a brief
review of the standard dynamic programming solution to string edit.

3.1 Review of Edit Distance via Dynamic Programming

We first briefly review the standard dynamic programming algorithm for computing edit
distance. LetM(i, j), (0 ≤ i ≤ n, 0 ≤ j ≤ m) be the minimum cost of transforming
the prefix ofλ of lengthi into the prefix ofµ of lengthj, i.e., of transformingλ1 . . . λi

into µ1 . . . µj . ThenM(0, 0) = 0, M(0, j) =
∑j

k=1
I(µj) for 1 ≤ j ≤ m, M(i, 0) =

∑i

k=1
D(λi) for 1 ≤ i ≤ n, and for positivei andj we have

M(i, j) = min(M(i−1, j−1)+S(λi, µj), M(i−1, j)+D(λi), M(i, j−1)+I(µj))

for all i, j, 1 ≤ i ≤ n and1 ≤ j ≤ m. HenceM(i, j) can be evaluated row-by-row or
column-by-column inΘ(mn) time [27]. Observe that, of all entries of theM -matrix,
only the three entriesM(i− 1, j − 1), M(i− 1, j) andM(i, j − 1) are involved in the
computation of the final value ofM(i, j).

Not only does the above dynamic program for computingM depend on bothλ and
µ, but even ifM could be computed without knowingλ andµ, the problem remains that
M itself is too revealing: It reveals not only the overall edit distance, but also the edit
distance from every prefix ofλ to every prefix ofµ. It is required in our problem that
the external agents should learn nothing about the actual sequences and the results. The
matrixM should therefore not be known to the agents. It can of course not be stored at
the customer’s site, as it is a requirement that the customer is limited toO(m + n) time
and storage space.

3.2 Framework

We use two non-colluding agents in our protocol. Both the input sequences (λ andµ)
and the intermediate results (the matrixM ) are additively split between the two agents,
in such a way that neither one of the agents learns anything about the real inputs and
results, but the two agents together can implicitly use the matrixM without knowing
it, that is, obtaining additively split answers “as if” they knewM . They have to do so
without the help of the customer, as the customer is incapable of quadratic computation
time or storage space. More details, about how this is done, are given below.

In the rest of the paper, we use following notations: We useC to denote the customer,
A1 the first agent, andA2 the second agent. Any items superscripted with′ are known
toA1 but not toA2, those superscripted with′′ are known toA2 but not toA1. In what
follows, we oftenadditively splitan itemx between the two agentsA1 andA2, i.e., we
assume thatA1 has anx′ andA2 has anx′′ such thatx = x′ + x′′; we do this splitting
for the purpose of hidingx from either agent. If arithmetic is modular, then this kind
of additive splitting ofx hides it, in an information-theoretic sense, fromA1 andA2.



If, however, arithmetic is not modular, then even whenx′ andx′′ can be negative and
are very large compared tox, the “hiding” of x is valid in a practical but not in an
information-theoretic sense.

Splitting λ and µ Let λ and µ be two sequences over some finite alphabetΣ =
{0, . . . , σ − 1}. This could be a known fixed set of symbols (e.g., in biologyΣ =
{A,C, T, G}), or the domain of a hash function that maps a potentially infinite alphabet
into a finite domain.C splits λ into λ′ andλ′′ such thatλ′ andλ′′ are over the same
alphabetΣ, and their sum isλ, i.e.,λi = λ′

i + λ′′

i mod σ for all 1 ≤ i ≤ n. To split
λ, C can first generate a random sequenceλ′ of lengthn, then setλ′′

i = λi − λ′

i mod σ

for all 1 ≤ i ≤ n. Similarly, C splitsµ into µ′ andµ′′ such thatµi = µ′

i + µ′′

i mod σ

for all 1 ≤ i ≤ m. In the edit distance protocol,C sendsλ′ andµ′ to A1 and sendsλ′′

andµ′′ toA2.

