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Abstract: Federated learning (FL) is known to perform machine learning tasks in a distributed
manner. Over the years, this has become an emerging technology, especially with various data
protection and privacy policies being imposed. FL allows for performing machine learning tasks
while adhering to these challenges. As with the emergence of any new technology, there will be
challenges and benefits. A challenge that exists in FL is the communication costs: as FL takes place
in a distributed environment where devices connected over the network have to constantly share
their updates, this can create a communication bottleneck. This paper presents the state-of-the-art of
the conducted works on communication constraints of FL while maintaining the secure and smart
properties that federated learning is known for. Overall, current challenges and possible methods for
enhancing the FL models’ efficiency with a perspective on communication are discussed. This paper
aims to bridge the gap in all conducted review papers by solely focusing on communication aspects
in FL environments.

Keywords: security; privacy; smart environments; federated learning; communication; machine
learning

1. Introduction

A machine learning (ML) model for a specific task is created utilizing the unprece-
dented amount of data that are generated from devices. These data can be used in various
tasks, such as achieving process optimization [1], gaining insight discovery [2], and deci-
sion making [3]. Some examples of devices that generate data can be smartphones and
wearable devices, smart homes, etc. Traditionally, to implement ML predictive models,
the data would need to be transferred to a central server where it could be stored and
used for training and testing ML models designed for specific tasks [4]. However, the
imposition of privacy and data-sharing policies, such as global data protection regulations
(GDPR), caused various restrictions on using data centrally [5]. As a result, the traditional
centralized method of transferring data to the server could present more challenges. In
addition to this, other computational issues are present with this traditional approach, and
it is critical to deploy an alternative solution for creating reliable ML models within various
tasks [4].

Federated learning (FL) is an innovative way to implement ML algorithms in a decen-
tralized setting, and was introduced by a research team at Google for the first time [6]. FL
attempts to answer the question: Can machine learning models be trained without needing
to transfer user data onto a central server? [7]. FL aims to propose a more collaborative

Appl. Sci. 2022, 12, 8980. https://doi.org/10.3390/app12188980 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12188980
https://doi.org/10.3390/app12188980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9851-4103
https://orcid.org/0000-0003-3910-3536
https://doi.org/10.3390/app12188980
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12188980?type=check_update&version=1


Appl. Sci. 2022, 12, 8980 2 of 22

approach to ML while preserving user privacy by training the data in a decentralized
environment rather than a central server [8]. This collaborative learning method can be
explained by using data generated from different participants, such as hospitals, research
centers, or even mobile end-users, where the participants actively collaborate in the train-
ing procedure. For example, different hospitals generate data from their smart devices
and/or equipment. Using these data can be utilized to create an ML model for a specific
task. However, due to data-sharing policies, such as the health insurance portability and
accountability act (HIPAA) and GDPR, it would not be possible to access all data in one
place. A single hospital may not also generate enough data for ML training tasks, possibly
leading to a biased or unreliable ML model [9]. This is where FL and its collaborative nature
can thrive. Each hospital can train its own independent ML model that gets uploaded
to a central server where all models average out as a global ML model for the assigned
task. Figure 1 demonstrates an application of FL for a healthcare system where hospitals
participate in training a global model as discussed above.

In general, computational power, training time, and, most importantly, security and
privacy are different challenges that the traditional centralized-based ML approaches deal
with. FL provides an effective way to preserve user security and privacy concerns by
decentralizing data from the central server to end-devices, enabling AI benefits to all FL
participants. In fact, rather than relying on the centralized server for training the ML
model, in FL, the training process takes place on end-devices directly. Although we still
have the concept of a central server in FL, the training procedure is mainly carried out
by end-devices locally in order to enhance security and privacy concerns associated with
transferring data. In addition, in an FL environment, the computational power is also
split amongst parties within the federated network using the decentralized algorithms.
FL is considered as one of the growing ML fields in recent years, where its security and
privacy features are perfectly aligned with user data protection laws [10]. These security
and privacy-preserving promises of FL technology have attracted much attention from
different data-sensitive domains, such as healthcare [11], where the sensitive data are stored
locally but, at the same time, the data are used in the training process.

Since FL was introduced, there has been a growing interest in the research communities
to explore the opportunities and capabilities of FL in different domains. A range of
industries are researching various examples of the FL capability to maximize the benefits
of this decentralized approach, including transportation [12,13], autonomous vehicles [14],
and internet of things (IoT) applications [15–18]. Gboard by Google for predictive texting is
another simple and reliable implementation of FL, where a federated averaging algorithm is
utilized to train the ML model over the on-device decentralized data to improve predictive
texting results while also reducing the privacy and security risks of the sensitive user data
compared to centralized ML approaches [19–22].

Figure 1. How FL can be used to improve predictive healthcare ML using sensitive data across
multiple hospitals [23].

However, with the introduction of any new technology, the more benefits reaped
from its capabilities, the more challenges that are exposed, and FL is not an exception.
There has been a significant amount of challenges regarding the security and privacy of
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FL. When it comes to security, there are three main concepts that should be considered in
designing an FL environment, including confidentiality, integrity, and availability. Authors
in [24] demonstrated the current vulnerabilities to the FL environment as communication
protocols, data manipulation, central server, aggregation strategy, and implementation team.
Due to such vulnerabilities, FL could be faced with various types of threats, including
poisoning, inference, backdoor attacks, etc. Some of the these threats are shared with
traditional ML models, whereas some of them are dedicated to FL settings. There have
been many efforts to enhance the security and privacy preservation across different settings
for FL, including secure multi-party computation [25], differential privacy [26], adversarial
training [27], etc., and they are still in progress. The readers are encouraged to visit the
referred surveys to obtain a greater understanding of the security and privacy aspects of FL.

As FL takes place in a distributed environment, end-devices are required to be con-
nected over a reliable network to constantly share their updates. Factors such as end-device
network connections operate at substantially lower rates when compared to network con-
nections that are available at a data center. This form of unreliability in FL communication
could be potentially expensive in the training process [28]. Therefore, some research has
been conducted towards making the communication factor of an FL environment more
efficient. For example, quantization and sparsification are two model compression tech-
niques that can be integrated with the FL averaging algorithms to make communication
more effective. It is an interesting area of research and there have been various efforts to
make FL communication more reliable, but very limited surveys are found on this topic.
Therefore, this survey paper aims to present a summary of recent research conducted on
the subject. In this paper, the current challenges, proposed models, and possible methods
for enhancing the FL models’ efficiency with respect to communication are presented and
discussed.

