

Secure Software Upload in an Intelligent
Vehicle via Wireless Communication Links

Syed Masud Mahmud, Member, IEEE, Shobhit Shanker, Student Member, IEEE

Irina Hossain, Student Member, IEEE

Abstract— The demand for drive-by-wire, telematics,

entertainment, multimedia, pre-crash warning, highway
guidance, remote diagnostic, etc. will significantly increase the
complexity of a vehicle’s software modules. From time to time,
the vehicle’s software may need to be updated due to many
reasons such as the introduction of new features in vehicles,
changing the navigation map, fixing software bugs, etc.
Software updates must be done in secure modes to avoid any
future disasters due to malfunctions of the vehicle. In this
paper, we propose an architecture for secure software uploads
in vehicles. We provide a detailed description of the secure
software upload process.

Key words— Software update, security, key management,

intelligent vehicles.

I. INTRODUCTION

ABOUT half a century ago a vehicle was mostly a
mechanical device. Today, a significant part of a

vehicle’s manufacturing cost goes towards the
implementation of electronic components. The demand for
drive-by-wire, telematics, entertainment, multimedia, pre-
crash warning, highway guidance, remote diagnostic, etc.
will significantly increase the complexity of in-vehicle
communication networks, hardware and software modules.
From time-to-time, it will be necessary to upgrade vehicles’
software modules. For example, the map of a vehicle’s
navigation system may need to be updated when new
roads, houses and offices are built. A company may need to
monitor its newly designed vehicles, via wireless
communication links, to determine the performance of the
vehicles in terms of fuel efficiency, emission and other
driving conditions. The company can then improve, if

necessary, the performance of its vehicles by remotely
adjusting some software parameters in the vehicles’
electronic modules. Updating software modules in the
future intelligent vehicles, on a regular basis, will be
required to keep the vehicles compatible with the
infrastructure of the intelligent transportation system.

Manuscript received December 15, 2004.
Syed Masud Mahmud is with the Department of Electrical and

Computer Engineering, Wayne State University, Detroit, MI 48202 USA
(Phone: 313-577-3855; fax: 313-577-1101; e-mail:
smahmud@eng.wayne.edu).

Shobhit Shanker is with the Department of Electrical and Computer
Engineering, Wayne State University, Detroit, MI 48202 USA (e-mail:
sshanker@wayne.edu).

Irina Hossain is with the Department of Electrical and Computer
Engineering, Wayne State University, Detroit, MI 48202 USA. (e-mail:
ihossain@wayne.edu)

Remote software upload, via wireless communication
links, has many advantages over upload at a service station.
Some of the advantages are as follows:
• The consumers do not need to take their vehicles to

service stations. Thus, remote software upload
operations will save consumers’ valuable time.

• The personnel at the service stations do not need to
spend time on vehicles on an individual basis
eliminating labor costs from the auto manufacturers as
well as from the consumers.

• The auto manufacturers can immediately fix bugs or
upload new features in software modules without
being delayed for a long period of time, which may
save a significant amount of money from legal costs.

To upload software in vehicles, it is critically important
that this be done in a secure environment. Otherwise, the
system would be susceptible to security attacks, which will
compromise its safety and functionality. This paper
presents a mechanism for secure software upload in an
intelligent vehicle. The scope of this paper is software
upload for one vehicle only. Thus, if the same software
needs to be uploaded in multiple vehicles, then the upload
operation must be repeated for each vehicle one at a time.

The rest of the paper is organized as follows. Section II
presents some basic materials on secure communications.
Section III describes our architecture. Section IV shows
system requirements, and Section V presents the
conclusions.

II. SOME BASIC MATERIALS
During the last several years, interest in using the

wireless communication technologies have grown
significantly. Bluetooth features are becoming very
common in cell phones, PDAs, laptops, etc. More and more
homes are getting broadband connections and using Wi-Fi
technology for wireless in-home networking. The
0-7803-8961-1/05/$20.00  2005

 587

mailto:sshanker@wayne.edu

automotive industry has also started introducing wireless
technology, such as Bluetooth, for its in-vehicle
networking [1]. If secure wireless networks can be
implemented at reasonable costs, then consumers’ demand
for in-vehicle wireless networks may increase significantly.
The government may also mandate auto companies to have
wireless networks in vehicles so that the vehicles can
communicate with each other to issue pre-crash warnings;
and law-enforcing authorities can monitor vehicles’
emission, speed and other items related to violations of
traffic laws.