Splitting M Our edit distance protocol computes the same matrix as the dynamic
programming algorithm, in the same order (e.g., row by row). Similar to [2], the matrix
M in our protocol is additively shared betweenA1 andA2: A1 andA2 each hold a
matrix M ′ andM ′′, respectively, the sum of which is the matrixM , i.e.,M = M ′ +
M ′′; the protocol will maintain this property as an invariant through all its steps. The
main challenge in our protocol is that the comparands and outcome of each comparison,
as well as the indices of the minimum elements, have to be shared (in the sense that
neither party individually knows them).

Hiding the sequences’ lengthsSplitting a sequence effectively hides its content, but
fails to hide its length. In some situations, even the lengths of the sequences are sensitive
and must be hidden or, at least, somewhat obfuscated. We now briefly sketch how to
pad the sequences and obtain new, longer sequences whose edit distance is the same as
that between the original sentences. Letm̂ andn̂ be the respective new lengths (with
padding); assume that randomly choosingm̂ from the interval[m, 2m] provides enough
obfuscation ofm, and similarlyn̂ from the interval[n, 2n].

We introduce a new special symbol “$” to the alphabetΣ such that the cost of
insertion and deletion of this symbol is 0 (i.e.,I($) = D($) = 0), and the cost of
substitution of this symbol is infinity (i.e.,S($, a) = S(a, $) = +∞ for every symbol
a in Σ). The customer appends “$”s to the end ofλ and µ to turn their respective
lengths into the target valueŝn andm̂, before splitting and sending them to the agents.
This padding has following two properties: 1) the edit distance between the padded
sequences is the same as the edit distance between the original sequences, 2) the agents
cannot figure out how many “$”s were padded into a sequence because of the random
split of the sequence.

To avoid unnecessarily cluttering the exposition, we assumeλ andµ are already
padded with “$”s before the protocol, thus we assume the lengths ofλ andµ are stilln
andm respectively, and the alphabetΣ is still {0, . . . , σ − 1}.



3.3 Secure Table Lookup Protocol for Split Data

Recall that theσ × σ size cost tableS is public, hence known to bothA1 andA2; we
make no assumptions about the costs in the table (they can be arbitrary, not necessarily
between0 andσ − 1). Recall thatA1 andA2 share additively each symbolα from
λ andβ from µ, i.e., α = α′ + α′′ mod σ, andβ = β′ + β′′ mod σ whereA1 has
α′ and β′, A2 hasα′′ and β′′. A1 andA2 want to cooperatively look up the value
S(α, β) from the cost tableS, but without either of them knowing which entry ofS

was accessed and what value was returned by the access (so that value itself must be
additively split). The protocol below solves this lookup problem in one round andO(σ2)
computation and communication; note that naively using the protocol belowO(mn)
times would result in anO(σ2mn) computation and communication complexity for the
overall sequence comparison problem, not theO(σmn) performance we claim (and
that will be substantiated later in the paper).

Protocol 1 Secure Table Lookup Protocol

Input A1 hasα′ andβ′ andA2 hasα′′ andβ′′, such thatα = α′ + α′′ mod σ and
β = β′ + β′′ mod σ.

Output A1 obtains a numbera, andA2 obtains a numberb, such thata+b = S(α, β).

The protocol steps are:

1. A1 generates a key pair for a homomorphic semantically-secure public key system
and sends the public key toA2 (any of the existing systems will do, e.g., [16, 18]).
In what followsE(·) denotes encryption withA1’s public key, andD(·) decryption
with A1’s private key. (Recall that the homomorphic property implies thatE(x) ∗
E(y) = E(x + y), and semantic security implies thatE(x) reveals nothing about
x, so thatx = y need not implyE(x) = E(y).)

2. A1 generates aσ×σ size tableŜ with entryŜ(i, j) equal toE(S(i+α′ mod σ, j+
β′ mod σ)) for all 0 ≤ i, j ≤ σ − 1, and sends that tablêS toA2.