The remainder of this paper is structured as follows. Section 2 provides an introduction
to the FL system and how it functions. Section 3 introduces and answers the research
questions (RQs). Sections 4 and 5 review the key findings in this paper, where it navigates
towards sharing future expectations, concentrating on this topic of research.

2. Problem Statement
2.1. Background

Federated learning is a learning paradigm that was introduced by Google in 2016
and has gained much attention in the last couple of years in different domains [6]. FL
can be considered as a natural extension of conventional ML, where it addresses data
governance and data access challenges. FL is a kind of local training at the different clients
or participants at different institutions/devices that receive an initial model from a global
server and then collaborate in the learning task using their local datasets. In fact, in FL, each
participant actively trains and fine-tunes their model on its local dataset and shares the
local updates that will be aggregated in the global model. In this procedure, the local steps
that are so important for the ML training remain the same as conventional ML; however,
the participants collaborate on the global model and everybody gains insights from others
without communicating directly.

In this subsection, a general overview and the main components/entities available in
an FL environment are introduced. Additionally, the FL processes from a communication
perspective are presented.

2.2. The Components of FL Systems

The FL system is a learning process where users/participants can collaboratively train
the ML model [29]. As described by [30], there are two main entities or components that
are present in an FL environment: (i) the data owners or participants and (ii) the central
server. The data owners produce the data on their end-devices (e.g., mobile phones), and
these data generated by the owners are kept private to them and do not leave the device.
Therefore, each participant or device has their private dataset. The central server is where
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the global model stays. It is where the original model is stored and shared with all of
the participants that are connected across the FL environment. This model is then a local
model for each device, i.e., is trained on that independent device’s dataset. Once all of the
device training is complete and model parameters are obtained, each device uploads its
local model back to the central server. Here, at the central server, the local updates are
aggregated by applying aggregation algorithms that take place in order to generate a new
global model [31–33].

2.2.1. The Processes of an FL System

FL allows for a promising approach towards collaborative machine learning while
preserving privacy [34]. The process of an FL establishes communication between the two
main entities, including participants and the central server. Participants communicate with
the central server by downloading the local model, the light version of the global model,
from the central server [35]. Each participant trains the local model based on its local
dataset and improves it. Each trained model is then uploaded to the central server, where
aggregation of all local trained models occurs for the next round [34]. As discussed above,
a simplified overview of the FL system is depicted in Figure 2.

Figure 2. A general overview of how FL works [8].

2.2.2. The Different Types of FL Systems

The base concept of FL is to be able to utilize data that are shared across multiple
devices. There are a few ways that these data can be distributed across devices, such as
being partitioned by examples or partitioned by features [28]. The categorization of these
data can be a prerequisite step for building an FL environment [24]. Some characteristics
of data distribution are factors such as heterogeneous data and the clients’ participation.
In this subsection, a brief introduction is presented about the few FL settings that can be
applied based on the distribution of data and other characteristics.

There are a few types of FL systems based on the way the data are distributed across
the environment [36]. They can be categorized as:

• Horizontal Federated Learning: This type of FL system is when the data from various
devices have a similar set of features in terms of the domain but with different in-
stances. This is the original sense of FL learning, where data from each domain are
homogeneous, as depicted in Figure 3. Then, domains contribute together to train
the global ML model [24]. This can be explained using the original example that is
presented by Google [6], wherein the global model is an aggregate of multiple locally
trained participating devices [37].
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Figure 3. Horizontal FL [37].

• Vertical Federated Learning: The data distributed across in a vertical FL setting are
common data between unrelated domains. This could perhaps be called a feature-
based learning scheme as the datasets involved in the training process perhaps share
the same sample ID space but may differ in feature space. An example could be where
a bank and an e-commerce business in the same city have a mutual user base, as
shown in Figure 4. The bank has user-sensitive data, such as credit card ratings or
revenue. At the same time, the e-commerce business has a purchase and browsing
history. Here, two different domains can use their data to maybe create a prediction
model based on the user and product information [29].

Figure 4. Vertical FL [37].

• Federated Transfer Learning: This type of system is different from the aforementioned
systems, where neither the samples nor the features have many similarities [38].
An example could be where two data sources, such as a bank in the United States
and an e-commerce business in Canada, are restricted by geography but still have a
small intersection with each other, being different institutions, similar to a vertical
FL. However, this is just the method of partitioning the data by the ML model being
similar to the traditional ML method of transfer learning, where the ML model used is
a pre-trained model on a similar dataset. This method can provide better results in
some cases compared to a newly built ML model [24]; this is further shown in Figure 5.
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Figure 5. Federated transfer learning [24].

2.3. Publication Analysis

Over recent years, federated learning has become a driving research topic for many
researchers, especially those interested in decentralized machine learning techniques and
adhering to the privacy policies that have been imposed. The research catalog can often be
presented in the form of survey papers. In this subsection, multiple recently published and
conducted works within this domain are presented. Additionally, the impact of this paper
compared to other works is highlighted.

Authors in [8] provide a comprehensive and detailed survey on FL. This research
conducted by authors is quite thorough, with an introduction of FL and the different types
of FL systems that exist. The authors provide a study with a focus on the software that
allows for FL to happen, the hardware that it platforms, the protocol, and the possible
applications for the emerging technology.

Similarly, the authors in [39] introduce the implications and the practicality of FL in
healthcare, providing general solutions. The authors discuss and introduce some open
questions towards data quality, model precision, integrating expert knowledge, etc. A
survey that presents some challenges that can be present in the integration of FL is presented
in [30]. The authors discuss mobile edge computing (MEC), FL’s implementation, and how
it could act as a dependable technology for the collaborative machine learning approach
over edge networks.

In another effort, Yin et al. [40] focus on privacy aspects of FL and propose a hybrid ap-
proach to guarantee participants’ privacy. They provide more balanced privacy-preserving
for different data sets by presenting a Bayesian differential mechanism in FL. In the pro-
posed model, a new encryption method is introduced to ensure that the central server
cannot obtain the gradient parameters of each participant. Additionally, they utilized a
sparse differential gradient to enhance both data transmission and storage efficiency.

