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A
rtificial intelligence (AI) methods have the potential to 
revolutionize the domain of medicine, as witnessed, for 
example, in medical imaging, where the application of com-

puter vision techniques, traditional machine learning1,2 and—more 
recently—deep neural networks have achieved remarkable suc-
cesses. This progress can be ascribed to the release of large, curated 
corpora of images (ImageNet3 perhaps being the best known), giv-
ing rise to performant pre-trained algorithms that facilitate transfer 
learning and led to increasing publications both in oncology—with 
applications in tumour detection4,5, genomic characterization6,7, 
tumour subtyping8,9, grading prediction10, outcome risk assess-
ment11 or risk of relapse quantification12—and non-oncologic appli-
cations, such as chest X-ray analysis13 and retinal fundus imaging14.

To allow medical imaging AI applications to offer clinical deci-
sion support suitable for precision medicine implementations, 
even larger amounts of imaging and clinical data will be required. 
Large cross-sectional population studies based solely on volunteer 
participation, such as the UK Biobank15, cannot fill this gap. Even 
the largest current imaging studies in the field4,5, demonstrating 
better-than-human performance in their respective tasks, include 
considerably less data than, for example, ImageNet3, or the amount 
of data used to train algorithmic agents in the games of Go or 
StarCraft16,17, or autonomous vehicles18. Furthermore, such datasets 
often stem from relatively few institutions, geographic regions or 
patient demographics, and might therefore contain unquantifiable 
bias due to their incompleteness with respect to co-variables such as 
comorbidities, ethnicity, gender and so on19.

However, considering that the sum of the world’s patient data-
bases probably contains enough data to answer many significant 
questions, it becomes clear that the inability to access and leverage 
this data poses a significant barrier to AI applications in this field.

The lack of standardized, electronic patient records is one 
reason. Electronic patient data management is expensive20, and 
hospitals in underprivileged regions might be unable to afford 
participation in studies requiring it, potentially perpetuating the 
aforementioned issues of bias and fairness. In the medical imaging 
field, electronic data management is the standard: Digital Imaging 

and Communications in Medicine (DICOM)21 is the universally 
adopted imaging data format, and electronic file storage is the 
near-global standard of care. Even where non-digital formats are 
still in use, the archival nature of, for instance, film radiography 
allows post hoc digitization, seen, for example, in the CBIS-DDSM 
dataset22, consisting of digitized film breast radiographs. Digital 
imaging data, easily shareable, permanently storable and remotely 
accessible in the cloud has driven the aforementioned successes of 
medical imaging AI.

The second issue representing a stark deterrent from 
multi-institutional/multi-national AI trials23 is the rigorous regula-
tion of patient data and the requirements for its protection. Both the 
United States Health Insurance Portability and Accountability Act 
(HIPAA)24 and the European General Data Protection Regulation 
(GDPR)25 mandate strict rules regarding the storage and exchange 
of personally identifiable data and data concerning health, requiring 
authentication, authorization, accountability and—with GDPR—AI 
interpretability, sparking considerations on data handling, owner-
ship and AI governance26,27. Ethical, moral and scientific guidelines 
(soft law28) also prescribe respect towards privacy—that is, the abil-
ity to retain full control and secrecy about one’s personal informa-
tion. The term privacy is used in this article to encapsulate both 
the intention to keep data protected from unintended leakage and 
from deliberate disclosure attempts (that is, synonymous with 
‘confidentiality’).

AI in medical imaging is a multifaceted field of patients, hospi-
tals, research institutions, algorithm developers, diagnostic equip-
ment vendors, industry and lawmakers. Its high complexity and 
resulting lack of transparency with respect to stakeholder motives 
and data usage patterns, alongside the facilitated data sharing 
enabled by electronic imaging data storage, threaten to diminish the 
importance of individual privacy and relax the grip on personal data 
in the name of, at best, scientific development and, at worst, finan-
cial interests. The field of secure and privacy-preserving AI offers 
techniques to help bridge the gap between personal data protection 
and data utilization for research and clinical routine. Here, we pres-
ent an overview of current and emerging techniques for privacy 
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preservation with a focus on their applications in medical imaging, 
discuss their benefits, drawbacks and technical implementations, as 
well as potential weaknesses and points of attack aimed at compro-
mising privacy. We conclude with an outlook on the current and 
future developments in the field of medical imaging and beyond, 
alongside their potential implications.

