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Secure State Estimation for Cyber Physical Systems under Sensor

Attacks: A Satisfiability Modulo Theory Approach

Yasser Shoukry, Pierluigi Nuzzo, Alberto Puggelli,

Alberto L. Sangiovanni-Vincentelli, Sanjit A. Seshia, and Paulo Tabuada

Abstract—Secure state estimation is the problem of estimating
the state of a dynamical system from a set of noisy and
adversarially-corrupted measurements. Intrinsically a combina-
torial problem, secure state estimation has been traditionally
addressed either by brute force search, suffering from scalability
issues, or via convex relaxations, using algorithms that can
terminate in polynomial time but are not necessarily sound. In
this paper, we present a novel algorithm that uses a satisfiability
modulo theory approach to harness the complexity of secure
state estimation. We leverage results from formal methods
over real numbers to provide guarantees on the soundness
and completeness of our algorithm. Moreover, we discuss its
scalability properties, by providing upper bounds on the runtime
performance. Numerical simulations support our arguments by
showing an order of magnitude decrease in execution time with
respect to alternative techniques. Finally, the effectiveness of the
proposed algorithm is demonstrated by applying it to the problem
of controlling an unmanned ground vehicle.

I. INTRODUCTION

The detection and mitigation of attacks on Cyber Physical

Systems (CPS) is a problem of increasing importance. The

tight coupling between “cyber” components and “physical”

processes often leads to systems where the increased sophisti-

cation comes at the expense of increased vulnerability and

security weaknesses. An important scenario is posed by a

malicious adversary that can arbitrarily corrupt the measure-

ments of a subset of sensors in the system. These sensor-

related attacks can actually be deployed by using either cyber

or physical components as follows:

1) Software. Malicious software running on the processor

executing the sensor processing routine can access the

sensor information before it is processed by the controller

itself. The Stuxnet malware is an infamous example of

this category of attacks. It exploits vulnerabilities in

the operating system running over SCADA (Supervisory

Control And Data Acquisition) devices [1] and once it
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obtains enough operating system privileges, it can cor-

rupt the sensor measurements collected via the attacked

SCADA device.

2) Network. Modern control systems rely on a networked

infrastructure to exchange sensor information. Therefore,

an adversarial attacker can corrupt sensor measurements

by manipulating the data packets exchanged between var-

ious components, as has been investigated, for instance,

in smart grids [2].

3) Sensors Spoofing. By tampering with the sensor hardware

or environment, an adversary can mislead the sensor

about the value of the physical signal it is attempting to

measure. As previously shown by some of the authors, it

is possible to make drivers lose control of their cars by

directly spoofing the velocity sensors of anti-lock braking

systems in a non-invasive manner [3].

In all the scenarios above, because sensor measurements are

used to generate control commands, corrupted measurements

can lead to corrupted commands, thus critically affecting the

physical process under control.

This paper addresses the problem of estimating the state of

the underlying physical system from corrupted measurements,

so that it can be used by the controller. We call this problem

secure state estimation. We focus on linear dynamical sys-

tems and model the attack as a sparse vector added to the

measurement vector. The entries corresponding to unattacked

sensors are null while sensors under attack are corrupted

by non-zero signals. We make no assumptions regarding the

magnitude, statistical description, or temporal evolution of the

attack vector.

While prior work has addressed the secure state estimation

problem for the special cases of scalar systems [4], or when the

attack signal has a specific structure (e.g., in the case of replay

attacks [5]), we focus instead on the general case, in which

the system under attack is multi-dimensional, it is equipped

with multiple sensors, and there are no assumptions on the

time evolution of the attack signal. In this case, secure state

estimation becomes a combinatorial problem [6], [7], [8]. We

can then categorize the different contributions in the literature

based on the techniques used to tackle the combinatorial

aspects in it, namely, (i) by brute force search [7], [8], and

(ii) by convex relaxations [6], [9].

Pasqualetti et al. provide a suite of sound and complete al-

gorithms to generate fault-monitor filters, which can be used to

detect the existence of an attack [7]. However, if only an upper

bound on the cardinality of the attacked sensors is available,

the number of needed monitors is combinatorial in the size

of the attacked sensors, which might hinder the scalability of
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the approach. To avoid running a combinatorial set of parallel

monitors, Chong et al. [8] show how all the monitors can be

combined into a single multi-observer component. However,

the number of the observer outputs is still combinatorial, and

the proposed algorithm must exhaustively search over all of

them to discover which sensors are under attack.

As an alternative approach, the secure state estimation

problem can be formulated as a non-convex l0 minimization

problem, and then relaxed into a convex l1/lr problem, which

can be solved in polynomial time. This technique has been

reported both in the case where sensors are ideal and not

affected by noise [6] and in the noisy case [9]. However,

a major drawback of such a relaxation step is the loss of

correctness guarantees, as witnessed by some of the numerical

results in this paper, in which the relaxed l1/lr formulation

leads to incorrect estimates. Algorithms that can avoid the

relaxation step, while running in polynomial time, have also

been recently proposed [10], [11]; however, their correctness

is only guaranteed under restrictive assumptions on the system

structure.

Outside of the two categories above, an on-line learning

mechanism based on approximate envelopes of collected data

has also been recently proposed for secure state estima-

tion [12]. The envelopes are used to detect any abnormal

behavior without assuming any knowledge of the dynam-

ical system model. Alternatively, robustification techniques

for state estimation (using either Kalman filters or Principal

Component Analysis) against sparse sensor attacks have also

been proposed [13], [14]. However, no formal guarantees on

the correctness of these approaches are currently available.

In this work, we resort to techniques from formal methods

to develop a sound and complete algorithm that can efficiently

handle the combinatorial complexity of the state estimation

problem. We show that the state estimation problem can be

cast as a satisfiability problem for a formula including logic

and pseudo-Boolean constraints on Boolean variables as well

as convex constraints on real variables. The Boolean variables

model the presence (or absence) of an attack, while the convex

constraints capture properties of the system state. We then

show how this satisfiability problem can be efficiently solved

using the Satisfiability Modulo Theory (SMT) paradigm [15],

specifically adapted to convex constraint solving [16], to

provide both the index of the attacked sensors and the state

estimate. To improve the execution time of our decision

procedure, we equip the convex constraint solver of our SMT-

based algorithm with heuristics that can exploit the specific

geometry of the state estimation problem while preserving

soundness and completeness. Finally, we compare the perfor-

mance of our approach against other algorithms via numerical

experiments, and demonstrate its effectiveness on the problem

of controlling an Unmanned Ground Vehicle (UGV). Our

technical contributions can be summarized as follows:

• We provide a formalization of the secure state estimation

problem as a satisfiability problem which includes both

Boolean constraints and convex constraints over real

variables.