Another work, conducted by authors in [41], presents an overview of FL along with
its categorization based on data-partitioning techniques. The authors demonstrate the
recent improvements and challenges within the most common FL algorithm, called Fe-
dAVG. Some of these challenges include massive communication costs, data heterogeneity,
etc. They provide a review of the current possible optimization techniques concerning
three main challenges in FL, including communication costs and statistical and structural
heterogeneity [41]. Moreover, they discuss privacy in two aspects: current risks or attacks
on FL and technologies to prevent such privacy challenges. Lastly, the authors reviewed
the state-of-the-art applications of FL in the three main domains of mobile devices, indus-
trial engineering, and healthcare [41]. Some instances could be detecting the chance of
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hospitalization in a patient dealing with heart disease or classifying the stage of diabetic
retinopathy among patients using a federated transfer learning approach [42,43].

Li et al. [44] conducted a review on the primary FL systems. This begins with an
introduction to FL and its components. Moreover, they discuss the details of FL with
six main perspectives, including data partitions, ML models, privacy, communication,
FL types, and the purpose of developing FL. This paper also demonstrates the current
open-source FL systems, along with their specifications. Lastly, the authors briefly describe
FL’s possible applications within domains of mobile service, healthcare, and finance [44].

In another work carried out by Pfitzner et al. [45], authors focus on the applications
of FL for preserving data privacy within the medical field [45]. Authors conduct their
survey based on a structured method for collecting and utilizing the papers in their review.
Along with their literature review of the FL approaches, they discuss conducted research
studies on FL’s main concepts, similar to the above approaches [45]. Additionally, they
demonstrate current attack approaches and defense techniques for preserving the FL model.
Authors discuss their work within a digital health perspective by describing limitations
when adopting FL in healthcare [45].

The authors in [46] conducted a survey on federated learning and the potential threats
that might be available in this approach. As with any discovery of research and advance-
ment in technology, there are always vulnerabilities and potential security threats that can
lack robustness. The survey paper [46] introduces the risk of privacy and how that could
potentially be exploited in an FL setting. Furthermore, the paper presents a brief review on
how poisoning attacks can interfere and manipulate the outcome of an FL training model,
such as data poisoning and model poisoning. Similarly, inference attacks can also lead
to privacy leakage. Furthering this research topic, another survey expands on the threats
towards FL as a survey by creating research questions regarding security and privacy and
answering them by providing a comprehensive list of threats and attacks [24]. The authors
also bring to the surface some unique security threats that exist in the FL environment and
what defensive techniques can be implemented towards such vulnerabilities [24]. Defense
techniques, such as proactive defenses, are a way to guess the threats and the potential
risks associated with them. The authors present SNIPER, knowledge distillation, anomaly
detection, and moving target defense solutions.

As discussed in recent review papers conducted on FL, many include similar cate-
gorizations to the ones above. In another research conducted by authors in [47], FL is
discussed in three main aspects, including the design, challenges, and applications. Apart
from all of the above details reviewed for FL, the authors review the works carried out
using personalization techniques to achieve better models. They describe strategies and
techniques to reduce the FL models’ communication costs [47].

More surveys are conducted on the topic [44,48], and even though they introduce the
topic of communication and the challenges that may be present, there has not been a dedi-
cated research or survey paper written towards the challenges present in communication
and the ways to make it efficient. This paper aims to bridge that gap by solely focusing
on communication.

A list of recent surveys over the past few years is mentioned in Table 1. There is
a common theme with most survey papers: introducing the technology, presenting the
applications, and addressing the security and privacy benefits and concerns. In most
papers, the topic of communication is introduced too, though it is only a brief surface-level
part of the paper. This survey paper aims to be the bridge in that gap and presents a survey
paper that focuses solely on the communication component for FL.
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Table 1. Publication analysis of survey papers over the past couple of years.

Reference Year Objective Security Privacy Communication Challenges Future

[29] 2019 Providing a survey of existing works on FL, discussing
frameworks, concepts, and applications. 3 3 7 3 3

[46]

2020

Introduction of concept of FL, predominantly covering threat
model attacks. 3 3 7 3 3

[8] An FL survey focusing on hardware, software and technologies,
and real-life applications 3 3 3 3 3

[30] Introduction of FL, presenting some existing challenges and
their solutions 3 3 3 3 3

[24] A survey on security and privacy of federated learning 3 3 7 3 3
[48] A detailed survey introducing FL and the challenges. 3 3 3 3 3

[41] An overview of FL characteristics and applications within three
specific domains 3 3 3 3 3

[39]

2021

A survey of FL in healthcare, covering common topics of
introduction of technology, challenges, etc. 3 3 3 3 3

[24] A comprehensive survey posing research questions with regard
to FL and privacy and security 3 3 3 3 3

[44] A thorough categorization of FL based on six main aspects to
enable effective deployment of FL models 3 3 3 3 3

[45] A systematic literature review of FL research studies with a
concentration on the medical domain 3 3 3 3 3

[47] A comprehensive review of three main aspects of FL: design,
applications, and challenges 3 3 3 3 3

3. Research Questions and Communication Efficient Methods

Communication between the participating devices and the central server is essential
for an FL environment. The model is communicated over rounds of communication that
download, upload, and train the ML model. However, as mentioned, this comes with
its challenges. To gain more insight into the challenges present in an FL environment
regarding communication, two research questions are proposed. The first RQ1 aims to
provide a brief analysis of What are some of the challenges that are presented in FL with regard to
communication? The second RQ2 provides an in-depth analysis of various methods and
approaches that can be implemented to answer How can communication be more efficient in an
FL environment?

To thoroughly conduct our survey based on the defined research questions, we ex-
plored various libraries, including Google Scholar, Springer Link, Science Direct, ACM
Digital Library, IEEE Xplore, and ArXiv, using specific keywords such as federated learning,
communication, etc. Consequently, this paper presents a comprehensive survey of the
current challenges and its applicable solutions within FL environments.