Definitions and attack vectors
A glossary of the terms presented throughout the article can be 
found in Table 1, and a visual overview of the field can be found 
in Fig. 1.

Optimal privacy preservation requires implementations that are 
secure by default (synonymously privacy by design29). Such systems 

Table 1 | Glossary of terms encountered in the article alongside conceptual examples

Method Description example

Attack vectors

Attacks against the dataset

Re-identification attack Determining an individual’s identity despite 
anonymization based on other information present in 
the dataset.

Exploiting similarities to other datasets 
in which the same individual is contained 
(linkage).

Dataset reconstruction attack Deriving an individual’s characteristics from the results 
of computations performed on a dataset without 
having access to the dataset itself (synonyms: feature 
re-derivation, attribute inference).

Using multiple aggregate statistics to 
derive data points corresponding to a single 
individual.

Tracing attack Determining whether an individual is present in the 
dataset or not without necessarily determining their 
exact identity (synonym: membership inference).

Exploiting repeated, slightly varying dataset 
queries to ‘distil’ individual information (set 
differencing).

Attacks against the algorithm

Adversarial attack Manipulation of the input to an algorithm with the 
goal of altering it, most often in a way that makes the 
manipulation of the input data impossible to detect by 
humans.

Compromising the computation result by 
introducing malicious training examples 
(model poisoning).

Model-inversion/reconstruction attack Derivation of information about the dataset stored 
within the algorithm’s weights by observing the 
algorithm’s behaviour.

Using generative algorithms to recreate 
parts of the training data based on 
algorithm parameters.

Secure and private Ai terminology

Secure by default implementation (synonym 
private by design)

Systems that have been designed from the ground up 
with privacy in mind and at best require no specialized 
data handling.

—

Anonymization Removal of personally identifiable information from a 
dataset.

Removing information related to age, 
gender and so on.

Pseudonymization Replacement of personally identifiable information in 
a dataset with a dummy/synthetic entry with separate 
storage of the linkage record (look-up table).

Replacing names with randomly generated 
text.

Secure AI Techniques concerned with protecting the AI 
algorithms.

Algorithm encryption.

Privacy-preserving AI Techniques for protecting the input and output data. Data encryption, decentralized storage.

Federated machine learning Machine learning system relying on distributing the 
algorithm to where the data is instead of gathering the 
data where the algorithm is (decentralized/distributed 
computation).

Training of algorithms on hospital computer 
systems instead of on cloud servers.

Differential privacy Modification or perturbation of a dataset to obfuscate 
individual data points while retaining the ability of 
interaction with a data within a certain scope (privacy 
budget) and of statistical analysis. Can also be applied 
to algorithms.

Random shuffling of data to remove the 
association between individuals and their 
data entries.

Homomorphic encryption Cryptographic technique that preserves the ability to 
perform mathematical operations on data as if it was 
unencrypted (plain text).

Performing neural network computations on 
encrypted data without first decrypting it.

Secure (multi-party) computation Collection of techniques and protocols enabling 
two or more parties to split up data among them to 
perform joint computations in a way that prevents any 
single party from gaining knowledge of the data but 
preserving the computational result.

Determining which patients two hospitals 
have in common without revealing 
their respective patient list (private set 
intersection).

Hardware security implementation Collection of techniques whereby specialized computer 
hardware provides guarantees of privacy or security.

Secure storage or processing enclaves in 
mobile phones or computers.
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should require minimal or no data transfer and provide theoretical 
and/or technical guarantees of privacy.