• We develop IMHOTEP
1-SMT, a novel SMT-solver that is

shown to provide a sound and complete solution to the

secure state estimation problem.

• We propose heuristics to improve the execution time

of the IMHOTEP-SMT solver along with upper bounds

on the number of iterations required by the proposed

algorithm.

We reported a preliminary version of these results in which

only the special case of “perfect” model (i.e., the sensors are

noiseless and there is no mismatch between the model and the

actual system) was introduced, without providing the proofs

of our formal guarantees [17]. A subsequent paper detailed

the implementation of the proposed SMT-based solver [18].

In this paper, we discuss in detail all the theoretical results

used in our previous work [17], [18] and extend them to the

case when uncertainties in the model as well as sensor noise

are present.

The rest of this paper is organized as follows. Section II

introduces the formal setup for the problem under considera-

tion. The main contributions of this paper – the introduction

of the SMT-based detector and the characterization of its

soundness and completeness – are presented in Section III

and Section IV. Numerical comparisons and results are then

reported in Section V. Finally, Section VI concludes the paper

and discusses new research directions.

II. THE SECURE STATE ESTIMATION PROBLEM

We provide a mathematical formulation of the state es-

timation problem considered in this paper and discuss the

conditions for the existence and uniqueness of its solution.

A. Notation

The symbols N,R, and B denote the sets of natural, real, and

Boolean numbers, respectively. The symbols ∧ and ¬ denote

the logical AND and logical NOT operators, respectively.

The support of a vector x ∈ R
n, denoted by supp(x), is

the set of indices of the non-zero elements of x. Similarly,

the complement of the support of a vector x is denoted by

supp(x) = {1, . . . , n} \ supp(x). If S is a set, |S| is the

cardinality of S. We call a vector x ∈ R
n s-sparse, if x has

at most s nonzero elements, i.e., if |supp(x)| ≤ s.
Given p vectors of the same dimension x1, . . . , xp ∈ R

n,

we call x = (x1, x2, . . . , xp) ∈ R
pn a block vector and each

component xi a block. To emphasize that a vector x is a block

vector, we write it as an element of Rpn where the exponent pn
is written as the juxtaposition of the number of blocks p and

the size of individual blocks n, respectively. With some abuse

of notation, for the block vector x = (x1, x2, . . . , xp) ∈ R
pn

we denote by supp(x) the indices of the blocks on which

x ∈ R
pn is supported. In other words, an index i ∈ {1, . . . , p}

belongs to the set supp(x) ⊆ {1, . . . , p} whenever the ith
block xi is nonzero, i.e.,

i ∈ supp(x) ⇔ xi 6= 0, i ∈ {1, . . . , p}.
1Imhotep (pronounced as “emmo-tepp”) was an ancient Egyptian polymath

who is considered to be the earliest known architect, engineer, and physician
in the early history. He is famous for the design of the oldest pyramid in
Egypt, the Pyramid of Djoser (the Step Pyramid) at Saqqara, 2630–2611 BC.
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Similarly, a block matrix M ∈ R
pn×m is defined as the

vertical concatenation of the matrices M1, . . . ,Mp ∈ R
n×m.

In such case, a block is defined as the matrix Mi ∈ R
n×m,

hence the matrix M can be written as M =
[
MT

1 . . .MT
p

]T
.

Similarly to the notation used for vectors, the row dimension

of the block matrix M ∈ R
pn×m is written as the juxtaposition

of the number of blocks p and the size of the individual blocks

n.

For a vector x ∈ R
n, we denote by ‖x‖2 the 2-norm of x

and by ‖M‖2 the induced 2-norm of a matrix M ∈ R
m×n.

We also denote by Mi ∈ R
1×n the ith row of M . For

the set Γ ⊆ {1, . . . ,m}, we denote by MΓ ∈ R
|Γ|×n the

matrix obtained from M by removing all the rows except

those indexed by Γ. Then, MΓ ∈ R
(m−|Γ|)×n is the matrix

obtained from M by removing the rows indexed by the set Γ,

Γ representing the complement of Γ. For example, if m = 4,

and Γ = {1, 2}, we have

MΓ =

[
M1

M2

]
, MΓ =

[
M3

M4

]
.

By the same abuse of notation, for a block matrix M ∈
R

pn×m, we denote by MΓ ∈ R
|Γ|n×m the block matrix

obtained by removing all blocks except those indexed by Γ.

We define MΓ similarly.

B. System and Attack Model

We consider a system under sensor attack of the form:

x(t+1) = Ax(t) +Bu(t) + µ(t), (1)

y(t) = Cx(t) + a(t) + ψ(t) (2)

where x(t) ∈ R
n is the system state at time t ∈ N, u(t) ∈ R

m

is the system input, and y(t) ∈ R
p is the observed output.

The matrices A,B, and C represent the system dynamics and

have appropriate dimensions. The attack vector a(t) ∈ R
p

is an s-sparse vector modeling how an attacker changed the

sensor measurements at time t. If sensor i ∈ {1, . . . , p} is

attacked then the ith element in a(t) is non-zero; otherwise

the ith sensor is not attacked. Hence, s describes the number

of attacked sensors. Note that we make no assumptions on

the vector a(t) apart from being s-sparse. In particular, we

do not assume bounds, statistical properties, nor restrictions

on the time evolution of the elements in a(t). The value of

s is also not assumed to be known, although we assume the

knowledge of an upper bound s on the number of sensors that

can be attacked. We, therefore, only assume that the attacker

has access to a subset of sensors of cardinality s ≤ s; whether

a specific sensor in this subset is attacked or not may change

with time. As shown in the next section, the maximum number

of attacked sensors that can be detected is a characteristic

of the system and depends on the pair (A,C). Finally, the

vectors µ(t) and ψ(t) ∈ R
p represent, respectively, the process

noise and the measurement noise, which are assumed to be

uniformly bounded, i.e., there exist constants µ and ψ such

that the bounds
∥∥µ(t)

∥∥
2
≤ µ and

∥∥ψ(t)
∥∥
2
≤ ψ are satisfied

for all time t ∈ N.

C. Problem Formulation

To formulate the state estimation problem, we assume that

the state is reconstructed from a set of τ measurements

(τ ∈ N), where τ ≤ n is selected to guarantee that the

system observability matrix, as defined below, has full rank.

Therefore, we can arrange the outputs from the ith sensor at

different time instants as follows:

Ỹ
(t)
i = Oix

(t−τ+1) + E
(t)
i + FiU

(t) +Ψ
(t)
i ,

where:

Ỹ
(t)
i =




y
(t−τ+1)
i

y
(t−τ+2)
i

...

y
(t)
i



, E

(t)
i =




a
(t−τ+1)
i

a
(t−τ+2)
i

...

a
(t)
i



, U (t)=




u(t−τ+1)

u(t−τ+2)

...

u(t)


 ,

Fi=




0 0 . . . 0 0
CiB 0 . . . 0 0

...
. . .