3. A2 picks up the(α′′, β′′)th entry from the table received in the previous step, which
is Ŝ(α′′, β′′) = E(S(α, β)). A2 then generates a random numberb, then computes
θ = E(S(α, β)) ∗ E(−b) = E(S(α, β) − b), and sends it back toA1.

4. A1 decrypts the value received fromA2 and getsa = D(E(S(α, β) − b)) =
S(α, β) − b.

As required,a + b = S(α, β), andA1 andA2 do not learn anything about the other
party from the protocol. The computation and communication cost of this protocol is
O(σ2).

4 Edit Distance Protocol

We now “put the pieces together” and give the overall protocol. We begin with the gen-
eral case of arbitraryI(a), D(b), S(a, b). Then two special cases are considered. One is
the case of arbitraryI(a) andD(b), butS(a, b) = |a−b|. The other is the practical case
of unit insertion/deletion cost and forbidden substitutions (i.e.,S(a, b) is 0 if a = b and



+∞ otherwise). For all the above cases, the cost of computation and communication
by the customer is linear to the size of the input. The cost of computation and com-
munication by agents isO(σmn) for the general case andO(mn) for the two special
cases.

4.1 The General Case: Arbitrary I(a), D(b), S(a, b)

In this section, we begin with a preliminary solution that is not our best, but serves as a
useful “warmup” to the more efficient solution that comes later in this section.

A preliminary version of the protocol Recall thatC splits λ into λ′ andλ′′ andµ

into µ′ andµ′′, then sendsλ′ andµ′ to A1, and sendsλ′′ andµ′′ to A2. A1 andA2

each maintains a matrixM ′ and (respectively)M ′′, such thatM = M ′ + M ′′. A1 and
A2 compute each elementM(i, j) in additively split fashion; this is done as prescribed
in the recursive edit distance formula, byA1 andA2 updating their respectiveM ′ and
M ′′. After doing so,A1 andA2, send their respectiveM ′(n, m) andM ′′(n, m) back
to C. C can then obtain the edit distanceM(n, m) = M ′(n, m) + M ′′(n, m).

During the computation of each elementM(i, j), S(λi, µj) has to be computed by
A1 andA2 in additively split fashion and without the help ofC, which implies that the
substitution tableS should be known by bothA1 andA2. Hence,C needs to send the
table to both of the agents during the initialization phase of the protocol. The content of
the table is not private, and need not be disguised.

Initialization of Matrices M ′ andM ′′ should be initialized so that their sumM has
M(0, j) andM(i, 0) equal to the values specified in Section 3.1. TheM(i, j) entries
for nonzeroi andj can be random (they will be computed later, after the initialization).
The following initializes theM ′ andM ′′ matrices:

1. C generates two vectors of random numbersa = (a1, . . . , an) andb = (b1, . . . , bm).
ThenC computes two vectorsc = (c1, . . . , cn) andd = (d1, . . . , dm) where
(a) ci =

∑i

k=1
D(λk) − ai for 1 ≤ i ≤ n,

(b) dj =
∑j

k=1
I(µk) − bj for 1 ≤ j ≤ m.

C sends toA1 the vectorsb, c, and toA2 the vectorsa,d.
2. A1 setsM ′(0, j) = bj for 1 ≤ j ≤ m, and setsM ′(i, 0) = ci for 1 ≤ i ≤ n. All

the other entries ofM ′ are set to 0.
3. A2 setsM ′′(i, 0) = ai for 1 ≤ i ≤ n, and setsM ′′(0, j) = dj for 1 ≤ j ≤ m. All

the other entries ofM ′′ are set to 0.

Note that the above does implicitly initializeM(i, j) in the correct way, because it
results in

– M ′(0, 0) + M ′′(0, 0) = 0.
– M ′(0, j) + M ′′(0, j) =

∑j

k=1
I(µj) for 1 ≤ j ≤ m.

