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ABSTRACT 
Scan-based Design-for-Test (DFT) is a powerful testing scheme, 
but it can be used to retrieve the secrets stored in a crypto chip 
thus compromising its security. On one hand, sacrificing security 
for testability by using traditional scan-based DFT restricts its use 
in privacy sensitive applications. On the other hand, sacrificing 
testability for security by abandoning scan-based DFT hurts 
product quality. The security of a crypto chip comes from the 
small secret key stored in a few registers and the testability of a 
crypto chip comes from the data path and control path 
implementing the crypto algorithm. Based on this key 
observation, we propose a novel scan DFT architecture called 
secure scan that maintains the high test quality of traditional scan 
DFT without compromising the security. We used a hardware 
implementation of the Advanced Encryption Standard (AES) to 
show that the traditional Scan DFT scheme can compromise the 
secret key. We then showed that by using secure scan DFT, 
neither the secret key nor the testability of the AES 
implementation is compromised.  

Categories and Subject Descriptors 
B.8.1 [Performance and Reliability]: Reliability, Testing and 
Fault-Tolerance 
General Terms: Algorithms, Design, Security 

Keywords 
Scan-based DFT, Testability, Security, Crypto Hardware 

1. INTRODUCTION 
Crypto algorithms are being implemented in hardware to meet 
high throughput requirements [1]. These crypto chips and 
associated systems have to be tested at fabrication and in-field. 
Scan-based DFT is the most popular DFT scheme for integrated 
circuit testing as it is simple and yields high fault coverage [2]. 
Furthermore, the scan chains can be connected to external 
five-pin JTAG interface during chip packaging to provide on-chip 
debug capability in-field [3]. On-chip debug capability eases the 
development and maintenance of software running on the chips 
and is very important for microprocessors. However, once these 
microprocessors are used in secure applications, the security 
becomes a very important issue, because information in the flip- 
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flops in a scan chain can be accessed and analyzed. If the flip-flops 
in a scan chain contain a secret or information related to a secret, the 
secret can be discovered [4] [5]. Scan chains have been successfully 
used to retrieve secret Boxkeys in satellite TV receivers [6]. The 
microcontroller inside the receiver uses the Boxkey to decrypt the 
signals encrypted by program provider. The Boxkeys of several 
types of satellite TV receivers can be read out from JTAG interface. 
With a hacked Boxkey, users can watch TV program packages that 
they do not subscribe to. 
A straightforward way to thwart scan-based attacks is to leave scan 
chains unbound to prevent further access after validating the 
function of the chip [7]. However, unbound scan chains will 
compromise the maintenance and debug capabilities in-field. In [8], 
flip-flops that contain secret information are included in a special 
scan chain. This scan chain is only accessible by chip manufacturers 
but not by customers. In a standalone crypto chip almost all flip 
flops could contain information related to a secret. This architecture 
also limits maintenance and debug features to the crypto core in a 
system. In [9], a scan chain scrambling technique was proposed to 
provide both security and testability for crypto chips. This technique 
dynamically reorders the flip-flops in a scan chain to protect the 
secrets. However, statistical analysis of the information scanned out 
from chips can still determine the scan chain structure and the secret 
information. Furthermore, the area overhead incurred by dynamic 
reordering of scan chains is high. A primary alternative to 
scan-based DFT is built-in self-test (BIST) [10]. BIST is more 
secure because it does not require visible scan chains, but BIST 
incurs more overhead and yields less fault coverage when compared 
to scan-based DFT. 
In this paper, we will show how scan chains can be used to discover 
a secret key from a hardware implementation of AES. We will then 
describe the secure scan DFT architecture. The proposed secure scan 
architecture can provide full testability to crypto circuits without 
compromising security with very low area overhead. 