...

CiA
τ−2B CiA

τ−3B . . . CiB 0


,Oi=




Ci

CiA
...

CiA
τ−1


,

Ψ
(t)
i =




0 0 . . . 0 0
Ci 0 . . . 0 0
...

. . .
...

CiA
τ−2 CiA

τ−3 . . . Ci 0







µ(t−τ+1)

µ(t−τ+2)

...

µ(t)


+




ψ
(t−τ+1)
i

ψ
(t−τ+2)
i

...

ψ
(t)
i



.

Since all the inputs in U (t) are known, we can further simplify

the output equation as:

Y
(t)
i = Oix

(t−τ+1) + E
(t)
i +Ψ

(t)
i , (3)

where Y
(t)
i = Ỹ

(t)
i −FiU

(t). We also define the block vectors

Y (t), E(t),Ψ(t) ∈ R
pτ and the block matrix O ∈ R

pτ×n as:

Y (t) =




Y
(t)
1
...

Y
(t)
p


 , E

(t) =




E
(t)
1
...

E
(t)
p


 ,Ψ

(t) =




Ψ
(t)
1
...

Ψ
(t)
p


 ,O =



O1

...

Op




(4)

to denote, respectively, the vector of outputs, attacks, and

observability matrices related with all sensors over the same

time window of length τ . Note that, even if Ψ
(t)
i represents

both process and measurement noise, for the sake of simplicity,

we will refer to Ψ
(t)
i as measurement noise. It follows from

the boundedness assumption on the process and measurement

noise that there exist constants Ψ1, . . . ,Ψp such that the

bound

∥∥∥Ψ(t)
i

∥∥∥
2
≤ Ψi is always satisfied for all t ∈ N and

for all sensors i ∈ {1, . . . , p}. Finally, with some abuse of

notation, for the set of indices I ⊆ {1, . . . , p} we denote

by ΨI the noise bound of the sensors indexed by I, i.e.,∥∥∥Ψ(t)
I

∥∥∥
2
≤ ΨI with Ψ

2

I =
∑

i∈I Ψ
2

i . With the same abuse of

notation, we denote by ‖Ψ‖2 the noise bound of all sensors,

i.e., Ψ
2
=
∑p

i=1 Ψ
2

i .
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D. Problem Statement

For each sensor, we define a binary indicator variable bi ∈ B

such that bi = 1 when the ith sensor is under attack and bi = 0
otherwise. Based on the formulation in Sec. II-C, our goal is

to find x(t−τ+1) in (3), knowing that:

1) if a sensor is attack-free (i.e., bi = 0), then (3) reduces

to Y
(t)
i −Oix

(t−τ+1) = Ψ
(t)
i ;

2) Ψi is the upper bound on the norm of the noise at the

ith sensor;

3) the maximum number of attacked sensors is s.

Therefore, using the binary variables bi, we can pose the

problem of secure state estimation as follows.

Problem II.1. (Secure State Estimation) For the linear

control system under attack defined by (1) and (2), construct

an estimate η = (x, b) ∈ R
n × B

p such that η |= φ, i.e., η
satisfies the formula φ:

φ ::=

p∧

i=1

(
¬bi ⇒ ‖Yi −Oix‖2 ≤ Ψi

)
∧
(

p∑

i=1

bi ≤ s

)
.

The first conjunction of constraints requires (Yi −Oix) to be

bounded only by the noise bound if sensor i is attack-free. We

resort to the 2-norm of (Yi −Oix) since the only information

we have available about the noise is a bound on its 2-norm.

The second inequality enforces the cardinality constraint on

the number of attacked sensors. We use |= to denote that a

solution (x, b) satisfies the logic formula φ in the problem

statement, meaning that φ evaluates to the Boolean value T

(true) at (x, b). We drop the time argument t in Problem II.1

since the satisfiability problem is to be solved at every time

instance.

Problem II.1 does not ask for the minimal number of

attacked sensors for which the estimated state matches the

measured output. That is, if b∗ is the vector of indicator

variables characterizing the actual attack, any assignment

η = (x, b) |= φ with supp(b∗) ⊆ supp(b) is a valid solution for

Problem II.1. Therefore, it is useful to modify Problem II.1 to

ask for the minimal number of attacked sensors that explains

the collected measurements as follows.

Problem II.2. (Minimal Attack Support) For the linear

control system under attack defined by (1) and (2), construct

the estimate η = (x, b) ∈ R
n × B

p obtained as the solution of

the optimization problem:

min
(x,b)∈Rn×Bp

p∑

i=1

bi s.t.

p∧

i=1

(
¬bi ⇒ ‖Yi −Oix‖2 ≤ Ψi

)
.

We observe that a solution for Problem II.2 will also satisfy

φ and, therefore, is a solution for Problem II.1. In fact, it

is straightforward to show that the solution to Problem II.2

can be obtained by performing a binary search over s and

invoking a solver for Problem II.1 at each step, starting

with the maximum value for s and then decreasing it until

Problem II.1 becomes infeasible or s = 0. Since any solution

of (3) must necessarily satisfy the constraints of Problem II.1,

such a procedure will terminate by returning the solution with

the minimal attack support. We denote this solution as minimal

support solution. In the reminder of the paper, we will focus

on the analysis of the feasibility problem II.1, since a solution

to the optimization problem II.2 can be obtained by solving a

sequence of instances of Problem II.1.

In Sec. II-E, we discuss the conditions for the uniqueness

of the minimal support solution of Problem II.2. However, we

first recall that the satisfiability problem over real numbers,

and specifically over Rn, is inherently intractable, i.e., decision

algorithms for formulas with non-linear polynomials already

suffer from high complexity [19], [20]. Moreover, linear pro-

gramming and convex programming solvers usually perform

floating point (hence inexact) calculations, which may be

inadequate for some applications. Therefore, to provide formal

guarantees about the correctness of Problem II.1, we resort to

the notions of δ-satisfaction and δ-completeness, which was

previously proposed by Gao et al. [21].

Definition II.3 (Soundness and Completeness of Deci-

sion Algorithms for Problem II.1). Let a minimal solution

η∗ = (x∗, b∗) exist for Problem II.2, and hence for Prob-

lem II.1 (i.e., η∗ |= φ), providing the true state and a minimum

number of non-zero indicator variables. Then, a solution

η = (x, b) is said to δ-satisfy φ (or δ-SAT for short), e.g.,

η |=δ φ, for some δ ∈ R, δ ≥ 0, if supp(b∗) ⊆ supp(b)
and ‖x∗ − x‖22 ≤ δ. Moreover, an algorithm that solves

Problem II.1 is said to be δ-complete if it returns a δ-SAT

solution.

Definition II.3 asks for an algorithm which terminates and

returns a solution η = (x, b) that is correct (up to the tolerance

δ). Hence, a δ-complete decision algorithm in the sense of

Definition II.3 is also (δ-)sound since, if it returns a solution

η, η is actually a δ-SAT solution.

E. Uniqueness of Minimal Support Solutions

To characterize the existence and uniqueness of solutions

to Problem II.2, we recall the notion of s-sparse observabil-

ity [11].

Definition II.4. (s-Sparse Observable System) The linear

control system under attack defined by (1) and (2) is said

to be s-sparse observable if for every set Γ ⊆ {1, . . . , p} with

|Γ| = p− s, the pair (A,CΓ) is observable.

In other words, a system is s-sparse observable if it is

observable from any choice of p − s sensors. For 2s-sparse

observable systems, the following result holds.

Theorem II.5. (Existence and Uniqueness of the Solu-

tion)[Theorem III.2 in [11]] In the noiseless case (Ψi = 0
for all i ∈ {1, . . . , p}), Problem II.2 admits a unique solution

η∗ = (x∗, b∗) if and only if the dynamical system under attack,

defined by (1) and (2), is 2s-sparse observable.

The following result was established as part of the proof of

Theorem II.5 in [11] and will be used in Section III.

Proposition II.6. Let the dynamical system under attack, de-

fined by (1) and (2), be 2s-sparse observable. The observabil-
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ity matrix OI has a trivial kernel for any set I ⊆ {1, . . . , p}
with |I| ≥ p− 2s.

Remark II.7. As stated in Theorem II.5, the state of the

dynamical system under attack, defined by (1) and (2), can

be uniquely determined when the system is 2s-sparse observ-

able. This condition seems expensive to check because of its

combinatorial nature: we have to check observability of all

possible pairs (A,CΓ). Yet, the 2s-sparse observability con-

dition clearly illustrates a fundamental limitation for secure

state estimation: it is impossible to correctly reconstruct the

state whenever a number of sensors larger than or equal to

⌈p/2⌉ is attacked, since there exist different states producing

the same observations under the effect of attacks.

Indeed, suppose that we have an even number of sensors p
and s = p/2 sensors are attacked. Then, Theorem II.5 requires

the system to still be observable after removing 2s = p rows

from the map C. However, this is impossible since CΓ becomes

the null matrix. This fundamental limitation is consistent with

previous results reported in the literature [6], [22], [23].

Remark II.8. Based on Theorem II.5, the state of the system

can be uniquely identified despite the existence of attacks if and

only if the system is 2s-sparse observable, s being an upper

bound on the number of attacked sensors. If such a bound s
is not known a priori, it is still possible to apply the result of

Theorem II.5 for s = 1, . . . , ⌊p/2⌋ to compute the maximum

possible number of sensors that can be attacked while still

being able to reconstruct the system state. We observe that

such a bound is an intrinsic characteristics of the system, since

it only depends on the pair (A,C).

Problem II.2 can be solved by transforming it into a Mixed

Integer-Quadratic Program (MIQP) as follows:

min
(x,b)∈Rn×Bp

p∑

i=1

bi s.t. ‖Yi −Oix‖2 ≤Mbi +Ψi,

1 ≤ i ≤ p, (5)

where M ∈ R is a constant that should be “big” enough

to make each constraint not active when bi = 1. The relax-

ation in (5) is typically used to express constraints including

logical implications [24]; however, in this case, the choice

of M affects the completeness of the approach, which will

depend on M . For example, in the absence of noise, since

‖Yi −Oix‖2 is ultimately bounded by the power of the attack

‖Ei‖2, a value of M < ‖Ei‖2 = ‖Yi −Oix‖2, can produce

an incorrect result. While a physical sensor has a bounded

dynamic range in practice, such a bound is not known a priori

in our formulation, which makes no assumptions on ‖Ei‖2.

Therefore, completeness of the MIQP formulation (5) cannot

be guaranteed in general.

In the sequel, we detail an algorithm which exploits the

geometry of the state estimation problem and the convexity

of the quadratic constraints to generate a provably correct

solution using the SMT paradigm. We compare the SMT-based

solution with the MIQP formulation in (5) using a commercial

MIQP solver.

III. SMT-BASED DETECTOR

To decide whether a combination of Boolean and convex

constraints is satisfiable, we construct the detection algo-

rithm IMHOTEP-SMT using the lazy SMT paradigm [15].

As in the CalCS solver [16], our decision procedure com-

bines a SAT solver (SAT-SOLVE) and a theory solver (T -

SOLVE) for convex constraints on real numbers. The SAT

solver efficiently reasons about combinations of Boolean

and pseudo-Boolean constraints, using the David-Putnam-

Logemann-Loveland (DPLL) algorithm [25], to suggest possi-

ble assignments for the convex constraints. The theory solver

checks the consistency of the given assignments, and provides

the reason for the conflict, a certificate, or a counterexample,

whenever inconsistencies are found. Each certificate results

in learning new constraints which will be used by the SAT

solver to prune the search space. The complex detection and

mitigation decision task is thus broken into two simpler tasks,

respectively, over the Boolean and convex domains. We denote

the approach as lazy, because it checks and learns about

consistency of convex constraints only when necessary, as

detailed below.

A. Overall Architecture

As illustrated in Algorithm 1, we start by mapping each

convex constraint to an auxiliary Boolean variable ci to obtain

the following (pseudo-)Boolean satisfiability problem:

φB :=




∧

i∈{1,...,p}

¬bi ⇒ ci


 ∧




∑

i∈{1,...,p}

bi ≤ s




where ci = 1 if ‖Yi −Oix‖2 ≤ Ψi is satisfied, and zero

otherwise. By only relying on the Boolean structure of the

problem, SAT-SOLVE returns an assignment for the variables

bi and ci (for i = 1, . . . , p), thus hypothesizing which sensors

are attack-free, hence which convex constraints should be

jointly satisfied.

This Boolean assignment is then used by T -SOLVE to

determine whether there exists a state x ∈ R
n which satisfies

all the convex constraints related to the unattacked sensors,

i.e., ‖Yi −Oix‖2 ≤ Ψi for i ∈ supp(b). If x is found,

IMHOTEP-SMT terminates with SAT and provides the solution

(x, b). Otherwise, the UNSAT certificate φcert is generated in

terms of new Boolean constraints, explaining which sensor

measurements are conflicting and may be under attack. A very

naı̈ve certificate can always be provided in the form of:

φUNSAT-cert =
∑

i∈supp(b)

bi ≥ 1,

which encodes the fact that at least one of the sensors in the

set supp(b) (i.e., for which bi = 0) is actually under attack.

The augmented Boolean problem consisting of the original

formula φB and the generated certificate φUNSAT-cert is then

fed back to SAT-SOLVE to produce a new assignment. The

sequence of new SAT queries is then repeated until T -SOLVE

terminates with SAT.

By the 2s-sparse observability condition (Theorem II.5),

there always exists a unique solution to Problem II.2, hence
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Algorithm 1 IMHOTEP-SMT

Input: A,B,C, Y, U, s
Output: η = (x, b)

1: status := UNSAT;

2: φB :=
(∧

i∈{1,...,p} ¬bi ⇒ ci

)
∧
(∑

i∈{1,...,p} bi ≤ s
)

;

3: while status == UNSAT do

4: (b, c) := SAT-SOLVE(φB);
5: (status, x) := T -SOLVE.CHECK(supp(b));
6: if status == UNSAT then

7: φcert := T -SOLVE.CERTIFICATE(supp(b), x);
8: φB := φB ∧ φcert;

9: return η = (x, b);

Algorithm 1 will always terminate. While Algorithm 1 is

intended to solve Problem II.1, a solution for Problem II.2 can

always be obtained, as mentioned earlier, by adding an external

loop to Algorithm 1, which can increase the overall execution

time. However, to help the SAT solver quickly converge

towards the correct assignment, a central problem in lazy SMT

solving is to generate succinct explanations whenever conjunc-

tions of convex constraints are infeasible, possibly highlighting

the minimum set of conflicting assignments. The rest of this

section will then focus on the implementation of the two main

tasks of T -SOLVE, namely, (i) checking the satisfiability of

a given assignment (T -SOLVE.CHECK), and (ii) generating

succinct UNSAT certificates (T -SOLVE.CERTIFICATE). For

clarity’s sake, we focus on the noiseless case (Ψ = 0) in

this section; we will extend our results to the noisy case in

Section IV.

B. Satisfiability Checking

Given an assignment of the Boolean variable b, with

|supp(b)| ≤ s, the following condition holds:

min
x∈Rn

∥∥Ysupp(b) −Osupp(b)x
∥∥2
2
= 0 (6)

if and only if x = x∗ and supp(b) ⊇ supp(b∗), (x∗, b∗) being

the solution of Problem II.2. This is a direct consequence of the

2s-sparse observability property discussed in Section II. The

preceding unconstrained least-squares optimization problem

can be solved very efficiently, thus leading to Algorithm 2.

In practical implementations, (6) should actually be replaced

with:

min
x∈Rn

∥∥Ysupp(b) −Osupp(b)x
∥∥2
2
≤ ǫ,

where ǫ > 0 is the solver tolerance, accounting for numerical

errors. As for the noise, we focus here on the case when ǫ
is zero and defer the discussion for non-zero tolerance to the

next section.

We characterize the soundness and completeness of Algo-

rithm 2, the basic block of our SMT-based detector, with the

following result.

Lemma III.1. Let the linear dynamical system under attack,

defined by (1) and (2), be 2s-sparse observable. Let Ψi = 0
for all i ∈ {1, . . . , p} and let also ǫ = 0 be the numerical

solver tolerance for Algorithm 2. Then for any index set I

with cardinality |I| ≥ p− s, Algorithm 2 returns SAT if and

only if the following holds:

1) I ⊆ supp(b∗),
2) ‖x∗ − x‖22 = 0,

where (x∗, b∗) is the solution to Problem II.2 and x is

computed as in line 1 of Algorithm 2.

Proof. Since the “if” condition is trivial to show, we focus

on the “only if” condition. Define I ′ as the set of indices

of the sensors that are attack free. Define also I ′′ as the set

I ′′ = I \ I ′. We can write the result from lines 1 and 2 of

Algorithm 2 as:

min
x∈Rn

‖YI −OIx‖22 = 0

⇒ min
x∈Rn

∑

i∈I

‖Yi −Oix‖22 = 0

⇒ min
x∈Rn

∑

i∈I′

‖Yi −Oix‖22 +
∑

i∈I′′

‖Yi −Oix‖22 = 0

⇒ min
x∈Rn

‖OI′(x∗ − x)‖22 +
∑

i∈I′′

‖Oi(x
∗ − x) + E∗

i ‖22 = 0

Hence, in order for Algorithm 2 to return SAT, both terms

‖OI′(x∗ − x)‖22 and
∑

i∈I′′ ‖Oi(x
∗ − x) + E∗

i ‖22 must van-

ish at the optimal point.

Since at most s sensors are under attack, we conclude that

|I ′′| is at most s and |I ′| ≥ p − 2s. Hence, it follows from

Proposition II.6 that the observability matrix OI′ has a trivial

kernel. Therefore, we conclude that ‖OI′(x∗ − x)‖22 evaluates

to zero if and only if x = x∗. This, in turn, implies that the

solution of the optimization problem in line 1 of Algorithm 2

is x∗ and hence ‖x∗ − x‖22 = 0.

To conclude, we need to show that I ⊆ supp(b∗).
However, this follows from the requirement that∑

i∈I′′ ‖Oi(x
∗ − x) + E∗

i ‖22 vanishes at the optimal point,

i.e., for x = x∗. Hence:
∑

i∈I′′

‖Oi(x
∗ − x) + E∗

i ‖22 = 0 ⇒
∑

i∈I′′

‖E∗
i ‖22 = 0

which, in turn, implies that all the sensors indexed by I ′′ are

attack free. Combining this result with the definition of the set

I ′ we conclude that all the sensors indexed by I are actually

attack free, and the inclusion I ⊆ supp(b∗) holds.

When noise or non-zero numerical tolerance is present, we

modify Algorithm 2 by checking instead whether the optimal

x drives the objective function below the noise level and

the numerical tolerance. Clearly, satisfying such a constraint

on the 2-norms is not sufficient, in general, to retrieve the

actual state in the sense of Definition II.3: attacks having

a relatively small power may not be detected. Therefore, in

Section IV, we will determine under which conditions on the

noise level and the numerical tolerance it is possible to achieve

δ-completeness as in Definition II.3.

C. Generating Compact UNSAT Certificates

Whenever T -SOLVE.CHECK provides UNSAT, a naı̈ve cer-

tificate could be easily generated as mentioned above:

φtriv-cert =
∑

i∈supp(b)

bi ≥ 1, (7)
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b1

b2

b3

{1, 1, 1}{1, 1, 0}

b3

{1, 0, 1}{1, 0, 0}

b2

b3

{0, 1, 1}{0, 1, 0}

b3

{0, 0, 1}
(a) A tree showing all the combinations of three Boolean indica-
tor variables b1, b2, b3 when a conflicting certificate of the form
φcert := b1 + b2 + b3 ≥ 1 is generated. The missing combination {0, 0, 0}
is the only one that is eliminated as a result of this certificate.

b1

b2

b3

{1, 1, 1}

b3

{1, 0, 1}

b2

b3

{0, 1, 1}

b3

{0, 0, 1}
(b) A tree showing all the combinations of three Boolean indicator variables
b1, b2, b3 when a conflicting certificate of the form φcert := b3 ≥ 1 is gener-
ated. The missing four combinations {0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0}
are eliminated as a result of this certificate.

Fig. 1. Pictorial example illustrating the effect of generating smaller conflicting certificates.

Algorithm 2 T -SOLVE.CHECK(I)
1: Solve: x := argminx∈Rn ‖YI −OIx‖22
2: if ‖YI −OIx‖22 = 0 then

3: status = SAT;

4: else

5: status = UNSAT;

6: return (status, x);

indicating that at least one of the sensors, which was initially

assumed as attack-free (i.e., for which bi = 0), is actually

under attack; one of the bi variables should then be set to

one in the next assignment of the SAT solver. However, such

trivial certificate φtriv-cert does not provide much information,

since it only excludes the current assignment from the search

space, and can lead to exponential execution time, as reflected

by the following proposition.

Proposition III.2. Let the linear dynamical system under

attack, defined by (1) and (2), be 2s-sparse observable. Let

Ψi = 0 for all i ∈ {1, . . . , p} and let also ǫ = 0 be the

numerical solver tolerance for Algorithm 2. Then, Algorithm 1

using the trivial UNSAT certificate φtriv-cert in (7) is δ-complete

(in the sense of Definition II.3) with δ = 0. Moreover, the

upper bound on the number of iterations of Algorithm 1 is∑s
s=0

(
p
s

)
.

Proof. δ-Completeness of Algorithm 1 follows directly from

Lemma III.1. To derive the bound on the number of itera-

tions, we first recall that the 2s-sparse observability condition

ensures uniqueness of a minimal solution (Theorem II.5). The

worst case scenario would happen when the solver exhaus-

tively explores all possible combinations of attacked sensors

with cardinality less than or equal to s in order to find the

correct assignment. This amounts to
∑s

s=0

(
p
s

)
iterations.

The generated UNSAT certificates heavily affect the overall

execution time of Algorithm 1: the smaller the certificate, the

more information is learnt and the faster is the convergence

of the SAT solver to the correct assignment. For example, a

certificate with bi = 1 would identify exactly one attacked

sensor at each step, a substantial improvement with respect

to the exponential worst-case complexity of the plain SAT

problem, which is NP-complete. This intuition is described

in Fig. 1 where the effect of generating two certificates with

different sizes is shown. Hence, following the approach of

CALCS [16], we focus on designing algorithms that can lead

to more compact certificates to enhance the execution time

of IMHOTEP-SMT, by exploiting the specific structure of the

secure state estimation problem.

To do so, we first observe that the measurements of each

sensor Yi = Oix define an affine subspace Hi ⊆ R
n as:

Hi = {x ∈ R
n | Yi −Oix = 0}.

The dimension of Hi is given by the dimension of the null

space of the matrix Oi, i.e., dim(Hi) = dim(kerOi). Then,

satisfiability checking in Algorithm 2 can be reformulated as

follows. Let ri be the residual of the state x with respect to

the affine subspace Hi, defined as ri(x) = ‖Yi −Oix‖22. The

optimization problem in Algorithm 2 is equivalent to searching

for a point x that minimizes the sum of the individual residuals

with respect to all the affine subspaces Hi for i ∈ I, i.e.,

min
x∈Rn

‖YI −OIx‖22 = min
x∈Rn

∑

i∈I

‖Yi −Oix‖22 = min
x∈Rn

∑

i∈I

ri(x).

Based on the formulation above, it is straightforward to

show the following result.

Proposition III.3. Let the linear dynamical system under

attack, defined by (1) and (2), be 2s-sparse observable. Let

Ψi = 0 for all i ∈ {1, . . . , p} and let also ǫ = 0 be the

numerical solver tolerance for Algorithm 2. Then, for any

set of indices I ⊆ {1, . . . , p}, the following statements are

equivalent:

• T -SOLVE.CHECK(I) returns UNSAT,

• minx∈Rn

∑
i∈I ri(x) > 0,

•
⋂

i∈I Hi = ∅.

In the following, we describe two algorithms that can

generate two types of compact certificates, namely conflicting

certificates and agreeable certificates.

D. Certificate Based on Smaller Conflicting Sensor Sets

To generate a compact Boolean constraint that explains a

conflict, we aim to find a small set of sensors that cannot all

be attack-free. A key result in this work is to show that such

set exists and the complexity of finding it is linear in the size

of the problem. This is captured by the following proposition

whose proof exploits the geometric interpretation provided by

the affine subspaces Hi.
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(a) Four affine subspaces corresponding to mea-
surements from 4 different sensors. The red
affine subspace corresponds to the sensor under
attack. All other affine subspaces intersect at the
unique solution. The optimal point is marked as
a black box.
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(b) An example of a run of Algorithm 4. In the first iteration (left), the set I min r contains
the p− 2s = 4− 2× 1 = 2 indexes of the sensors that correspond to the minimal residuals.
This set is a non-conflicting set and hence the corresponding affine subspaces have a unique
intersection point. In the second iteration (right), the index of the sensor corresponding to the
maximum residual is added to the set Itemp resulting into a conflict. Algorithm 4 terminates
and returns the conflicting set Itemp. In both cases, the optimal point is marked as a black
box.

Fig. 2. Pictorial examples illustrating the geometrical intuitions behind Algorithm 4.

Lemma III.4. Let the linear dynamical system under attack,

defined by (1) and (2), be 2s-sparse observable. Let Ψi = 0
for all i ∈ {1, . . . , p} and let also ǫ = 0 be the numerical

solver tolerance for Algorithm 2. If T -SOLVE.CHECK(I) is

UNSAT for a set I, with |I| > p − 2s, then there exists

a subset Itemp ⊂ I with |Itemp| ≤ p − 2s + 1 such

that T -SOLVE.CHECK(Itemp) is also UNSAT. Moreover, the

complexity of finding Itemp is linear in both p and s.

Proof. Consider any set of sensors I ′ ⊂ I such that

|I ′| = p− 2s and
⋂

i∈I′ Hi is not empty. If such set I ′ does

not exist, then the result follows trivially. If the set I ′ exists,

then it follows from Proposition II.6 that OI′ has a trivial

kernel and hence the intersection
⋂

i∈I′ Hi is a single point,

named x′. Now, since T -SOLVE.CHECK(I) is UNSAT, it

follows from Proposition III.3 that:
⋂

i∈I

Hi = ∅ ⇒
⋂

i∈I′

Hi ∩
⋂

i∈I\I′

Hi = ∅ ⇒ {x′} ∩
⋂

i∈I\I′

Hi = ∅,

which in turn implies that there exists at least one sensor i ∈
I \ I ′ such that its affine subspace Hi does not pass through

the point x′. Now, we define Itemp as Itemp = I ′ ∪ i and

we note that |Itemp| = p− 2s+ 1, which is what we wanted

to show. To conclude the proof, the linear complexity can be

shown by the construction in Algorithm 3 detailed below.

