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Secure quantum key distribution using squeezed states
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We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum

states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-

dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against

errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal

states by 2.51 dB ~a squeeze factor er
51.34) is sufficient in principle to ensure the security of a protocol that

is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be

achieved over distances comparable to the attenuation length of the quantum channel.

DOI: 10.1103/PhysRevA.63.022309 PACS number~s!: 03.67.Dd

I. INTRODUCTION

Two of the most important ideas to emerge from recent

studies of quantum information are the concepts of quantum

error correction and quantum key distribution ~QKD!. Quan-
tum error correction allows us to protect unknown quantum
states from the ravages of the environment. Quantum key
distribution allows us to conceal our private discourse from
potential eavesdroppers.

In fact these two concepts are more closely related than is
commonly appreciated. A quantum error correction protocol
must be able to reverse the effects of both bit flip errors,
which reflect the polarization state of a qubit about the x

axis, and phase errors, which reflect the polarization about
the z axis. By reversing both types of errors, the protocol
removes any entanglement between the protected state and
the environment, thus restoring the purity of the state.

In a quantum key distribution protocol, two communicat-
ing parties verify that qubits polarized along both the x axis
and the z axis can be transmitted with an acceptably small
probability of error. An eavesdropper who monitors the
x-polarized qubits would necessarily disturb the z-polarized
qubits, while an eavesdropper who monitors the z-polarized
qubits would necessarily disturb the x-polarized qubits.
Therefore, a successful verification test can show that the
communication is reasonably private, and the privacy can
then be amplified via classical protocols.

In quantum key distribution, the eavesdropper collects in-
formation by entangling her probe with the transmitted qu-
bits. Thus both error correction and key distribution share the
goal of protecting quantum states against entanglement with
the outside world.

Recently, this analogy between quantum error correction
and quantum key distribution has been sharpened into a pre-
cise connection, and used as the basis of a new proof of
security against all possible eavesdropping strategies @1#.
Earlier proofs of security ~first by Mayers @2#, and later by
Biham et al. @3#! made no explicit reference to quantum error

correction; nevertheless, the connection between quantum er-

ror correction and quantum key distribution is a powerful

tool, enabling us to invoke the sophisticated formalism of

quantum error-correcting codes in an analysis of the security

of quantum key distribution protocols.

Also recently, new quantum error-correcting codes have

been proposed that encode a finite-dimensional quantum sys-

tem in the infinite-dimensional Hilbert space of a quantum

system described by continuous variables @4#. In this paper,

we will apply these new codes to the analysis of the security

of quantum key distribution protocols. By this method, we

prove the security of a protocol that is based on the trans-

mission of squeezed quantum states of an oscillator. The

protocol is secure against all eavesdropping strategies al-

lowed by the principles of quantum mechanics.

In our protocol, the sending party, Alice, chooses at ran-

dom to send either a state with a well defined position q or

momentum p. Then Alice chooses a value of q or p by sam-

pling a probability distribution, prepares a narrow wave

packet centered at that value, and sends the wave packet to

the receiving party, Bob. Bob decides at random to measure

either q or p. Through public discussion, Alice and Bob dis-

card their data for the cases in which Bob measured in a

different basis than Alice used for her preparation, and retain

the rest. To correct for possible errors, which could be due to

eavesdropping, to noise in the channel, or to intrinsic imper-

fections in Alice’s preparation and Bob’s measurement, Al-

ice and Bob apply a classical error correction and privacy
amplification scheme, extracting from the raw data for n os-
cillators a number k,n of key bits.

Alice and Bob also sacrifice some of their data to perform
a verification test to detect potential eavesdroppers. When
verification succeeds, the probability is exponentially small
in n that any eavesdropper has more than an exponentially
small amount of information about the key. Intuitively, this
protocol is secure because an eavesdropper who monitors the
observable q necessarily causes a detectable disturbance of
the complementary observable p ~and vice versa!.

Since preparing squeezed states is technically challeng-
ing, it is important to know how much squeezing is needed*Email address: preskill@theory.caltech.edu
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to ensure the security of the protocol. The answer depends on
how heavily the wave packets are damaged during transmis-
sion. When the noise in the channel is weak, we show that it
suffices in principle for the squeezed state to have a width
smaller by the factor e2r

50.749 than the natural width of a
coherent state ~corresponding to an improvement by 2.51 dB
in the noise power for the squeezed observable, relative to
vacuum noise!. It is also important to know that security can
be maintained under realistic assumptions about the noise
and loss in the channel. Our proof of security applies if the
protocol is imperfectly implemented, and shows that secure
key distribution can be achieved over distances comparable
to the attenuation length of the channel. Squeezed-state key
distribution protocols may have some practical advantages
over single-qubit protocols, in that neither single-photon
sources nor very efficient photodetectors are needed.

Key distribution protocols using continuous variable
quantum systems have been described previously by others
@5–7#, but ours is the first complete discussion of error cor-
rection and privacy amplification, and the first proof of se-
curity against arbitrary attacks.

In Sec. II we review continuous variable quantum error-
correcting codes @4# and in Sec. III we review the argument
@1# exploiting quantum error-correcting codes to demonstrate
the security of the BB84 quantum key distribution scheme
@8#. This argument is extended to apply to continuous vari-
able key distribution schemes in Secs. IV and V. Estimates
of how much squeezing is required to ensure security of the
protocol are presented in Sec. VI. The effects on security of
losses due to photon absorption are analyzed in Sec. VII, and
Sec. VIII contains conclusions.

II. CODES FOR CONTINUOUS QUANTUM VARIABLES

We begin by describing codes for continuous quantum
variables @4#. The two-dimensional Hilbert space of an en-
coded qubit embedded in the infinite-dimensional Hilbert
space of a system described by canonical variables q and p

can be characterized as the simultaneous eigenspace of the
two commuting operators

Sq5e i(2Ap)q,Sp5e2i(2Ap)p, ~1!

the code’s ‘‘stabilizer generators.’’ If the eigenvalues are
Sq5Sp51, then the allowed values of q and p in the code

space are integer multiples of Ap , and the codewords are

invariant under shifts in q or p by integer multiples of 2Ap .
Thus an orthogonal basis for the encoded qubit can be cho-
sen as

u0̄&} (
s52`

`

uq5~2s !Ap&

} (
s52`

`

up5sAp& ,

u1̄&} (
s52`

`

uq5~2s11 !Ap&

~2!

} (
s52`

`

~21 !sup5sAp&.

The operators

Z̄[e i(Ap)q, X̄[e2i(Ap)p, ~3!

commute with the stabilizer generators and so preserve the
code subspace; they act on the basis Eq. ~2! according to

Z̄:u0̄&→u0̄&, u1̄&→2u1̄&,

~4!

X̄:u0̄&→u1̄&, u1̄&→u0̄& .

This code is designed to protect against errors that induce
shifts in the values of q and p. To correct such errors, we
measure the values of the stabilizer generators to determine

the values of q and p modulo Ap , and then apply a shift
transformation to adjust q and p to the nearest integer mul-

tiples of Ap . If the errors induce shifts Dq , Dp that satisfy

uDqu,Ap/2, uDpu,Ap/2, ~5!

then the encoded state can be perfectly restored.
A code that protects against shifts is obtained for any

choice of the eigenvalues of the stabilizer generators. The
code with

Sq5e2pifq, Sp5e22pifp, ~6!

can be obtained from the fq5fp50 code by applying the
phase-space translation operator

e iAp(qfp)e2iAp(pfq); ~7!

the angular variables fq and fpP(21/2,1/2# denote the al-

lowed values of q/Ap and p/Ap modulo an integer. In this

code space, the encoded operations Z̄ and X̄ ~which square to
the identity! can be chosen to be

Z̄~fq!5e iAp(q2fqAp), X̄~fp!5e2iAp(p2fpAp). ~8!

The code with stabilizer Eq. ~1! can be generalized in a
variety of ways @4#. For example, we can increase the dimen-
sion of the protected code space, and we can modify the code
to protect against shifts that are asymmetric in q and in p. If
we choose the stabilizer to be

Sq~n ,a !5exp@ i~A2pd !~q/a !# ,

~9!
Sp~n ,a !5exp@2i~A2pd !~pa !# ,

where d is a positive integer and a is a positive real number,
then the code has dimension d and protects against shifts that
satisfy
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uDqu,S a

2
DA2p

d
, uDpu,

1

2a
A2p

d
. ~10!

The codewords Eq. ~2! are nonnormalizable states, infi-
nitely ‘‘squeezed’’ in q and p. In practice, we must always
work with normalizable finitely squeezed states. For ex-

ample, a Gaussian approximation u0̃& to the ideal codeword

u0̄& of the d52, a51 code, characterized by squeezing pa-
rameters Dq ,Dp!1, is

u0̃&'S 4

p
D 1/4E

2`

`

dquq&e2
1

2
(D

p
2

)q2

(
s52`

`

e2
1

2
(q22sAp)2/D

q
2

'
1

p1/4
E

2`

`

dpup&e2
1

2
(D

q
2
)p2

(
s52`

`

e2
1

2
(p2sAp)2/D

p
2

; ~11!

the approximate codeword u0̃& can be obtained by subjecting

u0̄& to shifts in q and p governed by Gaussian distributions
with widths Dq and Dp, respectively. If Dq and Dp are small,
then in principle these shifts can be corrected with high prob-
ability: e.g., for Dq5Dp[D , the probability that a shift in q

or p causes an uncorrectable error is no worse than the prob-

ability that the size of the shift exceeds Ap/2, or

Pe<
2

ApD2
E

Ap/2

`

dq e2q2/D2
<

2D

p
exp~2p/4D2!.

~12!

For the d52 code with aÞ1, this same estimate of the error
probability applies if we rescale the widths appropriately,

Dq5Da , Dp5D/a . ~13!

We can concatenate a shift-resistant code with an

@@n ,k ,d## stabilizer quantum code. That is, first we encode
~say! a qubit in each of n oscillators; then k better protected
qubits are embedded in the block of n. If the typical shifts are
small, then the qubit error rate will be small in each of the n

oscillators, and the error rate in the k protected qubits will be
much smaller. The quantum key distribution protocols that
we propose are based on such concatenated codes.

