
9.4

 135

Secure Scan: A Design-for-Test Architecture
for Crypto Chips

Bo Yang
ECE Department

Polytechnic University
Brooklyn, NY, 11201

Kaijie Wu
ECE Department

University of Illinois, Chicago
Chicago, IL, 60612

Ramesh Karri
ECE Department

Polytechnic University
Brooklyn, NY, 11201

ABSTRACT
Scan-based Design-for-Test (DFT) is a powerful testing scheme,
but it can be used to retrieve the secrets stored in a crypto chip
thus compromising its security. On one hand, sacrificing security
for testability by using traditional scan-based DFT restricts its use
in privacy sensitive applications. On the other hand, sacrificing
testability for security by abandoning scan-based DFT hurts
product quality. The security of a crypto chip comes from the
small secret key stored in a few registers and the testability of a
crypto chip comes from the data path and control path
implementing the crypto algorithm. Based on this key
observation, we propose a novel scan DFT architecture called
secure scan that maintains the high test quality of traditional scan
DFT without compromising the security. We used a hardware
implementation of the Advanced Encryption Standard (AES) to
show that the traditional Scan DFT scheme can compromise the
secret key. We then showed that by using secure scan DFT,
neither the secret key nor the testability of the AES
implementation is compromised.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing and
Fault-Tolerance
General Terms: Algorithms, Design, Security

Keywords
Scan-based DFT, Testability, Security, Crypto Hardware

1. INTRODUCTION
Crypto algorithms are being implemented in hardware to meet
high throughput requirements [1]. These crypto chips and
associated systems have to be tested at fabrication and in-field.
Scan-based DFT is the most popular DFT scheme for integrated
circuit testing as it is simple and yields high fault coverage [2].
Furthermore, the scan chains can be connected to external
five-pin JTAG interface during chip packaging to provide on-chip
debug capability in-field [3]. On-chip debug capability eases the
development and maintenance of software running on the chips
and is very important for microprocessors. However, once these
microprocessors are used in secure applications, the security
becomes a very important issue, because information in the flip-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

flops in a scan chain can be accessed and analyzed. If the flip-flops
in a scan chain contain a secret or information related to a secret, the
secret can be discovered [4] [5]. Scan chains have been successfully
used to retrieve secret Boxkeys in satellite TV receivers [6]. The
microcontroller inside the receiver uses the Boxkey to decrypt the
signals encrypted by program provider. The Boxkeys of several
types of satellite TV receivers can be read out from JTAG interface.
With a hacked Boxkey, users can watch TV program packages that
they do not subscribe to.
A straightforward way to thwart scan-based attacks is to leave scan
chains unbound to prevent further access after validating the
function of the chip [7]. However, unbound scan chains will
compromise the maintenance and debug capabilities in-field. In [8],
flip-flops that contain secret information are included in a special
scan chain. This scan chain is only accessible by chip manufacturers
but not by customers. In a standalone crypto chip almost all flip
flops could contain information related to a secret. This architecture
also limits maintenance and debug features to the crypto core in a
system. In [9], a scan chain scrambling technique was proposed to
provide both security and testability for crypto chips. This technique
dynamically reorders the flip-flops in a scan chain to protect the
secrets. However, statistical analysis of the information scanned out
from chips can still determine the scan chain structure and the secret
information. Furthermore, the area overhead incurred by dynamic
reordering of scan chains is high. A primary alternative to
scan-based DFT is built-in self-test (BIST) [10]. BIST is more
secure because it does not require visible scan chains, but BIST
incurs more overhead and yields less fault coverage when compared
to scan-based DFT.
In this paper, we will show how scan chains can be used to discover
a secret key from a hardware implementation of AES. We will then
describe the secure scan DFT architecture. The proposed secure scan
architecture can provide full testability to crypto circuits without
compromising security with very low area overhead.

2. SCAN-BASED ATTACK ON AES
Since being announced as the private-key symmetric block cipher
standard by NIST, AES has been widely implemented in hardware
[1]. AES encrypts 128-bit data blocks under the control of a 128-bit
user key. In both iterative and pipelined AES architectures, the
one-round hardware shown in Figure 1 consuming 1 clock cycle is
commonly used [1]. In the first clock cycle, the plaintext input is
selected and the result after pre-round and round 1 is stored in
Register R. In general AES hardware implementations, the
temporary result of pre-round is not registered, because it is a simple
bit-wise exclusive-or operation. In an iterative AES architecture, the
output of Register R is the input to the next round operation and is
fed back to the S-boxes through a multiplexer at point b. The AES
round operation is repeated 10 times each time with a different

 136

round key RKi to generate the ciphertext. In a pipelined
architecture, the one-round hardware is replicated 10 times. The
output of Register R in the current round is applied to the S-box
of the next round. The value of Register R in the tenth round is
the ciphertext. Round keys are either pre-computed from user key
and stored in the on-chip RAM or generated on-the-fly.
Compared to the data path, the control logic for AES is very
simple.