3.1. RQ1-What Are Some of the Challenges Presented in FL with Regards to Communication?

As mentioned in Section 2 regarding the general working of the FL environment, the
central server shares the light version of the global model across the network to all of the
participating devices. The total number of devices participating in this FL environment
can sometimes be in the millions, and the bandwidth over which the devices are connected
to the environment can be relatively slow or unstable [49]. In an FL training environment,
there can be many rounds of communication between the central server and all of the
participating devices. Over a singular communication round, the local model is shared
across all of the devices in the FL environment. Each participating device downloads the
local model to train it on their local dataset. A version of that is uploaded back to the
environment to the central server. Therefore, there is a constant downlink and uplink
during the communication rounds [50]. However, due to the limited bandwidth, energy,
and power on the device end, these rounds of communication can be slow [48]. Even with
these challenges, the overall communication cost of sharing model updates is relatively
lower than sharing copious amounts of data from the devices to a central server; it is still
important to preserve the communication bandwidth further to make it more efficient [24].
This subsection introduces the overheads [51] or challenges that could create a communica-
tion bottleneck in an FL environment.
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• Number of participating devices: Having a high number of participating devices in an
FL environment has its advantage, wherein the ML model could be trained on more
data and there could be a possible increase in performance and accuracy. However,
the large number of devices participating in multiple FL training rounds at the same
time could create a communication bottleneck. In some cases, a high number of clients
could also increase the overall computational cost [24,52].

• Network bandwidth: In contrast to the traditional ML approach, the FL approach
reduces the cost substantially; however, the communication bandwidth still needs
to be preserved [24]. The participating devices may not always have the bandwidth
needed. They could be participating under unreliable network conditions. Factors
such as having a difference between the upload speed and download speed could
result in delays, such as model uploads by participants [30] to the central server, which
could lead to a potential bottleneck, leading to disrupting the FL environment.

• Limited edge node computation: The computation is now dependent on edge devices
rather than powerful GPUs and CPUs. The edge devices could have limitations
towards computation, power resources, storage, and limited link bandwidth [53]. The
authors in [53] compared the training time between a central server and an edge device.
They elaborated that an image classification model with over 60 million parameters
can be trained in just a few minutes over a GPU, reaching speeds of 56 Gbps. However,
even with a powerful smartphone connected over 5G, it could take much longer,
reaching an average speed of 50 Mbps.

• Statistical heterogeneity: Another possible source for a communication bottleneck or
where communication costs can rise could be statistical heterogeneity, where the data
are non-independent and identically (non-i.i.d.) distributed [54]. In an FL environment,
the data are only locally present on each participating device. They are gathered and
collected by the participants on their independent devices based on their usage pattern
and local environment. An individual participant’s dataset in an FL environment
could not be representative of the population distribution of the other participants
and their datasets [6]. The size of data gathered and distributed amongst devices
can typically vary heavily [55]. Therefore, this type of fluctuation in the size of the
dataset could affect communication by causing a delay in model updates and other
attributes. A device with a larger dataset could take longer to update, whereas a
smaller one could be carried out with updates. However, the global model might not
be aggregated until all individual client models are trained and uploaded, causing a
bottleneck.

The aforementioned constraints listed are just some of the discovered challenges that
could be possible sources towards creating a communication bottleneck.

3.2. RQ2-How Can Communication Be More Efficient in an FL Environment?

In order to train the global ML model with decentralized data, the global model
needs to be downloaded on the participating devices on that federated network. This
allows the data generated by those remote devices to remain preserved on the device
while subsequently improving the ML model. The steps that make this possible can be
summarized into three communication steps: (1) the global model needs to be shared across
devices within the federated network, which can sometimes be millions of IoT devices
of mobiles phone; (2) the model is then downloaded by the devices and trained locally
on-device on the private dataset that is generated by those devices; (3) the ML model
is uploaded back to the central server, where it is pooled with numerous other models
that have been uploaded to aggregate them all together and find a federated average to
generate a new and updated global model. Figure 6 depicts the whole process of uploading
and downloading, along with the aggregation of local models. Considering the steps of
communication that take part in obtaining an improvement in the global ML model, it
is important to seek out the most communication-efficient methods that could make the
transfer of data from (1) to (2) and on to (3).
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Figure 6. Ref. [55] illustrates a complete round of distributed stochastic gradient descent (SGD) model.
In (a), clients on the federated network synchronize with the server and download the global ML
model. In (b), the global model is trained by each client on their local data, adjusting the weighted
average of the ML model as per. In (c), the new average achieved by each client is updated onto the
server, where each update is used to obtain a new weighted average for the global model.

In this subsection, the recent findings and conducted works on improving the com-
munication efficiency in ML models over the federated network are presented: findings
that are tackling constraints where devices can drop out due to a poor or limited network
bandwidth, along with other constraints where data are sampled differently and how these
could affect communication. Then, some of the main research methods towards enhanc-
ing the communication efficiency are discussed, such as local updating, client selection,
reduction in model updates, decentralized training and peer-to-peer learning, and various
compression schemes.

3.2.1. Local Updating

Distributed ML that exists in data centers has become popular when integrating mini-
batch optimization methods. However, there are still some constraints and limitations on
flexibility. This form of batch optimization has constraints over a more federated setting
that includes both communication and computation challenges [48,56]. Local updating
in FL attempts to train ML models on each device with their own data instead of sharing
data captured from devices with the ML model to be trained together. Consequently, each
device is trained locally and sends its own updates to the decentralized server. Then, the
updates will be aggregated in order to create the global model.

However, the overall objective of local updating is mostly focused on the aforemen-
tioned point (2), i.e., fitting and training the ML model locally on-device using the data
generated by those devices. However, computing locally over a singular communication
round and then applying those updates to the central server is not that efficient due to
unexpected dropouts of devices or synchronization latency due to poor network connectiv-
ity [57]. Authors in [6] also highlight that it is very important to have a form of flexibility
when considering the optimization method: flexibility towards client participation and
local updates. There are a few ways to achieve this flexibility and, in turn, improve the
overall communication efficiency. Techniques such as primal-dual methods can offer a form
of flexibility, where local devices can use local parameters to train the global model locally
to find arbitrary approximations [58]. This leveraging and breaking down of the overall
objective of the global model can allow for problems of training to be solved in parallel over
each communicated round [56]. In this subsection, some methods towards communication
efficiency that have come to the surface regarding local updating techniques are reviewed.
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In an FL setting, the data can be distributed unevenly across devices and may not
always be identical. This can be considered as due to the data across the FL environment
being distributed in a non-independent and identically distributed manner, i.e., non-
iid. Having the datasets in a non-iid state could challenge the testing accuracy of an
FL model [57]. The testing accuracy of a locally trained ML model is important as it will
contribute to the global model. Therefore, having an accuracy of a local model that performs
poorly could also deteriorate the overall performance of the global model.

In [59], the authors introduce their way of combining FL with hierarchical clustering
(HC) techniques to reduce the overall communication rounds within the FL protocol. The
proposed clustering step can cluster and separate the clients by the similarity of the local
updates to the global model. These similarities are the weights that are achieved by locally
updating the local model on each device. Upon testing and comparing their integrated FL
and HC technique, the authors concluded that the communication rounds are reduced as
per a comparison on the Manhattan distance metric [59,60].

Due to the large number of connected devices that attempt to communicate their
locally updated model parameters with the central server—step (2)—this could cause a
communication bottleneck due to bandwidth in some instances [61]. The authors in [61]
introduce a federated periodic averaging and quantization framework (FedPAQ) as a new
way to counter this problem. In the proposed framework, the periodic averaging feature
is introduced, where it helps to reduce the number of communication rounds. In contrast
to other training methods, where each participating device sends their ML models to
synchronize through the parameter servers over each iteration, resulting in increasing the
number of communication rounds between the devices and central sever, the parameters
and local updates of each device can be synchronized with the central server, where a
periodic average of models takes place. This is achieved by adjusting the parameter that
corresponds to the number of iterations that occur locally on the device itself. Other features,
such as partial node participation and a quantized message passing of the FedPAQ, also
reduce communication overhead. The quantized message passing is further discussed in
the compression schemes subsection.

In FL, the FedAVG algorithm is used for its simplicity and, in turn, is about to reduce
communication costs in an FL environment. The algorithm tackles the challenges presented
in communication by performing numerous updates on available devices before communi-
cating with the central server. However, in some cases, as the authors in [62] state, over
heterogeneous data, the FedAVG algorithm could introduce ’drift’ towards the updates
of each client or device that is participating. This ’client drift’ will result in a slow and
unstable convergence and could persist if all clients participate in training rounds with
full batch gradients. The authors ran their analysis and determined the FedAVG algorithm
full batch gradients and matching lower bounds over no client sampling, concluding that
it is slower than the stochastic gradient descent over some parameters [62]. To overcome
this challenge, the authors created a framework called a stochastic controlled averaging
(SCAFFOLD) algorithm that can fix the drift [62]. The SCAFFOLD algorithm performs
well for their analysis and provides reliable convergence rates as SGD, even for non-iid
data. It also takes advantage of the similarity that exists within the clients, and reduces
communication overload [63,64]

An approach introduced by authors in [65] called FedDANE tackles some of the
practical constraints that are present with FL. The approach is a culmination of methods
introduced in [63,64]. FedDANE collects gradient updates from a subset of devices during
each communication round. FedDANE also works well with low client participation
settings.

In summary, local updating is an essential part of federated learning. Each device
needs to compute local updates so a better overall global model can be generated and
all participating devices can benefit from it. Making the process of local updating more
efficient could indeed make communication more efficient.
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3.2.2. Client Selection

Client selection is an approach that plays a key role for FL environments. This tech-
nique determines which devices should be trained and which parameter could be specified
to be aggregated for the local updates. It can be implemented to make communication
more efficient by reducing the costs and restricting the number of participating devices so
that only a fraction of the parameters are updated over the communication round [39]. In
this subsection, conducted works on the client selection and its benefits towards improving
the communication overload are presented.

An approach introduced by the authors in [66] tackles the limitations that are present
in communication over an FL setting. They create a multi-criteria client selection model,
called FedMCCS, for IoT devices over an FL setting. The FedMCCS approach considers all
of the specifications and network conditions of the IoT device for client selection. Factors
such as the CPU, memory, energy, and time are all considered for the client resources to
determine whether the client would be able to participate in the FL task. The FedMCCS
approach considers more than one client and, over each round, the number of clients
participating is increased. From their analysis, FedMCCS, compared to other approaches,
can outperform by reducing the total number of communication rounds in order to achieve
a reasonable accuracy.

Another factor that is a vital property of FL, according to the authors in [67], is the
varying significance of learning rounds. This comes to the surface when the authors realize
that the learning rounds are temporally interdependent but have varying significance when
achieving the final learning outcome. This conclusion comes from running numerous
data-driven experiments; the authors create an algorithm that utilizes the wireless channel
information but can achieve a long-term performance guarantee; the algorithm provides a
desired client selection pattern adapted to network environments.

The authors in [68] introduced a framework that specifically tackles the challenges
when it comes to client selection. The authors called their framework FedCS. Their goal
is that, when it comes to client selection in a standard FL setting, it can sometimes be a
random selection of clients (or devices). However, with their approach of client selection,
they break it into two steps. First, a resource request, where client information, such as the
state of the wireless channel and computational capacities, etc., are requested and shared
with the central server. Second, in order to estimate the time required, distribution and
scheduled update and upload steps are taken. With their framework, the overall approach
of the client selection is to allow the server to aggregate as many clients within a certain
time frame, knowing that factors, such as data, energy, and computational resources, i.e.,
used by the devices, could better meet the requirements of a training task and possibly
affect the energy consumption and bandwidth cost.

To better assess whether a client can sufficiently participate or not, a resource manage-
ment algorithm introduced by the authors in [69] adopts a deep-Q learning algorithm that
can allow the servers to learn and make optimal decisions without having to know prior
network knowledge. Their mobile crowd machine learning (MCML) algorithm addresses
the constraints present in mobile devices, reducing the energy consumed and making the
training and communication time more efficient.

Authors run their analysis, providing a method that practices biased client selection
strategies [70]. As per their analysis, the selection of bias can affect the convergence
speed; the bias of their client selection works towards clients that have a higher local
loss and achieve a faster error convergence. With this knowledge, the authors create
a communication and computation-efficient framework called power-of-choice. Their
framework has the agility to trade off between the bias and convergence speed. The results
that the authors achieve are computed relatively faster and provide a higher accuracy of
results than the baseline random selection methods [70].

Uplink and downlink communication with participating clients in a federated net-
work is necessary. Having to communicate with clients that have a dependable network
bandwidth and energy sources could aid in achieving a well-trained global model more
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efficiently. Implemented client selection techniques can aid in reducing the cost of the
overall communication that is needed to achieve a dependable global model.

Considering mobility participants in FL, load-balancing is a key point when manag-
ing available resources and minimizing the training and communication delay. Authors
in [71] proposed a load balancing and computation offloading technique for mobile-edge
computing systems that can also be implemented in the FL environment.

3.2.3. Reducing Model Updates

Once the global model is downloaded by connected devices in the FL environment,
each device starts to train the devices locally. As each device computes and updates the
model, these updates are communicated back to the central server [6]. The number of
communication rounds between the devices and central server can be costly, and perhaps
having fewer but more efficient model updates could be a solution. This section introduces
some techniques that discuss a possible reduction in communication for these model
updates and could potentially reduce the cost.

The authors in [72] introduce an efficient way of training models; their proposed
approach adapts to the concept of drifts and trains models equally well through different
phases of model training. Their approach leads to reducing the communication substan-
tially without depreciating the model’s predictive performance.

In another study [73], the authors introduce a partitioned variational inference (PVI) for
probabilistic models that work well over federated data. They train a Bayesian neural net-
work (BNN) over an FL environment that is allowed for both synchronous or asynchronous
model updates across many machines. Their proposed approach, and the integration of
other methods, could allow for a more communication-efficient training of BNN on non-iid
federated data.

In contrast to most of the current FL methods that include iterative optimization
techniques over numerous communication rounds [6,74], the authors in [75] introduce a
one-shot communication round approach where only a single round of communication is
conducted between the central server and the number of connected devices [75]. Instead
of computing increments, the authors suggest that each device trains a local model to
completion and then applies ensemble methods to capture information regarding device-
specific models effectively. Applying ensemble learning techniques could be better suited
for global modeling than averaging techniques [75].

In an FL setting, the rate at which model convergence occurs can sometimes take a
large number of communication rounds, creating a delay towards model training while
simultaneously increasing network resources [76]. An intelligent algorithm called FOLB is
introduced by the authors in [76]. The algorithm performs a smart sampling of participating
devices over each round to optimize the expected convergence speed. The algorithm can
estimate the participating device’s capabilities; this is achieved by adapting to devices’ aggre-
gations.

If the mere frequency in which the model updates are shared is reduced, the over-
all communication between the devices and the central server is also reduced. Having
an effective way of determining how these updates are computed reduces the overall
communication rounds that are needed. Fewer rounds could result in a greater efficiency.

3.2.4. Decentralized Training and Peer-to-Peer Learning

FL, in a way, is like practicing ML in a decentralized manner. However, FL does
allow for a more peer-to-peer learning approach wherein each trained node can benefit
from the other node that is trained on the FL network. Even in decentralized training,
similar challenges of communication exist, and, in order to tackle it, different methods such
as compression [77] can be used. Herein, this subsection presents how decentralized or
peer-to-peer learning is utilized or integrated into an FL environment.

In an FL environment, as aforementioned, there is a central server that has the original
model. The central server is also where all of the devices that are connected to the network
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update their model. Essentially, all devices that are participating in the FL environment
are connected to the central server. As stated by [48], the star network is the predomi-
nant communication topology in an FL setting as shown in Figure 7. However, there is
some research on a different communication topology, where the participating devices
only communicate with one another, a peer-to-peer learning experience or decentralized
training network, and whether this would be a more efficient way to communicate in an
FL environment. The authors in [48] state that, in traditional data center environments,
decentralized training can appear to be faster than centralized training, especially when
constraints of a low bandwidth and high latency are faced when operating on networks.
However, this is not to say that decentralized training does not have its constraints: the
authors in [78] state that the computation time on nodes can slow down the convergence of
a decentralized algorithm. In addition to this, sometimes, a large communication overhead
could also further mitigate this. To overcome these constraints, the authors in [78] proposed
the QuanTimed-DSGD algorithm, a decentralized and gradient-based optimization that
imposes iteration deadlines for nodes, where nodes exchange their quantized version of
the models.

In the FL environment, peer-to-peer learning could be used, where each device only
communicates with its neighbours and updates. The participating devices or clients
update their model on their dataset and aggregate it along with the model updates from
their neighbours [39]. Furthering that, the authors in [79] build a framework for an FL
environment towards a generic social network scenario. Their online push-sum (OPS)
method handles the complex topology while simultaneously having optimal convergence
rates.

Similarly, [80] proposes a distributed learning algorithm where there is no central
server but, instead, the participating devices practice a peer-to-peer learning algorithm to
iterate and aggregate model information with their neighbor to estimate the global model
parameters collaboratively. The authors put forward an assumption, suggesting that the FL
setting wherein a central server exists and communicates with the global model can incur
high communication costs. In their approach, the devices are already distributed over the
network, where communication occurs only with their one-hop neighbors.

The authors in [81] further provide another avenue for peer-to-peer learning that does
not depend on the central server as a single trusting authority. The authors [81] create a
framework, BrainTorrent, that does not rely on a central server for training; their proposed
peer-to-peer framework is designed to motivate a collaborative environment. According to
their analysis, the absence of a central server makes the environment resistant to failure but
also precludes the need for a governing central body that every participant trusts.

Theoretically, the application of decentralized training in an FL setting could reduce
the communication cost when compared with a central server [48], though there is more
research conducted on this and there are further avenues that it can take too.

Figure 7. An overview of star-network topology. (a) star network, (b) decentralized network [48].
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3.2.5. Compression Schemes

In addition to the local updating methods, some ML compression techniques may also
be implemented to reduce the total number of rounds between the centralized server and
the devices connected to the federated network. Compression schemes such as quantization
and sparsification that are sometimes integrated with the aggregation algorithms can
sometimes provide reasonable training accuracy results while, at the same time, also
reducing the overall communication cost. The authors in [28] list the objectives set for
compression schemes and federated learning, such as:

a. Reducing the size of the object / ML model from the clients to the server, i.e., that
used to update the overall global model.

b. Reducing the size of the global model that is shared with the clients on the network,
i.e., the model on which the clients start local training using the available data.

c. Any changes that are made to the overall training algorithm that make training the
global training model more computationally efficient.

From the list of objectives, A could have the highest effect on the overall running time;
therefore, reducing it would directly result in reducing the overall communication cost.
The clients on a federated network generally have a slower upload bandwidth compared to
the download bandwidth. Therefore, compressing the ML models and potentially reducing
the uplink/downlink exchanges could result in reducing the communication cost [39].

In this subsection, compression schemes towards achieving communication efficiency
in a federated environment are presented. First, sharing the research conducted towards
compression schemes is discussed. Then, conducted works on concerned methods of
sparsification and quantization are covered.

Sparsification: Sparsification is a process of improving the model by removing un-
necessary information, mainly when it comes to deep learning approaches. It aims to
provide a faster and more efficient model that could enhance communications within
specific techniques in ML and FL. This technique is a type of communication technology
that can be implemented in an FL setting to compress the model when communicated
across the server. Herein, the conducted research towards making integrating sparsification
in an FL environment is discussed.

The authors in [55] present a sparse ternary compression (STC) method that not
only adheres to the compression requirements of an FL setting and environment but also
provides compression for both upstream and downstream communications. They run
an analysis of FL models over various datasets and architectures. In their analysis, they
conclude that some factors of an FL environment are hugely dependent on the convergence
rate of the averaging algorithm. Moreover, the authors deduce that training on non-iid
small portions of data or when only a subset of clients participate in communication rounds
can reduce the convergence rate. However, the proposed model of STC is a protocol that
compresses communication via sparsification, ternarization, error accumulation, and the
optimal Golomb encoding. The robust technique provided by the authors in [55] converges
relatively faster when compared to other averaging algorithms, such as FedAVG, over
both factors of non-iid data and a lower number of iterations that are communicated.
The proposed method is also highly effective when the communication bandwidth is
constrained.

Sparse client participation is another challenge that needs to be overcome in an FL en-
vironment; authors have introduced a FetchSGD algorithm that can help towards achieving
this [82]. FetchSGD overall aids with the communication constraints of an FL environment
by compressing the gradient that is based on the client’s local data. The data structure
count sketch [83] is used to compress the gradient before it is uploaded to the central server.
The count sketch is also used for error accumulation. According to the authors in [84], one
key problem with regard to federated setting and communication is the communication
overhead that is involved in parameter synchronization. The authors inform that this
overhead wastes bandwidth and increases the training time while impacting the overall
model accuracy. To tackle this, the authors propose a general gradient sparsification (GGS)
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framework for adaptive optimizers. The framework consists of two important mechanisms:
batch normalization updates with local gradients (BN-LG) and gradient correction. The
authors determine that updating the batch normalization layer with local gradients could
mitigate the impact of delayed gradients and not increase the communication overhead.
The authors run their analysis over several models, such as AlexNet, DenseNet-121, Cifar-
Net, etc., and achieve high accuracy results, concluding that gradient sparsification does
have a significant impact in reducing the communication overhead. The authors in [85]
introduce a compression scheme that is both a communication-efficient and deferentially
private federated learning scheme. The authors call it CPFed. The challenge that the
authors face when addressing both issues together is one that arises from data compression.
Techniques used for compression can sometimes lead to an increased number of training
iterations required for achieving some desired training loss due to the compression errors;
however, differential privacy could deteriorate with regard to the training iterations. To
overcome this paradigm, their proposed CPFed is based on a sparsified privacy masking
technique that adds random noise to model updates along with an unbiased random spar-
sifier before updating the model. The authors can achieve a high communication efficiency
through their proposed model.

The authors in [86] propose a compression technique that could drastically reduce the
communication cost for a distributed training environment. The framework introduced
by the authors is a sparse binary compression (SBC) technique; their method integrates
techniques that are already present in communication delay and gradient sparsification
with a novel binarization method. According to their research, the authors find that the
current gradient information for training neural networks with SGD is redundant. Instead,
the authors utilize communication delay methods introduced in [6] to introduce temporal
sparsity, where gradients are not communicated after every local iteration. From their
findings, the authors conclude that, in a distributed SGD setting, both the communication
delay and gradient sparsity can be treated as independent types of sparsity techniques.
These methods provide higher compression gains, though, in their findings, the authors
also find a slight decrease in the accuracy.

Quantization: The communication between the devices and the central server in-
cludes sharing model updates and parameters that have occurred on the device end. This
updating of parameters can be strenuous when it comes to up-linking the model. To aid
with this, another compression method referred to as quantization can bring the model
parameters to a reasonable size without compromising much on the model accuracy [87].
In this subsection, different techniques and frameworks that have integrated quantization
towards achieving communication efficiency in the FL setting are introduced.

The authors in [61] utilize their framework, FedPAQ, to reduce the overall com-
munication rounds and the bearing cost. A feature of their framework is to quantize
message-passing. The communication bandwidth will mostly be limited in an FL setting,
where a limited uplink bandwidth on the participating device end could increase the
communication cost, making it more expensive. The authors in [61] employ quantization
techniques [88] on the up-links; every local model is quantized before being uploaded,
hence reducing the overall communication overhead.

Furthering and employing quantization techniques, the authors in [89] use them for
their FL analysis. In contrast to typical FL models, where the global model from a central
server is downloaded by all devices and then subsequently updated and so and so forth, the
authors from their analysis discovered that applying quantization techniques to the global
model can help towards making communication more efficient. The lossy FL algorithm
(LFL) created by the authors quantizes the global model before it broadcasts and shares
it with the devices. The local updates that take place on the device are uploaded on the
global central server and are also quantized. The FL environment is hugely dependent on
the bandwidth, and the authors in [89], for their analysis, study how well the quantized
compressed global model performs in order to provide an estimate for the new global model
from the local updates of the devices. They compare their results with another analysis of a
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lossless standard approach of FL and conclude that their LFL and the technique of quantizing
global model updates provide a significant reduction in the communication load.

Traditionally, compression algorithms are trained for a setting where there is a high-
speed network, such as data centers [90], but, in an FL setting, these algorithms might not
be very effective directly. To further tackle the communication bottleneck that is created due
to the network and the other aforementioned reasons, another quantization compression
technique is proposed by [91]. To achieve a trade-off between communication efficiency
and accuracy, the authors in [91] propose a hyper-sphere quantization (HSQ) framework.
HSQ can reduce the communication cost per iteration, which is ideal for an FL environment.
The framework utilizes vector quantization techniques that show an effective approach
towards achieving gradient compression and simultaneously not compromising regarding
convergence accuracy.

In another study, the authors in [92] suggest that the communication channel and
transfer of model parameters between the users to the central server has a throughput that
can be typically constrained. The authors, while conducting their research, encountered that
alternative methods used to aid with this could provide a dominant distortion of results.
This leads [92] to create a quantization method that is more efficient towards facilitating
the model transfer in an FL setting. Utilizing quantization theory methods, the authors
design quantizers that are suitable for distributed deep network training. Understanding
the requirements that are needed for a quantization FL setting, the authors can propose an
encoding–decoding strategy. Their proposed scheme shows potential for an FL setting, as
it performs relatively well compared to previously proposed methods. Furthering their
research towards quantization theories, the authors in their review approach it by identify-
ing unique characteristics regarding the conveyed trained models over rate-constrained
channels [93]. The authors propose a universal vector quantization technique for FL: a
quantization technique that would be suitable for such settings, calling it UVeQFed. For
their research, the authors demonstrate that combining universal vector quantization meth-
ods can yield a system where the compression of trained models induces only a minimum
distortion. Analyzing the distortion further, the authors determine that the distortion is
reduced substantially as the number of users grows.

The authors in [94] introduce a hierarchical quantized federated learning technique
that can leverage a client-edge-cloud network hierarchy and quantized model updates.
Their heir-local-QSGD algorithm performs partial edge aggregation and quantization on
the model updates, which can result in improving the communication efficiency in an FL
environment. A summary table of the works presented in this section is given in Table 2.

Table 2. Research conducted towards reducing the overall communication costs and overheads in an
FL.

Ref. Section Model and Technology Remarks

[59]

Local Updating

Hierarchical clustering
technique

An FL+HC technique separating client clusters similarity of
local updates

[61] FedPAQ Using periodic averaging to aggregate and achieve global
model updates

[62] SCAFFOLD algorithm An algorithm that provides better convergence rates over
non-iid data

[55]

Compression
Schemes-
Sparsification

STC method Providing compression for both upstream and downstream
communications

[82] FetchSGD Compresses the gradient based on client’s local data

[84] General gradient sparsification
(GSS)

Batch normalization layer with local gradients mitigating the
impact of delayed gradients and not increasing the
communication overhead

[85] CPFed A sparsified masking model providing compression and
differential privacy

[86] Sparse binary compression (SBS) Introducing temporal sparsity, where gradients are not
communicated after every local iteration
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Table 2. Cont.

Ref. Section Model and Technology Remarks

[61]

Compression
Schemes-
Quantization

FedPAQ Using quantization techniques based upon model
accuracy

[89] Lossy FL algorithm (LFL) Quantizing models before broadcasting

[91] Hyper-sphere quantization
(HSQ) framework Ability to reduce the cost of communication per iteration

[92] UVeQFed Algorithm convergence of model minimizes the loss
function

[94] Heir-Local-QSGD Leveraging client–edge–cloud network hierarchy and
quantized models updates

[81] Decentralized
Training or
Peer-to-peer
Learning

BrainTorrent A peer-to-peer learning framework where models
converge faster and reach good accuracy

[78] QuanTimed-DSGD
decentralized gradient-based optimization imposing
iteration deadlines for devices

[66]

Client Selection

FedMCCS A multi-criteria client selection that considers IoT device
specification and network condition

[67] Resource allocation model Optimizing learning performance in how clients are
selected and how bandwidth is allocated

[68] FedCS The framework allows the server to aggregate as many
clients as possible within a certain time-frame

[70] Power-of-choice A communication and computation-efficient client
selection framework

[72]

Reduced Model
Updates

A decentralized deep
learning model

Ability to handle different phases of the model training
well

[73] A partitioned variational
inference (PVI)

A Bayesian neural network over FL that is synchronous
and asynchronous for model updates across machines

[75] One-shot federated learning A single round of communication performed between
central server and connected devices

[76] FOLB Intelligent sampling of devices in each round of model
training to optimize the convergence speed

4. Discussion

This paper provides an introduction to FL while retaining focus on the communication
component of FL. Communication is quite an essential part of the federated learning
environment. It is essentially how the global machine learning model is transmitted from
the central server to all of the participating devices. Similarly, the model is then trained on
the local data that are available on the devices and then uploaded back to the central server.
This constant communication requires many downloads and uploads using a reliable
network bandwidth. As this is not always the case, a limited bandwidth or poor client
participation can create a communication lag in completing the FL training. Techniques
used to make the rounds of communication more efficient are shared in this paper. For
example, a wide range of compression scheme methods mentioned in this paper can help to
reduce the communication overheads and reduce the costs to some factor. Even though the
methods presented in this paper make the communication front more efficient, they are all
implemented using various resources, such as different computational power and datasets.
There are dependable ways for communication rounds to be addressed. However, due to
the range of solutions presented, it could be concluded that a culmination of techniques
implemented together could result in the most communication-robust solution for an
FL setting.
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5. Conclusions and Future Expectations

Communication plays an important role in an FL setting, and various techniques, such
as local updating, client selection, reduction in model updates, decentralized training, peer-
to-peer learning, and compression schemes, are proposed to enhance the communication
efficiency. This survey paper aimed to provide a bridge between the gap that was present
on the topic of communication in FL. The paper mainly focused on the communication
challenges and constraints in an FL environment, such as the bandwidth and limited
computation. The challenges were proposed in the form of two RQs that both introduced
the problems and provided a list of solutions that have been applied towards making
communication more efficient. It is, after all, how all of the training of ML models occurs.
Despite its importance, there is still limited research conducted compared to other aspects,
such as privacy, security, and resources. For future expectations, it is critical to compose the
aforementioned techniques effectively in order to overcome communication costs. Using
a combination of techniques could be a future direction for research studies. In this case,
the trade-off between the model’s performance and communication could be studied.
Additionally, more research is needed to improve the communication efficiency across
FL settings.
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