We note quantum codes for continuous quantum variables
with an infinite-dimensional code space were described ear-
lier by Braunstein @9#, and by Lloyd and Slotine @10#. En-
tanglement distillation protocols for continuous variable sys-
tems have also been proposed @11,12#

III. QUANTUM KEY DISTRIBUTION AND QUANTUM

ERROR-CORRECTING CODES

Now let us recall the connection between stabilizer quan-
tum codes and quantum key distribution schemes @1#.

We say that a protocol for quantum key distribution is
secure if ~1! the eavesdropper Eve is unable to collect a
significant amount of information about the key without be-
ing detected, ~2! the communicating parties Alice and Bob
receive the same key bits with high probability, and ~3! the
key generated is essentially random. Then if the key is inter-

cepted, Alice and Bob will know it is unsafe to use the key

and can make further attempts to establish a secure key. If

eavesdropping is not detected, the key can be safely used as

a one-time pad for encoding and decoding.1

Establishing that a protocol is secure is tricky, because

there inevitably will be some noise in the quantum channel

used to distribute the key, and the effects of eavesdropping

could be confused with the effects of the noise. Hence the

protocol must incorporate error correction to establish a

shared key despite the noise, and privacy amplification to

control the amount of information about the key that can be

collected by the eavesdropper.

In the case of the BB84 key distribution invented by Ben-

nett and Brassard @8#, the necessary error correction and pri-

vacy amplification are entirely classical. Nevertheless, the

formalism of quantum error correction can be usefully in-

voked to show that the error correction and privacy amplifi-

cation work effectively @1#. The key point is that if Alice and

Bob carry out the BB84 protocol, we can show that the

eavesdropper is no better off than if they had executed a

protocol that applies quantum error correction to the trans-
mitted quantum states. Appealing to the observation that Al-
ice and Bob could have applied quantum error correction
~even though they didn’t really apply it!, we place limits on
what Eve can know about the key.

A. Entanglement distillation

First we will describe a key distribution protocol that uses
a quantum error-correcting code to purify entanglement, and
will explain why the protocol is secure. The connection be-
tween quantum error correction and entanglement purifica-
tion was first emphasized by Bennett et al. @13#; our proof of
security follows a proof by Lo and Chau @14# for a similar
key distribution protocol. Later, following Ref. @1#, we will
see how the entanglement-purification protocol is related to
the BB84 protocol.

A stabilizer code can be used as the basis of an
entanglement-purification protocol with one-way classical
communication @13,14#. Two parties, both equipped with
quantum computers, can use this protocol to extract from
their initial shared supply of noisy Bell pairs a smaller num-
ber of Bell pairs with very high fidelity. These purified Bell
pairs can then be employed for Einstein-Podolsky-Rosen
~EPR! quantum key distribution. Because the distilled pairs
are very nearly pure, the quantum state of the pairs has neg-
ligible entanglement with the quantum state of the probe of
any potential eavesdropper; therefore no measurement of the
probe can reveal any useful information about the secret key.

1We implicitly assume that Eve uses a strategy that passes the

verification test with nonnegligible probability, so that the rate of

key generation is not exponentially small. If, for example, Eve were

to intercept all qubits sent by Alice and resend them to Bob, then

she would almost certainly be detected, and key bits would not be

likely to be generated. But in the rare event that she is not detected

and some key bits are generated, Eve would know a lot about them.
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Let us examine the distillation protocol in greater detail.
Suppose that Alice and Bob start out with n shared EPR
pairs. Ideally, these pairs should be in the state

uF (n)&[uf1& ^ n, ~14!

where uf1& is the Bell state (u00&1u11&)/A2; however, the
pairs are noisy, approximating uF (n)& with imperfect fidelity.
They wish to extract k,n pairs that are less noisy.

For this purpose, they have agreed in advance to use a
particular @@n ,k ,d## stabilizer code. The code space can be
characterized as a simultaneous eigenspace of a set of mutu-
ally commuting stabilizer generators $M i ,i51,2, . . . ,n
2k%. Each M i is a ‘‘Pauli operator,’’ a tensor product of n

single-qubit operators, where each single-qubit operator is
one of $I ,X ,Y ,Z% defined by

I5S 1 0

0 1
D , X5S 0 1

1 0
D ,

~15!

Y 5S 0 2i

i 0
D , Z5S 1 0

0 21
D .

The operations $X̄a ,Z̄a ,a51,2, . . . ,k% acting on the en-
coded qubits are Pauli operators that commute with all of the
M i .

The Bell state uf1& is the simultaneous eigenstate with
eigenvalue one of the two commuting operators XA ^ XB and
ZA ^ ZB ~where subscripts A and B indicate whether the op-
erator acts on Alice’s or Bob’s qubit!. Thus the state uF (n)&
is the simultaneous eigenstate with eigenvalue one of the
commuting operators

M i ,A ^ M i ,B , i51,2, . . . ,n2k ,

X̄a ,A ^ X̄a ,B , a51,2, . . . ,k , ~16!

Z̄a ,A ^ Z̄a ,B , a51,2, . . . ,k .

Now suppose that Alice and Bob both measure the n2k

commuting M i’s. If the state they measure is precisely
uF (n)& , then Alice and Bob obtain identical measurement
outcomes. Furthermore, since their measurements do not dis-

turb the encoded operations X̄a and Z̄a , their measurement

would prepare the encoded state uF̄ (k)&[uf̄1& ^ k, the en-
coded state with

X̄a ,A ^ X̄a ,B5Z̄a ,A ^ Z̄a ,B51,

~17!
a51,2, . . . ,k ,

in the code subspace with the specified values of M i561.
However, since the initial pairs are noisy, Alice’s and

Bob’s measurement of the M i’s need not match perfectly;
they should apply error correction to improve the fidelity of
their encoded pairs. Thus Alice broadcasts the values of the
M i ,A’s that she obtained in her measurements. Comparing to
his own measurements, Bob computes the relative syndrome
M i ,AM i ,B . From this relative syndrome, he infers what re-

covery operation he should apply to his qubits to ensure that
the M i ,B’s match the M i ,A’s, and he performs this operation.
Now Alice and Bob are in possession of k encoded pairs with
improved fidelity.

These encoded pairs can be used for EPR key distribution.

For each a51,2, . . . ,k , Alice and Bob measure Z̄a , obtain-
ing outcomes that are essentially random and agree with high
probability. These outcomes are their shared private key.

B. Verification

If the initial pairs are too noisy, either because of the
intervention of an eavesdropper or for other reasons, then the
purification protocol might not succeed. Alice and Bob need
to sacrifice some of their EPR pairs to verify that purification
is likely to work. If verification fails, they can abort the pro-
tocol.

Under what conditions will purification succeed? If their
pairs were perfect, each would be in the state uf1&, the
simultaneous eigenstate with eigenvalue one of the two com-
muting observables X ^ X and Z ^ Z . Suppose for a moment,
that each of the pairs is a simultaneous eigenstate of these
observables ~a Bell state!, but not necessarily with the right
eigenvalues: in fact no more than tX of the n pairs have X

^ X521, and no more than tZ of the n pairs have Z ^ Z5

21. Then, if Alice and Bob use a stabilizer code that can
correct up to tZ bit flip errors and up to tX phase errors, the
purification protocol will work perfectly—it will yield the

encoded state uF̄ (k)&5uf̄1& ^ k with fidelity F51.
Now, the initial n pairs might not all be in Bell states. But

suppose that Alice and Bob were able to perform a Bell
measurement on each pair, projecting it onto a simultaneous
eigenstate of X ^ X and Z ^ Z . Of course, since Alice and
Bob are far apart from one another, they cannot really do this
Bell measurement. But let’s nevertheless imagine that they
first perform a Bell measurement on each pair, and then pro-
ceed with the purification protocol. Purification works if the
Bell measurement yields no more than tX pairs with X ^ X

521 and no more than tZ pairs with Z ^ Z521. Therefore,
if the initial state of the n pairs has the property that Bell
measurement applied to all the pairs will, with very high
probability, produce pairs with no more than tZ bit flip errors
and no more than tX phase errors, then we are assured that
Bell measurement followed by purification will produce a

very high fidelity approximation to the encoded state uF̄ (k)&.
But what if Alice and Bob execute the purification proto-

col without first performing the Bell measurement? We
know that the purification works perfectly applied to the
space Hgood spanned by Bell pairs that differ from uf1& ^ n

by no more than tZ bit flip errors and no more than tX phase
errors. Let P denote the projection onto Hgood . Then if the
protocol is applied to an initial density operator r of the n

pairs, the final density operator r8 approximates uF̄ (k)& with
fidelity

F[^F̄ (k)ur8uF̄ (k)&>tr~Pr !. ~18!

Therefore, the fidelity is at least as large as the probability
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that tZ or fewer bit flip errors and tX or fewer phase errors
would have been found if Bell measurement had been per-
formed on all n pairs.

To derive the inequality Eq. ~18!, we represent r as a pure
state uC&SE of the n pairs ~the ‘‘system’’ S) and an ancilla
~the ‘‘environment’’ E, which might be under Eve’s control!.
The recovery superoperator can be represented as a unitary
operator USR that is applied to S and an auxiliary system ~the
‘‘reservoir’’ R) that serves as a repository for the entropy
drawn from the pairs by error correction. Denote the initial
pure state of the reservoir by u0&R . Then the state of system,
environment, and reservoir to which the recovery operation
is applied can be resolved into a ‘‘good’’ component

uCgood&SER5~PS ^ IER!uC&SE ^ u0&R , ~19!

and an orthogonal component

uCbad&SER5@~IS2PS! ^ IER#uC&SE ^ u0&R . ~20!

Since the states uCgood&SER and uCbad&SER are orthogonal, the
unitary recovery operation USR ^ IE maps them to states

uCgood8 &SER and uCbad8 &SER that are also orthogonal to one

another. Furthermore, since recovery works perfectly on the
space Hgood , we have

uCgood8 &SER5uF̄ (k)&S ^ ujunk&ER , ~21!

where the state ujunk&ER of environment and reservoir has
norm

ER^junkujunk&ER5 SER^Cgood8 uCgood8 &SER

5 SER^CgooduCgood&SER5tr~Pr !.

~22!