The term secure AI is used for methods concerned with safe-
guarding algorithms, and the term privacy-preserving AI for sys-
tems allowing data processing without revealing the data itself. 
Their combination aims to guarantee sovereignty over the input 
data and the algorithms, integrity of the computational process 
and its results, and to offer trustworthy and transparently auditable 
technical implementations (structured transparency). Such systems 
must resist attacks against the dataset30, for example identity or 
membership inference/tracing31 (determining whether an individ-
ual is present in a given dataset) and feature/attribute re-derivation/
re-identification30 (extraction of characteristics of an individual 
from within the dataset, for example by linkage attacks32). They 
must also withstand attacks on the algorithm or the computational 
process—for instance, modification of algorithm parameters (for 
example, by poisoning33)—or derivation of information about the 
dataset from them (model-inversion/reconstruction34). Finally, they 
must protect the data and the algorithms from theft both in storage 
and when transmitted over networks (asset/integrity protection).

Anonymization, pseudonymization and the risks of 
re-identification
Anonymization (the removal of private data from a record) and 
pseudonymization (replacement of sensitive entries with artifi-
cially generated ones while still allowing re-attribution using a 
look-up table)—collectively de-identification—are currently the 
most widely used privacy preservation techniques for medical 

datasets. In medical imaging, anonymization requires removing 
all pertinent DICOM metadata entries (for example, patient name, 
gender and so on). For pseudonymization, the true entries are 
replaced by synthetic data (see overview of techniques in ref. 35),  
and the look-up table safe-kept separately. The main benefit of 
both approaches is simplicity. Anonymization software is built 
into most clinical data archiving systems, rendering it the easiest 
method in practice. Pseudonymization poses additional difficul-
ties since it requires data manipulation, not just data deletion, and 
safekeeping of the look-up tables for reversing the process. The 
latter can be problematic in the setting of insecure storage, risking 
data theft36. Furthermore, technical errors can render the protec-
tion ineffective and potentially (for example, in case of retaining 
institution names), an entire dataset identifiable. Moreover, there 
is substantial discourse regarding the definition of ‘sufficient/rea-
sonable’ de-identification37 related to the objective/technical dif-
ficulty of reversing the process. Different points of view exist in 
different jurisdictions38, complicating the establishment of inter-
national standards. Also, de-identification techniques are usu-
ally employed as a preparation to data transfer or sharing. This 
presents issues in case the patient withdraws their consent, since 
it uncouples data governance from data ownership (impeding 
the right to be forgotten, GDPR article 17), or if the legislation 
changes. Lastly, requirements towards the de-identification pro-
cess vary according to the type of imaging dataset: a radiograph 
of a leg is harder to link back to an individual than a computed 
tomography scan of their head, where the contours of the face can 
be reconstructed directly from the image. Such re-identification 

Secure and
private AI

Medical
data Patients

Data
ownership

Hospitals
Data

governance

 Attacks
•Theft
•Inversion
•Adversarial 
manipulation

 Attacks
•Theft
•Identity/
membership 
inference

•Feature 
reconstruction

Untrained
algorithm 

Federated 
learning  

Secure multi-party computation

Private AI
Protecting 

the
data

Secure AI
Protecting 

the 
algorithms 

Trained
algorithm 

Differential privacy

Anonymization

Bob *** Bob Anna

Pseudonymization

Algorithm 
owners

Homomorphic
encryption

Fig. 1 | Secure and private Ai. Schematic overview of the relationships and interactions between data, algorithms, actors and techniques in the field of 

secure and private AI.
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attacks39 have been shown to yield high success rates both with 
tabular data40,41 (such as patient records) and medical imaging 
data42. As a consequence, datasets more prone to identification 
must be processed more rigorously, for instance by removal of the 
face or skull region from the images (defacing/skull stripping). 
This complicates data handling, increasing the probability of 
errors and constitutes a manipulation of the imaging data, which, 
at worst, represents an adversarial update to the algorithm43, 
reducing its performance and robustness. Ultimately, even such 
processing might not be sufficient for the full de-identification 
of datasets44. Re-identified patient records are a lucrative target 
for health insurance companies wishing to reduce their financial 
risk by discriminating against individuals with certain illnesses. 
It has been reported that large-scale re-identification attacks and 
the sale of re-identified medical records have become a busi-
ness model for data-mining companies45. De-identification by 
naive anonymization or pseudonymization alone must therefore 
be viewed as a technically insufficient measure against identity 
inference.