2. SCAN-BASED ATTACK ON AES 
Since being announced as the private-key symmetric block cipher 
standard by NIST, AES has been widely implemented in hardware 
[1]. AES encrypts 128-bit data blocks under the control of a 128-bit 
user key. In both iterative and pipelined AES architectures, the 
one-round hardware shown in Figure 1 consuming 1 clock cycle is 
commonly used [1]. In the first clock cycle, the plaintext input is 
selected and the result after pre-round and round 1 is stored in 
Register R. In general AES hardware implementations, the 
temporary result of pre-round is not registered, because it is a simple 
bit-wise exclusive-or operation. In an iterative AES architecture, the 
output of Register R is the input to the next round operation and is 
fed back to the S-boxes through a multiplexer at point b. The AES 
round operation is repeated 10 times each time with a different 
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round key RKi to generate the ciphertext. In a pipelined 
architecture, the one-round hardware is replicated 10 times. The 
output of Register R in the current round is applied to the S-box 
of the next round. The value of Register R in the tenth round is 
the ciphertext. Round keys are either pre-computed from user key 
and stored in the on-chip RAM or generated on-the-fly. 
Compared to the data path, the control logic for AES is very 
simple.  

KeyXorRK0
Input

Sbox

ShiftRow

MixColumn

RK1

a

b

c

d

e

f
Register R

KeyXor

one-round

pre-round

 
Figure 1: Round operations of AES encryption 

Round keys or the user secret key are the targets of an attacker. If 
the user key or round key is stored in registers and the registers 
are included in scan chains, then it is easy to scan out the secret 
of the AES chip, which is similar to the attack on satellite TV 
receivers. In this section, we will show that even when round key 
registers (RK0 and RK1) are not included in the scan chain, by 
accessing the Register R through the scan chain, the secret user 
key can still be retrieved by analyzing the intermediate results. 
Since the attacker can access Register R, he can retrieve the 
intermediate ciphertext of every round. This essentially reduces 
the analysis of the AES implementation to one round. 
One AES round uses Sbox, ShiftRow, MixColumn and KeyXor 
operations as shown in Figure 1. 128-bit input plaintext is 
arranged as a 4×4 matrix of bytes with 

, (0 , 3)i ja i j≤ ≤ representing a byte. KeyXor operation is a 
bit-wise exclusive-or of 128-bit round key with the data:  
          , , ,0 (0 , 3)i j i j i jb a RK i j= ⊕ ≤ ≤         (1) 

The non-linear substitution operation S-box substitutes each byte 
bi,j in the input with byte ci,j according to a one-byte substitution 
table (Sbox):  
          , ,( ),(0 , 3)i j i jc Sbox b i j= ≤ ≤         (2) 

The ShiftRow operation cyclically left shifts the bytes in each 
row of the matrix. While bytes in the first row are not shifted, 
bytes in the second, third and fourth rows are cyclically shifted 
by one, two and three positions to the left, respectively.  

      

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,1 1,2 1,3 1,0

2,0 2,1 2,2 2,3 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,3 3,0 3,1 3,2

( , , , ) ( , , , )
( , , , ) ( , , , )
( , , , ) ( , , , )
( , , , ) ( , , , )

d d d d c c c c
d d d d c c c c
d d d d c c c c
d d d d c c c c

=
=
=
=

    (3) 

MixColumn operation transforms every four bytes in one column 
by multiplying it with a polynomial 

3 2( ) '03' '01' '01' '02 'c x x x x= + + +  to generate four bytes in 
the corresponding output column.  

0, 1, 2, 3, 0, 1, 2, 3,( , , , ) ( , , , ) ( ), (0 3)j j j j j j j je e e e d d d d c x j= ⊗ ≤ ≤     (4) 

Finally, KeyXor introduces the second round key RK1:  
  , , ,1 ,(0 , 3)i j i j i jf e RK i j= ⊕ ≤ ≤       (5) 

Round key RK0 (which is the user key) and RK1 are involved 
before the intermediate result is stored into the register R. 
In addition to the knowledge shown in Figure 1, the attacker needs 
to know the correspondence between the D flip-flops of the round 
register R and the bits in the scanned out bit-stream. Depending on 
different applications, a scan chain may contain several hundreds of 
bits and the sequence of these bits depends on the physical positions 
of the bits after the netlist of the design has been placed and routed. 
Such information is not known to an attacker. Hence an attacker 
should determine the structure of the scan chain and then retrieve the 
AES round keys.  