Auto companies and suppliers must use secure wireless
links to upload software in their vehicles. Otherwise,
hackers may tamper with software code during the
uploading process, leading to possible disasters during the
operation of the vehicles. The current techniques that are
used for setting up a secure communication link are mainly
client-server based techniques such as SSL and VPN. Brief
descriptions of these techniques are shown below.

A. SSL (Secure Socket Layer)
The SSL protocol is the Web standard for encrypting

communications between users and SSL (secure socket
layer) enabled e-commerce sites [2]. The SSL layer runs on
the top of TCP/IP layer. The SSL security protocol
provides data encryption, server authentication, message
integrity, and optional client authentication for a TCP/IP
connection. The SSL protocol includes two sub protocols
[3]: the SSL record protocol and the SSL handshake
protocol. The SSL record protocol defines the format used
to transmit the data. The SSL handshake protocol involves
using the SSL record protocol to exchange a series of
messages between an SSL enabled server and SSL enabled
client when they first establish a connection. This exchange
of messages is designed to facilitate the actions like:
authentication of the server to the client, authentication of
the client to the server, selection of cryptographic
algorithms that they both support, use of public key
encryption techniques to generate shared secrets, etc.

B. VPN (Virtual private network)
VPN is a private network that uses a public network

(usually the Internet) to connect remote sites or users
together [4]. Instead of using a dedicated, real-world
connection such as a leased line, a VPN uses "virtual"
connections routed through the Internet from the company's
private network to the remote site or employee. VPN
mainly uses IPSec (internet protocol and security) protocol,
which in turn uses the tunneling method for making data
packets immune to attacks. IPSec can encrypt data between
various devices, such as router-to-router, firewall-to-router,
PC-to-router, PC-to-server, etc. Tunneling is the process of
placing an entire packet within another packet and sending
it over a network. The network and both parties understand

the protocol of the outer packet, called the tunnel interface.

C. Symmetric and Public Key Encryption
There are mainly two types of encryption techniques: the

symmetric-key and public-key encryptions [5]. In the
symmetric-key encryption, both parties use the same key to
encrypt and decrypt messages. In this encryption technique,
both parties must have the same key in their system before
they are going to exchange messages. The public-key
encryption uses a combination of a private key and a public
key. A computer (say X) can send its public key to other
computers with which it wants to establish
communications, but it will securely keep its own private
key. A message that is encrypted by the public key of X,
can only be decrypted by X using its private key. The
encryption/decryption process using public/private key
mechanism is very time-consuming compared to that using
symmetric key mechanism. Normally, two parties use the
public/private key technique to exchange their symmetric
key. For example, if another computer (say Y), which has
the public key of X, wants to establish a secure
communication link with X, then Y generates a symmetric
key and sends it to X after encrypting it using the public
key of X. X then uses its private key to decrypt the message
sent by Y, and collects the symmetric key from the
decrypted message. After that, X and Y communicate using
the symmetric key generated by Y.

III. THE PROPOSED ARCHITECTURE FOR SECURE
SOFTWARE UPLOAD

Here we present and discuss the architecture for secure
software upload in vehicles’ electronic modules. We
assume that all the vehicles are equipped with wireless
interface units to communicate with the infrastructure of
the Intelligent Transportation System (ITS). A company’s
server can communicate with a selected group of vehicles
via either the cellular network or the ITS infrastructure.
Since the cell phone towers cover almost all the road
systems of the country, the same tower can also be used as
the Intelligent Transportation Tower (ITT).

A. Authentication Keys
We assume that at the time of manufacturing a vehicle, a
set of authentication keys is installed in the vehicle. The
same set of keys is also kept in a central server. Every time
a vehicle is going to be authenticated by an ITT, the ITT
gets the set of keys of the vehicle from the central server,
and uses one key to authenticate the vehicle. Different
authentication keys are used to authenticate the vehicle at
different times. When all the keys of the set are used for
authenticating the vehicle, a new set of keys is generated
and sent to the vehicle. The new set of keys is also kept in
the central server. Successive authentications of the vehicle
are done using the new set of keys. After authenticating the

 588

vehicle, the ITT or the central server issues a symmetric
key to the vehicle. The ITT and/or the central server can
securely communicate with the vehicle using the symmetric
key.

B. Key Management for Software Upload
Assume that automotive company X wants to upload
software in one of its vehicles (say Vehicle V). Let Y be
the supplier of the software. X generates a set of link keys
(P1, P2, . . , PN) and sends it to Y using a secure link such as
SSL or VPN. Note that the link keys will be used to
establish secure links between Supplier Y and the target
Vehicle V. X then securely sends the same set of link keys
to Vehicle V using either the cellular network or the
infrastructure of ITS. Now, both Vehicle V and the
Supplier Y have the same set of link keys. The supplier and

the vehicle can establish a secure link using one of these
link keys, say P1. Other link keys will be used to establish
future secure links between the vehicle and the supplier.
Since a given link key is not going to be used more than
once, both the supplier and the vehicle delete the key P1
from the set of link keys after they have established a
secure link for the first time. After that, the supplier and the
vehicle generate some symmetric encryption keys. Using
these encryption keys, the supplier can send encrypted
software to the vehicle. Figure 1 shows the key transfer and
software upload process. Since each vehicle has its own set
of keys, neither the vehicle nor the software vendor can
send any unauthorized software to other vehicles without
the consent of the automotive company.

Step1: Link keys P1, P2, . . PN, are sent in secure
 mode using SSL, VPN or other technology.

Automotive
Company

X
Supplier

Y

Figure 1: Key transfer and software upload process.

C. Sending Multiple Copies of the Software can
Significantly Improve the Security Level

To increase the security level of the software upload
process, we recommend that the supplier should send at
least two copies of the software to the vehicle. These two
or more copies of the software must be sent after some
random time intervals. First, the supplier will establish a
secure link with the vehicle using one of the link keys, and
then send a copy of the software. After a random time
interval, the supplier will again establish a secure link with
the vehicle using another link key, and send the second
copy of the software.

The vehicle must have memory buffers to keep copies of
the software. After receiving both copies of the software,
the vehicle checks whether the two copies are exactly same.
Since the two copies of the software are sent from the
supplier to the vehicle at two different times, it is very
unlikely that a hacker will be able to change both copies of
the software exactly at the same point in the code. Thus, it
is very unlikely that the two copies of the software will be
exactly same if one or both of them are changed. If the two
copies of the software are the same, the vehicle sends a

positive acknowledge signal to both X (automotive
company) and Y (supplier). If the two copies of the
software are not same, then the vehicle asks the supplier to
retransmit the unmatched packets.

To avoid hackers from detecting a predicted order of
packet transmission, the packets of the software can be sent
in some random orders. In that case, even if a hacker can
change one packet of the first copy of the software, it will
be difficult for the hacker to detect the same packet in the
second copy of the software. As a result, it will be more
difficult for the hacker to change the same packet in both
copies of the software.

After receiving two identical copies of the software, the
vehicle initiates a process for replacing the old software of
a module by a copy of the new software. The process of
replacing the old software is initiated when the vehicle is
not in motion and the ignition is off. If the vehicle is in
motion, then it may issue a warning to the driver indicating
that new software is ready to be loaded in a module. Then
the driver may stop the vehicle and turn the ignition off at
his/her convenience. The vehicle then keeps a backup copy
of the old software in a temporary buffer. After that, the
vehicle loads the new software into a module. The backup

Step2:
Link keys P1, P2, . . PN, are sent in secure
mode using the previously exchanged
symmetric encryption key.

Step3:
a. A secure link is established using one link key.
b. The supplier and the vehicle exchange a set of

symmetric encryption key(s).
c. The supplier sends software in encrypted mode.

Vehicle V

 589

copy can be used to undo the upload operation if there are
any problems with the vehicle’s functionality after the
upload operation.

After successfully uploading the software in a vehicle,
the automotive company (X) decides whether or not to
keep the remaining link keys in the vehicle. If X determines
that Y has no more software to upload, then X sends a
signal to the vehicle to delete the remaining link keys. This
way, the vehicle can keep itself protected from any insider
attacks by the employees of Y. In the future, if Y wants to
upload another software in the vehicle, then X issues
another set of link keys to both Vehicle V and Supplier Y,
and the entire process of software upload is repeated.

D. Only One Copy of the Software Appended with a
Message Digest (MD).

If only one copy of the software is to be sent, then the
security level of the upload process can be increased by
appending a message digest (MD) with the software. The
supplier can create a 128-bit message digest of the software
using the MD5 algorithm [6]. The supplier can then encrypt
the message digest and send it along with the software. On
the other hand, the vehicle can also create a 128-bit
message digest based on the software received by the
vehicle. After that, the vehicle can decrypt the message
digest sent by the supplier and compare it with its
calculated message digest. If both match, then the vehicle
can accept the software.

This particular technique, which uses a message digest
(MD), has some disadvantages over the other technique
that sends at least two copies of the software. If a hacker
can successfully change one packet of the software, then
the decrypted message digest will not match with the
vehicle’s calculated message digest. As a result, the
supplier will need to retransmit the entire software, because
the supplier does not know which particular packet is
changed. If a hacker can successfully change a packet of
every transmission, then the vehicle will never be able to
upload the software.

E. Two Copies of the Software with a Message Digest
(MD)

A better way of uploading software in a vehicle would be
sending two copies of the software along with the message
digest in each copy. If some packets of the first copy
(including the message digest) do not match with the
corresponding packets of the second copy, then the vehicle
asks the supplier to send the unmatched packets. After
receiving two identical copies of the software, along with
the message digest, the vehicle calculates a message digest
based on the software received from the supplier. The
vehicle then compares this calculated message digest with
the message digest received from the supplier. If they
match, the vehicle accepts the software. If they do not

match, then the hacker was able to change both copies of
some packets (including the message digest). The vehicle
then asks the supplier only to send one or more copies of
encrypted message digest. The supplier sends the additional
copy(copies) of the message digest after some random time
interval. After receiving the additional copy of the message
digest, the vehicle compares it with the calculated message
digest. If they match, the vehicle accepts the software.
Otherwise, the vehicle rejects the software. Figure 2 shows
the flow diagram of the software upload process where two
copies of the software are sent along with the message
digest (MD) in each copy.

Figure 2: Software upload algorithm.

F. Uploading Software in Multiple Vehicles
Software upload in only one vehicle will be necessary if

a particular vehicle has some unique problems with its
functionality. Uploading software only in one vehicle is a
unicast process. The scope of our current work, presented
in this paper, is software upload in one vehicle only.
However, if the automotive company wants to add new
features to a large number of vehicles, then software upload
operations will be required for multiple vehicles.
Uploading software in multiple vehicles is a multicast
process. Many different multicast algorithms have been
designed for mobile devices [7], [8]. Some of these
algorithms can be used to extend our work for software
upload in multiple vehicles. We intend to do that in our
future work.

G. Protection of Keys in the Servers of the Automotive
Company and the Software Vendor
All keys must be appropriately protected in the servers of

No

No

No

Yes

Yes

Yes

Vehicle
requests

retransmission
of unmatched

packets.

Vehicle
receives

unmatched
packets.

Received MD =
Computed MD?

Are the two copies same?

Vehicle accepts
the software.

Vehicle requests
retransmission of MD

Received MD =
Computed MD?

Vehicle received two copies of the software.

Vehicle rejects
the software.

 590

both the automotive company and the software vendor.
However, this is not a unique problem with our work. The
same problem exists in all security systems. For example,
the systems that use private- and public-key mechanisms
must guard the private keys. Whatever techniques and
mechanisms are used to guard the private keys of a system,
similar techniques and mechanisms could be used to protect
the vehicle keys in the servers of the automotive company
and the software vendor. The keys must be kept in tamper
resistant devices. However, since the scope of this paper
does not deal with the protection of keys in servers, we do
not want to discuss this issue any further.

H. The Wireless Gateway of a Vehicle
A vehicle must have a wireless gateway for it to receive

software via wireless links. This wireless gateway would be
like an ECU (electronic control unit) of the vehicle. The
wireless gateway should have access to the vehicle’s wired
bus (e.g. a CAN bus) so that software can be sent to the
targeted ECU from the wireless gateway. When the ignition
is off, the wireless gateway should be in a low power
receive mode to avoid battery draining. Upon detection of a
signal for software upload, the wireless gateway will switch
itself to the full power mode to communicate with the
nearest ITT. After receiving the software the wireless
gateway can save the software in its own buffer. Later on,
when the ignition is turned on, the software can be
transferred to the targeted ECU.

IV. SYSTEM REQUIREMENTS
In this section, we show the requirements of memory

size, bandwidth and length of encryption keys for secure
software upload operations.

A. Memory Requirement
A vehicle needs two memory buffers: one to keep a

backup copy of the current software and another one to
keep a copy of the new software. The size of each buffer
should be at least equal to the longest code of a vehicle
module. Normally, the engine control module contains the
longest code. A buffer size of 5 Mbytes should be good
enough to hold the software of the engine control module.
Thus, the two buffers together need at most 10 Mbytes.

B. Bandwidth Requirement
Unlike vehicle-to-vehicle communication for pre-crash
warning that requires high bandwidth, the bandwidth
requirement of a vehicle’s wireless link for uploading
software is not a serious issue. The software doesn’t need
to be transmitted from the supplier to the vehicle in a short
period of time (say within a few minutes). The supplier can
take as much time as needed to send the software to the
vehicle. Since the transfer process of the two copies of the
software from the supplier to the vehicle is transparent to

the driver of the vehicle, a very low bandwidth (say 1
Kbyte/sec) link may be good enough. To avoid any
bandwidth limitations for the overall system, including the
supplier, cellular and ITS infrastructure, the software can
be transmitted at off peak hours (say after midnight) when
there may be very little traffic from other types of
communication services.

C. Size of Encryption Keys
Longer encryption keys need more CPU time to do

encryption and decryption than that needed by shorter
encryption keys. However, longer keys provide better
security than shorter keys. Let us compare the key lengths
for two different cases of software upload process to
provide the same level of security. In one case, longer keys
are used and only one copy of the software is sent from the
supplier to the vehicle. In the second case, shorter keys are
used, but two copies of the software are sent from the
supplier. Let and be the length of keys for the first
and second case, respectively. The probability that a packet
of the first case will be changed is , where k indicates
how fast the hacker can decrypt information compared to
the vehicle. For example, if =2 then the hacker can
decrypt information twice as fast as the vehicle. Let be
the total number of packets in the software. The probability
that the vehicle will receive all packets in clean form is

. Then, the probability that at least one packet
will be changed by the hacker is

1L

n

2L

12 Lk −

k

n

n

(Lk 121 −−)

)

)

 (1) (nLkp 12111
−−−=

Similarly, for the second case, where two copies of the
software are sent, the probability that the first copy will be

changed is 1 . The probability that the
second copy of the software will be changed in the same
packet, as in the first copy, is k . Hence, the
probability that tampered software will be uploaded in the
vehicle for the second case is

(nLk 221 −−−

22 L−

()() 22 22112
LnL kkp −−−−= (2)

To have the same level of security for both cases, we

have to make , i.e. 1 = 21 pp =

)
()nLk 121 −−−

(() 22 Lk −2211
nLk −−− .

 Hence,
() ...2

2
12 11 22 +−− −− LL knnnk =

()
222 2...2

2
12 22 LLL kknnnk −−− 






 +−− (3)

Most of the e-commerce transactions through the internet
use 128-bit keys. However, for any reasonable key size

 591

(say 40 bits or longer), the values of nk and

are very small. Ignoring the higher order terms of

Equation (3) we get = , i.e. = .
Hence,

12 L−

1222 LL −

22 Lnk −

12 Lnk − 222 2 Lnk − k

2
log

2
21

2
kLL += (4)

Equation (4) shows the relationship between

and to have the same level of security. In general, we
can show that if the supplier decides to send m copies of
the software, then the following relationship must hold to
achieve the same level of security.

1L

2L

()
m

km
m
LLm

21 log1−+= (5)

where, is the length of encryption keys when copies
of the software are to be sent. Table I shows the size
of needed to achieve the same level of security for

different values of k (speed ratio of hacker’s computer)
and (number of copies of the software to be sent by the
supplier).

mL m

mL

m

Table I: Size of to achieve the same security level for

different values of and .
mL

k m
Size of (in bits) for bits mL 1281 =L

k 2=m 3=m 4=m
2 65 44 33
8 66 45 35

32 67 46 36
128 68 48 38
512 69 49 39

2048 70 50 41

In the above analysis, it is assumed that the hacker stays

with the vehicle all the time. However, it may not be
possible for the hacker to stay with the vehicle 24 hours a
day and 7 days a week. If the duplicate copies of the
software are sent after some random and long average time
intervals (say 24 to 48 hours), then the hacker may not stay
near the vehicle when the vehicle will be receiving the
duplicate copies of the software. Thus, in real-life, a much
higher level of security can be achieved by sending two or
more copies of the software to the vehicle.

D. Trade off between m and m+1 Copies of the Software
When m+1 copies of the software are sent, the length of

the keys is shorter than when m copies of the software are
sent. Shorter keys need less time to do encryptions and
decryptions of the software. However, sending m+1 copies
of the software need more time than sending m copies of

the software. In our future work we would like to evaluate
the trade off between m and m+1 copies of the software by
considering various performance parameters such as
FEMA, cost/benefit and time to deploy the upgraded
software.

V. CONCLUSIONS
In this paper, we have presented architecture for secure
software upload in vehicles. We proposed that the supplier
should send at least two copies of the software to the
vehicle. We have given a detailed description of key
exchange mechanisms and software upload process. If two
or more copies of the software are sent, then shorter keys
can be used to obtain the same level of security that can be
obtained with longer keys when only one copy of the
software is sent. In other words, with the same size of keys,
a significantly higher level of security can be obtained if
two copies of the software are sent to the vehicle, instead of
only one copy. The level of security can be further
increased if the time interval between the transmission of
two copies of the software is a random number with a very
long average value. Since different authentication keys are
used for different vehicles, neither a vehicle nor the
software vendor can upload software in any other vehicles
without the consent of the automotive company.

REFERENCES
[1] “Top 10 Techno-Cool Cars”, IEEE Spectrum, February 2003, pp. 30

–35.
[2] A Frier, P. Karlton, and P. Kocher, “The SSL 3.0 Protocol,”

Netscape, Nov. 1996.
[3] M.S Bhiogade, Secure Socket layer, IS 2002 Proc. of the informing

science IT Education Conf., June 19-21, 2002, Cork, Ireland, pp
0085-0090.
http://ecommerce.lebow.drexel.edu/eli/2002Proceedings/papers/Bhio
g058Secur.pdf

[4] How Virtual Private Networks Work. Website of how stuff works.
http://computer.howstuffworks.com/vpn.htm.

[5] ”Handbook of Applied Cryptography “ By A. Menezes, P. Van
Oorschot and S. Vandstone. CRC Press 1996.

[6] Ronald Rivest, “The MD5 Message-Digest Algorithm”, RFC 1321
April 1992.

[7] Sung-Ju Lee, “Routing and Multicasting Strategies in Wireless
Mobile Ad hoc Networks,” Ph. D. Dissertation, Univ. of California
Los Angeles, 2000.

[8] Thomas Kunz and Ed Cheng, “On-Demand Multicasting in Ad-Hoc
Networks: Comparing AODV and ODMRP,” Proc. of the 22nd
International Conf. on Distributed Computing Sys. (ICDCS’02),
IEEE Comp. Society, 2002.

 592

	INTRODUCTION
	SOME BASIC MATERIALS
	SSL (Secure Socket Layer)
	VPN (Virtual private network)
	Symmetric and Public Key Encryption

	THE PROPOSED ARCHITECTURE FOR SECURE SOFTWARE UPLOAD
	Authentication Keys
	Key Management for Software Upload
	Sending Multiple Copies of the Software can Significantly Improve the Security Level
	Only One Copy of the Software Appended with a Message Digest (MD).
	Two Copies of the Software with a Message Digest (MD)
	Uploading Software in Multiple Vehicles
	Protection of Keys in the Servers of the Automotive Company and the Software Vendor
	The Wireless Gateway of a Vehicle

	SYSTEM REQUIREMENTS
	Memory Requirement
	Bandwidth Requirement
	Size of Encryption Keys
	Trade off between m and m+1 Copies of the Software

	CONCLUSIONS