KeyXorRK0
Input

Sbox

ShiftRow

MixColumn

RK1

a

b

c

d

e

f
Register R

KeyXor

one-round

pre-round

Figure 1: Round operations of AES encryption

Round keys or the user secret key are the targets of an attacker. If
the user key or round key is stored in registers and the registers
are included in scan chains, then it is easy to scan out the secret
of the AES chip, which is similar to the attack on satellite TV
receivers. In this section, we will show that even when round key
registers (RK0 and RK1) are not included in the scan chain, by
accessing the Register R through the scan chain, the secret user
key can still be retrieved by analyzing the intermediate results.
Since the attacker can access Register R, he can retrieve the
intermediate ciphertext of every round. This essentially reduces
the analysis of the AES implementation to one round.
One AES round uses Sbox, ShiftRow, MixColumn and KeyXor
operations as shown in Figure 1. 128-bit input plaintext is
arranged as a 4×4 matrix of bytes with

, (0 , 3)i ja i j≤ ≤ representing a byte. KeyXor operation is a
bit-wise exclusive-or of 128-bit round key with the data:
 , , ,0 (0 , 3)i j i j i jb a RK i j= ⊕ ≤ ≤ (1)

The non-linear substitution operation S-box substitutes each byte
bi,j in the input with byte ci,j according to a one-byte substitution
table (Sbox):
 , ,(),(0 , 3)i j i jc Sbox b i j= ≤ ≤ (2)

The ShiftRow operation cyclically left shifts the bytes in each
row of the matrix. While bytes in the first row are not shifted,
bytes in the second, third and fourth rows are cyclically shifted
by one, two and three positions to the left, respectively.

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,1 1,2 1,3 1,0

2,0 2,1 2,2 2,3 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,3 3,0 3,1 3,2

(, , ,) (, , ,)
(, , ,) (, , ,)
(, , ,) (, , ,)
(, , ,) (, , ,)

d d d d c c c c
d d d d c c c c
d d d d c c c c
d d d d c c c c

=
=
=
=

 (3)

MixColumn operation transforms every four bytes in one column
by multiplying it with a polynomial

3 2() '03' '01' '01' '02 'c x x x x= + + + to generate four bytes in
the corresponding output column.

0, 1, 2, 3, 0, 1, 2, 3,(, , ,) (, , ,) (), (0 3)j j j j j j j je e e e d d d d c x j= ⊗ ≤ ≤ (4)

Finally, KeyXor introduces the second round key RK1:
 , , ,1 ,(0 , 3)i j i j i jf e RK i j= ⊕ ≤ ≤ (5)

Round key RK0 (which is the user key) and RK1 are involved
before the intermediate result is stored into the register R.
In addition to the knowledge shown in Figure 1, the attacker needs
to know the correspondence between the D flip-flops of the round
register R and the bits in the scanned out bit-stream. Depending on
different applications, a scan chain may contain several hundreds of
bits and the sequence of these bits depends on the physical positions
of the bits after the netlist of the design has been placed and routed.
Such information is not known to an attacker. Hence an attacker
should determine the structure of the scan chain and then retrieve the
AES round keys.

2.1. Attack Step 1: Determine Scan Chain Structure
The intermediate ciphertext after the pre-round and first round is
stored in the Register R. Although R is included in the scan chain,
the attacker does not know which bits in the bit stream are from R.
By switching the AES circuit between normal mode and test mode,
this correspondence can be established.
If we change byte 1,1a at point a in Figure 1, byte 1,1b will change
at point b, byte 1,1c will change at point c (output of Sbox), and
byte 1,0d will change at point d (output of ShiftRow) and bytes

0,0 1,0 2,0 3,0(, , ,)e e e e will change at point e. Finally, the 32 flip flops
corresponding to 0,0 1,0 2,0 3,0(, , ,)f f f f will change in Register R.
Location of these 32 flop-flips of R in the scanned-out bit stream can
be determined as follows:
1. Reset the chip and run it in normal mode for one clock cycle.