Thus the fidelity of the recovered state can be expressed
as

F5 SER^C8u~ uF̄ (k)&S S^F̄
(k)u! ^ IERuC8&SER

5 SER^Cgood8 u~ uF̄ (k)&S S^F̄
(k)u! ^ IERuCgood8 &SER

1 SER^Cbad8 u~ uF̄ (k)&S S^F̄
(k)u! ^ IERuCbad8 &SER

5tr~Pr !1^F̄ (k)urbad8 uF̄ (k)&>tr~Pr !, ~23!

where

rbad8 5trER~ uCbad8 &SER SER^Cbad8 u!; ~24!

Eq. ~18! then follows. The key point is that, because of Eq.

~21!, and because uCgood8 &SER and uCbad8 &SER are orthogonal,

there is no ‘‘good-bad’’ cross term in Eq. ~23!.
Our arguments so far show that Alice and Bob can be

assured that entanglement purification will work very well if
they know that it is highly unlikely that more than tZ bit flip
errors or more than tX phase errors would have been found if
they had projected their pairs onto the Bell basis. While they
have no way of directly checking whether this condition is
satisfied, they can conduct a test that, if successful, will pro-

vide them with high statistical confidence. We must now
suppose that Alice and Bob start out with more than n pairs;
to be definite, suppose they have about 2n to start, and that
they are willing to sacrifice about half of them to conduct
their verification test. Alice randomly decides which pairs
are for verification ~the ‘‘check pairs’’! and which are for
key distribution ~the ‘‘key pairs’’!, and for each of her check
qubits, she randomly decides to measure either X or Z. Then
Alice publicly announces which are the check pairs, whether
she measured X or Z on her half of each check pair, and the
results of those measurements ~in addition to the results of
her measurements of the stabilizer generators!.

Upon hearing of Alice’s choices, Bob measures X or Z on
his half of each of the check pairs; thus Alice and Bob are
able to measure X ^ X on about half of their check pairs, and
they measure Z ^ Z on the remaining check pairs. Now since
the check pairs were randomly chosen, the eavesdropper Eve
has no way of knowing which are the check pairs, and she
cannot treat them any differently than the key pairs; hence
the measured error rate found for the check pairs will be
representative of the error rate that would have been found
on the key pairs if Alice and Bob had projected the key pairs
onto the Bell basis. Therefore, Alice and Bob can use their
check data and classical sampling theory to estimate how
many bit flip and phase errors would have been expected if
they had measured the key pairs.

For example, in a sample of N pairs, suppose that if Alice
and Bob both measured Z for all the pairs, a fraction p of
their measurements would disagree, indicating bit flip errors.
Then if they randomly sample M,N of the pairs, the prob-
ability distribution for the number M (p2«) of errors found
would be2

P~« !,exp@2M«2/2p~12p !# . ~25!

If Alice and Bob have no a priori knowledge of the value of
p, then by Bayes’ theorem, the conditional probability that
the total number of errors in the population is pN , given that
there are pZM errors in the sample, is the same as the prob-
ability that there are pZM errors in the sample given that
there are pN errors in the total population. Writing p5pZ

1« , the number of errors on the N2M untested pairs is
Np2M pZ5(N2M )pZ1N«5(N2M )(pZ1«8), where «8

5N«/(N2M ). Expressing P(«) in terms of «8 we find

P~«8!,expS 2

M ~N2M !2«8
2

2N2pZ~12pZ!
D , ~26!

a bound on the probability that the fraction of the untested
pairs with errors is larger than pZ1«8. In particular, if they
test about M5n/2 pairs for bit flip errors out of a total of
about N5n1n/2 pairs, the probability that a fraction pZ

1«8 of the remaining N2M5n pairs have bit flip errors is

2This bound is not tight. It applies if the sample of M pairs is

chosen from the population of N with replacement. In fact, the

sample is chosen without replacement, which suppresses the fluc-

tuations. A better bound was quoted in Ref. @1#.
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P~«8!,exp@2n«8
2/9pZ~12pZ!# . ~27!

A similar argument applies to the probability of phase errors.
We conclude that by conducting the verification test, Alice
and Bob can be very confident that, if they had measured Z

^ Z ~or X ^ X) on the n key pairs, no more than (pZ1«8)n

@or (pX1«8)n# errors would have been found. By choosing a
quantum error-correcting code that can correct this many er-
rors with high probability, they can be confident that the

encoded state they prepare approximates uF̄ (k)& with fidelity
exponentially close to one.

It is important to emphasize that this argument requires no
assumption about how the errors on different pairs may be
correlated with one another. Rather the argument is applied
to a hypothetical situation in which the value of Z ^ Z ~or
X ^ X) already has been measured and recorded for all of the
check pairs and all of the key pairs. Sampling theory is then
used to address the question: how reliably does a ‘‘poll’’ of
M bits randomly chosen from among N allow us to predict
the behavior of the rest of the population. Classical sampling
theory can be applied to the values of both Z ^ Z and X ^ X

for the key pairs, because the operators commute and so are
simultaneously measurable in principle @14#.

Furthermore, if the state of the encoded pairs that Alice
and Bob use for key distribution is exponentially close to
being a pure state, it follows from Holevo’s theorem that
Eve’s mutual information with the distributed key is expo-
nentially small @14,1#. In the worst case, the imperfect fidel-
ity of Alice’s and Bob’s pairs is entirely due to Eve’s inter-
vention; then the complete state consisting of the pairs and
Eve’s probe is pure, and the Von Neumann entropy S(rE)
[2tr rElog rE of the state rE of the probe equals the en-
tropy of the state rAB of the pairs. By extracting a key from
their pairs, Alice and Bob in effect prepare a state for Eve
governed by an ensemble with density matrix rE . According
to Holevo’s theorem, the mutual information I(AB;E) of
this state preparation with any measurement that Eve can
carry out on her probe satisfies

I~AB;E !<S~rE!5S~rAB!, ~28!

and since rAB is very nearly pure, S(rAB) and I(AB;E) are
very close to zero. Specifically, if the fidelity of rAB is F

512d , then the largest eigenvalue of rAB is at least 12d .
For a system with dimension D, the density matrix with larg-
est eigenvalue 12d that has the maximal Von Neumann
entropy is

rmax5diagS 12d ,
d

D21
,

d

D21
,••• ,

d

D21
D , ~29!

for which

S~rmax!52~12d !log2~12d !2d log2@d/~D21 !#

5dS 1

loge2
1log2~D21 !2log2d D1O~d2!.

~30!

Taking D522k ~the total dimension of Alice’s and Bob’s
code spaces!, we conclude that

S~rAB!<dS 1

loge2
12k1log2~1/d ! D1O~d2!. ~31!

Finally, we have shown that if the verification test suc-
ceeds, then with probability exponentially close to one ~the
probability that the error rate inferred from the check sample
is not seriously misleading!, Eve’s mutual information with
the key is exponentially small ~because the state of the key

bits approximates uF̄ (k)& with fidelity exponentially close to
one!. This proof of security applies to any conceivable eaves-
dropping strategy adopted by Eve.

The proof relies on the ability of quantum error-correcting
codes to reverse the errors caused by interactions between
the key pairs and Eve’s probe. Hence it may seem odd that
the proof works for arbitrary attacks by Eve, since quantum
error correction works effectively only for a restricted class
of error superoperators. Specifically, the error superoperator
acting on a block of n qubits can be expanded in terms of a
basis of ‘‘Pauli error operators,’’ where in each term of the
expansion bit flip errors and/or phase errors are inflicted on
specified qubits within the block. The encoded quantum in-
formation is well protected only if the error superoperator
has nearly all of its support on Pauli operators that can be
corrected by the code, e.g., those with no more than tZ bit
flip errors and tX phase errors.

If Eve’s probe interacts collectively with many qubits, it
may cause more bit flip or phase errors than the code can
correct. But the crucial point is that, with high probability, an
attack that causes many errors on the key bits will also cause
many errors on the check bits, and Alice and Bob will detect
Eve’s presence.

C. Reduction to the BB84 protocol

Since the entanglement distillation protocol requires only
one-way classical communication, this protocol is actually
equivalent to one in which Alice, rather than preparing Bell
pairs and sending half of each pair to Bob, instead prepares
an encoded quantum state that she sends to Bob. Using a set
of stabilizer generators on which she and Bob have agreed in
advance, Alice chooses a random eigenvalue for each stabi-
lizer generator M i ; then employing the corresponding

@@n ,k ,d## quantum code, she prepares one of 2k mutually
orthogonal codewords.

Alice also decides at random which of her qubits will be
used for key distribution and which will be used for verifi-
cation. For each of the check bits, she decides at random
whether to send an X eigenstate ~with random eigenvalue! or
a Z eigenstate ~with random eigenvalue!.

Bob receives the qubits sent by Alice, carefully deposits
them in his quantum memory, and publicly announces that
the qubits have been received. Alice then publicly reveals
which qubits were used for the key, and which qubits are the
check qubits. She announces the stabilizer eigenvalues that
she chose to encode her state, and for each check qubit, she
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announces whether it was prepared as an X or Z eigenstate,
and with what eigenvalue.

Once Bob learns which qubits carry the encoded key in-
formation, he measures the stabilizer operators and compares
his results with Alice’s to obtain a relative error syndrome.
He then performs error recovery and measures the encoded
state to decipher the key.

Bob also measures the check qubits and compares the
outcomes to the values announced by Alice, to obtain an
estimate of the error rate. If the error rate is low enough,
error recovery applied to the encoded key bits will succeed
with high probability, and Alice and Bob can be confident in
the security of the key. If the error rate is too high, Bob
informs Alice and they abort the protocol.

As described so far, the protocol requires that Alice and
Bob have quantum memories and quantum computers that
are used to store the qubits, measure stabilizer generators,
and correct errors. But if they use a stabilizer code of the
CSS ~Calderbank-Shor-Steane! type @15,16#, then the proto-
col can be simplified further. The crucial property of the CSS
codes is that there is a clean separation between the syn-
drome information needed to correct bit flip errors and the
syndrome information needed to correct phase errors.

A CSS quantum stabilizer code is associated with a clas-
sical binary linear code C1 on n bits, and a subcode C2,C1.
Let H1 denote the parity check matrix of C1 and H2 the
generator matrix for the code C2 ~and hence the parity check

matrix of the dual code C2
'). The stabilizer generators of the

code are of two types. Associated with the ith row of the
matrix H1 is a ‘‘Z generator,’’ the tensor product of I’s and
Z’s

M Z ,i5 ^ j51
n ~Z j!

(H1) i j, ~32!

and associated with the ith row of H2 is an ‘‘X generator,’’
the tensor product of I’s and X’s

M X ,i5 ^ j51
n ~X j!