– M ′(i, 0) + M ′′(i, 0) =
∑i

k=1
D(λi) for 1 ≤ i ≤ n.

NeitherA1 norA2 gain any information aboutλ andµ from the initialization of their
matrices, because the two vectors they each receive fromC look random to them.



Mimicking a step of the dynamic program The following protocol describes how
anM(i, j) computation is done byA1 andA2, i.e., how they modify their respective
M ′(i, j) andM ′′(i, j), thus implicitly computing the finalM(i, j) without either of
them learning which update was performed.

1. A1 andA2 use the secure table lookup protocol with inputsλ′

i andµ′

j from A1,
and inputsλ′′

i andµ′′

j from A2. As a result,A1 obtainsγ′ andA2 obtainsγ′′ such
that

γ′ + γ′′ = S(λ′

i + λ′′

i mod σ, µ′

j + µ′′

j mod σ) = S(λi, µj).

A1 then formsu′ = M ′(i−1, j−1)+γ′ and Bob formsu′′ = M ′′(i−1, j−1)+γ′′.
Observe thatu′ + u′′ = M(i − 1, j − 1) + S(λi, µj), which is one of the three
quantities involved in the update step forM(i, j) in the dynamic program.

2. A1 computesv′ = M ′(i − 1, j) + M ′(i, 0) − M ′(i − 1, 0) = M ′(i − 1, 0) +
D(λi)−ai +ai−1, A2 computesv′′ = M ′′(i−1, j)+M ′′(i, 0)−M ′′(i−1, 0) =
M ′′(i − 1, j) + ai − ai−1. Observe thatuA + uB = M(i − 1, j) + D(λi), which
is one of the three quantities involved in the update step forM(i, j) in the dynamic
program.

3. A1 computesw′ = M ′(i, j−1)+M ′(0, j)−M ′(0, j−1) = M ′(i, j−1)+bj−bj−1,
A2 computesw′′ = M ′′(i, j − 1) + M ′′(0, j) − M ′′(0, j − 1) = M ′′(i, j − 1) +
I(µj)− bj + bj−1. Observe thatw′ + w′′ = M(i, j − 1) + D(µj), which is one of
the three quantities involved in the update step forM(i, j) in the dynamic program.

4. A1 andA2 use the minimum finding protocol for split data (described in [2]) on
their respective vectors(u′, v′, w′) and(u′′, v′′, w′′). As a result,A1 gets anx′ and
A2 gets anx′′ whose sumx′ + x′′ is

min(u′ + u′′, v′ + v′′, w′ + w′′) =

min(M(i − 1, j − 1) + S(λi, µj),M(i − 1, j) + D(λi),M(i, j − 1) + I(µj)).

5. A1 setsM ′(i, j) equal tox′, andA2 setsM ′′(i, j) equal tox′′.

Performance Analysis The local computations done byC in the above protocol consist
of splitting λ andµ and sending the resulting shares to the agents, and computing and
sending the vectorsa, b, c,d. These are done inO(m + n) time and communication.

Each agent mimicsmn steps of the dynamic program. During each step, two agents
run the secure table lookup protocol once and the minimum finding protocol once. Thus,
the communication betweenA1 andA2 for each such step isO(σ2) + O(1). Therefore
the total computation and communication cost for each agent isO(σ2mn).

An improved version of the protocol A bottleneck in the above protocol is the split
computation ofS(λi, µj): Running the secure table lookup protocol at each step of the
dynamic program costs an expensiveO(σ2). In this subsection, we present a solution
that is more efficient by a factor ofσ.

Recall that in the dynamic program,M is constructed row-by-row or column-by-
column. We assume, without loss of generality thatM is computed row-by-row. We
will computeS(λi, µj) row-by-row exploiting the fact that all(λi, µj) in row i have
the sameλi: We will “batch” these table accesses for rowi, as we describe next.