2.1. Attack Step 1: Determine Scan Chain Structure 
The intermediate ciphertext after the pre-round and first round is 
stored in the Register R. Although R is included in the scan chain, 
the attacker does not know which bits in the bit stream are from R. 
By switching the AES circuit between normal mode and test mode, 
this correspondence can be established. 
If we change byte 1,1a  at point a in Figure 1, byte 1,1b  will change 
at point b, byte 1,1c  will change at point c (output of Sbox), and 
byte 1,0d  will change at point d (output of ShiftRow) and bytes 

0,0 1,0 2,0 3,0( , , , )e e e e  will change at point e. Finally, the 32 flip flops 
corresponding to 0,0 1,0 2,0 3,0( , , , )f f f f  will change in Register R. 
Location of these 32 flop-flips of R in the scanned-out bit stream can 
be determined as follows: 
1. Reset the chip and run it in normal mode for one clock cycle. 

The plaintext will be processed by pre-round (KeyXor with 
RK0) and round 1. The intermediate result is stored in Register 
R. Switch the chip to test mode and scan out the bit stream as 
pattern 1. 

2. Repeat step 1 using a plaintext that is different from the first 
plaintext in one byte (say 1,1a ). Save the scanned-out bit stream 
as pattern 2. Repeat this step and collect patterns 3, 4… 256. 

The bits in the scanned out stream that have different values in 
Pattern 1 and 2 corresponds to the flip-flops in register R. By 
comparing pattern 3 with pattern 1, more such correspondences 
between bits in scanned out stream and flip flops in register R will 
be discovered. This process is repeated until all bits that correspond 
to the 32 flip flops in register R are determined. In the worst case 
this requires generation of all 256 patterns and performing 255 
comparisons. However, due to the avalanche effect of cryptographic 
algorithms, one-bit change at the input to a round will translate into 
several bit changes at the output from the round [12], we need to 
apply very few patterns at 1,1a  to locate the 32 flip-flops of R in the 
bit stream. A simulation using the C implementation of AES shows 
that by applying 15 patterns in the worst case and 6 patterns on 
average, the 32 flip-flops of R can be located in the output bit 
stream.  
At the end of step 1 an attacker can determine which 32 bits in the 
scanned-out bit stream correspond to flip-flops 0,0 1,0 2,0 3,0( , , , )f f f f . 
However, the attacker still does not have a one-to-one 
correspondence between bits in the bit stream and bits 
in 0,0 1,0 2,0 3,0( , , , )f f f f . Further he does not know the exact value 
of 0,0 1,0 2,0 3,0( , , , )f f f f .  
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2.2. Attack Step 2: Recovering Round Key RK0 
In the architecture shown in Figure 1, pre-round and round 1 are 
performed in one cycle and two round keys, RK0 and RK1, are 
used. We will apply a chosen plaintext byte at 1,1a  and observe 
the corresponding word 0,0 1,0 2,0 3,0( , , , )f f f f in register R. We 
will then infer the value at 1,1b  and determine the round key byte 

1,10RK as 1,1 1,1b a⊕ . We will determine all bytes in the round 
key 0RK by repeating this step. 
Inferring the value 1,1b  from 0,0 1,0 2,0 3,0( , , , )f f f f  entails two 
problems. First, the value at point f is determined by 

1,1b and 1RK . Second, the exact value of 0,0 1,0 2,0 3,0( , , , )f f f f  is 
unknown. As can be seen from Figure 1, the round key RK1 is 
exclusive or-ed with the output of MixColumn at point e to 
generate the output word 0,0 1,0 2,0 3,0( , , , )f f f f  at point f. We can 
cancel the effects of RK1 by applying two selected 
values 1

1,1b and 2
1,1b  to generate 

words 1 1 1 1 1
0,0 1,0 2,0 3,0( , , , )e e e e e= and 2 2 2 2 2

0,0 1,0 2,0 3,0( , , , )e e e e e=  at point 
e and words 1 1 1 1 1

0,0 1,0 2,0 3,0( , , , )f f f f f=  and 
2 2 2 2 2

0,0 1,0 2,0 3,0( , , , )f f f f f=  at point f. From equation (5), we have: 