(H2) i j. ~33!

Since H1 has n2k1 rows, where k15dim(C1), and H2 has
k2 rows, where k25dim(C2), there are all together n2k1

1k2 stabilizer generators, and the dimension of the code
space ~the number of encoded qubits! is k5k12k2. From
measurements of the Z generators, bit flip errors can be di-
agnosed, and from measurement of the X generators, phase
errors can be diagnosed.

The elements of a basis for the code space with eigenval-
ues of stabilizer generators

M Z ,i5~21 !s i, M X ,i5~21 ! t i ~34!

are in one-to-one correspondence with the k cosets of C2 in
C1; they can be chosen as

uc~v !&x ,z5
1

uC2u1/2 (
wPC2

~21 !z•wuv1w1x&; ~35!

here vPC1 is a representative of a C2 coset, and x, z are
n-bit strings satisfying

H1x5s , H2z5t . ~36!

Thus, to distribute the key, Alice chooses x and z at random,
encodes one of the uc(v)&x ,z’s, and sends the state to Bob.
After Bob confirms receipt, Alice broadcasts the values of x

and z. Bob compares Alice’s values to his own measure-
ments of the stabilizer generators to infer a relative syn-
drome, and he performs error correction. Then Bob measures
Z of each of his n qubits, obtaining a bit string v1w1x .
Finally, he subtracts x and applies H2 to compute H2v , from
which he can infer the coset represented by v and hence the
key.

Now notice that Bob extracts the encoded key information
by measuring Z of each of the qubits that Alice sends. Thus
Bob can correctly decipher the key information by correcting
any bit flip errors that occur during transmission. Bob does
not need to correct phase errors, and therefore he has no use
for the phase syndrome information; hence there is no need
for Alice to send it.

Without in any way weakening the effectiveness of the
protocol, Alice can prepare the encoded state uc(v)&x ,z , but
discard her value of z, rather then transmitting it; thus we can
consider the state sent by Alice to be averaged over the value
of z. Averaging over the phase (21)z•w destroys the coher-
ence of the sum over wPC2 in uc(v)&x ,z ; in effect, then,
Alice is preparing n qubits as Z eigenstates, in the state uv
1w1x&, sending the state to Bob, and later broadcasting the
value of x. We can just as well say that Alice sends a random
string u, and later broadcasts the value of u1v . Bob receives
u1e ~where e has support on the bits that flip due to errors!
extracts v1e , corrects it to the nearest C1 codeword, and
infers the key, the coset v1C2.

Alice and Bob can carry out this protocol even if Bob has
no quantum memory. Alice decides at random to prepare her
qubits as X or Z eigenstates, with random eigenvalues, and
Bob decides at random to measure in the X or Z basis. After
public discussion, Alice and Bob discard the results in the
cases where they used different bases and retain the results
where they used the same basis. Thus the protocol we have
described is just the BB84 protocol invented by Bennett and
Brassard @8#, accompanied by classical error correction ~ad-
justing v1e to a C1 codeword! and privacy amplification
~extracting the coset v1C2).

What error rate is acceptable? In a random CSS code,
about half of the n2k generators correct bit flips, and about
half correct phase flips. Suppose that the verification test
finds that bit flip errors (ZA ^ ZB521) occur with probabil-
ity pZ and phase errors (XA ^ XB521) occur with probabil-
ity pX . Classical coding theory shows that a random CSS
code can correct the bit flips with high probability if the
number of typical errors on n bits is much smaller than the
number of possible bit flip error syndromes, which holds
provided that

S n

npZ
D 22(n2k)/2;2nH2(pZ)2(n2k)/2

!1, ~37!

where H2(x)52x log2x2(12x)log2(12x) is the binary en-
tropy function. Similarly, the phase errors can be corrected
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with high probability provided the same relation holds with
pZ replaced by pX . Therefore, asymptotically as n→` , se-
cure key bits can be extracted from transmitted key bits at
any rate R satisfying

R5

k

n
,122H2~pZ!,

~38!

R5

k

n
,122H2~pX!.

This upper bound on R crosses zero at pZ(or pX)50.1100.
We conclude that secure key distribution is possible if pX ,Z

,11%.
The random coding argument applies if the errors in the

key qubits are randomly distributed. To assure that this is so,
we can direct Alice to perform a random permutation of the
qubits before sending them to Bob. After Bob confirms re-
ceipt, Alice can broadcast the permutation she performed,
and Bob can invert it.

Again, the essence of this argument is that the amount of
information that an eavesdropper could acquire is limited by
how successfully we could have carried out quantum error
correction if we had chosen to—and that this relation holds
irrespective of whether we really implemented the quantum
error correction or not.

Other proofs of the security of the BB84 protocol have
been presented @2,3#, which do not make direct use of this
connection with quantum error-correcting codes. However,
these proofs do use classical error correction and privacy
amplification, and they implicitly exploit the structure of the
CSS codes.

D. Imperfect sources

Our objective in this paper is to analyze the security of
key distribution schemes that use systems described by con-
tinuous quantum variables. The analysis will follow the strat-
egy we have just outlined, in which an entanglement-
purification protocol is reduced to a protocol that does not
require the distribution of entanglement. But first we need to
discuss a more general version of the argument.

In the entanglement-purification protocol, whose reduc-
tion to the BB84 protocol we have just described, there is an
implicit limitation on the eavesdropper’s activity. We have
assumed that Alice prepares perfect entangled pairs in the
state uf1&, and then sends half of each pair to Bob. Eve has
been permitted to tamper with the qubits that are sent to Bob
in any way she chooses, but she has not been allowed any
contact with Alice’s qubits. Therefore, if we imagine that
Alice measures her qubits before sending to Bob, we obtain
a BB84 protocol in which Alice is equipped with a perfect
source of polarized qubits. When she sends a Z eigenstate,
the decision to emit a u0& or a u1& is perfectly random, and
the state emerges from her source with perfect fidelity. Simi-
larly, when she sends an X eigenstate, the decision to send

u6&[(u0&6u1&)/A2 is perfectly random, and the state is
prepared with perfect fidelity. Furthermore, Eve has no
knowledge of what Alice’s source does, other than what she

is able to infer by probing the qubits as they travel to Bob.
Security can be maintained in a more general scenario. In

the entanglement-purification protocol, we can allow Eve ac-
cess to Alice’s qubits. As long as Eve has no way of know-
ing which pairs Alice and Bob will select for their verifica-
tion test, and no way of knowing whether the check pairs
will be measured in the Z or X basis, then the protocol still
works: eavesdropping can be detected irrespective of
whether Eve probes Alice’s qubits, Bob’s qubits, or both.

Now if we imagine that Alice measures her qubits before
sending to Bob, we obtain a BB84-like protocol in which
Alice’s source is imperfect and/or Eve is able to collect some
information about how Alice’s source behaves. Our proof
that the BB84-like protocol is secure still works as before.
However the proof applies only to a restricted type of
source—it must be possible to simulate Alice’s source ex-
actly by measuring half of a two-qubit state.

To be concrete, consider the following special case, which
will suffice for our purposes: Alice has many identical copies
of the two-qubit state rAB . To prepare a ‘‘Z state’’ she mea-
sures qubit A in the basis $u0&A ,u1&A%. Thus she sends to
Bob one of the two states

r05
A^0urABu0&A

tr~ A^0urABu0&A!
,

~39!

r15
A^1urABu1&A

tr~ A^1urABu1&A!
,

chosen with respective probabilities

Prob~0 !5tr~ A^0urABu0&A!,

~40!
Prob~1 !5tr~ A^1urABu1&A!.

Similarly, to prepare an X state she measures in the basis

$u1&,u2&%, sending one of

r15
A^1urABu1&A

tr~ A^1urABu1&A!
,

~41!

r25
A^2urABu2&A

tr~ A^2urABu2&A!
,

chosen with respective probabilities

Prob~1 !5tr~ A^1urABu1&A!,

~42!
Prob~2 !5tr~ A^2urABu2&A!.

Unless the state rAB is precisely the pure state uf1&, Alice’s
source isn’t doing exactly what it is supposed to do. Depend-
ing on how rAB is chosen, the source might be biased; for
example it might send r0 with higher probability than r1.
And the states r0 and r1 need not be the perfectly prepared
u0& and u1& that the protocol calls for.

Now suppose that Alice’s source always emits one of the
states r0 ,r1 ,r1 ,r2 , and that after the qubits emerge from
the source, Eve is free to probe them any way she pleases.
Even though Alice’s source is flawed, Alice and Bob can
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perform verification, error correction, and privacy amplifica-
tion just as in the BB84 protocol. To verify, Bob measures Z

or X, as before; if he measures Z, say, they check to see
whether Bob’s outcome u0& or u1& agrees with whether Alice
sent r0 or r1 ~even though the state that Alice sent may not
have been a Z eigenstate!. Thereby, Alice and Bob estimate
error rates pZ and pX . If both error rates are below 11%,
then the protocol is secure.

We emphasize again that the security criterion pX ,pZ

,11% applies not to all sources, but only to the restricted
class of imperfect sources that can be simulated by measur-
ing half of a ~possible noisy! entangled state. To give an
extreme example of a type of source to which the security
proof does not apply, suppose that Alice always sends the Z

state u0& or the X state u1& . Clearly the key distribution
protocol will fail, even if Bob’s bits always agree with
Alice’s! Indeed, a source with these properties cannot be
obtained by measuring half of any two-qubit state rAB .
Rather, if the source is obtained by such a measurement, then
a heavy bias when we send a Z state would require that the
error probability be large when we send an X state.

IV. DISTRIBUTING A KEY BIT

WITH CONTINUOUS VARIABLES

Now let us consider how the above ideas can be applied
to continuous variable systems. We will first describe how in
principle Alice and Bob can extract good encoded pairs of
qubits from noisy EPR pairs. However, the distillation pro-
tocol requires them to make measurements that are difficult
in practice. Then we will see how key distribution that in-
vokes ~difficult! entanglement distillation can be reduced to
key distribution based on ~easier! preparation, transmission,
and detection of squeezed states.