Decentralized data and federated machine learning
The concept of federated machine learning began gathering sig-
nificant attention around the year 201546. It belongs to a class of 
decentralized/distributed systems that rely on the principle of 
remote execution—that is, distributing copies of a machine learn-
ing algorithm to the sites or devices where the data is kept (nodes), 
performing training iterations locally, and returning the results of 
the computation (for example, updated neural network weights) 
to a central repository to update the main algorithm. Its main 
benefit is the ability of the data to remain with its owner (reten-
tion of sovereignty), while still enabling the training of algorithms 
on the data. The federation topology is flexible (model sharing 
among the nodes and aggregation at a later time (peer to peer/
gossip strategy47) or full decentralization, combined, for exam-
ple, with contribution tracking/audit trails using blockchains48). 
Continuous online availability is not required since training can 
be performed offline and results returned later. Thus, federated 
learning approaches have arguably become the most widely used 
next-generation privacy preservation technique, both in indus-
try49 and medical AI applications50.

While federated learning is flexible and resolves data governance 
and ownership issues, it does not itself guarantee security and pri-
vacy unless combined with other methods described below. A lack 
of encryption can allow attackers to steal personally identifiable 
data directly from the nodes or interfere with the communication 
process. This communication requirement can be burdensome for 
large machine learning models or data volumes. The decentralized 
nature of the data complicates data curation to ascertain the integ-
rity and quality of the results. Technical research must be performed 
to determine the optimal method for updating the central model 
state (distributed optimization, federated averaging). In case the 
local algorithms are not encrypted, or the updates aren’t securely 
aggregated, data can leak or algorithms can be tampered with51, 
reconstructed or stolen (parameter inference), which is unaccept-
able from the viewpoint of intellectual property, patent restrictions 
or asset protection. Moreover, neural networks represent a form of 
memory mechanism, with compressed representations of the train-
ing data stored within their weights (unintended memorization).  
It is therefore possible to reconstruct parts of the training data  
from the algorithm weights themselves on a decentralized node52–54. 
Such model inversion or reconstruction attacks can cause catastrophic 
data leakage: it has been shown that images can be reconstructed 
with impressive accuracy and detail55, allowing visualization of the 
original training data. Federated learning thus offers an infrastruc-
tural approach to privacy and security, but further measures, high-
lighted below, are required to expand its privacy-preserving scope.

Differential privacy
Data-perturbation-based privacy approaches operate on the prem-
ise that the systematic randomized modification of a dataset or 
algorithm can reduce information about the single individual while 
retaining the capability of statistical reasoning about the dataset. 
The approach of retaining the global statistical distribution of a 
dataset while reducing individually recognizable information is 
termed differential privacy56 (DP). Intuitively, a dataset is differ-
entially private if an outside observer is unable to infer whether a 
specific individual was used for obtaining a result from the data-
set. For example, a causal relationship between obesity and cardiac 
disease can be inferred without knowing the body mass index of 
the individual patients. DP thus offers resistance to re-identification 
attacks such as linkage or set differencing within a certain scope of 
interaction with the dataset (privacy budget56). DP can be applied 
to the input data (local DP), the computation results (global DP) or 
the algorithm. Implementations range from simple random shuf-
fling of the input data57 to the introduction of noise to the dataset 
(Gaussian DP58 with the benefit of better interpretability). DP can 
also be applied to algorithm updates during training, for instance 
in neural networks via differentially private stochastic gradient 
descent59 or private aggregation of teacher ensembles60, or during 
inference time. Local DP ensures privacy at the source of the data, 
putting the data owner in control and is thus well suited to health-
care applications61, for instance for federated learning applications 
in which health data are being collected by smartphones or wearable 
devices. DP applications to imaging are being actively explored62.