The plaintext will be processed by pre-round (KeyXor with
RK0) and round 1. The intermediate result is stored in Register
R. Switch the chip to test mode and scan out the bit stream as
pattern 1.

2. Repeat step 1 using a plaintext that is different from the first
plaintext in one byte (say 1,1a). Save the scanned-out bit stream
as pattern 2. Repeat this step and collect patterns 3, 4… 256.

The bits in the scanned out stream that have different values in
Pattern 1 and 2 corresponds to the flip-flops in register R. By
comparing pattern 3 with pattern 1, more such correspondences
between bits in scanned out stream and flip flops in register R will
be discovered. This process is repeated until all bits that correspond
to the 32 flip flops in register R are determined. In the worst case
this requires generation of all 256 patterns and performing 255
comparisons. However, due to the avalanche effect of cryptographic
algorithms, one-bit change at the input to a round will translate into
several bit changes at the output from the round [12], we need to
apply very few patterns at 1,1a to locate the 32 flip-flops of R in the
bit stream. A simulation using the C implementation of AES shows
that by applying 15 patterns in the worst case and 6 patterns on
average, the 32 flip-flops of R can be located in the output bit
stream.
At the end of step 1 an attacker can determine which 32 bits in the
scanned-out bit stream correspond to flip-flops 0,0 1,0 2,0 3,0(, , ,)f f f f .
However, the attacker still does not have a one-to-one
correspondence between bits in the bit stream and bits
in 0,0 1,0 2,0 3,0(, , ,)f f f f . Further he does not know the exact value
of 0,0 1,0 2,0 3,0(, , ,)f f f f .

 137

2.2. Attack Step 2: Recovering Round Key RK0
In the architecture shown in Figure 1, pre-round and round 1 are
performed in one cycle and two round keys, RK0 and RK1, are
used. We will apply a chosen plaintext byte at 1,1a and observe
the corresponding word 0,0 1,0 2,0 3,0(, , ,)f f f f in register R. We
will then infer the value at 1,1b and determine the round key byte

1,10RK as 1,1 1,1b a⊕ . We will determine all bytes in the round
key 0RK by repeating this step.
Inferring the value 1,1b from 0,0 1,0 2,0 3,0(, , ,)f f f f entails two
problems. First, the value at point f is determined by

1,1b and 1RK . Second, the exact value of 0,0 1,0 2,0 3,0(, , ,)f f f f is
unknown. As can be seen from Figure 1, the round key RK1 is
exclusive or-ed with the output of MixColumn at point e to
generate the output word 0,0 1,0 2,0 3,0(, , ,)f f f f at point f. We can
cancel the effects of RK1 by applying two selected
values 1

1,1b and 2
1,1b to generate

words 1 1 1 1 1
0,0 1,0 2,0 3,0(, , ,)e e e e e= and 2 2 2 2 2

0,0 1,0 2,0 3,0(, , ,)e e e e e= at point
e and words 1 1 1 1 1

0,0 1,0 2,0 3,0(, , ,)f f f f f= and
2 2 2 2 2

0,0 1,0 2,0 3,0(, , ,)f f f f f= at point f. From equation (5), we have:

 1 1 2 2
,0 ,0 ,0 ,0 ,0 ,01 , 1 ,(0 3)i i i i i if e RK f e RK i= ⊕ = ⊕ ≤ ≤ (6)

Exclusive or-ing the two terms in (6), we have:

1 2 1 2 1 2
,0 ,0 ,0 ,0 ,0 ,0

1 2 1 2
,0 ,0 ,0 ,0 ,0 ,0

1 2

(1) (1)

() (1 1) ()
i i i i i i

i i i i i i

f f f f e RK e RK

e e RK RK e e

e e

⊕ = ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕

= ⊕

 (7)

Observe that the number of 1s in 1 2f f⊕ is identical to the
number of 1s in 1 2e e⊕ . Furthermore, the number of 1s in

1 2f f⊕ is independent of the round key RK1 and is only
determined by 1

1,1b and 2
1,1b . An attacker can infer 1

1,1b and 2
1,1b by

analyzing the number of 1s in 1 2f f⊕ .
We propose to justify pairs of the form (2m, 2m+1), 0≤m≤127 at