 1 1 2 2
,0 ,0 ,0 ,0 ,0 ,01 , 1 ,(0 3)i i i i i if e RK f e RK i= ⊕ = ⊕ ≤ ≤      (6) 

Exclusive or-ing the two terms in (6), we have: 

    

1 2 1 2 1 2
,0 ,0 ,0 ,0 ,0 ,0

1 2 1 2
,0 ,0 ,0 ,0 ,0 ,0

1 2

( 1 ) ( 1 )

( ) ( 1 1 ) ( )
i i i i i i

i i i i i i

f f f f e RK e RK

e e RK RK e e

e e

⊕ = ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕

= ⊕

 (7) 

Observe that the number of 1s in 1 2f f⊕ is identical to the 
number of 1s in 1 2e e⊕ . Furthermore, the number of 1s in 

1 2f f⊕  is independent of the round key RK1 and is only 
determined by 1

1,1b and 2
1,1b . An attacker can infer 1

1,1b and 2
1,1b  by 

analyzing the number of 1s in 1 2f f⊕ . 
We propose to justify pairs of the form (2m, 2m+1), 0≤m≤127 at 

1,1b  by applying 1
1,1a = 2t, and 2

1,1a = 2t+1, 0≤t≤127 at 1,1a . Since 
2t and 2t+1 are different only in the least significant bits, 

1
1,1b = 2 0t RK⊕ and 2

1,1b = (2 1) 0t RK+ ⊕ will also be different 
only in the least significant bit result in the form of (2m, 2m+1) 
or (2m+1, 2m), 0≤m≤127.  
If different pairs ( 1

1,1b , 2
1,1b ) can generate the same number of 1s 

in 1 2f f⊕ , the number of 1s in 1 2f f⊕  does not uniquely 
determine an input pair of ( 1

1,1b , 2
1,1b ). In AES, when the inputs of 

the form of (2m, 2m+1) or (2m+1, 2m) are applied at point 1,1b , 
the number of 1s in 1 2f f⊕  is between 7 and 25. More 
importantly, if the number of 1s in 1 2f f⊕  is 9, 12, 23 or 24, it 
uniquely determines the input pair ( 1

1,1b , 2
1,1b ) at 1,1b  as shown in 

Table 1. For example, if the number of 1s in 1 2f f⊕  is 9, the 
input ( 1

1,1b , 2
1,1b ) at 1,1b is either (226, 227) or (227, 226). 

Table 1:  The number of 1s in 1 2f f⊕  and the ( 1
1,1b , 2

1,1b ) 
pairs at 1,1b  that are uniquely determined by them. 

# of 1s 9 12 23 24 

Pairs at 1,1b  226,227 242,243 122,123 130,131 

The procedure to determine a byte in the round key 0RK  and 
hence the user key is as follows: 

1. Apply 2t (0≤t≤127) at 1,1a  and run AES chip in normal 
mode for one clock cycle. Switch to test mode and scan out 
the bit stream pattern and determine 1f . 

2. Reset chip. Apply 2k+1 (0≤k≤127) at 1,1a  and run AES chip in 
normal mode for one clock cycle. Switch to test mode and 
scan out the bit stream pattern and determine 2f . 

3. If the number of 1s in 1 2f f⊕  is 9, 12, 23 or 24, determine 
( 1

1,1b , 2
1,1b ) using Table 1. Otherwise, go to step 1. 

4. Determine round key byte 1,10RK as 1,1 1,1b a⊕ . 

5. If all bytes in the round key 0RK  are determined, stop. 
Otherwise go to step 1 with a different ,i ja . 

Since only 4-out-of-128 pairs of the type discussed above can be 
used to determine 1,1b , on average one of those four deterministic 
pairs can be encountered after applying 32(128/4) such pairs. In the 
worst case, 124(128-4) pairs have to be tried to discover one of 
those four deterministic pairs. 

The reset operation does not necessarily imply resetting the chip 
thereby clearing the secret key RAM. If the round keys are stored in 
ROM, we can physically reset the chip without clearing the round 
keys. If the round keys are stored in RAM or register and the chip is 
in system, we do not use physical reset. Rather, we load the same 
input and run 10 cycles and the chip will be in a fixed state every 
time. This state can be the initial state. 

