
Secure Password Pocket for Distributed Web
Services�

Jae Hyung Koo1 and Dong Hoon Lee2

1 Center for Information Security Technologies (CIST),
Korea University, Seoul, Korea

ideao@cist.korea.ac.kr
2 Graduate School for Information Security (GSIS),

Korea University, Seoul, Korea
donghlee@korea.ac.kr

Abstract. Password authentication (PA) is a general and well-known
technique to authenticate a user who is trying to establish a connection
in distributed web services. The main idea of PA is to remove com-
plex information from users so that they can log on servers only with a
human-memorable password at anywhere. So far, many papers have been
proposed to set up security requirements and improve the efficiency of
PA. Most papers consider practical attacks such as password guessing,
impersonation and server compromise which occur frequently in the real
world. However, they missed an important and critical risk. A revealed
password of a user from a server may affect other servers because most
people tend to use a same password on different servers. This enables
anyone who obtains a password to easily log onto other servers. In this
paper, we first introduce a new notion, called “password pocket” which
randomizes user’s password even if he/she types a same password on dif-
ferent servers. When our password pocket is used, an exposed password
does not affect other servers any more. The cost of a password pocket is
extremely low since it needs to store only one random number securely.

1 Introduction

In a client-server environment, there exist several mechanisms to authenticate a
client trying to log on a server such as cryptographic secure module, biometric
data, information which only legitimate user knows and so on. Cryptographic
module adopts mathematically secure algorithms such as message authentica-
tion code [7,15] and digital signature in public key infrastructure (PKI) [10,11].
In spite of providing very strong user authentication, cryptographic module is
not widely installed in many servers because of its high cost and difficulty in
key management. Biometric authentication [6,12] is also hard to take in since in-
stallation cost is too high. Furthermore, users generally do not like to give their
� This work was supported (in part) by the Ministry of Information&Communications,

Korea, under the Information Technology Research Center (ITRC) Support Pro-
gram.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 327–334, 2005.
c© IFIP International Federation for Information Processing 2005

328 J.H. Koo and D.H. Lee

biometric information because of privacy. Password based authentication is a
typical technique using information which a person knows and does not require
high cost for additional devices such as biometric information scanner. The only
requirement for users is to memorize passwords which they registered in server.
Thus, password authentication is the most attractive one.

Although password based authentication (shortly PA in this paper) is a nice
solution, PA still has a drawback. If a user wants to log on multiple servers,
he/she should memorize a number of passwords. Obviously, it is hard for user
to memorize several passwords. One approach to remedy the drawback is single-
sign-on (SSO in short) [14]. As the name denotes, a user can get services from
different servers without logging on separately. When a user logs on SSO gate-
way, he/she automatically logs on other servers which he/she has permission.
SSO is a very convenient tool from the user’s point of view but it has impor-
tant problem. An exposed password may harm entire SSO system since anyone
with the password can use all applications from servers in which the password is
registered. We note that even if a user does not use SSO, the problem happens
very often. In other word, many users set a same password on different servers.
A simple but bad solution is to let users memorize multiple passwords. As we
mentioned, memorizing several passwords is not so easy for user. So, it is de-
sirable to design a method to achieve two goals simultaneously: i)set user free
from memorizing multiple passwords and ii) guarding user’s passwords in other
servers from a revealed password.

Smartcard [5] is one of hardware solutions to protect secret information from
out side attack. Also, it provides portability so that the owner can use the secret
information for authentication at anywhere. It is possible for a user to store a
number of passwords in a smartcard. However, to use a smartcard, every com-
puter has to be equipped with a smartcard reader. Another adoptable device
may be a universal serial bus (USB) [16]. Recently, most computers have USB
and lots of users use the device. Therefore, saving passwords into a USB seems
to be the best way for password based authentication for distributed services
without additional equipments. But, the device should guarantee the confiden-
tiality of the passwords and linkability to match each password with its corre-
sponding server. Confidentiality of passwords is necessary because USB can be
stolen. A very simple method to achieve confidentiality is to encrypt all pass-
words with a symmetric key which is securely managed in USB. The key also
could be encrypted with a password [9] for user authentication. Obviously, it re-
quires memory spaces. Furthermore, although a user does not need to memorize
multiple passwords, he/she has to generate different passwords. Making several
passwords is not easy for human-being.

Our goal is to build a mechanism to randomize a user’s password even though
he/she enters a same password on different web sites. We adopt an one-to-one
one-way random mapping function h(·) in which same input results in same out-
put but it is hard to guess pre-image from function value, e.g. m from h(m). The
word ‘random mapping’ means, even only one bit changes, it is computationally
infeasible to guess the function value. We use a USB device but it just stores

Secure Password Pocket for Distributed Web Services 329

a random number in a secure area. So our idea is also memory efficient. More
detailed description is shown in Sect. 3.