Suppose that Alice and Bob share pairs of oscillators.
Ideally each pair has been prepared in an EPR state, a simul-
taneous eigenstate ~let us say with eigenvalue 0! of qA2qB

and pA1pB . Now suppose that Alice measures the two com-
muting stabilizer generators defined in Eq. ~1!, obtaining the
outcomes

Sq ,A5e2pifq ,A, Sp ,A5e22pifp ,A, ~43!

or

qA5fq ,AAp ~mod Ap !,

~44!
pA5fp ,AAp ~mod Ap !.

Now, the initial state was an eigenstate with eigenvalue one

of the operators Sq ,A ^ Sq ,B
21 and Sp ,A ^ Sp ,B . The observables

measured by Alice commute with these, and so preserve
their eigenvalues. Thus if the initial EPR state of the oscil-
lators were perfect, Alice’s measurement would also prepare
for Bob a simultaneous eigenstate of the stabilizer generators
with

Sq ,B[e2pifq ,B5e2pifq ,A,

~45!
Sp ,B[e22pifp ,B5e2pifp ,A,

or

qB5qA ~mod Ap !,

~46!
pB52pA ~mod Ap !.

Similarly, the initial state was an eigenstate with eigenvalue
one of the observables

X̄A~fp! ^ X̄B~fp!, Z̄A~fq! ^ Z̄B~fq!21, ~47!

which also commute with the stabilizer generators that Alice
measured. Thus Alice’s measurement has prepared an en-
coded Bell pair in the code space labeled by (fq ,fp), the
state

uf̄1&AB5

1

A2
~ u0̄&Au0̄&B1u1̄&Au1̄&B). ~48!

Of course the initial EPR pair shared by Alice and Bob
might be imperfect, and then the encoded state produced by
Alice’s measurement will also have errors. But if the EPR
pair is not too noisy, they can correct the errors with high
probability. Alice broadcasts her measured values of the sta-
bilizer generators to Bob; Bob also measures the stabilizer
generators and compares his values to those reported by Al-
ice, obtaining a relative syndrome

e i(fq ,A2fq ,B), e2i(fp ,A1fp ,B). ~49!

That is, the relative syndrome determines the value of qA

2qB ~mod Ap) and pA1pB ~mod Ap). Using this informa-
tion, Bob can shift his oscillator’s q and p ~by an amount

between 2Ap/2 and Ap/2) to adjust qA2qB ~mod Ap) and

pA1pB ~mod Ap) both to zero. The result is that Alice and
Bob now share a bipartite state in the code subspace labeled
by (fq ,fp).

If the initial noisy EPR state differs from the ideal EPR
state only by relative shifts of Bob’s oscillator relative to

Alice’s that satisfy uDqu,uDpu,Ap/2, then the shifts will be
corrected perfectly. And if larger shifts are highly unlikely,
then Alice and Bob will obtain a state that approximates the

desired encoded Bell pair uf̄1& with good fidelity. This pro-
cedure is a ‘‘distillation’’ protocol in that Alice and Bob start
out with a noisy entangled state in a tensor product of infinite
dimensional Hilbert spaces, and ‘‘distill’’ from it a far
cleaner entangled state in a tensor product of two-
dimensional subspaces.

Once Alice and Bob have distilled an encoded Bell pair,
they can use it to generate a key bit, via the usual EPR key
distribution protocol: Alice decides at random to measure

either X̄ or Z̄ , and then publicly reveals what she chose to
measure but not the measurement outcome. Bob then mea-
sures the same observable and obtains the same outcome—
that outcome is the shared key bit.

How do they measure X̄ or Z̄? If Alice ~say! wishes to

measure Z̄ , she can measure q, and then subtract fq from the

outcome. The value of Z̄ is determined by whether the result
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is an even (Z̄51) or an odd (Z̄521) multiple of Ap . Simi-

larly, if Alice wants to measure X̄ , she measures p and sub-

tracts fp—the value of X̄ is determined by whether the result

is an even (X̄51) or an odd (X̄521) multiple of Ap .
Imperfections in the initial EPR pairs are inescapable not

just because of experimental realities, but also because the
ideal EPR pairs are unphysical nonnormalizable states. Like-
wise, the stabilizer operators cannot even in principle be
measured with arbitrary precision ~the result would be an
infinite bit string!, but only to some finite m-bit accuracy.
Still, if the EPR pairs have reasonably good fidelity, and the
measurements have reasonably good resolution, entangle-
ment purification will be successful.

To summarize, Alice and Bob can generate a shared bit
by using the continuous variable code for entanglement pu-
rification, carrying out the following key distribution proto-
col using entanglement purification.

~1! Alice prepares ~a good approximation to! an EPR state
of two oscillators, a simultaneous eigenstate of qA2qB50
5pA1pB , and sends one of the oscillators to Bob.

~2! After Bob confirms receipt, Alice and Bob each mea-
sure ~to m bits of accuracy! the two commuting stabilizer

generators of the code, e i(2Ap)q and e2i(2Ap)p. ~Equivalently,

they each measure the value of q and p modulo Ap .! Alice
broadcasts her result to Bob, and Bob applies shifts in q and

p to his oscillator, so that his values of q and p modulo Ap
now agree with Alice’s ~to m-bit accuracy!. Thus, Alice and
Bob have prepared ~a very good approximation to! a Bell

state uf̄1& of two qubits encoded in one of the simultaneous
eigenspaces of the two stabilizer operators.

~3! Alice decides at random to measure one of the en-

coded operators X̄ or Z̄; then she announces what she chose
to measure, but not the outcome. Bob measures the same
observable; the result is the shared bit that they have gener-
ated.

Now notice that, except for Bob’s confirmation that he
received the states, this protocol requires only one-way clas-
sical communication from Alice to Bob. Alice does not need
to receive any information from Bob before she measures her
stabilizer operators or before she measures the encoded op-

eration X̄ or Z̄ . Therefore, the protocol works just as well if
Alice measures her oscillator before sending the other one to
Bob. Equivalently, she prepares an encoded state, adopting
randomly selected values of the stabilizer generators. She
also decides at random whether the encoded state will be an

X̄ eigenstate or a Z̄ eigenstate, and whether the eigenvalue
will be 11 or 21.

Again, since the codewords are unphysical nonnormaliz-
able states, Alice cannot really prepare a perfectly encoded
state; she must settle for a ‘‘good enough’’ approximate
codeword.

In summary, we can replace the entanglement purification
protocol with the following equivalent key distribution pro-
tocol using encoded qubits.

~1! Alice chooses random values ~to m bits of accuracy!

for the stabilizer generators e i(2Ap)q and e2i(2Ap)p, chooses a

random bit to decide whether to encode a Z̄ eigenstate or an

X̄ eigenstate, and chooses another random bit to decide
whether the eigenvalue will be 61. She then prepares ~a
good approximation to! the encoded eigenstate of the chosen
operator with the chosen eigenvalue in the chosen code, and
sends it to Bob.

~2! After Bob confirms receipt, Alice broadcasts the sta-

bilizer eigenvalues and whether she encoded a Z̄ or an X̄ .
~3! Bob measures q or p. He subtracts from his outcome

the value modulo Ap determined by Alice’s announced
value of the stabilizer generator, and corrects the result to the

nearest integer multiple of Ap . He extracts a bit determined

by whether the multiple of Ap is even or odd; this is the
shared bit that they have generated.

To carry out this protocol, Alice requires sophisticated
tools that enable her to prepare the approximate codewords,
and Bob needs a quantum memory to store the state that he
receives until he hears Alice’s classical broadcast. However,
we can reduce the protocol to one that is much less techni-
cally demanding.

When Bob extracts the key bit by measuring ~say! q, he

needs Alice’s value of q modulo Ap , but he does not need
her value of the other stabilizer generator. Therefore, there is
no need for Alice to send it; surely, the eavesdropper will be
no better off if Alice sends less classical information. If she
does not send the value of Sp , then we can consider the
protocol averaged over the unknown value of this generator.
Formally, for perfect ~nonnormalizable! codewords the den-
sity matrix describing the state that is accessible to a poten-
tial eavesdropper then has a definite value of Sq but is aver-
aged over all possible values of Sp—it is a
~nonnormalizable! equally weighted superposition of all po-

sition eigenstates with a specified value of q mod Ap; e.g.,

in the case where Alice prepares a Z̄ eigenstate, we have

r~fq ,Z̄51 !,

}(
s

uq5~2s1fq!Ap&^q5~2s1fq!Apu,

~50!
r~fq ,Z̄521 !,

}(
s

uq5~2s111fq!Ap&^q5~2s111fq!Apu.

Averaged over fq as well, Alice is sending a random posi-
tion eigenstate. Likewise, in the case where Alice prepares

an X̄ eigenstate, she sends a random momentum eigenstate.
Therefore, the protocol in which Alice prepares encoded

qubits can be replaced by a protocol that is simpler to ex-
ecute but is no less effective and no less secure. Instead of
bothering to prepare the encoded qubit, she just decides at
random to send either a q or p eigenstate, with a random
eigenvalue. If Bob had a quantum memory, he could store
the state, and wait to hear from Alice whether the state she
sent was a q or p eigenstate; then he could measure that
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observable. Subtracting fqAp ~or fpAp) from his measure-
ment outcome, he would obtain an even or odd multiple of
Ap .

But Bob does not really need the quantum memory. As in
the BB84 protocol, it suffices for Bob to decide at random to
measure either q or p, and then publicly compare his basis
with Alice’s. They discard the results where they used dif-
ferent bases and retain the others.

A problem with this procedure is that the position and
momentum eigenstates are unphysical nonnormalizable
states, and the probability distribution that Alice samples to
decide on what value of q or p to send is also non-
normalizable. For it to be implementable, we need to modify
the procedure so that Alice sends narrow q or p wave pack-
ets, and chooses the position of the center of the wave packet
by sampling a broad but normalizable distribution.

Therefore, Alice and Bob can adopt the key following
distribution protocol using squeezed states.

~1! Alice chooses a random bit to decide whether to send
a state squeezed in q or in p. She samples a ~discrete approxi-
mation to! a probability distribution Ppos(q) or Pmom(p) to
choose a value of q or p, and then sends to Bob a narrow
wave packet centered at that value.

~2! Bob receives the state and decides at random to mea-
sure either q or p.

~3! After Bob confirms receipt, Alice and Bob broadcast
whether they sent/measured in the q or p basis. If they used
different bases, they discard their results. If they used the
same basis, they retain the result and proceed to Step 4.