Protocol 2 Batched Secure Table Lookup Protocol

Input A1 hasλ′

i andµ′ = µ′

1, . . . , µ
′

m, andA2 hasλ′′

i andµ′′ = µ′′

1 , . . . , µ′′

m, all
symbols being over alphabetΣ.

Output A1 andA2 each obtains a vectorγ′ andγ′′ of sizem, such thatγ′

j + γ′′

j =
S(λi, µj) for 1 ≤ j ≤ m.

The protocol is:

1. A1 generates a key pair for a homomorphic semantically-secure public key system
and sends the public key toA2. As before,E(·) denotes encryption withA1’s
public key, andD(·) decryption withA1’s private key.

2. A1 generates aσ × σ tableŜ with Ŝ(k, l) equal toE(S(k + λ′

i mod σ, l)) for all
0 ≤ k, l ≤ σ − 1, and sends that table toA2.

3. For eachj = 1, . . . ,m, the next 5 sub-steps are carried out to compute the(γ′

j , γ
′′

j )
pair.
(a) A2 creates aσ size vectorv equal to theλ′′

i th row of the tableŜ received in
the previous step. Observe thatvl = E(S(λ′′

i + λ′

i mod σ, l)) = E(S(λi, l))
for 0 ≤ l ≤ σ − 1.

(b) A2 circularly left-shiftsv by µ′′

j positions, so thatvl becomesE(S(λi, µ
′′

j +
l mod σ)) for 0 ≤ l ≤ σ − 1.

(c) A2 generates a random numberγ′′

j , he then updatesv by settingvl = vl ∗
E(−γ′′

j ) = E(S(λi, µ
′′

j + l mod σ) − γ′′

j ) for 0 ≤ l ≤ σ − 1. Note that the
µ′

j th entry of the resultingv is nowE(S(λi, µj) − γ′′

j ).
(d) A1 uses a 1-out-of-σ oblivious transfer protocol to obtain theµ′

j th entry ofv
fromA2 without revealing toA2 whichvl he received (see, e.g., [23] for many
detailed oblivious transfer protocols).

(e) A1 decrypts the value he obtained from the oblivious transfer of the previous
step, and getsγ′

j = S(λi, µj) − γ′′

j . Observe thatγ′

j + γ′′

j = S(λi, µj), as
required.

NeitherA1 norA2 learned anything about which entry ofS was implicitly accessed,
or what the value obtained in split fashion is. The communication cost of the above
scheme isO(σ2) + O(σm). The size of the alphabet is much smaller than the length
of a sequence (e.g., in bioinformaticsσ = 4 whereas a sequence’s length is huge).
Therefore the dominant term in the complexity of the above isO(σm).

The new outsourcing protocol for sequence comparisons is same as the preliminary
protocol in the previous subsection, except for some modifications in the first step of the
protocol, titled “mimicking a step of the dynamic program”. Recall that the aim of Step
1 is to produce au′ with A1 and au′′ with A2 such thatu′ + u′′ = M(i − 1, j − 1) +
S(λi, µj). In the improved protocol, we first run the above batched lookup protocol for
row i to produce aγ′ for A1 and aγ′′ for A2, such thatγ′

j+γ′′

j = S(λi, µj) for 1 ≤ j ≤
m. Then, during Step 1 of the modified protocol,A1 setsu′ = M ′(i−1, j−1)+γ′

j and
A2 setsu′′ = M ′′(i − 1, j − 1) + γ′′

j . Note that, at the end of the new Step 1,u′ + u′′

equals toM(i − 1, j − 1) + S(λi, µj), as required. The computational task for the
customer in this protocol is the same as in the preliminary version. The computational
and communication cost for the agents in this protocol areΘ(σmn).