(PN: Does the complexity of the LMS problem depend on

p or s?)

Using Lemma III.4, our objective is to find a small set of

affine subspaces that fail to intersect. Based on the intuition

in the proof of Lemma III.4, our algorithm works as follows.

First, we construct the set of indices I ′ by picking any random

set of p−2s sensors. We then search for one additional sensor

i which can lead to a conflict with the sensors indexed by

I ′. To do this, we call T -SOLVE.CHECK by passing the set

Itemp := I ′∪i as an argument. If the check returns SAT, then

we label these sensors as “non-conflicting” and we repeat the

same process by replacing the sensor indexed by i with another

sensor until we reach a conflicting set of affine subspaces.

Termination of this process is guaranteed by Lemma III.4, thus

Algorithm 3 T -SOLVE.CERTIFICATE-CONFLICT-ORIG(I, x)
1: Step 1: Pick any random set of p− 2s sensors I ′ ⊂ I;

2: Step 2: Search linearly for the UNSAT certificate

3: status = SAT;
4: Pick a sensor index i ∈ I \ I ′;

5: I temp := I min r ∪ i;
6: while status == SAT do

7: (status, x) := T -SOLVE.CHECK(I temp);
8: if status == UNSAT then

9: φconf-cert :=
∑

i∈I temp bi ≥ 1;

10: else

11: Pick another sensor index i ∈ I \ I ′;

12: I temp := I min r ∪ i;
13: return φconf-cert;

revealing a set of p−2s+1 conflicting affine subspaces. Once

the set is discovered, we stop by generating the following,

more compact, certificate:

φconf-cert :=
∑

i∈Itemp

bi ≥ 1.

These steps are summarized in Algorithm 3. While Algo-

rithm 3 is guaranteed to terminate regardless of the initial

random set I ′ or the order in which the sensor i is selected,

the execution time may change. In Algorithm 4, we show the

heuristics used to implement the two steps of Algorithm 3,

namely, the selection of the initial set I ′ and the further

addition of sensor indexes, which further exploit the geometry

of our problem.

Our conjecture is that the p− 2s affine subspaces with the

lowest (normalized) residuals are most likely to have a com-

mon intersection point, which can then be used as a candidate

intersection point for the affine subspaces against the higher

(normalized) residuals, one-by-one, until a conflict is detected.

A pictorial illustration of this intuition is given in Figure 2(a).

Based on this intuition, we first compute the (normalized)

residuals ri for all i ∈ I, and sort them in ascending order.

We then pick the p − 2s minimum (normalized) residuals
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Algorithm 4 T -SOLVE.CERTIFICATE-CONFLICT(I, x)
1: Compute normalized residuals

2: r :=
⋃

i∈I {ri} , ri := ‖Yi −Oix‖22 / ‖Oi‖22 , i ∈ I;

3: Sort the residual variables

4: r sorted := sortAscendingly(r);
5: Pick the index corresponding to the maximum residual

6: I max r := Index(r sorted{|I|,|I|−1,...,p−2s+1});
7: I min r := Index(r sorted{1,...,p−2s});
8: Search linearly for the UNSAT certificate

9: status = SAT; counter = 1;
10: I temp := I min r ∪ I max rcounter;

11: while status == SAT do

12: (status, x) := T -SOLVE.CHECK(I temp);
13: if status == UNSAT then

14: φconf-cert :=
∑

i∈I temp bi ≥ 1;

15: else

16: counter := counter + 1;

17: I temp := I min r ∪ I max rcounter;

18: [Optional] Sort the rest according to dim(ker{O})
19: I temp2 = sortAscendingly(dim(ker{OI temp}));
20: status = UNSAT; counter2 = |I temp2| − 1;
21: I temp2 := I temp2{1,...,counter2};

22: while status == UNSAT do

23: (status, x) := T -SOLVE.CHECK(Itemp);
24: if status == SAT then

25: φconf-cert :=
∑

i∈I temp2{1,...,counter2+1}
bi ≥ 1;

26: else

27: counter2 := counter2 - 1;

28: I temp2 := I temp2{1,...,counter2};

29: return φconf-cert

indexed by I min r, and search for one more affine subspace

that leads to a conflict with the affine subspaces indexed by

I min r. To do this, we start by solving the same optimiza-

tion problem as in Algorithm 2, but on the reduced set of affine

subspaces indexed by Itemp = I min r ∪ I max r, where

I max r is the index associated with the affine subspace

having the maximal (normalized) residual. If this set of affine

subspaces intersect in one point, they are labelled as “non-

conflicting”, and we repeat the same process by replacing the

affine subspace indexed by I max r with the affine subspace

associated with the second maximal (normalized) residual

from the sorted list, till we reach a conflicting set of affine

subspaces. Once the set is discovered, we stop and generate

the compact certificate using the sensors indexed in Itemp. A

sample execution of Algorithm 4 is illustrated in Figure 2(b).

Finally, as a post-processing step, we can further reduce

the cardinality of Itemp by exploiting the dimension of the

affine subspaces corresponding to the index list. Intuitively,

the lower the dimension, the more information is provided

by the corresponding sensor. For example, a sensor i with

dim(Hi) = dim(kerOi) = 0 can be used to uniquely recon-

struct the state. This restricts the search space to the unique

point and makes it easier to generate a conflict formula.

Therefore, to converge faster towards a conflict, we iterate

through the indexes in Itemp and remove at each step the

one which corresponds to the affine subspace with the highest

dimension until we are left with a reduced index set that is

still conflicting. The following result provides an upper bound

for the performance of the proposed heuristics.

Proposition III.5. Let the linear dynamical system under

attack, defined by (1) and (2), be 2s-sparse observable. Let

Ψi = 0 for all i ∈ {1, . . . , p} and let also ǫ = 0 be the

numerical solver tolerance for Algorithm 2. Then, Algorithm 1

using the conflicting UNSAT certificate φconf-cert in Algorithm 4

is δ-complete (in the sense of Definition II.3) with δ = 0.

Moreover, the upper bound on the number of iterations of

Algorithm 1 is
(

p
p−2s+1

)
.

Proof. δ-Completeness follows from Lemma III.1 along with

the 2s observability condition. The upper bound on the number

of iterations of Algorithm 1 can be derived as follows. First,

it follows from Lemma III.4 that each certificate φconf-cert has

at most p− 2s+1 sensors. Since we know that the algorithm

always terminates, the worst case would then happen when the

solver exhaustively generates all conflicting sets of cardinality

p − 2s + 1. This leads to a number of iterations equal to(
p

p−2s+1

)
.