1.1 Related Works

A password is widely used in a client-server setting for user authentication. Basic
idea is to allow permission to a person who exactly knows password registered
in a server by comparing it with the entered password. To enhance security,
i.e. to protect communication between a client and a server, a secure channel
is usually constructed through an encryption scheme. The key used in the en-
cryption scheme is derived from a password. By checking the validity of the
encryption and additional message, the server decides to open connection. The
key is continuously used after authentication until current connection is closed.
This mechanism is very popular especially in internet banking to prevent user’s
information from being disclosed. There have been lots of papers to build pass-
word based authentication with secure channel. Most of the papers focus on
finding security breaches in password based schemes such as guessing password
and remedying them [1,2,3,4]. Unfortunately, all of them do not consider the
situation of password exposure. Although their schemes are secure, whenever a
user stores a same password on different servers and the password is revealed,
anyone with the password can easily log onto the servers as though he/she is the
owner of the password.

Single sign on (SSO) [14] is a cost-effective password management which
concentrates on enhancing user’s convenience. It is very attractive in enterprise
environment with various servers or distributed web services. In a distributed
web services without SSO, a user has to log on as many servers as the number
of services he/she wants to get. For example, if a user tries to transfer money
to an account registered in an auction server, buy a goods from a merchant and
receive a receipt through email, then he/she must log on three servers, on-line
banking server, auction server and email server. SSO removes the tiresome login
phases based on the assumption that all of the servers are registered in the SSO
gateway. I.e. whenever a user logs on the gateway, he/she can automatically logs
on other servers registered in the gateway. However, as we mentioned, instead of
setting a user free from memorizing multiple passwords it has critical security
breach when a password is stolen. In our scheme, we adopt the basic idea of SSO
but use a portable USB in place of SSO gateway.

Our contributions are two folds.

- We pointed out potential risk of a disclosed password in distributed web
services which is more critical in SSO. As we noted, even though a password
based authentication scheme is secure, we can easily logs on servers with a
obtained password if the owner set a same password on different servers

- We propose a new and practical concept, called ‘password pocket’ in which
even a user types a same password, the actual passwords used to authenticate
user to servers are different. The actual password depends on the server’s

330 J.H. Koo and D.H. Lee

internet address (i.e. URL : uniform resource locator). The password pocket
does not store all passwords. It keeps only a random number in its secure
area. Hence, the required size of memory is very small.

2 Preliminaries

We briefly introduce several building blocks which are adopted in our scheme.

One-to-One One-Way Random Mapping Function. The notion of one-
wayness is that if we know input value it is very easy to compute the result but
it is infeasible to compute the value of an inverse function. One-to-one random
mapping guarantees two properties: i) same input always derives same output,
ii) even if only one bit of input changes the output is not predictable. There
exist several practical functions with the above properties such as SHA-1 [13].

Password Authenticated Key Agreement. Password authenticated key
agreement is widely adopted to construct a secure channel only with a password.
Basically, the secure channel consists of encryption algorithms and the key used
in the algorithms is derived from the password and some related information.
Following is a simple method to build a secure channel between a user U and a
server S. pw denotes user’s password and ga, gb are the result of cryptographic
operation with random inputs a, b.

- U → S : Eh(pw)(ga) where E(·) is a symmetric algorithm and h(·) is a hash
function.

- U ← S : Eh(pw)(gb), MACK(ga) where K = h(gab).
- U → S : MACK(gb).

MAC is a cryptographically secure message authentication code [7,15] in which
only a person knows actual key (K) and input message can generate a correct
value.

3 Password Pocket for Distributed Servers

In this section, we introduce a password pocket. As we mentioned in Sect. 1, we
use a USB as a portable device. The structure of a password pocket is simple.
There are one small secure memory (128 bits is sufficient) for a random number
and relatively large general memory for one-to-one one-way random mapping
function and temporal values. General memory does not need to be secure but it
should guarantee read-only property for the area in which the function is stored.
In fact, we only consider randomizing passwords. So we do not deal with the
way to send a password to a server securely. There are many schemes providing
methods to transmit data to a server in a secure manner and we can adopt one
of them to enhance the security.

In the initial phase, a user U registers a randomized password on a server S
as followings:

Secure Password Pocket for Distributed Web Services 331

Secure
Memory Area

128bit

Read-only

)(hr
General Memory

16~32 Kbit 16~32 Kbit

Fig. 1. Structure of Password Pocket

1. U chooses a password pw from password dictionary D. In the real world, pw
could be a meaningless word generated by U .