1,1b by applying 1
1,1a = 2t, and 2

1,1a = 2t+1, 0≤t≤127 at 1,1a . Since
2t and 2t+1 are different only in the least significant bits,

1
1,1b = 2 0t RK⊕ and 2

1,1b = (2 1) 0t RK+ ⊕ will also be different
only in the least significant bit result in the form of (2m, 2m+1)
or (2m+1, 2m), 0≤m≤127.
If different pairs (1

1,1b , 2
1,1b) can generate the same number of 1s

in 1 2f f⊕ , the number of 1s in 1 2f f⊕ does not uniquely
determine an input pair of (1

1,1b , 2
1,1b). In AES, when the inputs of

the form of (2m, 2m+1) or (2m+1, 2m) are applied at point 1,1b ,
the number of 1s in 1 2f f⊕ is between 7 and 25. More
importantly, if the number of 1s in 1 2f f⊕ is 9, 12, 23 or 24, it
uniquely determines the input pair (1

1,1b , 2
1,1b) at 1,1b as shown in

Table 1. For example, if the number of 1s in 1 2f f⊕ is 9, the
input (1

1,1b , 2
1,1b) at 1,1b is either (226, 227) or (227, 226).

Table 1: The number of 1s in 1 2f f⊕ and the (1
1,1b , 2

1,1b)
pairs at 1,1b that are uniquely determined by them.

of 1s 9 12 23 24

Pairs at 1,1b 226,227 242,243 122,123 130,131

The procedure to determine a byte in the round key 0RK and
hence the user key is as follows:

1. Apply 2t (0≤t≤127) at 1,1a and run AES chip in normal
mode for one clock cycle. Switch to test mode and scan out
the bit stream pattern and determine 1f .

2. Reset chip. Apply 2k+1 (0≤k≤127) at 1,1a and run AES chip in
normal mode for one clock cycle. Switch to test mode and
scan out the bit stream pattern and determine 2f .

3. If the number of 1s in 1 2f f⊕ is 9, 12, 23 or 24, determine
(1

1,1b , 2
1,1b) using Table 1. Otherwise, go to step 1.

4. Determine round key byte 1,10RK as 1,1 1,1b a⊕ .

5. If all bytes in the round key 0RK are determined, stop.
Otherwise go to step 1 with a different ,i ja .

Since only 4-out-of-128 pairs of the type discussed above can be
used to determine 1,1b , on average one of those four deterministic
pairs can be encountered after applying 32(128/4) such pairs. In the
worst case, 124(128-4) pairs have to be tried to discover one of
those four deterministic pairs.

The reset operation does not necessarily imply resetting the chip
thereby clearing the secret key RAM. If the round keys are stored in
ROM, we can physically reset the chip without clearing the round
keys. If the round keys are stored in RAM or register and the chip is
in system, we do not use physical reset. Rather, we load the same
input and run 10 cycles and the chip will be in a fixed state every
time. This state can be the initial state.

In attack step 1, 6 plaintexts on average are required to determine the
positions of every group of 32 flip-flops in the scanned out bit
stream. This translates into 24 plaintexts ((128÷32)×6)) to determine
all 128 flip flops in Round Register R. In attack step 2, 32 plaintexts
on average are required to retrieve one byte in round key RK0. This
translates into 512 plaintexts ((128÷8)×32)) to retrieve RK0. Overall,
544 plaintexts on average are required to discover the user key.

In a complex crypto system, the AES block may be surrounded by
other IP blocks and the scan-based attack will be more difficult.
However, the increased difficulty is not intractable. If the data
scanned out contains secure information, statistical analysis of
scanned out bit streams is still powerful enough to retrieve secure
information.

3. SECURE SCAN USING MIRROR KEY
REGISTERS

3.1. Security vs. Testability
Scan-based attack is powerful because intermediate results can be
scanned out and analyzed. Scan-based attack, in fact, reduces the
difficulty of analyzing a cryptographic implementation to just a one
round encryption and one or two round keys.
In the Federal Information Processing Standards 140-2 [11], the
security issues of cryptographic module is defined as “A
cryptographic module shall employ physical security mechanisms in
order to restrict unauthorized physical access to the contents of the
module and to deter unauthorized use or modification of the module
(including substitution of the entire module) when installed. All
hardware, software, firmware, and data components within the
cryptographic boundary shall be protected”. On one hand,
sacrificing security for testability by continuing the scan-based DFT
restricts its use in privacy sensitive applications. On the other hand,
sacrificing testability for security by abandoning scan-based DFT
hurts product quality. For the hardware implementation of key based
crypto algorithms, if the information that can be obtained from
scan-based DFT is not relevant to the secret key stored in the device,
such scan chains will not compromise the security provided by the