4.2 The CaseS(a, b) = |a − b|

The improvement in this case comes from a more efficient way of computing the split
S(λi, µj) values needed in Step 1 of the protocol. Unlike previous sections of the paper,
each symbol inλ andµ is split into two numbers that are not moduloσ, and can in fact
be arbitrary (and possibly negative) integers. The protocol is otherwise the same as in
section 4.1.

The main difference is in the first step of sub-protocol “mimicking a step of the
dynamic program”. Note that

S(λi, µj) = |λi − µj |

= max(λi − µj , µj − λi)

= max((λ′

i − µ′

j) + (λ′′

i − µ′′

j ), (µ′

j − λ′

i) + (µ′′

j − λ′′

i ))

TheS(λi, µj) can be computed as follows:A1 forms a two-entry vectorv′ = (λ′

i −
µ′

j , µ
′

j − λ′

i), A2 forms a two-entry vectorv′′ = (λ′′

i − µ′′

j , µ′′

j − λ′′

i ), thenA1 andA2

use the split maximum finding protocol (described in [2]) to obtainγ′ andγ′′ such that

γ′ + γ′′ = max(v′ + v′′) = |λi − µj | = S(λi, µj).

Then the first step of the dynamic program can be replaced byA1 settingu′ = M ′(i −
1, j − 1)+γ′, andA2 settingu′′ = M ′′(i− 1, j − 1)+γ′′. As required,u′ +u′′ equals
M(i− 1, j − 1) + S(λi, µj). Since the communication cost of Step 1 is nowO(1), the
total communication cost for the agents isO(mn).

4.3 The Case of Unit Insertion/Deletion Costs and Forbidden Substitutions

The improvement in this case directly follows from a technique, given in [2], that we
now review. Forbidden substitutions means thatS(a, b) is +∞ unlessa = b (in which
case it is zero because it is a “do nothing” operation). Of course a substitution is useless
if its cost is 2 or more (because one might as well achieve the same effect with a deletion
followed by an insertion). The protocol is then:

1. Fori = σ, . . . , 1 in turn,C replaces every occurrence of symboli by the symbol2i.
So the alphabet becomes effectively{0, 2, 4, . . . , 2σ − 2}.

2. C runs the protocol given in the previous section for the case ofS(a, b) = |a − b|,
using a unit cost for every insertion and every deletion.

The reason it works is that, after the change of alphabet,S(a, b) is zero ifa = b and
2 or more ifa 6= b, i.e., it is as ifS(a, b) = +∞ if a 6= b (recall that a substitution is
useless if its cost is 2 or more, because one can achieve the same effect with a deletion
followed by an insertion).

5 Computing the Edit Path

We have so far established that the edit distance can be computed in linear space and
O(σmn) time and communication. This section deals with extending this to computing,



also in split form, theedit path, which is a sequence of operations that corresponds to
the edit distance (that is, a minimum-cost sequence of operations onλ that turns it into
µ). We show that the edit path can be computed by the agents in split form inO(mn)
space and inO(σmn) time and communication.

5.1 Review: Grid Graph View of the Problem

The interdependencies among the entries of theM -matrix induce an(n + 1) × (m +
1) grid directed acyclic graph (grid DAG for short) associated with the string editing
problem. It is easy to see that in fact the string editing problem can be viewed as a
shortest-paths problem on a grid DAG.

Definition 1. An l1 × l2 grid DAG is a directed acyclic graph whose vertices are the
l1l2 points of anl1 × l2 grid, and such that the only edges from grid point(i, j) are to
grid points(i, j + 1), (i + 1, j), and(i + 1, j + 1).