Among the challenges associated with DP, the main is the per-
turbation of the dataset itself. Data manipulation can degrade the 
data, which in an area with access to relatively little data, such as 
medical imaging research, may prove deleterious to algorithm 
performance. The technique also poses challenges with respect 
to plausibility testing, explaining the process to patients—that is, 
data legibility (human–data interaction63)—regarding algorithm 
development and implementation, and escalates the requirement 
for statistical expertise to ascertain data representativeness64. Most 
importantly, the specifics of implementing DP in imaging data are 
unclear. Tabular data can be easily shuffled, but the perturbation of 
images can have unpredictable effects, with research demonstrating 
this type of manipulation (for example, adversarial noise) both as an 
attack against algorithms65 and a regularization mechanism leading 
to increased robustness66 and resilience against inversion attacks. 
Thus, further research is required before the widespread application 
of DP in medical imaging.

homomorphic encryption
A conceptually simple, albeit technically challenging approach to 
data or algorithm fortification is cryptography, widely recognized 
as a gold standard for information security. Current cryptographic 
algorithms cannot be cracked by brute force67. Encryption is eas-
ily explained to and trusted by patients and practitioners. It can be 
applied both to the algorithm and to the data allowing secure, joint 
computation.

Homomorphic encryption (HE) is an encryption scheme that 
allows computation on encrypted data as if it was unencrypted 
(plain text). Homomorphism is a mathematical concept whereby 
structure is preserved throughout a computation. Since only cer-
tain mathematical operations, such as addition and multiplica-
tion, are homomorphic, the application of HE to neural networks 
requires the operations defined within the algorithm to conform 
to these limitations and thus standard encryption algorithms like 
the advanced encryption standard (AES)68 cannot be used. Several 
implementations of HE algorithms69 with varying levels of effi-
ciency exist, and the application of HE represents an efficiency–
security trade-off, with computational performance currently the 
most notable issue. Nevertheless, HE has successfully been applied 
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to convolutional neural networks70, and its benefits demonstrated 
in a ‘machine learning as a service’ scenario71, whereby data is sent 
over the network to be processed on an off-site server (cloud com-
puting). It can also be used in federated learning scenarios (with or 
without additional DP61) to securely aggregate encrypted algorithm 
updates72.

Secure multi-party computation
Secure computation can be extended to multiple parties—secure 
multi-party computation (SMPC)73—whereby processing is per-
formed on encrypted data shares, split among them in a way that 
no single party can retrieve the entire data on their own. The 
computation result can be announced without any party ever 
having seen the data itself, which can be recovered only by con-
sensus. A conceptual example for SMPC is a ballot, where the 
result needs to be known, but the individual voter’s preference 
does not. For a technical description of SMPC, we refer to ref. 74. 
The research interest in SMPC has recently risen, since it allows 
for ‘secret sharing’ in semi-trusted and low-trust environments. 
Notably, SMPC has been used in the setting of genetic sequencing 
and diagnostics without revealing the patient’s genome75. In the 
domain of medical imaging, SMPC can be employed to perform 
analyses on datasets completely in the encrypted domain and 
without otherwise perturbing the data. It can thus help to increase 
the effective amount of available data without revealing individ-
ual identities or risking information leakage. It can also enable 
the ethically responsible provision of machine learning services 
while rendering the commercial use of the data itself impossible, 
or at least under the control of the individual, and subject to legal 
regulation after appropriate ethical debate, similar to the debate 
about organ donation (single-use accountability). For example, 
machine-learning-assisted medical image analysis services can be 
provided under the guarantee of data protection from malicious 
use in case of theft or from unwarranted financial exploitation76. 
As long as the data and the algorithms are encrypted, they remain 
unusable unless permission is granted by both parties, yielding 
a shared governance model. The notable limitations of SMPC 
are the requirements for continuous data transfer between par-
ties (communication overhead) and for their continuous online 
availability. The reliability/redundancy and scalability to more 
than a small number of parties is a concern for SMPC applica-
tions77, and computational considerations are a concern beyond 
small algorithm sizes, with efficient SMPC implementations of 
state-of-the-art neural network algorithms currently under active 
development78.