 138

implemented algorithm. The design goal for the secure scan DFT
architecture is two folds:
• Crypto chips should be tested and debugged using general

scan-based DFT.
• Information obtained from scan chains cannot be used to

retrieve the secret key.
A closer look at cryptographic algorithms such as DES, AES,
RSA and HMAC shows that they are all key-based. The security
of these algorithms does not rely on the secrecy of crypto
algorithms. Rather, the security of these algorithms depends on
the secret key. We realized that the testability and security of
crypto chips are from two different aspects. The data path and
control path that implement a crypto algorithm have to be tested
for correct function at fabrication and in-field. The security of a
crypto chip relies on keeping the secret key inside a crypto chip
secret. Based on this key observation, we develop the secure scan
DFT architecture that can meet both testability and security
requirements.

3.2. Secure Scan Architecture
In the proposed secure scan DFT architecture we define two new
modes of operation: insecure and secure mode. When a crypto
chip is in the insecure mode, it can be switched between the test
mode and the normal mode similar to the general scan-based
DFT. However, when a crypto chip is in the secure mode, it can
only stay in the normal mode. While a crypto chip can be
switched from insecure mode to secure mode at any time,
switching back from secure mode to insecure mode is only done
through a power off reset.
To support the secure scan DFT architecture, we use mirror key
registers (MKR) to isolate the secret key from the data path and
control path performing the crypto algorithm. Such mirror key
registers work like normal registers during insecure mode and
test vectors can be scanned in and the test result can be scanned
out. When the circuit is in the secure mode, the mirror key
registers load the secret key information and the contents of
mirror key registers cannot be scanned out until being reset.

TDI

Test
Controller

Crypto
Core

Scan_mode M
K
R

...

...

Logic
K
E
Y

Enable_Scan_In

Enable_Scan_Out

Load_Key

TMS

TCK

TDO

Figure 2: Secure scan architecture with a mirror key register

The secure scan DFT architecture with mirror key registers is
shown in Figure 2. A test controller controls the working mode of
the crypto chip. In addition to the scan_mode signal used by
general scan-based DFT, the test controller generates:
Enable_Scan_In and Enable_Scan_Out and Load_Key signals.
The crypto core is the circuit implementing the crypto algorithm.
In insecure mode, Load_Key signal is disabled to isolate the
secret key from the crypto core. The mirror key register works
like a normal register. Enable_Scan_In and Enable_Scan_Out
signals are active and general scan-based DFT can be performed.

The states of all registers in the design can be scanned in and out to
verify if the fabricated chip performs as expected. Note that in the
model we used for scan-based side channel attack, the key register is
not included in the scan chain. On one hand such model provides
limited security since we need to perform the two-step attack to
recover the key as shown in previous section. On the other hand, it
also limits the test capability since only the functionality involving
this key is verified. In the secure scan DFT architecture, higher fault
coverage can be expected since multiple test vectors can be scanned
into the mirror key registers.
Once the function of the crypto chip and upper layer software has
been verified, the chip is driven into secure mode for its practical
applications. In the secure mode, the secret key is applied to the
crypto core by enabling Load_Key signal. At the same time the scan
function is disabled by de-activating Enable_Scan_In and
Enable_Scan_Out signals. This prevents access to the mirror key
register. Scan_mode signal remains inactive during secure mode and
hence no shift operation is performed.
Once the chip is in secure mode, it cannot return to insecure mode to
perform any test and debug operation. The secret key is loaded to
the crypto core only when the chip is in the secure mode. Although
the temporary results are stored in other registers, they cannot be
scanned out. The only way to re-enter the insecure mode is to reset
the chip by power off followed by a power on operation. All
registers inside the chip that have temporary results are cleared.
Since in crypto chips such as smart cards, a key is usually stored in
nonvolatile memory or fabricated as a fixed value, it will not be
cleared when the crypto chip is powered off. The operations of
crypto chips using the proposed secure scan architecture are
summarized in Figure 3.