Note that the top-left point of a grid DAG has no edge entering it (i.e., is asource),
and that the bottom-right point has no edge leaving it (i.e., is asink). We now review the
correspondence between edit scripts and grid graphs. We associate an(n+1)×(m+1)
grid DAG G with the string editing problem in the natural way: The(n + 1)(m + 1)
vertices ofG are in one-to-one correspondence with the(n + 1)(m + 1) entries of the
M -matrix, and thecostof an edge from vertex(k, l) to vertex(i, j) is equal toI(µj) if
k = i andl = j − 1, to D(λi) if k = i − 1 andl = j, to S(λi, µj) if k = i − 1 and
l = j − 1. We can restrict our attention to edit paths which are not wasteful in the sense
that they do no obviously inefficient moves such as: inserting then deleting the same
symbol, or changing a symbol into a new symbol which they then delete, etc. More
formally, the only edit scripts considered are those that apply at most one edit operation
to a given symbol occurrence. Such edit scripts that transformλ into µ or vice versa are
in one-to-one correspondence to the weighted paths ofG that originate at the source
(which corresponds toM(0, 0)) and end on the sink (which corresponds toM(n, m)).
Thus, any complexity bounds we establish for the problem of finding a shortest ( i.e.,
least-cost) source-to-sink path in an(n + 1) × (m + 1) grid DAG G, extends naturally
to the string editing problem.

At first sight it looks like “remembering” (in split form), for every entryM(i, j),
which of{M(i−1, j−1),M(i−1, j),M(i, j−1)} “gave it its value” would solve the
problem of obtaining the source-to-sink shortest path we seek. That is, if we useP (i, j)
(whereP is mnemonic for “parent”) to denote that element(k, l) ∈ {(i−1, j−1), (i−
1, j), (i, j − 1)} such that the edit path goes from vertex(k, l) to vertex(i, j) in the
(n + 1)× (m + 1) grid graph that implicitly describes the problem, then all we need to
do is store matrixP in split fashion asP ′ +P ′′. However, this does not work because it
would reveal the edit path to both agents: To get that edit path would require starting at
vertex(n, m) and repeatedly following the parent until vertex(0, 0) is reached, which
appears impossible to do without revealing the path to the agents. To get around this
difficulty, we use a different approach that we develop next.



5.2 The Backward Version of the Protocol

The protocol we presented worked by computing (in split form) a matrixM such that
M(i, j) contains the length of a shortest path from vertex(0, 0) to vertex(i, j) in the
grid graph. We call this theforward protocoland henceforth denote theM matrix as
MF where the subscriptF is a mnemonic for “forward”.

One can, in a completely analogous manner, give a protocol that computes for every
(i, j) the length of a shortest path from vertex(i, j) to the sink vertex(n, m). We
denote the length of such a path asMB(i, j) where the subscriptB is a mnemonic
for “backward”. The edit distance isMB(0, 0) (= MF (n, m)). The protocol forMB is
similar to the one for computingMF and is omitted for reason of space limitations (the
details will be given in the journal version).

Note thatMF (i, j) + MB(i, j) is the length of a shortest source-to-sink paththat
is constrained to go through vertex(i, j) and hence might not be the shortest possible
source-to-sink path. However, if the shortest source-to-sink path goes though vertex
(i, j), thenMF (i, j) + MB(i, j) is equal to the length of shortest path. We useMC to
denoteMF + MB (where subscriptC is mnemonic for “constrained”).

The protocol below finds (in split fashion), for each rowi of MC , the columnθ(i)
of the minimum entry of that row, with ties broken in favor of the rightmost such entry;
note thatMC(i, θ(i)) is the edit distanceMF (n, m). Computing (in split fashion) theθ
function is an implicit description of the edit path:

– If θ(i + 1) = θ(i) = j then the edit path “leaves” rowi through the vertical edge
from vertex(i, j) to vertex(i + 1, j) (the cost of that edge is, of course, the cost of
deletingλi+1).

– If θ(i + 1) = θ(i) + δ whereδ > 0 then the client can “fill in” inO(δ) time the
portion of the edit path from vertex(i, θ(i)) to vertex(i + 1, θ(i) + δ) (because
such a “thin” edit distance problem on a2× δ sub-grid is trivially solvable inO(δ)
time). The cumulative cost of all such “thin problem solutions” isO(m) because
the sum of all suchδ’s is ≤ m.