~4! Alice broadcasts the value that she sent, modulo Ap
~to m-bit accuracy!. Bob subtracts Alice’s value from what
he measured, and corrects to the nearest integer multiple of
Ap . He and Alice extract their shared bit according to
whether this integer is even or odd.

V. A SECURE PROTOCOL USING

CONTINUOUS VARIABLES

Now we are ready to combine the protocol of Sec. III with
the protocol of Sec. IV. The result is a protocol based on
concatenating the continuous variable code with an

@@n ,k ,d## binary CSS code. The concatenated code embeds
a k-dimensional Hilbert space in the infinite-dimensional Hil-
bert space of n oscillators.

Again, we first imagine that Alice and Bob carry out an
entanglement distillation protocol. They start out sharing n

pairs of oscillators, each in a ~noisy! EPR state. By measur-
ing the stabilizer generators of the concatenated code, they
distill k encoded Bell pairs of much better fidelity, and then
generate a key by measuring the encoded Bell pairs.

By once again following the chain of reductions re-
counted in Sec. III and Sec. IV, we arrive at an equivalent
protocol involving transmission of squeezed states. The com-
plete protocol, including verification, error correction, and
privacy amplification, becomes the continuous-variable
QKD described in the following steps.

~1! Alice has (41d)n oscillators. For each oscillator, Al-
ice decides at random to prepare either a state squeezed in q

or a state squeezed in p. The position of the squeezed state is
determined by sampling ~a discrete approximation to! a
probability distribution Ppos(q) or Pmom(p). Alice then
sends the oscillators to Bob.

~2! Bob receives the (41d)n oscillators, measuring each
in the q or p basis at random.

~3! Bob confirms that the oscillators have been received,
and then Alice announces whether each oscillator was
squeezed in q or in p.

~4! Alice and Bob discard the results in the cases where
Bob measured in a different basis than Alice used in her
preparation. With high probability, there are at least 2n mea-
sured values left ~if not, abort the protocol!. Alice decides
randomly on a set of 2n values to use for the protocol, and
chooses at random n of these to be check values.

~5! For all 2n measured values, Alice announces the value

of q or p modulo Ap ~to m bits of accuracy!.
~6! Bob subtracts the corresponding number announced

by Alice from each of his measured values, and then corrects

the result to the nearest integer multiple of Ap . Bob and
Alice now extract bit values determined by whether the mul-

tiple of Ap is even or odd.
~7! Alice and Bob announce the values of their check bits.

If too few of the check bits agree, they abort the protocol.
~8! Alice announces u1v , where u is the string consisting

of the remaining noncheck bits, and v is a random codeword
in C1.

~9! Bob subtracts u1v from his code qubits, u1e , and
corrects the result, v1e , to a codeword in C1. With high
probability, Bob recovers v .

~10! Alice and Bob use the C2 coset v1C2 as the key.

Here, to be specific, we have instructed Alice and Bob to
sacrifice n check bits for each n bits that are used for key
distribution. They might instead use fewer or more, depend-
ing on how stringent a bound on the eavesdropper’s mutual
information they require.

The check bits provide Alice and Bob with estimates of
the bit error rates pZ ~respectively, pX) when states squeezed
in q ~respectively, p) are transmitted. Our analysis of the
BB84 protocol indicates that the squeezed state protocol is
secure provided that pZ and pX are both below 11%, and
assuming that Alice and Bob scramble and unscramble the
oscillators ~by applying a random permutation and its in-
verse!.

However, as noted in Sec. III D, the proof and the security
criterion pZ ,pX,11% apply only if Alice’s source can be
simulated by measuring half of an entangled state of two
oscillators. In particular, we may imagine that Alice has
many pairs of oscillators identically prepared in the state
rAB , and that she prepares the state that she sends to Bob by
measuring oscillator A. When she measures in the q basis,
she sends the state

rB~q !5
A^qurABuq&A

tr~A^qurABuq&A!
~51!

with probability

Ppos~q !5tr~A^qurABuq&A!, ~52!
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and when she measures in the p basis, she sends the state

rB~p !5
A^purABup&A

tr~A^qurABuq&A!
~53!

with probability

Pmom~p !5tr~A^purABup&A!. ~54!

Thus, the states that Alice sends need not be perfect position
or momentum eigenstates for the proof of security to work,
and Alice’s source might even have a bias so that the raw
key bit carried by an oscillator is more likely to be a 0 than
a 1. Still, for a source of this type, if Alice and Bob verify
that the error rate for the raw key bits is below 11% in both
bases, then the protocol is provably secure. We will discuss
examples in Sec. VI and Sec. VII.

Intuitively, the squeezed-state protocol is secure because
the eavesdropper cannot monitor the value of q ~or p) trans-
mitted without introducing a detectable disturbance in the
complementary observable p ~or q). As shown in Fig. 1, the
Wigner functions of the signal states squeezed in p and in q

overlap, so that the states cannot be reliably distinguished.

VI. GAUSSIAN STATES

Perfectly squeezed states ~position or momentum eigen-
states! are unphysical nonnormalizable states, so the protocol
will actually be carried out with imperfectly squeezed states.
Furthermore, engineering a source that produces highly
squeezed states would be quite technically demanding. How
much squeezing is really needed for the protocol to be se-
cure? A related question is, how must we choose the prob-
ability distributions Ppos(q) and Pmom(p) that govern the
center of the squeezed state?

We will analyze the most favorable case, in which the
squeezed states are Gaussian wave packets and the probabil-
ity distributions are also Gaussian. We will begin again with

a description of how the code is used for entanglement puri-
fication, but where Alice and Bob start with many copies of
a Gaussian entangled pair of oscillators that is an approxi-
mate eigenstate of qA2qB and pA1pB . If we imagine that
Alice measures half of each pair before she sends the other
half to Bob, then we obtain a protocol in which Alice sends
imperfectly squeezed states governed by a particular prob-
ability distribution.

The initial Gaussian entangled state of the two oscillators
is

uc~D !&AB5

1

Ap
E dqAdqB expF2

1

2
D2S qA1qB

2
D 2G

3expF2

1

2
~qA2qB!2/D2G uqA ,qB&

5

1

Ap
E dpAdpB expF2

1

2
D2S pA2pB

2
D 2G

3expF2

1

2
~pA1pB!2/D2G upA ,pB&, ~55!

where D2 is real and positive. Since uc(D)&AB is actually
invariant under

D2
→4/D2, qB→2qB , pB→2pB ~56!

we may assume without loss of generality ~changing the sign
of the position and momentum of Bob’s oscillator if neces-
sary!, that 0,D2<2. In the limiting case D2

52, uc(D)&AB

becomes the product of two oscillator vacuum states. For
D2

,2, it is an entangled state. The amount of entanglement
shared between the oscillators, in ‘‘ebits,’’ is defined as

E~D ![S~rA!52tr rAlog2rA , ~57!

~the Von Neumann entropy of Alice’s density matrix rA

5trBuc(D)&^c(D)u), and can be expressed as @17#

E~D !5~cosh2r !log2~cosh2r !2~sinh2r !log2~sinh2r !,
~58!

where

D2[2e22r. ~59!

In this entangled state, if Alice measures the position of
her oscillator and obtains the outcome qA , she prepares for
Bob the Gaussian state

uc~qA!&B5

1

~pD̃2!1/4
E dqB

3expS 2

1

2
~qB2qB0!2/D̃2D uqB&, ~60!

where

FIG. 1. One-sigma contours of the Wigner functions for typical

squeezed states used in the quantum key distribution protocol, with

squeeze factor D̃5e2r
51/2. The signal states squeezed in p and in

q overlap with one another, preventing Eve from learning about one

without disturbing the other.
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qB05S 12

1

4
D4

11

1

4
D4
D qA5~12D̃4!1/2qA , ~61!

and

D̃2
5

D2

11

1

4
D4

. ~62!

The probability distribution for the outcome of Alice’s mea-
surement can be expressed as

P~qA!5

D̃

Ap
exp~2D̃2qA

2 !, ~63!

and we can easily see from Eq. ~55! that if Alice and Bob
both measure q, then the difference of their outcomes is gov-
erned by the probability distribution

Prob~qA2qB!5

1

ApD2
exp@2~qA2qB!2/D2# . ~64!

Similar formulas apply if Alice and Bob measure p.
Suppose that Alice and Bob try to distill one good qubit

from the imperfect entangled state uc(D)&AB . They both
measure the stabilizer generators, that is, the values of q and

p modulo Ap . Alice broadcasts her values, and Bob adjusts
his values so that they agree with Alice’s; thereby they ob-
tain a pair of encoded qubits, which would have been in the

state uf̄1& if the initial pair of oscillators had been a perfect
EPR pair (D2

50). Then if Alice and Bob were to proceed to
perform a complete Bell measurement on their encoded qubit

pair, the probability pZ that they would find Z̄ ^ Z̄521 is no
worse than the probability that, if qA and qB were measured,

the results would differ by more than Ap/2, or

pZ<
2

ApD2
E

Ap/2

`

dq e2q2/D2
<

2D

p
exp~2p/4D2!,

~65!

and similarly for pX ~the probability that X̄ ^ X̄521). For
the values of D that are typically of interest ~e.g., D,1), the
error probability is dominated by values of qA2qB ~or pA

1pB) lying in the range @Ap/2,3Ap/2# , so that the estimate
of the error probability can be sharpened to

pZ ,pX;
2

ApD2
E

Ap/2

3Ap/2

dq e2q2/D2
. ~66!

After error correction and measurement in the encoded Bell
basis, the initial bipartite pure state of two oscillators, with
entanglement E given by Eqs. ~58! and ~59!, is reduced to a

bipartite mixed state, diagonal in the encoded Bell basis,
with fidelity F5(12pZ)(12pX); this encoded state has en-
tanglement of formation @13#

E5H2S 1

2
1AF~12F ! D ~67!

~where H2 is the binary entropy function!.
If Alice and Bob have a large number n of oscillators in

the state uc(D)&AB , they can carry out an entanglement dis-
tillation protocol based on the concatenation of the single-
oscillator code with a binary CSS code, and they will be able
to distill qubits of arbitrarily good fidelity at a finite
asymptotic rate provided that pZ and pX are both below
11%; from Eq. ~66! we find that this condition is satisfied for
D,0.784 ~which should be compared with the value D

5A2 corresponding to a product of two oscillators each in
its vacuum state!. Thus secure EPR key distribution is pos-
sible in principle with two-mode squeezed states provided

that the squeeze parameter r satisfies r.2loge(0.784/A2)
50.590; from Eqs. ~58! and ~67!, D50.784 corresponds to
E51.19 ebits carried by each oscillator pair, which is re-
duced by error correction and encoded Bell measurement to
E50.450 ebits carried by each of the encoded Bell pairs.

Now consider the reduction of this entanglement distilla-
tion protocol to a protocol in which Alice prepares a
squeezed state and sends it to Bob. In the squeezed-state
scheme, Alice sends the state uc(qA)& with probability

P(qA). The width D̃ of the state that Alice sends is related to
the parameter D appearing in the estimated error probability
according to

D22
5D̃22

1

2
~11A12D̃4!. ~68!

The state Alice sends is centered not at qA but at qB0

5qA(12D̃4)1/2. Nevertheless, in the squeezed state protocol
that we obtain as a reduction of the entanglement distillation
protocol, it is qA rather than qB0 that Alice uses to extract a

key bit, and whose value modulo Ap she reports to Bob. The
error probability that is required to be below 11% to ensure
security is the probability that error correction adjusts Bob’s
measurement outcome to a value that differs from qA ~not

qB0) by an odd multiple of Ap . As we have noted, this error
probability is below 11% for D,0.784, which @from Eq.

~62!# corresponds to D̃,0.749; this value should be com-

pared to the value D̃51 for an oscillator in its vacuum state.
Thus, secure squeezed-state key distribution is possible in
principle using single-mode squeezed states, provided that

the squeeze parameter r defined by D̃5e2r satisfies r.

2loge(0.749)50.289. When interpreted as suppression, rela-
tive to vacuum noise, of the quantum noise afflicting the
squeezed observable, this amount of squeezing can be ex-

pressed as 10 log10(D̃22)52.51 dB.

The error rate is below 1% for D̃,0.483 (D,0.486),
and drops precipitously for more highly squeezed states, e.g.,

to below 1026 for D̃;D,0.256. For example, if the noise in
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the channel is weak, Alice and Bob can use the Gaussian

squeezed state protocol with D̃;1/2 ~see Fig. 2! to generate
a shared bit via the q or p channel with an error rate
(;1.2%) comfortably below 11%; thus the protocol is se-
cure if augmented with classical binary error correction and
privacy amplification.

Of course, if the channel noise is significant, there will be
a more stringent limit on the required squeezing. Many kinds
of noise ~for instance, absorption of photons in an optical
fiber! will cause a degradation of the squeezing factor. If this
is the only consequence of the noise, the squeezing exiting
the channel should still satisfy D,0.784 for the protocol to
be secure, as we discuss in more detail in Sec. VII. Other-
wise, the errors due to imperfect squeezing must be added to
errors from other causes to determine the overall error rate.

So far we have described the case where the p states and
the q states are squeezed by equal amounts. The protocol
works just as well in the case of unequal squeezing, if we
adjust the error correction procedure accordingly. Consider
carrying out the entanglement distillation using the code with
general parameter a rather than a51. The error rates are
unaffected if the squeezing in q and p is suitably rescaled, so
that the width of the q and p states becomes

Dq5Da , Dp5D/a . ~69!

In this modified protocol, Alice broadcasts the value of q

modulo Apa or the value of p modulo Ap/a . Bob subtracts
the value broadcast by Alice from his own measurement out-
come, and then adjusts the difference he obtains to the near-

est multiple of Apa or Ap/a . The key bit is determined by

whether the multiple of Apa , or Ap/a , is even or odd.
Thus, for example, the error rate sustained due to imper-

fect squeezing will have the same ~acceptably small! value
irrespective of whether Alice sends states with Dq5Dp

51/2, or Dq51 and Dp51/4; Alice can afford to send co-

herent states about half the time if she increases the squeez-
ing of her other transmissions by a compensating amount.

Can we devise a secure quantum key distribution scheme
in which Alice always sends coherent states? To obtain, as a
reduction of an entanglement distillation protocol, a protocol

in which coherent states (D̃51) are always transmitted, we
must consider the case D2

52. But in that case, the initial
state of Alice’s and Bob’s oscillators is a product state.
Bob’s value of q or p is completely uncorrelated with Al-
ice’s, and the protocol obviously won’t work. This observa-
tion does not exclude secure quantum key distribution
schemes using coherent states, but if they exist another
method would be needed to prove the security of such
schemes.

In general, the source that we obtain by measuring half of
the entangled pair is biased. If D is not small compared to
Ap , then Alice is significantly more likely to generate a 0
than a 1 as her raw key bit. But as we have already discussed
in Sec. III D, after error correction and privacy amplification,
the protocol is secure if pX and pZ are both less than 11%.
This result follows because the squeezed-state protocol is
obtained as a reduction of an entanglement distillation pro-
tocol.

VII. LOSSES AND OTHER IMPERFECTIONS

The ideal BB84 quantum key distribution protocol is
provably secure. But in practical settings, the protocol cannot
be implemented perfectly, and the imperfections can com-
promise its security. ~See Ref. @18# for a recent discussion.!
For example, if the transmitted qubit is a photon polarization
state carried by an optical fiber, losses in the fiber, detector
inefficiencies, and dark counts in the detector all can impose
serious limitations. In particular, if the photons travel a dis-
tance large compared to the attenuation length of the fiber,
then detection events will be dominated by dark counts, lead-
ing to an unacceptably large error rate.

Furthermore, most present-day implementations of quan-
tum cryptography use, not single-photon pulses, but weak
coherent pulses; usually the source ‘‘emits’’ the vacuum
state, occasionally it emits a single photon, and with nonneg-
ligible probability it emits two or more photons. Quantum
key distribution with weak coherent pulses is vulnerable to a
‘‘photon number splitting’’ attack, in which the eavesdrop-
per diverts extra photons, and acquires complete information
about their polarization without producing any detectable
disturbance. A weaker pulse is less susceptible to photon
number splitting, but increases the risk that the detector will
be swamped by dark counts.

From a practical standpoint, quantum key distribution
with squeezed states may not necessarily be better than
BB84, but it is certainly different. Alice requires a source
that produces a specified squeezed state on demand; fortu-
nately, the amount of squeezing needed to ensure the secu-
rity of the protocol is relatively modest. Bob uses homodyne
detection to measure a specified quadrature amplitude; this
measurement may be less sensitive to detector defects than
the single-photon measurement required in BB84.

But, as in the BB84 protocol, losses due to the absorption

FIG. 2. Probability distributions for the squeezed quantum key

distribution protocol, with squeeze factor D̃51/2. The dotted line is

the probability distribution P @a Gaussian with variance

(1/2D̃2)(12D̃4)# that Alice samples to determine the center of the

squeezed signal that she sends. The solid lines are the probability

distributions in position or momentum of the squeezed states ~Gaus-

sians with variance D̃2/2, shown with a different vertical scale than

P) centered at 2Ap , 0, and Ap . The intrinsic error probability due

to imperfect squeezing ~prior to binary error correction and privacy

amplification! is 1.2%.
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of photons in the channel will enhance the error rate in
squeezed-state quantum key distribution, and so will limit
the distance over which secure key exchange is possible. We
study this effect by modeling the loss as a damping channel
described by the master equation

ṙ5GS ara†
2

1

2
a†ar2

1

2
ra†a D ; ~70!

here r is the density operator of the oscillator, a is the anni-
hilation operator, and G is the decay rate. Eq. ~70! implies
that

d

dt
^a†ka l& t52

1

2
~k1l !G^a†ka l& t , ~71!

where

^O& t5Tr@Or~ t !# ~72!

denotes the expectation value of the operator O at time t.
Integrating, we find

^a†ka l&T5e2~1/2 !(k1l)GT^a†ka l&0 , ~73!

and so, by expanding in power series,

^: f ~a†,a !:&T5^: f ~ja†,ja !:&0 , j5e2GT/2, ~74!

where f is an analytic function, and : f : denotes normal or-
dering ~that is, in : f (a†,a):, all a†’s are placed to the left of
all a’s!.

In particular, by normal ordering and applying Eq. ~74!,
we find

^e ibq&T5e2~1/4 !(12j2)b2

^e ibjq&0 , ~75!

where q5(a1a†)/A2 is the position operator. A similar for-
mula applies to the momentum operator or any other quadra-
ture amplitude. Equation ~75! shows that if the initial state at
t50 is Gaussian (q is governed by a Gaussian probability
distribution!, then so is the final state at t5T @19#. The mean

^q& and variance Dq2 of the initial and final distributions are
related by

^q&T5j^q&0 ,S DqT
2
2

1

2
D5j2S Dq0

2
2

1

2
D . ~76!

Now let us revisit the analysis of Sec. VI, taking into
account the effects of losses. We imagine that Alice prepares
entangled pairs of oscillators in the state Eq. ~55!, and sends
one oscillator to Bob through the lossy channel; then they
perform entanglement purification. This protocol reduces to
one in which Alice prepares a squeezed state that is trans-
mitted to Bob. In the squeezed-state protocol, Alice decides
what squeezed state to send by sampling the probability dis-
tribution P(qA) given in Eq. ~63!; if she chooses the value
qA , then she prepares and sends the state uc(qA)& in Eq.
~60!. When it enters the channel, this state is governed by the
probability distribution

P~qBuqA!5

1

D̃Ap
exp@2~qB2qB0!2/D̃2# , ~77!

and when Bob receives the state this distribution has, accord-
ing to Eq. ~76!, evolved to

P8~qBuqA!5

1

D8Ap
exp@2~qB2qB08 !2/D8

2# , ~78!

where

qB08 5jqB0[j~12D̃4!1/2qA ,

~79!
D8

2
5j2D̃2

1~12j2!.

By integrating over qA in P8(qA ,qB)5P8(qBuqA)P(qA), we
can obtain the final marginal distribution for the difference
qA2qB :

P8~qA2qB ;j !5

1

DjAp
exp@2~qA2qB!2/Dj

2# ,

~80!

Dj
22

5

D̃2

11j2
22j~12D̃4!1/2

1~12j2!D̃2
,

which generalizes Eq. ~68!. We can express the damping
factor j as

j5e2kd/2, ~81!

where d is the length of the channel and k21 is its attenua-
tion length ~typically of the order of 10 km in an optical
fiber!.

The protocol is secure if the error rate in both bases is
below 11%; as in Sec. VI, this condition is satisfied for Dj

,0.784. Thus we can calculate, as a function of the initial

squeezing parameter D̃ , the maximum distance dmax that the
signal states can be transmitted without compromising the
security of the protocol.

For D̃!1, we find

k dmax5~1.57!D̃1O~D̃2!. ~82!

Thus, the more highly squeezed the input signal, the less we
can tolerate the losses in the channel. This feature, which
sounds surprising on first hearing, arises because the amount
of squeezing is linked with the size of the range in qA that
Alice samples. Errors are not unlikely if losses cause the

value of qB to decay by an amount comparable to Ap/2. In

our protocol, if the squeezed states have a small width D̃ ,
then the typical states prepared by Alice are centered at a

large value qA;D̃21; therefore, a small fractional decay can
cause an error.

On the other hand, even without losses, Alice needs to

send states with D̃,0.749 to attain a low enough error rate,

and as D̃ approaches 0.749 from below, again only a small
loss is required to push the error probability over 11%. Thus
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there is an intermediate value of D̃ that optimizes the value
of dmax , as shown in Fig. 3. This optimal distance,

k dmax,opt'0.367, ~83!

is attained for D̃;0.426.
Our analysis so far applies if Alice and Bob have no prior

knowledge about the properties of the channel. But if the loss
j2

5e2kd is known accurately, they might achieve a lower
error rate if Bob compensates for the loss by multiplying his
measurement outcome by j21 before proceeding with error
correction and privacy amplification. This amplification of
the signal by Bob is entirely classical, but to analyze the
security in this case, we may consider an entanglement pu-
rification scenario in which Bob applies a quantum amplifier
to the signal before measuring. Since the quantum amplifier
~which amplifies all quadrature amplitudes, not just the one
that Bob measures! is noisier, the protocol will be no less
secure if Bob uses a classical amplifier rather than a quantum
one.

So now we consider whether entanglement purification
will succeed, where the channel acting on Bob’s oscillator in
each EPR pair consists of transmission through the lossy
fiber followed by processing in Bob’s amplifier. If the error
rate is low enough, the key will be secure even if the ampli-
fier, as well as the optical fiber, are under Eve’s control.

Bob’s linear amplifier can be modeled by a master equa-
tion like Eq. ~70!, but with a and a† interchanged, and where
G is now interpreted as a rate of gain. The solution is similar
to Eq. ~74!, except the normal ordering is replaced by anti-
normal ordering ~all a’s are placed to the left of all a†’s!, and
with j2 replaced by the gain j22

5eGT>1. We conclude that
the amplifier transforms a Gaussian input state to a Gaussian

output state, and that the mean ^q& and variance Dq2 of the
Gaussian position distribution are modified according to

^q&→j21^q&,

~84!

Dq2
→j22Dq2

1

1

2
~j22

21 !.

Other quadrature amplitudes are transformed similarly.
Now suppose that a damping channel with loss j2 is fol-

lowed by an amplifier with gain j22. Then the mean of the
position distribution is left unchanged, but the variance
evolves as

Dq2
→j22S j2Dq2

1

1

2
~12j2! D

1

1

2
~j22

21 !5Dq2
1~j22

21 !. ~85!

For this channel, the probability distribution governing
qA2qB is again a Gaussian as in Eq. ~80!, but now its width
is determined by

~Dj!amp
22

5

1

2
D̃2

12~12D̃4!1/2
1~j22

21 !D̃2
. ~86!

Error rates in the q and p bases are below 11%, and the
protocol is provably secure, for (Dj)amp,0.784.

By solving (Dj)amp50.784, we can find the maximum
distance d ~where j22

5ekd) for which our proof of security
holds; the result is plotted in Fig. 3. When the squeezed input

is narrow, D̃!1, the solution becomes

j22[ exp~k dmax!51.3071O~D̃2!, ~87!

or

k dmax'0.268. ~88!

Comparing the two curves in Fig. 3, we see that the protocol
with amplification remains secure out to longer distances
than the protocol without amplification, if the input is highly
squeezed. In that case, the error rate in the protocol without
amplification is dominated by the decay of the signal, which
can be corrected by the amplifier. But if the input is less
highly squeezed, then the protocol without amplification re-
mains secure to longer distances. In that case, the nonzero
width of the signal state contributes significantly to the error
rate; the amplifier noise broadens the state further.

With more sophisticated protocols that incorporate some
form of quantum error correction, continuous-variable quan-
tum key distribution can be extended to longer distances. For
example, if Alice and Bob share some noisy pairs of oscil-
lators, they can purify the entanglement using protocols that
require two-way classical communication @11,12#. After
pairs with improved fidelity are distilled, Alice, by measur-
ing a quadrature amplitude in her laboratory, prepares a
squeezed state in Bob’s; the key bits can be extracted using

FIG. 3. The effect of channel losses on the security of quantum

key distribution using squeezed states. The maximum length kdmax

of the channel ~in units of the attenuation length! is plotted as a

function of the width D̃ of the squeezed state that enters the chan-

nel. For a longer channel, the error rate due to losses is too large

and the proof of security breaks down. The curve labeled ‘‘with

amplification’’ applies to the protocol in which the signal is ampli-

fied prior to detection in order to compensate for the losses; the

curve labeled ‘‘without amplification’’ applies to the protocol in

which the signal is not amplified.
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the same error correction and privacy amplification schemes
that we have already described.

Our proof of security applies to the case where squeezed
states are carried by a lossy channel ~assuming a low enough
error rate!, because this scenario can be obtained as a
reduction of a protocol in which Alice and Bob apply
entanglement distillation to noisy entangled pairs of
oscillators that they share. More generally, the proof
applies to any imperfections that can be accurately modeled
as a quantum operation that acts on the shared pairs
before Alice and Bob measure them. As one example,
suppose that when Alice prepares the squeezed state, it is
not really the q or p squeezed state that the protocol calls
for, but is instead slightly rotated in the quadrature
plane. And suppose that when Bob performs his homodyne
measurement, he does not really measure q or p, but actually
measures a slightly rotated quadrature amplitude. In
the entanglement distillation scenario, the imperfection
of Alice’s preparation can be modeled as a superoperator
that acts on her oscillator before she makes a perfect
quadrature measurement, and the misalignment of Bob’s
measurement can likewise be modeled by a superoperator
acting on his oscillator before he makes a perfect quadrature
measurement. Therefore, the squeezed-state protocol with
this type of imperfect preparation and measurement is
secure, as long as the error rate is below 11% in both bases.
Of course, this error rate includes both errors caused by the
channel and errors due to the imperfection of the preparation
and measurement.

We also recall that in the protocols of Sec. V, Alice’s
preparation and Bob’s measurement were performed to
m bits of accuracy. In the entanglement distillation scenario,
this finite resolution can likewise be well modeled by a
quantum operation that shifts the oscillators by an amount
of order 22m before Alice and Bob perform their
measurements. Thus the proof applies, with the finite
resolution included among the effects contributing to the
permissible 11% error rate. The finite accuracy causes
trouble only when Alice’s and Bob’s results lie a distance

apart that is within about 22m of Ap/2; thus, just a few bits
of accuracy should be enough to make this additional source
of error quite small.

VIII. CONCLUSIONS

We have described a secure protocol for quantum key
distribution based on the transmission of squeezed states of a
harmonic oscillator. Conceptually, our protocol resembles
the BB84 protocol, in which single qubit states are transmit-
ted. The BB84 protocol is secure because monitoring the
observable Z causes a detectable disturbance in the observ-
able X, and vice versa. The squeezed state protocol is secure
because monitoring the observable q causes a detectable dis-
turbance in the observable p, and vice versa. Security is en-
sured even if the adversary uses the most general eavesdrop-
ping strategies allowed by the principles of quantum
mechanics.

In secure versions of the BB84 scheme, Alice’s
source should emit single photons that Bob detects. Since

the preparation of single-photon states is difficult, and

photon detectors are inefficient, at least in some settings

the squeezed-state protocol may have practical

advantages, perhaps including a higher rate of key produc-

tion. Squeezing is also technically challenging, but the

amount of squeezing required to ensure security is relatively

modest.

The protocol we have described in detail uses each

transmitted oscillator to carry one raw key bit. An

obvious generalization is a protocol based on the code

with stabilizer generators given in Eq. ~9!, which encodes

a d-dimensional protected Hilbert space in each oscillator.

Then a secure key can be generated more efficiently,

but more squeezing is required to achieve an acceptable

error rate.

Our protocols, including their classical error correction

and privacy amplification, are based on CSS codes: each

of the stabilizer generators is either of the ‘‘q’’ type

~the exponential of a linear combination of n q’s! or of the

‘‘p type’’ ~the exponential of a linear combination of n p’s!.
The particular CSS codes that we have described in

detail belong to a restricted class: they are concatenated

codes such that each oscillator encodes a single qubit,

and then a block of those single-oscillator qubits are

assembled to encode k better protected qubits using a

binary @@n ,k ,d## stabilizer code. There are more general

CSS codes that embed k protected qubits in the Hilbert

space of n oscillators but do not have this concatenated

structure @4#; secure key distribution protocols can be based

on these too. The quantum part of the protocol is still the

same, but the error correction and privacy amplification

make use of more sophisticated close packings of spheres in

n dimensions.

We analyzed a version of the protocol in which Alice

prepares Gaussian squeezed states governed by a Gaussian

probability distribution. The states, and the probability dis-

tribution that Alice samples, need not be Gaussian for the

protocol to be secure. However, for other types of states and

probability distributions, the error rates might have to be

smaller to ensure the security of the protocol.

Our proof of security applies to a protocol in which the

squeezed states propagate through a lossy channel, over a

distance comparable to the attentuation length of the channel.

To extend continuous-variable quantum key distribution to

much larger distances, quantum error correction or entangle-

ment distillation should be invoked.

Strictly speaking, the security proof we have presented

applies if Alice’s state preparation ~including the probability

distribution that she samples! can be exactly realized by

measuring half of an imperfectly entangled state of two os-

cillators. The protocol remains secure if Alice’s source can

be well approximated in this way. Our proof does not work if

Alice occasionally sends two identically prepared oscillators
when she means to send just one; the eavesdropper can steal
the extra copy, and then the privacy amplification is not
guaranteed to reduce the eavesdropper’s information to an
exponentially small amount.
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