Normal mode

Insecure mode

Test mode

Power off

Load_key='1'
Enable_Scan_In='0'

Enable_Scan_Out='0'
Scan is disabled

Load_key='0'
Enable_Scan_In='1'

Enable_Scan_Out='1'
Scan is enabled

Normal mode

Secure mode

Figure 3: State diagram of secure scan architecture

The design of MKR is shown in Figure 4. A multiplexer controlled
by Load_Key can be inserted either at the input to the MKR (Figure
4(a)) or at the output of MKR (Figure 4(b)). In Figure 4 (a), when
Load_Key signal is active, the input of the MKR is locked to secret
key. Any operation that writes to or scans the MKR is disabled. In
Figure 4 (b), the output of the MKR is masked by secret key when
Load_Key signal is active. The MKR structure shown in Figure 4 (b)
does not modify the scan cell and the insertion of the additional
multiplexer does not modify the scan chain. Therefore it is easy to
integrate secure scan into current scan DFT design flows.

 139

MUX
D Q

Q
mode

clkscan_in

data

scan_out

MUXkey

Load_Key MKR

(a)

D Q

Qclk
scan_out

MUXkey

MKR
(b)

logic logic

logic
MUX

mode

scan_in

datalogic

Load_Key

Figure 4: Mirror key register structures. (a) Multiplexer
before mirror key register; (b) Multiplexer after mirror key

register
The secure scan DFT architecture introduces three new control
signals Enable_Scan_In, Enable_Scan_Out and Load_Key. There
are two ways to generate these signals. One way is to modify the
IEEE 1149.1 Test Controller by adding one more state to generate
these signals as shown in Figure 2. A new instruction named
Secure_Mode that can be applied through TMS pin is added. The
Secure_Mode instruction drives the state machine inside Test
Controller into secure mode. Once the Test Controller is in this
state, it does not take instructions from TMS any more. The
transition from secure mode to insecure mode will not happen
until the chip is reset or powered off. In this state, the
Enable_Scan_In and Enable_Scan_Out signals are inactive and
the Load_Key signal is active. In all other states, they will be set
otherwise.

D Q

QclkSecure_Mode

Load_Key

Enable_Scan_Out

Scan_mode from Test
controller Scan_mode

Enable_Scan_In

Figure 5: Secure control circuit

The second way is to design a secure control circuit shown in
Figure 5. The initial value of the flip flop is zero when the chip is
powered up. Once a high pulse Secure_Mode is received through
a dedicated pin, the output of the flip flop is 1 and all the signals
are driven to the values corresponding to the secure mode. Once
the flip-flop is driven to 1, the OR gate before the input will mask
any input from Drive_to_secure pin. The chip stays in the secure
mode until the chip is reset or powered off.
The security of the proposed secure scan architecture depends on
the integrity of the control signals. If the Enable_Scan_In or
Enable_Scan_Out is active in the secure mode, the secret key can
be scanned out or retrieved by analyzing the temporary results
from the scan chains. Any fault on Enable_Scan_In or
Enable_Scan_Out signals will compromise the security of the
crypto chip. For crypto devices, deliberate faults injected by
attackers to break the key are a threat to these critical control

signals [12]. Since attackers can only inject deliberate faults
randomly, a multiple-stage buffer can be used between TDI, TDO
and the crypto core to protect the scan chains. The probability that
n-stage buffers are all faulty at the same time and the information
related secrete key can be scanned out is much smaller than the
probability of a single stage buffer being faulty. For example, an
n-stage buffer can be used between TDI, TDO and crypto core as
shown in Figure 6.

Crypto
Core

TDI

En_in1 En_inn

En_out1
TDO

...

...