2. U enters pw into a password pocket with his/her ID and S’s address (it can
be URL or IP address) Svr Addr.

3. The password pocket fetches a random number r stored in the secure area
and computes h(ID||pw||r||Svr Addr).

4. U registers h(ID||pw||r||Svr Addr) on S.

We assume that there is no attack while r is used to generate a randomized
password. h(·) is the function we explained in Sect. 2. We note that even if same
pw is used for multiple servers, each server gets a different password because of
the different addresses (Svr Addr).

Whenever U wants to log onto a server, he/she just needs to type ID and pw
into the password pocket. Then, the password pocket sets ID, pw, r, Svr Addr
as input values and returns h(ID||pw||r||Svr Addr). An essential assumption is
that a secure module guards r and pw from attacks such as memory dump and
data capture.

Remark 1. [Random number escrow and update]: Even though the probability
is low, a password pocket could be broken or stolen. We provide two mecha-
nisms: i) random number escrow for ‘broken’ and ii) random number update for
‘stolen’. For the former one, we can use a key escrow technique [8] in which a
user escrows his/her secret key to prepare the case of losing the key. So, after
reconstructing the random number, the user installs it into a new device and uses
a password pocket as before. For the latter one, a user may want to change the
random number. In fact, updating the random number is very complex because
all passwords registered in servers should be also updated. We note that the user
may not need to update the random number since the probability of guessing
correct password is very low. More detailed explanation for the security against
the stolen password pocket is showed in Sect. 4.

4 Security Analysis of Password Pocket

Basically, we assume that there exists a cheap USB device with secure area
and insecure area. The secure area may be very small but it is tamper-proof. A

332 J.H. Koo and D.H. Lee

random number r is stored in the secure area and it is infeasible to find or get
r. For the security of password pocket, we consider password exposure from a
server and password guessing with a stolen password pocket. Because of the lack
of pages, we omit the security proof but it will be shown in final paper.

5 Efficiency of Password Pocket

Password pocket is cost and memory efficient idea. It requires only a quite small
secure memory for guarding a random number r and a little larger general mem-
ory for storing h(·) and computing values. So it can be installed in a small size
USB device and a user can carry the device by inserting it into a key-holder. In

this paper, we set the length of r as 128 bit and it is sufficient because the
probability of guessing correct r is 1

2128 . Only tens of kilo-bits of general memory
is required to manage and execute a function h(·). Usually, a mapping does not
require much time (1.25 × 1

106 second to execute a hash function SHA-1[13] on
3.21GHz Pentium 4 processor with 1 Gbyte RAM). In fact, we also consider
a method to adopt our password pocket, called virtual password pocket (VPP).
We will provide the description of VPP in the final paper. Table 3 shows the
property comparison among the mechanisms. PP denotes a password pocket.
In general, a smartcard authenticates a user with the owner’s password pre-set
in it. Therefore, if the stolen password from a server is same as or similar to
the owner’s password, all passwords could be revealed. As we mentioned, secure
memory is tamper-proof and an encryption key (smartcard) or a random number

Table 1. Property comparisons

Password-only Smartcard PP

secure for stolen password X � O
secure memory X O (encryption key) O(random number)

additional memory X O (encrypted passwords) O (h(·))
additional device X O(reader) O(USB port)

password guessing attack feasible infeasible infeasible
memorable easy irrelevant easy

cost very low high low

Table 2. Simulation results. The values of random numbers and P Passwords are

hexadecimal.

ID Password Random number (128 bit) Server’s Address P Password

Robert Password 00112233445566778899aabbccddeeff www.security.com f001e795ac95f23a

Robert Password 00112233445566778899aabbccddeeff www.npc05.org 073e160a41738cd2

bobert Password 00112233445566778899aabbccddeeff www.security.com 9ba86eb376b36756

Robert Passpord 00112233445566778899aabbccddeeff www.security.com 128d6116fb2faa8c

Robert Password ff112233445566778899aabbccddeeff www.security.com 1060904b14a42155

Secure Password Pocket for Distributed Web Services 333

(PP) should be managed in this area. In a smartcard, because all encrypted
passwords should be stored, a sufficient size of additional memory is required.
Our password pocket needs a USB as a portable device but almost all of the
computers adopt USB port. Hence, using USB does not require additional cost.
All mechanisms in Table 1. excluding ‘password-only’ guarantee security against
password guessing attack.

We simulated our password pocket with a hash function, SHA-1 [13].
Table 1. shows the results.