5.3 Edit Path Protocol

The steps of the protocol for computing the edit path are:

1. C, A1, andA2 conduct the edit distance protocol as described in Section 4 to com-
pute MF in split fashion, i.e.,A1 getsM ′

F andA2 getsM ′′

F such thatMF =
M ′

F + M ′′

F .
2. Similarly,A1 andA2 conduct the backward version of the edit distance protocol

and computeMB in split fashion. As a result,A1 getsM ′

B andA2 getsM ′′

B .
3. A1 computesM ′

C = M ′

F + M ′

B andA2 computesM ′′

C = M ′′

F + M ′′

B . Note that
M ′

C + M ′′

C is equal toMC .
4. Fori = 1, . . . , n in turn, the following steps are repeated:

(a) A1 picks ith row from M ′

C , denoted as(v′0, . . . , v
′

m), andA2 picks ith row
from M ′′

C , denoted as(v′′0 , . . . , v′′m).



(b) For0 ≤ j ≤ m, A1 setsv′j = (m + 1) ∗ v′j andA2 setsv′′j = (m + 1) ∗ v′′j +
(m− j); note thatv′j +v′′j = (m+1)∗MC(i, j)+(m− j). Also observe that,
if MC(i, j) is the rightmost minimum entry in rowi of MC , themv′j + v′′j is
now theonlyminimum entry among allj ∈ [0..m]; in effect we have implicitly
broken any tie between multiple minima in rowi in favor of the rightmost one
(which has the highestj and therefore is “favored” by the addition ofm − j).
Note, however, that breaking the tie through this addition ofm− j without the
prior scaling by a factor ofm + 1 would have been erroneous, as it would have
destroyed the minima information.

(c) A1 andA2 run the minimum finding protocol for split data (described in [2])
on their respective(v′0, . . . , v

′

m) and(v′′0 , . . . , v′′m). As a result,A2 gets anx′

andA2 gets andx′′ whose sumx′ + x′′ is min(v′0 + v′′0 , . . . , v′m + v′′m).
(d) A1 andA2 sendx′ and (respectively)x′′ to C. C computes

pi = x′ + x′′ mod (m + 1)

= ((m + 1) ∗ MF (i, θ(i)) + (m − θ(i))) mod (m + 1)

= m − θ(i),

therefore obtainsθ(i) = m − pi.
5. As mentioned earlier, givenθ(0), . . . , θ(m), C can compute the edit path inO(m)

additional time.

Performance Analysis The computation by the client includes initializing the edit
distance protocol (step 1) and computing the edit path from theθ(i)s (step 5). It can be
done inO(m + n) time and communication.

The agents run the edit distance protocol twice (steps 1 and 2), and the minimum
finding protocoln times (step 4). Each edit distance protocol can be done inO(σmn)
time and communication, and each minimum finding protocol needsO(m) time and
communication. Therefore, the total computation and communication cost for each
agent isO(σmn). The space complexity for each agent isO(mn) as the agents need to
storeMC in split fashion; in the journal version of this paper, we will include a solution
of O(m+n) space complexity for the agents (i.e., same as for the edit distance protocol
rather than edit path).

6 Concluding Remarks

We gave efficient protocols for a customer to securely outsource sequence comparisons
to two remote agents, such that the agents learn nothing about the customer’s two pri-
vate sequences or the result of the comparison. The local computations done by the
customer are linear in the size of the sequences, and the computational cost and amount
of communication done by the external agents are close to the time complexity of the
best known algorithm for solving the problem on a single machine. Such protocols hold
the promise of allowing weak computational devices to avail themselves of the compu-
tational, storage, and bandwidth resources of powerful remote servers without having
to reveal to those servers their private data or the outcome of the computation.
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