En_outn

Figure 6: Multi-stage buffer between TDI, TDO and crypto core

4. OVERHEAD ANALYSIS
The secure scan architecture does not degrade the test speed. Since
only two-level buffers are inserted in the scan chain, the delay is
negligible. The circuits implementing the secret key registers cannot
be tested straightforwardly since they are used only in the secure
mode. However, by applying a plaintext and observing the
corresponding ciphertext can easily reveal if the circuit is correct or
not since encrypting a message using different keys will generate
different ciphertexts.
We incorporated the secure scan architecture into four
implementations of AES namely Iterative with KS (Key Scheduling),
Iterative without KS, Pipelined with KS and Pipelined without KS.
The AES VHDL models were synthesized using Synopsys Design
Compiler. Scan chains were inserted using Synopsys Test Compiler.
The additional circuit for the secure scan architecture can be inserted
into the netlist generated by Synopsys Test Complier. This modified
netlist can be simulated using Modelsim to verify function and can
be reloaded into Design Complier to obtain the area overhead. We
assume the user key or round keys are stored in nonvolatile memory
or fabricated as a fixed value by using ROM. In the architectures
with KS algorithm, the round keys are expanded from a 128-bit user
key, so only 128-bit MKR is used to separate the user key from the
crypto core. For the iterative architecture without key scheduling,
round keys are pre-computed and stored in nonvolatile memory or
ROM. Only a 128-bit round key is read at each clock. A 128-bit
MKR can be used to separate the round keys from crypto cores.
However, for the pipelined architecture without key schedule
algorithm, all eleven 128-bit round keys are used every clock cycle,
each of them uses a 128-bit MKR resulting in a large area overhead
compared to the former three architectures.
The area overhead of secure scan architecture using Mirror Key
Register for four AES implementations is tabulated in Table 2. The
second column shows the area of AES architectures before the
secure scan architecture is applied. The third column shows the area
overhead incurred by secure scan architecture in terms of gates and
percentage. For example, the area of an iterative AES architecture

 140

with key scheduling consumes 31234 gates. The area incurred by
secure scan architecture is 412 gates that is 1.32% of the original
area.

Table 2 Area overhead of secure scan architecture

Area overhead
Architecture Area (gates)

Area(gates) %

Iterative (with
KS)

31,234 412 1.32

Iterative
(without KS)

30,854 412 1.34

Pipelined
(with KS)

273,187 412 0.15

Pipelined
(without KS)

282,120 4620 1.64

5. CONCLUSIONS
Secure scan DFT architecture can easily be integrated into the
scan-based DFT design flow as the test synthesis. After inserting
scan chains during DFT synthesis, the mirror key registers can be
specified to the corresponding bit of the secret key. The secure
control circuit, and multiplexers between the MKR and the secret
key can be inserted. The area overhead of the proposed secure
scan architecture is small. The area of secure control circuit is
very small. Even if redundant control is used, the area overhead is
negligible.

6. REFERENCES
[1] S. Mangard, M. Aigner and S. Dominikus, A Highly

Regular and Scalable AES Hardware Architecture, IEEE
Transactions on Computer, vol. 52, no.1, pp. 483-491, April
2004.

[2] M.L. Bushnell and V.D. Agrawal, Essentials of Electronic
Testing, Kluwer Academic Publishers, 2000.

[3] D, Josephson and S. Poehhnan, Debug methodology for the
McKinley processor, International Test Conference,
pp.451-460, 2001

[4] B. Yang, K. Wu and R. Karri, Scan Based Side Channel Attack
on Dedicated Hardware Implementations of Data Encryption
Standard, International Test Conference, pp.339-344, 2004

[5] R. Goering, Scan Design Called Portal for Hackers, EE Times,
Oct. 2004. http://www.eetimes.com/news/latest/
showArticle.jhtml?articleID=51200146

[6] Maestra Comprehensive Guide to Satellite TV Testing, 2002.
http://www.maestra.tv/downloads/Maestra_Guide. pdf

[7] O. Kömmerling, M. G. Kuhn, Design Principles for
Tamper-Resistant Smartcard Processors, USENIX Workshop
on Smartcard Technology, pp.9-20, May, 1999.

[8] R. J. Easter, E. W. Chencinski, E. J. D'Avignon, S. R.
Greenspan, W. A. Merz and C. D. Norberg, S/390 Parallel
Enterprise Server CMOS Cryptographic Coprocessor, IBM
Journal of Research and Development, Vol 43,
pp.761-776,1999

[9] D. Hély, F. Bancel, ML Flottes, B. Rouzeyre, M. Renovell and
N. Bérard, Scan Design and Secure Chip, IEEE International
On-Line Testing Symposium pp.219-226, 2004.

[10] R. Zimmermann, A. Curiger, H. Bonnenberg, H. Kaeslin, N.
Felber and W. Fichtner, A 177Mb/sec VLSI implementation of
the international data encryption algorithm, IEEE Journal of
Solid-State Circuits, vol. 29, no. 3, pp. 303-307, March, 1994.

[11] National Bureau of Standards, Security Requirements for
Cryptographic Modules, Federal Information Processing
Standards Publication FIPS PUB 140-2, 2002.

[12] Biham and A. Shamir, Differential Fault Analysis of Secret Key
Cryptosystems, CRYPTO, pp. 156-171, 1991.