5.1 Other Application of Password Pocket

Password pocket is applicable even in home network environment. If a password
pocket is embedded in a mobile equipment such as a cellular phone, a user can
control the devices at home from remote outside with randomized passwords.
In this case, two of the input values should be changed. TimeCurrent denot-
ing current time and Cmd representing user’s command are inserted instead
of ID and Svr Addr. And we set a control server at home which has the same
random number and the password pocket which the user takes. Simply Cmd con-
sists of device name (DN) and type of command (TC). The role of the server
is to interpret user’s command, activate a device connected to home network
and report the result to the user. The messages from a user to the server are
h(TimeCurrent||pw||r||Cmd), TimeCurrent, Cmd. If the value of h(·) is correct,
then the server extracts DN and TC to operate command. Clearly, since only
who knows the password pw and the random number r can compute the function
value, no one without permission can access to the devices at user’s home.

6 Conclusion

We pointed out a potential but critical security breach in password based au-
thentication which frequently occurs in distributed web services where a user
only uses a same password on different servers. To remedy the security breach,
we proposed a practical method, called ‘password pocket’ which randomizes a
password so that a user can register different passwords on multiple servers only
with a memorable password. Furthermore, the only requirement for the pass-
word pocket is very small secure memory to keep a random number in a secure
manner. Hence, password pocket is a practical idea for distributed web services.

Acknowledgements

We really thank the reviewers for their helpful advices. Our scheme is general and
can be used in all password based key agreement schemes without modification.
So it is hard to compare our scheme with password based key agreement schemes.
The entire security of our scheme is similar to that of smartcard. However,
usually the computation power and storage ability of USB are much higher than
those of smartcard.

334 J.H. Koo and D.H. Lee

We also want to give thanks to Bum Han Kim and Sang Pil Yun for their
advice and assistance for the system-design.

References

1. M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange Secure
against Dictionary Attacks. Eurocrypt ’2000, 2000.

2. V. Bokyo, P. Mackenzie, and S. Patel. Provably Secure Password-Authenticated
Key Exchange using Diffie-Hellman. Eurocrypt 2000

3. E. Bresson, O. Chevassut and D. Pointcheval. Security Proofs for an Efficient
Password-based Key Exchange. ACM CCS 03, 2003.

4. E. Bresson, O. Chevassu and D. Pointcheval. New Security Results on Encrypted
Key Exchange. PKC 2004, vol. 2947 of LNCS, 2004.

5. The ISO 7816 Smart Card Standard. Available at ‘‘http://www.cardwerk.com/

sma-rtcards/smartcard standard ISO7816.aspx".
6. A. Jain and S. Prabhakar. Biometrics Authentication. INSIGHT: A Publication of

the Institute for the Advancement of Emerging Technologies in Education, Vol. 2,
pp. Vision 29-52, EdPress, Jan 2003.

7. B. Kaliski Jr. and M. Robshaw. Message Authentication with MD5, CryptoBytes
(1) 1, Spring 1995.

8. Key Escrow. Available at “http://www.epic.org/crypto/key escrow/”.
9. RFC 2898PKCS #5: Password-Based Cryptography. Available at “http://ww-w.f-

aqs.org/ rfcs/rfc2898.html”.
10. P1363 Standard Specifications for Public-Key Cryptography. Available at

“http://grouper.ieee.org/groups/1363/”.
11. Public-Key Infrastructure (X.509) (pkix). Available at ‘‘http://www.ietf.org/

html.charters/pkix-charter.html".
12. S. Qidwai, K. Venkataramani and B. Kumar. Face Authentication from Cell Phone

Camera Images with Illumination and Temporal Variations. Proc. First Interna-
tional Conference Biometric Authentication (ICBA), Springer Verlag, LNCS 3072,
2004.

13. Secure Hash Standard (SHA1). Available at ‘‘http://www.itl.nist.gov/

fipspubs/fi-p180-1.htm"

14. Single Sign on. Available at “http://www.opengroup.org/security/sso/”.
15. D. Stinson. Cryptography - Theory and Practice, CRC Press, Boca Raton, 1995.
16. Universal Serial Bus. Available at “http://www.usb.org/”.

``http://www.cardwerk.com/sma-rtcards/smartcard_standard_ISO7816.aspx"
``http://www.cardwerk.com/sma-rtcards/smartcard_standard_ISO7816.aspx"
``http://www.ietf.org/html.charters/pkix-charter.html"
``http://www.ietf.org/html.charters/pkix-charter.html"
``http://www.itl.nist.gov/fipspubs/fi-p180-1.htm"
``http://www.itl.nist.gov/fipspubs/fi-p180-1.htm"

	Introduction
	Related Works

	Preliminaries
	Password Pocket for Distributed Servers
	Security Analysis of Password Pocket
	Efficiency of Password Pocket
	Other Application of Password Pocket

	Conclusion