Secure hardware implementations
Encryption provides a theoretical/mathematical privacy guarantee. 
However, privacy guarantees on the hardware level also exist, for 
example, in the form of secure processors or enclaves implemented 
in mobile devices79. They can assure data and algorithm privacy, 
for example, in federated learning workflows, even in the case of 
operating system kernel breaches. Due to the rising significance of 
hardware-level deep learning implementations (for example, tensor 
processing units80 or machine-learning-specific instruction sets81), 
it is likely that such system-based privacy guarantees (trusted execu-
tion environments) built into edge hardware such as mobile phones 
will become more prevalent.

Outlook
Medical imaging has arguably witnessed among the largest 
advances in AI applications due to the concurrent developments in 
computer vision. However, the issues of security and privacy are not 
limited to medical imaging82, as seen for example in the 2019/2020 
SARS-CoV2-pandemic, which sparked worldwide concern about 
the implications of setting political, ethical and legal precedents 

by large-scale automatic contact tracing and movement tracking, 
creating a demand for their safe and privacy-protecting techni-
cal implementation83. All AI applications including sensitive data 
unfold in a complex, multi-stakeholder tension field of conflicting 
interests. The unregulated use of private data is likely to be more 
widespread than assumed, and cases of misuse—especially out of 
financial interest—will probably increase further. Yet the techniques 
presented here offer an opportunity to prevent stakeholder interac-
tions from becoming a zero-sum game.

We believe that the widespread adoption of secure and private 
AI will require targeted multi-disciplinary research and invest-
ment in the following areas. (1) Decentralized data storage and 
federated learning systems, replacing the current paradigm of 
data sharing and centralized storage, have the greatest potential 
to enable privacy-preserving cross-institutional research in a 
breadth of biomedical disciplines in the near future84,85, with results  
in medical imaging50,86 and genomics87 recently demonstrated.  
(2) To counteract the drawbacks of the individual techniques 
already presented, efficient cryptographic and privacy primi-
tives, neural network operations88 based, for example, on func-
tional encryption89, quantization90 and optimization strategies91, 
and encrypted transfer learning approaches92 must be further 
developed. (3) The trade-offs between accuracy, interpretability, 
fairness, bias and privacy (privacy-utility trade-offs), need to be 
researched. In the field of radiology, for instance, interpretabil-
ity in the encrypted setting is limited to the evaluation of trained 
algorithms on new images or inspection of the plain-text input 
data; however, intermediate outputs might be obfuscated and 
hard to interpret. Current research about interpretable private 
algorithms93 can alleviate this issue. (4) Cryptographic expertise 
is required for the design and implementation of secure and effi-
cient systems that not only resist (or at least reveal) errors due to 
technical implementation, but are also robust against semi-honest 
or dishonest participants/adversaries attempting to undermine 
the system94. (5) Deployed models must be monitored and poten-
tially corrected for temporal instability (that is, statistical drift95), 
which can be difficult with encrypted data or algorithms. (6) Until 
fully secure and private solutions are the standard, research has to 
address the question of how the right to be forgotten (for example, 
GDPR) can be realized—for example, via machine unlearning96 
(‘un-training’ an algorithm when an individual withdraws con-
sent). (7) The widespread implementation of secure and private 
AI will hinge on lowering the barrier to entry for researchers and 
developers by provision of accessible, open-source tools such 
as open-source extensions to deep learning frameworks, imple-
mentations of state-of-the-art algorithms and federated learn-
ing solutions, many of which have recently become available97,98.  
(8) The development of auditable and objectively trustworthy sys-
tems99 (that is, not relying on subjective assertions—for example,  
by governments) will promote the universal acceptance of  
secure and private AI solutions by individuals and policymakers. 
(9) The technical ability offered by secure and private AI solutions 
to retain sovereignty over one’s identity100 and new techniques to 
quantify and track the added value of individual datasets with 
respect to algorithm performance will strengthen the notion of 
private data as a scarce and valuable resource within an evolving 
data economy101 currently experiencing oversupply102. (10) Lastly, 
we view both the education of patients, physicians, researchers 
and policymakers, and the open scientific, public and political 
discourse about privacy, current risks and technical possibili-
ties as paramount for reinforcing the cultural value of privacy 
and cultivating a sustainable attitude of trust and value-aligned 
cooperation both in science and society.
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