E. Certificate Based on Agreeable Sensor Sets

To further enhance the solver runtime, we design an algo-

rithm that aims to find a set of p−2s sensors which all agree on

the same x. We recall that the 2s-sparse observability condition

ensures that the state is fully observable from any set of p−2s
sensors. Accordingly, for a given set of sensors, we select

the p− 2s sensors, hence affine subspaces, that correspond to

minimal residuals. We then check whether they all intersect in

one point x. In such case, we inform the SAT solver that all

of these sensors are unattacked, by generating the following

certificate:

φagree-cert :=
∑

i∈I min r

bi = 0,

where I min r is the set of indexes of the p − 2s affine

subspaces with the lowest residuals.

The procedure described above is summarized in Algo-

rithm 5. As evident from line 9 of Algorithm 5, φagree-cert is not

always generated; therefore, we use this heuristic, when it is

successful, only as a complement of the previously discussed

UNSAT certificate. Moreover, the heuristic itself is not always

applicable. In fact, it is still possible to design an attack such

that up to s attacked sensors agree on a single value of x.

Hence, unlike our previous results, a stricter assumption of 3s-
sparse observability is required, as reflected by the following

proposition.

Proposition III.6. Let the linear dynamical system under

attack, defined by (1) and (2), be 3s-sparse observable. Let

Ψi = 0 for all i ∈ {1, . . . , p} and ǫ = 0 be the numerical

solver tolerance for Algorithm 2. Then, Algorithm 1 using the

agreeable UNSAT certificate φagree-cert in Algorithm 5 is δ-

complete (in the sense of Definition II.3) with δ = 0. Moreover,

whenever φagree-cert is generated, Algorithm 1 terminates within∑s
s=0

(
2s
s

)
iterations.
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Proof. δ-Completeness of Algorithm 1 is equivalent to show-

ing the soundness and completeness of Algorithm 2. It follows

from Proposition III.1 that Algorithm 2 is sound and complete

whenever the system is 2s-sparse observable and when the

cardinality of I satisfies |I| ≥ p − s. Hence, to show the

result, it is enough to replicate the proof of Proposition III.1

under the assumption that the system is 3s-sparse observable

and the cardinality of I satisfies instead |I| ≥ p− 2s.
The bound on the number of iterations can be derived as

follows. First, we note that φagree-cert assigns p − 2s as being

unattacked sensors. This in turn forces the solver to search

for the attacked sensors in the remaining set of sensors with

caridinality p− (p− 2s) = 2s. The bound then follows using

the same argument of Proposition III.2.

Algorithm 5 T -SOLVE.CERTIFICATE-AGREE(I, x)
1: Compute normalized residuals

2: r :=
⋃

i∈I {ri} , ri := ‖Yi −Oix‖22 / ‖Oi‖22 , i ∈ I;

3: Sort the residual variables

4: r sorted := sortAscendingly(r);
5: Pick the p−2s indexes corresponding to the minimum

residuals

6: I min r := Index(r sorted{1,...,p−2s}));
7: (status, x) := T -SOLVE.CHECK(I min r);
8: φagree-cert :=TRUE;

9: if status == SAT then

10: φagree-cert :=
∑

i∈I min r bi = 0;

11: return φagree-cert

F. Soundness and Completeness of Algorithm 1 in the Noise-

less Case

The procedure T -SOLVE.CERTIFICATE(I, x) in line 7 of

Algorithm 1 can be implemented as shown in Algorithm 6.

We are now ready to state the main result of this section,

which is a direct consequence of our previous results.

Theorem III.7. Let the linear dynamical system under attack,

defined by (1) and (2), be 2s-sparse observable, Ψi = 0 for all

i ∈ {1, . . . , p}, and ǫ = 0 be the numerical solver tolerance

for Algorithm 2. Algorithm 1 is δ-complete (in the sense of

Definition II.3) with δ = 0.

Algorithm 6 T -SOLVE.CERTIFICATE(I, x)
1: φcert := T -SOLVE.CERTIFICATE-CONFLICT(I, x);
2: if p > 3s then

3: φagree-cert := T -SOLVE.CERTIFICATE-AGREE(I, x);
4: φcert := φcert ∧ φagree-cert;

5: return φcert

IV. COMPLETENESS IN THE PRESENCE OF NOISE

As discussed in the previous section, IMHOTEP-SMT can

always detect any compromised sensors in the absence of

measurement noise (Ψi = 0 for all i ∈ {1, . . . , p}) and

when the numerical tolerance is zero (ǫ = 0). In this section,

we characterize completeness in the presence of noise or

numerical errors in the solver, by determining to what extent

an attack signal can be hidden by noise or the numerical

tolerance, thereby making it infeasible to reconstruct the true

state. Since Algorithm 1 consists of multiple invocations of

the least-squares problem, the completeness of the detector

entirely depends on the correctness of Algorithm 2 in checking

the satisfiability of a Boolean assignment over b.
The completeness of Algorithm 2 will in turn depend on two

major components: (i) the tolerance of the numerical solvers,

which is typically a small value used as a stopping criterion,

and can be controlled by the user; (ii) the noise margin intrinsic

to the dynamical system model. To account for these two

components, we replace the satisfiability condition in line 2

of Algorithm 2 with the following condition:

‖YI −OIx‖2 ≤ ΨI + ǫ (8)

where ǫ > 0 is the user-defined tolerance. Then, we recall

that the solution of the unconstrained least squares problem in

Algorithm 2 is given by:

x =
(
OT

IOI

)−1 OT
I YI = O+

I YI

where O+
I =

(
OT

IOI

)−1 OT
I is the Moore-Penrose pseudo

inverse of OI . It is apparent that soundness and completeness

of Algorithm 2 depends on the properties of the matrix O+
I .

Accordingly, we define the following two quantities.

Definition IV.1. Define o ∈ R
+ as:

o = max
I⊆{1,...,p},
|I|≥p−s

∥∥O+
I

∥∥2
2

where O+
I is the Moore-Penrose pseudo inverse of OI .

Definition (Proposition) IV.2. Let the linear system defined

in (1) be 2s-sparse observable and define ∆s ∈ R
+ as:

∆s = max
Γ⊂I⊆{1,...,p}
|Γ|≤s,|I|≥p−s

λmax





(
∑

i∈Γ

OT
i Oi

)(
∑

i∈I

OT
i Oi

)−1


 .

Then, for any s-sparse attack vector E, and any set I ⊆
{1, . . . , p}, with |I| ≥ p− s, the following holds:

∥∥(I −OIO+
I )EI

∥∥2
2
≥ (1−∆s) ