
Secure Ranked Keyword Search over Encrypted
Cloud Data

Cong Wang†, Ning Cao‡, Jin Li†, Kui Ren†, and Wenjing Lou‡
†Department of ECE, Illinois Institute of Technology, Chicago, IL 60616

Email: {cong, jli, kren}@ece.iit.edu
‡Department of ECE, Worcester Polytechnic Institute, Worcester, MA 01609

Email: {ncao, wjlou}@ece.wpi.edu

Abstract—As Cloud Computing becomes prevalent, sensitive
information are being increasingly centralized into the cloud. For
the protection of data privacy, sensitive data has to be encrypted
before outsourcing, which makes effective data utilization a
very challenging task. Although traditional searchable encryption
schemes allow users to securely search over encrypted data
through keywords, these techniques support only boolean search,
without capturing any relevance of data files. This approach
suffers from two main drawbacks when directly applied in the
context of Cloud Computing. On the one hand, users, who do
not necessarily have pre-knowledge of the encrypted cloud data,
have to postprocess every retrieved file in order to find ones
most matching their interest; On the other hand, invariably
retrieving all files containing the queried keyword further incurs
unnecessary network traffic, which is absolutely undesirable in
today’s pay-as-you-use cloud paradigm.

In this paper, for the first time we define and solve the problem
of effective yet secure ranked keyword search over encrypted
cloud data. Ranked search greatly enhances system usability by
returning the matching files in a ranked order regarding to cer-
tain relevance criteria (e.g., keyword frequency), thus making one
step closer towards practical deployment of privacy-preserving
data hosting services in Cloud Computing. We first give a
straightforward yet ideal construction of ranked keyword search
under the state-of-the-art searchable symmetric encryption (SSE)
security definition, and demonstrate its inefficiency. To achieve
more practical performance, we then propose a definition for
ranked searchable symmetric encryption, and give an efficient
design by properly utilizing the existing cryptographic primi-
tive, order-preserving symmetric encryption (OPSE). Thorough
analysis shows that our proposed solution enjoys “as-strong-as-
possible” security guarantee compared to previous SSE schemes,
while correctly realizing the goal of ranked keyword search.
Extensive experimental results demonstrate the efficiency of the
proposed solution.

I. INTRODUCTION

Cloud Computing enables cloud customers to remotely
store their data into the cloud so as to enjoy the on-demand
high quality applications and services from a shared pool of
configurable computing resources [1]. The benefits brought
by this new computing model include but are not limited to:
relief of the burden for storage management, universal data
access with independent geographical locations, and avoidance
of capital expenditure on hardware, software, and personnel
maintenances, etc [2].

With the prevalence of cloud services, more and more sen-
sitive information are being centralized into the cloud servers,

such as emails, personal health records, private videos and
photos, company finance data, government documents, etc [3].
To protect data privacy and combat unsolicited accesses,
sensitive data has to be encrypted before outsourcing [4] so
as to provide end-to-end data confidentiality assurance in the
cloud and beyond. However, data encryption makes effective
data utilization a very challenging task given that there could
be a large amount of outsourced data files. Besides, in Cloud
Computing, data owners may share their outsourced data with
a large number of users, who might want to only retrieve
certain specific data files they are interested in during a given
session. One of the most popular ways to do so is through
keyword-based search. Such keyword search technique allows
users to selectively retrieve files of interest and has been
widely applied in plaintext search scenarios [5]. Unfortunately,
data encryption, which restricts user’s ability to perform key-
word search and further demands the protection of keyword
privacy, makes the traditional plaintext search methods fail for
encrypted cloud data.

Although traditional searchable encryption schemes
(e.g. [6]–[10], to list a few) allow a user to securely
search over encrypted data through keywords without first
decrypting it, these techniques support only conventional
Boolean keyword search1, without capturing any relevance of
the files in the search result. When directly applied in large
collaborative data outsourcing cloud environment, they may
suffer from the following two main drawbacks. On the one
hand, for each search request, users without pre-knowledge of
the encrypted cloud data have to go through every retrieved
file in order to find ones most matching their interest, which
demands possibly large amount of postprocessing overhead;
On the other hand, invariably sending back all files solely
based on presence/absence of the keyword further incurs large
unnecessary network traffic, which is absolutely undesirable
in today’s pay-as-you-use cloud paradigm. In short, lacking
of effective mechanisms to ensure the file retrieval accuracy
is a significant drawback of existing searchable encryption
schemes in the context of Cloud Computing. Nonetheless, the
state-of-the-art in information retrieval (IR) community has
already been utilizing various scoring mechanisms [11] to

1In the existing symmetric key based searchable encryption schemes, the
support of disjunctive Boolean operation (OR) on multiple keywords searches
still remains an open problem.

quantify and rank-order the relevance of files in response to
any given search query. Although the importance of ranked
search has received attention for a long history in the context
of plaintext searching by IR community, surprisingly, it is
still being overlooked and remains to be addressed in the
context of encrypted data search.

Therefore, how to enable a searchable encryption system
with support of secure ranked search, is the problem tackled
in this paper. Our work is among the first few ones to ex-
plore ranked search over encrypted data in Cloud Computing.
Ranked search greatly enhances system usability by returning
the matching files in a ranked order regarding to certain
relevance criteria (e.g., keyword frequency), thus making one
step closer towards practical deployment of privacy-preserving
data hosting services in the context of Cloud Computing. To
achieve our design goals on both system security and usability,
we propose to bring together the advance of both crypto and IR
community to design the ranked searchable symmetric encryp-
tion scheme, in the spirit of “as-strong-as-possible” security
guarantee. Specifically, we explore the statistical measure ap-
proach from IR and text-mining to embed weight information
(i.e. relevance score) of each file during the establishment
of searchable index before outsourcing the encrypted file
collection. As directly outsourcing relevance scores will leak
lots of sensitive frequency information against the keyword
privacy, we then integrate a recent crypto primitive [12] order-
preserving symmetric encryption (OPSE) and properly modify
it for our purpose to protect those sensitive weight information,
while providing efficient ranked search functionalities. Our
contribution can be summarized as follows:
1) For the first time, we define the problem of secure ranked
keyword search over encrypted cloud data, and provide such
an effective protocol, which fulfills the secure ranked search
functionality with little relevance score information leakage
against keyword privacy.
2) Thorough security analysis shows that our ranked search-
able symmetric encryption scheme indeed enjoys “as-strong-
as-possible” security guarantee compared to previous SSE
schemes.
3) Extensive experimental results demonstrate the effectiveness
and efficiency of the proposed solution.

The rest of the paper is organized as follows. Section II
gives the system and threat model, our design goals, notations
and preliminaries. Then we provide the framework, definitions
and basic scheme in Section III, followed by Section IV,
which gives the detailed description of our ranked searchable
symmetric encryption system. Section V and VI gives the
security analysis and performance evaluation, respectively.
Related work for both searchable encryption and secure result
ranking is discussed in Section VII. Finally, Section VIII gives
the concluding remark of the whole paper.

II. PROBLEM STATEMENT

A. The System and Threat Model

We consider a cloud data hosting service involving three
different entities, as illustrated in Fig. 1: data owner (O),

Owner
out
sou
rce

Files

outsou
rce

Encrypted
Files

search request

rank-ordered
file retrieval

Index

Users

Cloud server

Fig. 1: Architecture of the search over encrypted cloud data

data user (U), and cloud server (CS). Data owner has a
collection of n data files C = (F1, F2, . . . , Fn) that he wants
to outsource on the cloud server in encrypted form while still
keeping the capability to search through them for effective data
utilization reasons. To do so, before outsourcing, data owner
will first build a secure searchable index I from a set of m
distinct keywords W = (w1, w2, ..., wm) extracted2 from the
file collection C, and store both the index I and the encrypted
file collection C on the cloud server.

We assume the authorization between the data owner and
users is appropriately done. To search the file collection
for a given keyword w, an authorized user generates and
submits a search request in a secret form—a trapdoor Tw

of the keyword w—to the cloud server. Upon receiving the
search request Tw, the cloud server is responsible to search
the index I and return the corresponding set of files to the
user. We consider the secure ranked keyword search problem
as follows: the search result should be returned according
to certain ranked relevance criteria (e.g., keyword frequency
based scores, as will be introduced shortly), to improve file
retrieval accuracy for users without prior knowledge on the
file collection C. However, cloud server should learn nothing
or little about the relevance criteria themselves as they exhibit
significant sensitive information against keyword privacy. To
reduce bandwidth, the user may send an optional value k along
with the trapdoor Tw and cloud server only sends back the
top-k most relevant files to the user’s interested keyword w.

We consider an “honest-but-curious” server in our model,
which is consistent with most of the previous searchable
encryption schemes. We assume the cloud server acts in an
“honest” fashion and correctly follows the designated protocol
specification, but is “curious” to infer and analyze the message
flow received during the protocol so as to learn additional
information. In other words, the cloud server has no intention
to actively modify the message flow or disrupt any other kind
of services.

B. Design Goals

To enable ranked searchable symmetric encryption for effec-
tive utilization of outsourced cloud data under the aforemen-
tioned model, our system design should achieve the following
security and performance guarantee. Specifically, we have the

2To reduce the size of index, a list of standard IR techniques can be adopted,
including case folding, stemming, and stop words etc. We omit this process of
keyword extraction and refinement and refer readers to [5] for more details.

following goals: i) Ranked keyword search: to explore differ-
ent mechanisms for designing effective ranked search schemes
based on the existing searchable encryption framework; ii)
Security guarantee: to prevent cloud server from learning the
plaintext of either the data files or the searched keywords, and
achieve the as-strong-as-possible security strength compared
to the existing searchable encryption schemes; iii) Efficiency:
above goals should be achieved with minimum communication
and computation overhead.

C. Notation and Preliminaries

• C – the file collection to be outsourced, denoted as a set
of n data files C = (F1, F2, . . . , Fn).

• W – the distinct keywords extracted from file collection
C, denoted as a set of m words W = (w1, w2, ..., wm).

• id(Fj) – the identifier of file Fj that can help uniquely
locate the actual file.

• I – the index built from the file collection, including a
set of posting lists {I(wi)}, as introduced below.

• Twi
– the trapdoor generated by a user as a search request

of keyword wi.
• F(wi) – the set of identifiers of files in C that contain

keyword wi.
• Ni – the number of files containing the keyword wi and

Ni = |F(wi)|.
We now introduce some necessary information retrieval

background for our proposed scheme:
Inverted Index In information retrieval, inverted index (also
referred to as postings file) is a widely used indexing struc-
ture that stores a list of mappings from keywords to the
corresponding set of files that contain this keyword, allowing
full text search [11]. For ranked search purposes, the task of
determining which files are most relevant is typically done by
assigning a numerical score, which can be precomputed, to
each file based on some ranking function introduced below.
One example posting list of an index is shown in Fig. 2. We
will use this inverted index structure to give our basic ranked
searchable symmetric encryption construction.
Ranking Function In information retrieval, a ranking function
is used to calculate relevance scores of matching files to
a given search request. The most widely used statistical
measurement for evaluating relevance score in the information
retrieval community uses the TF × IDF rule, where TF (term
frequency) is simply the number of times a given term or
keyword (we will use them interchangeably hereafter) appears
within a file (to measure the importance of the term within
the particular file), and IDF (inverse document frequency)
is obtained by dividing the number of files in the whole
collection by the number of files containing the term (to
measure the overall importance of the term within the whole
collection). Among several hundred variations of the TF× IDF
weighting scheme, no single combination of them outperforms
any of the others universally [13]. Thus, without loss of
generality, we choose an example formula that is commonly
used and widely seen in the literature (see Chapter 4 in [5]) for
the relevance score calculation in the following presentation.

Word wi

File ID Fi1 Fi2 Fi3 · · · FiNi

Relevance Score 6.52 2.29 13.42 4.76 13.80

Fig. 2: An example posting list of the inverted index.

Its definition is as follows:

Score(Q,Fd) =
∑

t∈Q

1
|Fd| · (1 + ln fd,t) · ln(1 +

N

ft
). (1)

Here Q denotes the searched keywords; fd,t denotes the TF of
term t in file Fd; ft denotes the number of files that contain
term t; N denotes the total number of files in the collection;
and |Fd| is the length of file Fd, obtained by counting the
number of indexed terms, functioning as the normalization
factor.

III. THE DEFINITIONS AND BASIC SCHEME

In the introduction we motivated the ranked keyword search
over encrypted data to achieve economies of scale for Cloud
Computing. In this section, we start from the review of existing
searchable symmetric encryption (SSE) schemes and provide
the definitions and framework for our proposed ranked search-
able symmetric encryption (RSSE). Note that by following
the same security guarantee of existing SSE, it would be
very inefficient to support ranked search functionality over
encrypted data, as demonstrated in our basic scheme. The
discussion of its demerits will lead to our proposed scheme.

A. Background on Searchable Symmetric Encryption

Searchable encryption allows data owner to outsource his
data in an encrypted manner while maintaining the selectively-
search capability over the encrypted data. Generally, search-
able encryption can be achieved in its full functionality using
an oblivious RAMs [14]. Although hiding everything during
the search from a malicious server (including access pattern),
utilizing oblivious RAM usually brings the cost of logarithmic
number of interactions between the user and the server for
each search request. Thus, in order to achieve more efficient
solutions, almost all the existing work on searchable encryp-
tion literature resort to the weakened security guarantee, i.e.,
revealing the access pattern and search pattern but nothing
else. Here access pattern refers to the outcome of the search
result, i.e., which files have been retrieved. The search pattern
includes the equality pattern among the two search requests
(whether two searches were performed for the same keyword),
and any information derived thereafter from this statement.
We refer readers to [10] for the thorough discussion on SSE
definitions.

Having a correct intuition on the security guarantee of
existing SSE literature is very important for us to define our
ranked searchable symmetric encryption problem. As later we
will show that following the exactly same security guarantee
of existing SSE scheme, it would be very inefficient to achieve
ranked keyword search, which motivates us to further weaken

BuildIndex(K, C)
1. Initialization:

i) scan C and extract the distinct words W = (w1, w2, ..., wm) from C. For each wi ∈W , build F(wi);
2. Build posting list:

i) for each wi ∈W

• for 1 ≤ j ≤ |F(wi)|:
a) calculate the score for file Fij according to equation 2, denoted as Sij ;
b) compute Ez(Sij), and store it with Fij’s identifier 〈id(Fij)||Ez(Sij)〉 in the posting list I(wi);

3. Secure the index I:
i) for each I(wi) where 1 ≤ i ≤ m:
• encrypt all Ni entries with �′ padding 0′s, 〈0�′ ||id(Fij)||Ez(Sij)〉, with key fy(wi), where 1 ≤ j ≤ v.
• set remaining ν −Ni entries, if any, to random values of the same size as the existing Ni entries of I(wi).
• replace wi with πx(wi);

4. Output I.

Fig. 3: The details of BuildIndex(·) for Basic Scheme

the security guarantee of existing SSE appropriately (leak the
relative relevance order but not the relevance score) and re-
alize an “as-strong-as-possible” ranked searchable symmetric
encryption. Actually, this notion has been employed by cryp-
tographers in many recent work [12], [15] where efficiency is
preferred over security.

B. Definitions and Framework of RSSE System

We follow the similar framework of previously proposed
searchable symmetric encryption scheme [10] and adapt
the framework for our ranked searchable encryption sys-
tem. A ranked searchable encryption scheme consists of
four algorithms (KeyGen, BuildIndex, TrapdoorGen,
SearchIndex). And our ranked searchable encryption sys-
tem can be constructed from these four algorithms in two
phases—Setup and Retrieval:

• Setup: The data owner initializes the public and se-
cret parameters of the system by executing KeyGen,
and pre-processes the data file collection C by using
BuildIndex to generate the searchable index from
the unique words extracted from C. The owner then
encrypts the data file collection C, and publishes the index
including the keyword frequency based relevance scores
in some encrypted form, together with the encrypted
collection C to the Cloud. As part of Setup phase, the
data owner also needs to distribute the necessary secret
parameters (in our case, the trapdoor generation key) to
a group of authorized users by employing off-the-shelf
public key cryptography or more efficient primitive such
as broadcast encryption.

• Retrieval: The user uses TrapdoorGen to generate
a secure trapdoor corresponding to his interested key-
word, and submits it to the cloud server. Upon receiving
the trapdoor, the cloud server will derive a list of matched
file IDs and their corresponding encrypted relevance
scores by searching the index via SearchIndex. The
matched files should be sent back in a ranked sequence

based on the relevance scores. However, the server should
learn nothing or little beyond the order of the relevance
scores.

Note that in our design, we focus on single keyword search.
In this case, the IDF factor in equation 1 is always constant
with regard to the given searched keyword. Thus, search results
can be accurately ranked based only on the term frequency and
file length information contained within the single file using
equation 2:

Score(t, Fd) =
1
|Fd| · (1 + ln fd,t). (2)

Data owner can keep a record of these two values and pre-
calculate the relevance score, which introduces little overhead
regarding to the index building. We will demonstrate this via
experiments in the performance evaluation Section VI.

C. The Basic Scheme

Before giving our main result, we first start with a straight-
forward yet ideal scheme, where the security of our ranked
searchable encryption is the same as previous SSE schemes,
i.e., the user gets the ranked results without letting cloud
server learn any additional information more than the access
pattern and search pattern. However, this is achieved with the
trade-off of efficiency, namely, either should the user wait
for two round-trip time for each search request or he may
even lose the capability to perform top-k retrieval, resulting
the unnecessary communication overhead. The analysis of
these demerits will lead to our main result. Note that the
basic scheme we discuss here is tightly pertained to recent
work [10], though our focus in on secure result ranking.
Actually, it can be considered as the most simplified version of
searchable symmetric encryption that satisfies the non-adaptive
security definition of [10].
Basic Scheme: Let k, �, �′, p be security parameters that will
be used in Keygen(·). Let E be a semantically secure sym-
metric encryption algorithm: E : {0, 1}� × {0, 1}r → {0, 1}r.

Let ν be the maximum number of files containing word wi,
i.e., ν = maxm

i=1 Ni. This value does not need to be known
in advance for the instantiation of the scheme. Also, let f be
a pseudo-random function and π be a collision resistant hash
function with the following parameters:

• f : {0, 1}k × {0, 1}∗ → {0, 1}�
• π : {0, 1}k × {0, 1}∗ → {0, 1}p where p > log m

In practice, π(·) will be instantiated by off-the-self hash
function like SHA-1, in which case p is 160 bits.

In the Setup phase:

1) The data owner initiates the scheme by call-
ing KeyGen(1k, 1�, 1�′ , 1p), generates random keys
x, y

R←− {0, 1}k, z
R←− {0, 1}�, and outputs K =

{x, y, z, 1�, 1�′ , 1p}.
2) The data owner then builds a secure inverted index from

the file collection C by calling BuildIndex(K, C).
The details are given in Fig. 3. The �′ padding 0′s
indicate the valid posting entry.

In the Retrieval phase:

1) For an interested keyword w, the user generates a trap-
door T = (πx(w), fy(w)) by calling TrapdoorGen(w).

2) Upon receiving the trapdoor Tw, the server calls
SearchIndex(I, Tw): first locates the matching list of
the index via πx(w), uses fy(w) to decrypt the entries,
and then sends back the corresponding files according to
F(w), together with their associated encrypted relevance
scores.

3) User decrypts the relevance scores via key z and gets
the ranked search results.

Discussion: The above scheme clearly satisfies the security
guarantee of SSE, i.e., only the access pattern and search
pattern is leaked. However, the ranking is done on the user
side, which may bring in huge computation and post process-
ing overhead. Moreover, sending back all the files consumes
large undesirable bandwidth. One possible way to reduce the
communication overhead is that server first sends back all the
valid entries 〈id(Fij)||Ez(Sij)〉, where 1 ≤ j ≤ Ni. User then
decrypts the relevance score and sends cloud server another
request to retrieve the most relevant files (top-k retrieval) by
the rank-ordered decrypted scores. As the size of valid entries
〈id(Fij)||Ez(Sij)〉 is far less than the corresponding files,
significant amount of bandwidth is expected to be saved, as
long as user does not retrieve all the matching files. However,
the most obvious disadvantage is the two round-trip time for
each search request of every user. Also note that in this way,
server still learns nothing about the value of relevance scores,
but it knows the requested files are more relevant than the
unrequested ones, which inevitably leaks more information
than the access pattern and search pattern.

IV. EFFICIENT RANKED SEARCHABLE SYMMETRIC

ENCRYPTION SCHEME

The above straightforward approach demonstrates the core
problem that causes the inefficiency of ranked searchable en-
cryption. That is how to let server quickly perform the ranking

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

Relevance score

N
um

be
r

of
 p

oi
nt

s

Distribution of relevance score
for keyword "network"

Fig. 4: An example of relevance score distribution.

without actually knowing the relevance scores. To effectively
support ranked search over encrypted file collection, we now
resort to the newly developed cryptographic primitive – order
preserving symmetric encryption (OPSE) [12] to achieve more
practical performance. Note that by resorting to OPSE, our
security guarantee of RSSE is inherently weakened compared
to SSE, as we now let server know the relevance order.
However, this is the information we want to trade-off for
efficient RSSE, as discussed in previous Section III. We
will first briefly discuss the primitive of OPSE and its pros
and cons. Then we show how we can adapt it to suit our
purpose for ranked searchable encryption with an “as-strong-
as-possible” security guarantee. Finally, we demonstrate how
to choose different scheme parameters via concrete examples.

A. Using Order Preserving Symmetric Encryption

The OPSE is a deterministic encryption scheme where the
numerical ordering of the plaintexts gets preserved by the
encryption function. Boldyreva et al. [12] gives the first cryp-
tographic study of OPSE primitive and provides a construction
that is provably secure under the security framework of pseu-
dorandom function or pseudorandom permutation. Namely,
considering any order-preserving function g(·) from domain
D = {1, . . . , M} to range R = {1, . . . , N} can be uniquely
defined by a combination of M out of N ordered items, an
OPSE is then said to be secure if and only if an adversary
has to perform a brute force search over all the possible
combinations of M out of N to break the encryption scheme.
If the security level is chosen to be 80 bits, then it is suggested
to choose M = N/2 > 80 so that the total number of
combinations will be greater than 280. Their construction is
based on an uncovered relationship between a random order-
preserving function (which meets the above security notion)
and the hypergeometric probability distribution, which will
later be denoted as HGD. We refer readers to [12] for more
details about OPSE and its security definition.

At the first glance, by changing the relevance score encryp-
tion from the standard indistinguishable symmetric encryption
scheme to this OPSE, it seems to follow directly that efficient

relevance score ranking can be achieved just like in the
plaintext domain. However, as pointed out earlier, the OPSE is
a deterministic encryption scheme. This inherent deterministic
property, if not treated appropriately, will still leak a lot of
information as any deterministic encryption scheme will do.
Fig. 4 is an example of a skewed relevance score distribution
of keyword “network”, sampled from 1000 files of our test
collection. For easy exposition, we encode the actual score
into 128 levels in domain from 1 to 128. The score distribution
can be seen as keyword specific from the slope, value range
or other metrics [16]. Note that directly using OPSE will
not randomize this keyword-specific score distribution nature.
Therefore, with certain background information on the file
collection, the adversary may reverse-engineer the keyword
“network” directly from the encrypted score distribution with-
out actually breaking the trapdoor construction, nor does the
adversary need to break the OPSE.

B. Towards One-to-many Order-preserving Mapping

Therefore, we have to modify the OPSE to suit our purpose.
In order to reduce the amount of information leakage from the
deterministic property, an one-to-many OPSE scheme is thus
desired, which can flatten or obfuscate the original relevance
score distribution, increase its randomness, and still preserve
the plaintext order. To do so, we first briefly review the
encryption process of original deterministic OPSE, where a
plaintext m in domain D is always mapped to the same
random-sized non-overlapping interval bucket in range R,
determined by a keyed binary search over the range R and
the result of a random HGD sampling function. A ciphertext
c is then chosen within the bucket by using m as the seed for
some random selection function.

Our one-to-many order-preserving mapping employs the
random plaintext-to-bucket mapping of OPSE, but incorpo-
rates the unique file IDs together with the plaintext m as
the random seed in the final ciphertext chosen process. Due
to the use of unique file ID as part of random selection
seed, the same plaintext m will no longer be deterministically
assigned to the same ciphertext c, but instead a random value
within the randomly assigned bucket in range R. The whole
process is shown in Algorithm 1, adapted from [12]. Here
TapeGen(·) is a random coin generator and HYGEINV(·)
is the efficient function implemented in MATLAB as our
instance for the HGD(·) sampling function. The correctness
of our one-to-many order-preserving mapping follows directly
from the Algorithm 1. Note that our rational is to use the
OPSE block cipher as a tool for different application scenar-
ios and achieve better security, which is suggested by and
consistent with [12]. Now, if we denote OPM as our one-
to-many order-preserving mapping function with parameter:
OPM : {0, 1}� × {0, 1}log |D| → {0, 1}log |R|, our proposed
RSSE scheme can be described as follows:
In the Setup phase:

1) The data owner calls KeyGen(1k, 1�, 1�′ , 1p, |D|, |R|),
generates random keys x, y, z

R←− {0, 1}k, and output
K = {x, y, z, 1�, 1�′ , 1p, |D|, |R|}.

Algorithm 1 One-to-many Order-preserving Mapping-OPM
1: procedure OPMK(D,R,m, id(F))
2: while |D| ! = 1 do
3: {D,R} ← BinarySearch(K,D,R,m);
4: end while
5: coin

R←− TapeGen(K, (D,R, 1||m, id(F)))
6: c

coin←− R
7: Return c
8: end procedure

9: procedure BinarySearch(K,D,R,m);
10: M ← |D|; N ← |R|;
11: d← min (D)− 1; r ← min (R)− 1;
12: y ← r + �N/2	;
13: coin

R←− TapeGen(K, (D,R, 0||y))
14: x

R←− d + HYGEINV(coin,M,N, y − r);
15: if m ≤ x then
16: D ← {d + 1, . . . , x};
17: R ← {r + 1, . . . , y};
18: else
19: D ← {x + 1, . . . , d + M};
20: R ← {y + 1, . . . , r + N};
21: end if
22: Return {D,R};
23: end procedure

2) The data owner calls BuildIndex(K, C) to build the
inverted index of collection C, and uses OPMfz(wi)(·)
instead of E(·) to encrypt the scores.

In the Retrieval phase:
1) The user generates and sends a trapdoor Tw =

(πx(w), fy(w)) for an interested keyword w. Upon
receiving the trapdoor Tw, the cloud server first locates
the matching entries of the index via πx(w), and then
use fy(w) to decrypt the entry. These are the same with
basic approach.

2) The cloud server now sees the file identifiers 〈id(Fij)〉
(suppose w = wi and thus j ∈ {1, . . . , Ni})
and their associated order-preserved encrypted scores:
OPMfz(wi)(Sij).

3) The server then fetches the files and sends back them in
a ranked sequence according to the encrypted relevance
scores {OPMfz(wi)(Sij)}, or sends top-k most relevant
files if the optional value k is provided.

Discussion: With the help of order-preserving mapping, now
the server can accordingly rank the files as efficiently as for
the unencrypted score. The reason that we use different keys
(fz(wi)) to encrypt the relevance score for different posting
lists is to make the one-to-many mapping more indistinguish-
able. Therefore, the same relevance score appearing in differ-
ent lists of the index I will be mapped to different “bucket”
in R. Combining this with our one-to-many mapping will
randomize the encrypted values from an overall point of view.
Thus, we can further mitigate the useful information revealed

0 10 20 30 40 50
10

−10

10
−5

10
0

10
5

10
10

10
15

Range size representation in bit length k

Lo
gr

ith
m

ic
 s

ca
le

d
nu

m
er

ic
 v

al
ue

RHS of equation 4
LHS of equation 4
using 5⋅logM ∈ O(log M)
using 4⋅logM ∈ O(log M)

Fig. 5: Size selection of range R, given max/λ = 0.06, M =
128, and c = 1.1. The LHS and RHS denote the corresponding
side of the equation 4. Two example choices of O(log M) to
replace 5 log M + 12 in equation 4 are also included.

to the cloud server, who may be consistently interested at the
statistical analysis on the encrypted numeric value to infer the
underlying information.

C. Choosing Range Size of R
We have highlighted our idea, but there still needs some

care for implementation. Our purpose is to discard the peaky
distribution of the plaintext domain as much as possible during
the mapping, so as to eliminate the predictability of the
keyword specific score distribution on the domain D. Clearly,
according to our random one-to-many order-preserving map-
ping (Algorithm 1 line 6), the larger size the range R is set,
the less peaky feature will be preserved. However, the range
size |R| cannot be arbitrarily large as it may slow down the
efficiency of HGD function. Here, we use the min-entropy as
our tool to find the size of range R.

In information theory, the min-entropy of a discrete random
variable X is defined as: H∞(X) = − log(maxa Pr[X = a]).
The higher H∞(X) is, the more difficult the X can be
predicted. We say X has high min-entropy if H∞(X) ∈
ω(log k) [15], where k is the bit length used to denote all the
possible states of X . Note that one possible choice of H∞(X)
is (log k)c where c > 1.

Let max denote the maximum possible number of score
duplicates within the index I, and let λ denote the average
number of scores to be mapped within each posting list I(wi).
Without loss of generality, we let D = {1, . . . , M} and thus
|D| = M . Then based on above high min-entropy requirement,
we can find the least possible |R| satisfying the following
equation:

max/(|R| · 1
2

5 log M+12)
λ

≤ 2−(log(log |R|))c

. (3)

Here we use the result of [12] that the total recursive calls of
HGD sampling during an OPSE operation is a function be-
longing to O(log M), and is at most 5 log M +12 on average,
which is the expected number of times the range R will be

cut into half during the function call of BinarySearch(·). We
also assume that the one-to-many mapping is truly random
(Algorithm 1 line 5-6). Therefore, the numerator of left-hand-
side of the above equation is indeed the expected largest
number of duplicates after mapping. If we denote the range
size |R| in bits, i.e., k = log |R|, we will have:

max · 25 log M+12

2k · λ =
max ·M5

2k−12 · λ ≤ 2−(log k)c

. (4)

With the established index I, it is easy to determine the
appropriate range size |R|.

Following the same example of keyword “network” in Fig.
4, where max/λ = 0.06 (i.e., the max score duplicates is
60 and the average length of the posting list is 1000), one
can determine the ciphertext range size |R| = 246, when the
relevance score domain is encoded as 128 different levels and
c is set to be 1.1, as indicated in Fig. 5. Note that smaller
size of range |R| is possible, when we replace the upper
bound 5 log M + 12 by other relatively “loose” function of
M belonging to O(log M), e.g., 5 log M or 4 log M . Fig. 5
shows that the range |R| size can be further reduced to 234,
or 227, respectively. However, since the performance of our
scheme for |R| = 246 is already efficient enough (see Section
VI), we have not tried to compare the overall performance and
effectiveness of these different choices separately, and leave it
as one of our future work.

V. SECURITY ANALYSIS

We evaluate the security of the proposed scheme by ana-
lyzing its fulfillment of the security guarantee described in
Section II. Namely, the cloud server should not learn the
plaintext of either the data files or the searched keywords.
We start from the security analysis of our one-to-many order-
preserving mapping. Then we analyze the security strength
of the combination of one-to-many order-preserving mapping
and SSE.

A. Security Analysis for One-to-many Mapping

Our one-to-many order-preserving mapping is adapted from
the original OPSE, by introducing the file ID as the additional
seed in the final ciphertext chosen process. Since such adap-
tation only functions at the final ciphertext selection process,
it has nothing to do with the randomized plaintext-to-bucket
mapping process in the original OPSE. In other words, the only
effect of introducing file ID as the new seed is to make multiple
plaintext duplicates m’s no longer deterministically mapped to
the same ciphertext c, but instead mapped to multiple random
values within the assigned bucket in range R. This helps
flatten the ciphertext distribution to some extent after mapping.
However, such a generic adaptation alone only works well
when the number of plaintext duplicates are not large. In case
there are many duplicates of plaintext m, its corresponding
ciphertext distribution after mapping may still exhibit certain
skewness or peaky feature of the plaintext distribution, due to
the relative small size of assigned bucket from range R.

This is why we propose to appropriately enlarge R in Sec-
tion IV-C. Note that in the original OPSE, sizeR is determined

0 0.5 1 1.5 2 2.5 3

x 10
14

0

20

40

60

80

100

Order−preserving encrypted relevance score

N
um

be
r

of
 p

oi
nt

s

0 0.5 1 1.5 2 2.5 3

x 10
14

0

50

100

150

Order−preserving encrypted relevance score

N
um

be
r

of
 p

oi
nt

s

encrypted score distribution
for "network" with key

1

encrypted score distribution
for "network" with key

2

Fig. 6: Demonstration of effectiveness for one-to-many order-
preserving mapping. The mapping is derived with the same
relevance score set of keyword “network”, but encrypted with
two different random keys.

just to ensure the number of different combinations between
D and R is larger than 280. But from a practical perspective,
properly enlarging R in our one-to-many case further aims
to ensure the low duplicates (with high probability) on the
ciphertext range after mapping. This inherently increases the
difficulty for adversary to tell precisely which points in the
range R belong to the same score in the domain D, making the
order-preserving mapping as strong as possible. Note that one
disadvantage of our scheme, compared to the original OPSE,
is that fixing the range size R requires pre-knowledge on the
percentage of maximum duplicates among all the plaintexts
(i.e., max/λ in equation 3). However, such extra requirement
can be easily met in our scenario when building the searchable
index.

B. Security Analysis for Ranked Keyword Search

Compared to the original SSE, the new scheme embeds the
encrypted relevance scores in the searchable index in addition
to file ID. Thus the encrypted scores are the only additional
information that the adversary can utilize against the security
guarantee, i.e., keyword privacy and file confidentiality. Due
to the security strength of the file encryption scheme, the file
content is clearly well protected. Thus, we only need to focus
on keyword privacy.

From previous discussion, we know that as long as data
owner properly chooses the range size R sufficiently large,
the encrypted scores in the searchable index will only be a
sequence of order-preserved numeric values with very low
duplicates. Though adversary may learn partial information
from the duplicates (e.g., ciphertext duplicates may indicate
very high corresponding plaintext duplicates), the fully ran-
domized score-to-bucket assignment (inherited from OPSE)
and the highly flattened one-to-many mapping still makes it
difficult for the adversary to predict the original plaintext score
distribution, let alone reverse engineer the keywords. Also
note that we use different order-preserving encryption keys for
different posting lists, which further reduces the information

60 80 100 120 140 160 180 200 220 240 260
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
im

e
(s

ec
on

d)

Domain size of relevance score M

|R| = 240

|R| = 250

|R| = 260

Fig. 7: The time cost of single one-to-many order-preserving
mapping operation, with regarding to different choice of
parameters: the domain size of relevance score M and the
range size of encrypted score |R|.

leakage from an overall point of view. Thus, the keyword
privacy is also well preserved in our scheme.

VI. PERFORMANCE ANALYSIS

We conducted a thorough experimental evaluation of the
proposed techniques on real data set: Request for comments
database (RFC) [17]. At the time of writing, the RFC database
contains 5563 plain text entries and totals about 277 MB. This
file set contains a large number of technical keywords, many
of which are unique to the files in which they are discussed.
Our experiment is conducted using C programming language
on a Linux machine with dual Intel Xeon CPU running at
3.0GHz. Algorithms use both openssl and MATLAB libraries.
The performance of our scheme is evaluated regarding the
effectiveness and efficiency of our proposed one-to-many
order-preserving mapping, as well as the overall performance
of our RSSE scheme, including the cost of index construction
as well as the time necessary for searches.

A. Effectiveness of One-to-many Order Preserving Mapping

As indicated in Section IV-B, applying the proposed one-
to-many mapping will further randomize the distribution of
the encrypted values, which mitigates the chances of reverse-
engineering the keywords by adversary. Fig. 6 demonstrates
the effectiveness of our proposed scheme, where we choose
|R| = 246. The two figures shows the value distribution
after one-to-many mapping with as input the same relevance
score set of keyword “network”, but encrypted with two
different random keys. Note that due to our safe choice of
|R| (see Section IV-C) and the relative small number of total
scores per posting list (up to 1000), we do not have any
duplicates after one-to-many order-preserving score mapping.
However, for easy comparison purposes, the distribution in
Fig. 6 is obtained with putting encrypted values into 128
equally spaced containers, as we do for the original score.
Compared to previous Fig. 4, where the distribution of raw
score is highly skewed, it can be seen that we indeed obtain

Number of files Per keyword list size Per keyword list build time

1000 12.414 KB 5.44s

TABLE I: Index construction overhead for 1000 RFC files.

two differently randomized value distribution. This is due
to both the randomized score-to-bucket assignment inherited
from the OPSE, and the one-to-many mapping. The former
allows the same score mapped to different random-sized non-
overlapping bucket, while the latter further obfuscates the
score-to-ciphertext mapping accordingly. This confirms with
our security analysis that the exposure of frequency informa-
tion to the adversaries (the server in our case), utilized to
reverse-engineer the keyword, can be further minimized.

B. Efficiency of One-to-many Order-Preserving Mapping

As shown in Section IV-C, the efficiency of our proposed
one-to-many order-preserving mapping is determined by both
the size of score domain M and the range R. M affects
how many rounds (O(log M)) the procedure BinarySearch(·)
or HGD(·) should be called. Meanwhile, M together with
R both impact the time consumption for individual HGD(·)
cost. That’s why the time cost of single one-to-many mapping
order-preserving operation goes up faster than logarithmic,
as M increases. Fig. 7 gives the efficiency measurement of
our proposed scheme. The result represents the mean of 100
trials. Note that even for large range R, the time cost of one
successful mapping is still finished in 200 milliseconds, when
M is set to be our choice 128. Specifically, for |R| = 246,
the time cost is less than 70 milliseconds. This is far more
efficient than the order-preserving approach used in [16],
[18], where [18] needs to keep lots of metadata to pre-build
many different buckets on the data owner side, and [16]
requires the pre-sampling and training of the relevance scores
to be outsourced. However, our approach only needs the pre-
generation of random keys.

C. Performance of Overall RSSE System

1) Index Construction: To allow for ranked keyword
search, an ordinary inverted index attaches a relevance score to
each posting entry. Our approach replaces the original scores
with the ones after one-to-many order-preserving mapping.
Specifically, it only introduces the mapping operation cost,
additional bits to represent the encrypted scores, and overall
entry encryption cost, compared to the original inverted index
construction. Thus, we only list in Table I our index con-
struction performance for a collection of 1000 RFC files. The
index size and construction time listed were both per-keyword,
meaning the posting list construction varies from one keyword
to another. This was chosen as it removes the differences of
various keyword set construction choices, allowing for a clean
analysis of just the overall performance of the system. Note
that the additional bits of encrypted scores is not a main issue
due to the cheap storage cost on nowadays cloud servers.
However, the one-to-many order-preserving mapping (about
70 ms per valid entries in the posting list) is a dominant factor

0 100 200 300
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
im

e
(m

s)

Value k for top−k retrieval

Fig. 8: The time cost for top-k retrieval.

for index construction time, as our raw-index only consumes
2.31s on average.

2) Efficiency of Search: The search time includes fetching
the posting list in the index, decrypting and rank-ordering each
entries. Our focus is on top-k retrieval. As the encrypted scores
are order-preserved, server can process the top-k retrieval
almost as fast as in the plaintext domain. Note that the server
does not have to traverse every posting list for each given
trapdoor, but instead uses a tree-based data structure to fetch
the corresponding list. Therefore, the overall search time cost
is almost as efficient as on unencrypted data. Fig. 8 lists our
search time cost against the increasing value of k, for the same
index constructed above.

VII. RELATED WORK

Searchable Encryption: Traditional searchable encryp-
tion [6]–[10] has been widely studied as a cryptographic
primitive, with a focus on security definition formalizations
and efficiency improvements. Song et al. [6] first introduced
the notion of searchable encryption. They proposed a scheme
in the symmetric key setting, where each word in the file is en-
crypted independently under a special two-layered encryption
construction. Thus, a searching overhead is linear to the whole
file collection length. Goh [7] developed a Bloom filter based
per-file index, reducing the work load for each search request
proportional to the number of files in the collection. Chang et
al. [9] also developed a similar per-file index scheme. To fur-
ther enhance search efficiency, Curtmola et al. [10] proposed
a per-keyword based approach, where a single encrypted hash
table index is built for the entire file collection, with each entry
consisting of the trapdoor of a keyword and an encrypted set
of related file identifiers. Searchable encryption has also been
considered in the public-key setting. Boneh et al. [8] presented
the first public-key based searchable encryption scheme, with
an analogous scenario to that of [6]. In their construction,
anyone with the public key can write to the data stored on
the server but only authorized users with the private key can
search. As an attempt to enrich query predicates, conjunctive
keyword search over encrypted data have also been proposed
in [19]–[21]. Very recently, aiming at tolerance of both minor

typos and format inconsistencies in the user search input, fuzzy
keyword search over encrypted cloud data has been proposed
by Li. et al in [22]. Note that all these schemes support only
boolean keyword search, and none of them support the ranked
search problem which we are focusing in this paper.
Secure top-k retrieval from Database Community [16], [18]
from database community are the most related work to our
proposed RSSE. The idea of uniformly distributing posting
elements using an order-preserving cryptographic function was
first discussed in [18]. However, the order-preserving mapping
function proposed in [18] does not support score dynamics,
i.e., any insertion and updates of the scores in the index
will result in the posting list completely rebuilt. [16] uses
a different order-preserving mapping based on pre-sampling
and training of the relevance scores to be outsourced, which
is not as efficient as our proposed schemes. Besides, when
scores following different distributions need to be inserted,
their score transformation function still needs to be rebuilt.
On the contrary, in our scheme the score dynamics can be
gracefully handled, which is an important benefit inherited
from the original OPSE. This can be observed from the
BinarySearch(·) procedure in Algorithm 1, where the same
score will always be mapped to the same random-sized non-
overlapping bucket, given the same encryption key. In other
words, the newly changed scores will not affect previous
mapped values. We note that supporting score dynamics,
which can save quite a lot of computation overhead when file
collection changes, is a significant advantage in our scheme.
Moreover, both works above do not exhibit thorough security
analysis which we do in the paper.

VIII. CONCLUDING REMARKS

In this paper, as an initial attempt, we motivate and solve
the problem of supporting efficient ranked keyword search
for achieving effective utilization of remotely stored encrypted
data in Cloud Computing. We first give a basic scheme and
show that by following the same existing searchable encryp-
tion framework, it is very inefficient to achieve ranked search.
We then appropriately weaken the security guarantee, resort
to the newly developed crypto primitive OPSE, and derive
an efficient one-to-many order-preserving mapping function,
which allows the effective RSSE to be designed. Through
thorough security analysis, we show that our proposed solution
is secure and privacy-preserving, while correctly realizing the
goal of ranked keyword search. Extensive experimental results
demonstrate the efficiency of our solution.

Following the current research, we propose several possible
directions for future work on ranked keyword search over
encrypted data. The most promising one is the support for
multiple keywords. In this case, for the security requirement of
searchable encryption, constructions for conjunctive keyword
search in the existing literature [19]–[21] might be good
candidates for our proposed ranked search. However, as the
IDF factor now has to be included for score calculation, new
approaches still need to be designed to completely preserve the
order when summing up scores for all the provided keywords.

Another interesting direction is to integrate advanced crypto
techniques, such as attribute-based encryption to enable fine-
grained access control in our multi-user settings.

ACKNOWLEDGEMENT

This work was supported in part by the US National Science
Foundation under grant CNS-0831963, CNS-0626601, CNS-
0716306, and CNS-0831628. The authors would like to thank
Nathan Chenette for helpful discussions. Thanks also to the
anonymous reviewers and our shepherd Reza Curtmola for
their suggestions in preparing the camera-ready version.

REFERENCES

[1] P. Mell and T. Grance, “Draft nist working definition of cloud com-
puting,” Referenced on Jan. 23rd, 2010 Online at http://csrc.nist.gov/
groups/SNS/cloud-computing/index.html, 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,” University of
California, Berkeley, Tech. Rep. UCB-EECS-2009-28, Feb 2009.

[3] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proceed-
ings of Financial Cryptography: Workshop on Real-Life Cryptographic
Protocols and Standardization 2010, January 2010.

[4] Cloud Security Alliance, “Security guidance for critical areas of focus
in cloud computing,” 2009, http://www.cloudsecurityalliance.org.

[5] I. H. Witten, A. Moffat, and T. C. Bell, “Managing gigabytes: Compress-
ing and indexing documents and images,” Morgan Kaufmann Publishing,
San Francisco, May 1999.

[6] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. of IEEE Symposium on Security and
Privacy’00, 2000.

[7] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, Report
2003/216, 2003, http://eprint.iacr.org/.

[8] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in Proc. of EUROCRYP’04, volume
3027 of LNCS. Springer, 2004.

[9] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in Proc. of ACNS’05, 2005.

[10] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in Proc. of ACM CCS’06, 2006.

[11] A. Singhal, “Modern information retrieval: A brief overview,” IEEE
Data Engineering Bulletin, vol. 24, no. 4, pp. 35–43, 2001.

[12] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving
symmetric encryption,” in Proceedings of Eurocrypt’09, volume 5479 of
LNCS. Springer, 2009.

[13] J. Zobel and A. Moffat, “Exploring the similarity space,” SIGIR Forum,
vol. 32, no. 1, pp. 18–34, 1998.

[14] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” Journal of the ACM, vol. 43, no. 3, pp. 431–473, 1996.

[15] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently
searchable encryption,” in Proceedings of Crypto’07, volume 4622 of
LNCS. Springer, 2007.

[16] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski, “Zerber+r: Top-k
retrieval from a confidential index,” in Proceedings of EDBT’09, 2009.

[17] RFC, “Request For Comments Database,” http://www.ietf.org/rfc.html.
[18] A. Swaminathan, Y. Mao, G.-M. Su, H. Gou, A. L. Varna, S. He, M. Wu,

and D. W. Oard, “Confidentiality-preserving rank-ordered search,” in
Proc. of the Workshop on Storage Security and Survivability, 2007.

[19] P. Golle, J. Staddon, and B. R. Waters, “Secure Conjunctive Keyword
Search over Encrypted Data,” in Proc. of ACNS’04, 2004, pp. 31–45.

[20] L. Ballard, S. Kamara, and F. Monrose, “Achieving efficient conjunctive
keyword searches over encrypted data,” in Proc. of ICICS’05, 2005.

[21] Y. H. Hwang and P. J. Lee, “Public Key Encryption with Conjunctive
Keyword Search and Its Extension to a Multi-User System,” in Proc. of
Pairing’07, 2007, pp. 31–45.

[22] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy keyword
search over encrypted data in cloud computing,” in Proc. of IEEE
INFOCOM’10 Mini-Conference, San Diego, CA, USA, March 2010.