In attack step 1, 6 plaintexts on average are required to determine the 
positions of every group of 32 flip-flops in the scanned out bit 
stream. This translates into 24 plaintexts ((128÷32)×6)) to determine 
all 128 flip flops in Round Register R. In attack step 2, 32 plaintexts 
on average are required to retrieve one byte in round key RK0. This 
translates into 512 plaintexts ((128÷8)×32)) to retrieve RK0. Overall, 
544 plaintexts on average are required to discover the user key. 

In a complex crypto system, the AES block may be surrounded by 
other IP blocks and the scan-based attack will be more difficult. 
However, the increased difficulty is not intractable. If the data 
scanned out contains secure information, statistical analysis of 
scanned out bit streams is still powerful enough to retrieve secure 
information.  

3. SECURE SCAN USING MIRROR KEY 
REGISTERS 

3.1. Security vs. Testability 
Scan-based attack is powerful because intermediate results can be 
scanned out and analyzed. Scan-based attack, in fact, reduces the 
difficulty of analyzing a cryptographic implementation to just a one 
round encryption and one or two round keys.  
In the Federal Information Processing Standards 140-2 [11], the 
security issues of cryptographic module is defined as “A 
cryptographic module shall employ physical security mechanisms in 
order to restrict unauthorized physical access to the contents of the 
module and to deter unauthorized use or modification of the module 
(including substitution of the entire module) when installed. All 
hardware, software, firmware, and data components within the 
cryptographic boundary shall be protected”. On one hand, 
sacrificing security for testability by continuing the scan-based DFT 
restricts its use in privacy sensitive applications. On the other hand, 
sacrificing testability for security by abandoning scan-based DFT 
hurts product quality. For the hardware implementation of key based 
crypto algorithms, if the information that can be obtained from 
scan-based DFT is not relevant to the secret key stored in the device, 
such scan chains will not compromise the security provided by the 
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implemented algorithm. The design goal for the secure scan DFT 
architecture is two folds: 
• Crypto chips should be tested and debugged using general 

scan-based DFT. 
• Information obtained from scan chains cannot be used to 

retrieve the secret key. 
A closer look at cryptographic algorithms such as DES, AES, 
RSA and HMAC shows that they are all key-based. The security 
of these algorithms does not rely on the secrecy of crypto 
algorithms. Rather, the security of these algorithms depends on 
the secret key. We realized that the testability and security of 
crypto chips are from two different aspects. The data path and 
control path that implement a crypto algorithm have to be tested 
for correct function at fabrication and in-field. The security of a 
crypto chip relies on keeping the secret key inside a crypto chip 
secret. Based on this key observation, we develop the secure scan 
DFT architecture that can meet both testability and security 
requirements. 

3.2. Secure Scan Architecture 
In the proposed secure scan DFT architecture we define two new 
modes of operation: insecure and secure mode. When a crypto 
chip is in the insecure mode, it can be switched between the test 
mode and the normal mode similar to the general scan-based 
DFT. However, when a crypto chip is in the secure mode, it can 
only stay in the normal mode. While a crypto chip can be 
switched from insecure mode to secure mode at any time, 
switching back from secure mode to insecure mode is only done 
through a power off reset.  
To support the secure scan DFT architecture, we use mirror key 
registers (MKR) to isolate the secret key from the data path and 
control path performing the crypto algorithm. Such mirror key 
registers work like normal registers during insecure mode and 
test vectors can be scanned in and the test result can be scanned 
out. When the circuit is in the secure mode, the mirror key 
registers load the secret key information and the contents of 
mirror key registers cannot be scanned out until being reset. 
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K
E
Y
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Figure 2: Secure scan architecture with a mirror key register 

The secure scan DFT architecture with mirror key registers is 
shown in Figure 2. A test controller controls the working mode of 
the crypto chip. In addition to the scan_mode signal used by 
general scan-based DFT, the test controller generates: 
Enable_Scan_In and Enable_Scan_Out and Load_Key signals. 
The crypto core is the circuit implementing the crypto algorithm. 
In insecure mode, Load_Key signal is disabled to isolate the 
secret key from the crypto core. The mirror key register works 
like a normal register. Enable_Scan_In and Enable_Scan_Out 
signals are active and general scan-based DFT can be performed. 

The states of all registers in the design can be scanned in and out to 
verify if the fabricated chip performs as expected. Note that in the 
model we used for scan-based side channel attack, the key register is 
not included in the scan chain. On one hand such model provides 
limited security since we need to perform the two-step attack to 
recover the key as shown in previous section. On the other hand, it 
also limits the test capability since only the functionality involving 
this key is verified. In the secure scan DFT architecture, higher fault 
coverage can be expected since multiple test vectors can be scanned 
into the mirror key registers. 
Once the function of the crypto chip and upper layer software has 
been verified, the chip is driven into secure mode for its practical 
applications. In the secure mode, the secret key is applied to the 
crypto core by enabling Load_Key signal. At the same time the scan 
function is disabled by de-activating Enable_Scan_In and 
Enable_Scan_Out signals. This prevents access to the mirror key 
register. Scan_mode signal remains inactive during secure mode and 
hence no shift operation is performed. 
Once the chip is in secure mode, it cannot return to insecure mode to 
perform any test and debug operation. The secret key is loaded to 
the crypto core only when the chip is in the secure mode. Although 
the temporary results are stored in other registers, they cannot be 
scanned out. The only way to re-enter the insecure mode is to reset 
the chip by power off followed by a power on operation. All 
registers inside the chip that have temporary results are cleared. 
Since in crypto chips such as smart cards, a key is usually stored in 
nonvolatile memory or fabricated as a fixed value, it will not be 
cleared when the crypto chip is powered off. The operations of 
crypto chips using the proposed secure scan architecture are 
summarized in Figure 3. 

Normal mode

Insecure mode

Test mode

Power off

Load_key='1'
Enable_Scan_In='0'

Enable_Scan_Out='0'
Scan is disabled

Load_key='0'
Enable_Scan_In='1'

Enable_Scan_Out='1'
Scan is enabled

Normal mode

Secure mode

 
Figure 3: State diagram of secure scan architecture 

The design of MKR is shown in Figure 4. A multiplexer controlled 
by Load_Key can be inserted either at the input to the MKR (Figure 
4(a)) or at the output of MKR (Figure 4(b)). In Figure 4 (a), when 
Load_Key signal is active, the input of the MKR is locked to secret 
key. Any operation that writes to or scans the MKR is disabled. In 
Figure 4 (b), the output of the MKR is masked by secret key when 
Load_Key signal is active. The MKR structure shown in Figure 4 (b) 
does not modify the scan cell and the insertion of the additional 
multiplexer does not modify the scan chain. Therefore it is easy to 
integrate secure scan into current scan DFT design flows.  
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Figure 4: Mirror key register structures. (a) Multiplexer 
before mirror key register; (b) Multiplexer after mirror key 

register 
The secure scan DFT architecture introduces three new control 
signals Enable_Scan_In, Enable_Scan_Out and Load_Key. There 
are two ways to generate these signals. One way is to modify the 
IEEE 1149.1 Test Controller by adding one more state to generate 
these signals as shown in Figure 2. A new instruction named 
Secure_Mode that can be applied through TMS pin is added. The 
Secure_Mode instruction drives the state machine inside Test 
Controller into secure mode. Once the Test Controller is in this 
state, it does not take instructions from TMS any more. The 
transition from secure mode to insecure mode will not happen 
until the chip is reset or powered off. In this state, the 
Enable_Scan_In and Enable_Scan_Out signals are inactive and 
the Load_Key signal is active. In all other states, they will be set 
otherwise. 

D Q

QclkSecure_Mode

Load_Key

Enable_Scan_Out

Scan_mode from Test 
controller Scan_mode

Enable_Scan_In

 
Figure 5: Secure control circuit 

The second way is to design a secure control circuit shown in 
Figure 5. The initial value of the flip flop is zero when the chip is 
powered up. Once a high pulse Secure_Mode is received through 
a dedicated pin, the output of the flip flop is 1 and all the signals 
are driven to the values corresponding to the secure mode. Once 
the flip-flop is driven to 1, the OR gate before the input will mask 
any input from Drive_to_secure pin. The chip stays in the secure 
mode until the chip is reset or powered off. 
The security of the proposed secure scan architecture depends on 
the integrity of the control signals. If the Enable_Scan_In or 
Enable_Scan_Out is active in the secure mode, the secret key can 
be scanned out or retrieved by analyzing the temporary results 
from the scan chains. Any fault on Enable_Scan_In or 
Enable_Scan_Out signals will compromise the security of the 
crypto chip. For crypto devices, deliberate faults injected by 
attackers to break the key are a threat to these critical control 

signals [12]. Since attackers can only inject deliberate faults 
randomly, a multiple-stage buffer can be used between TDI, TDO 
and the crypto core to protect the scan chains. The probability that 
n-stage buffers are all faulty at the same time and the information 
related secrete key can be scanned out is much smaller than the 
probability of a single stage buffer being faulty. For example, an 
n-stage buffer can be used between TDI, TDO and crypto core as 
shown in Figure 6. 
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En_in1 En_inn

En_out1
TDO

...

...

En_outn

 
Figure 6: Multi-stage buffer between TDI, TDO and crypto core 

 

4. OVERHEAD ANALYSIS 
The secure scan architecture does not degrade the test speed. Since 
only two-level buffers are inserted in the scan chain, the delay is 
negligible. The circuits implementing the secret key registers cannot 
be tested straightforwardly since they are used only in the secure 
mode. However, by applying a plaintext and observing the 
corresponding ciphertext can easily reveal if the circuit is correct or 
not since encrypting a message using different keys will generate 
different ciphertexts.  
We incorporated the secure scan architecture into four 
implementations of AES namely Iterative with KS (Key Scheduling), 
Iterative without KS, Pipelined with KS and Pipelined without KS. 
The AES VHDL models were synthesized using Synopsys Design 
Compiler. Scan chains were inserted using Synopsys Test Compiler. 
The additional circuit for the secure scan architecture can be inserted 
into the netlist generated by Synopsys Test Complier. This modified 
netlist can be simulated using Modelsim to verify function and can 
be reloaded into Design Complier to obtain the area overhead. We 
assume the user key or round keys are stored in nonvolatile memory 
or fabricated as a fixed value by using ROM. In the architectures 
with KS algorithm, the round keys are expanded from a 128-bit user 
key, so only 128-bit MKR is used to separate the user key from the 
crypto core. For the iterative architecture without key scheduling, 
round keys are pre-computed and stored in nonvolatile memory or 
ROM. Only a 128-bit round key is read at each clock. A 128-bit 
MKR can be used to separate the round keys from crypto cores. 
However, for the pipelined architecture without key schedule 
algorithm, all eleven 128-bit round keys are used every clock cycle, 
each of them uses a 128-bit MKR resulting in a large area overhead 
compared to the former three architectures.  
The area overhead of secure scan architecture using Mirror Key 
Register for four AES implementations is tabulated in Table 2. The 
second column shows the area of AES architectures before the 
secure scan architecture is applied. The third column shows the area 
overhead incurred by secure scan architecture in terms of gates and 
percentage. For example, the area of an iterative AES architecture 
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with key scheduling consumes 31234 gates. The area incurred by 
secure scan architecture is 412 gates that is 1.32% of the original 
area. 

Table 2  Area overhead of secure scan architecture 

Area overhead 
Architecture Area (gates) 

Area(gates) % 

Iterative  (with 
KS) 

31,234 412 1.32 

Iterative 
(without KS) 

30,854 412 1.34 

Pipelined  
(with KS) 

273,187 412 0.15 

Pipelined  
(without KS) 

282,120 4620 1.64 

 
5. CONCLUSIONS 
Secure scan DFT architecture can easily be integrated into the 
scan-based DFT design flow as the test synthesis. After inserting 
scan chains during DFT synthesis, the mirror key registers can be 
specified to the corresponding bit of the secret key. The secure 
control circuit, and multiplexers between the MKR and the secret 
key can be inserted. The area overhead of the proposed secure 
scan architecture is small. The area of secure control circuit is 
very small. Even if redundant control is used, the area overhead is 
negligible.  
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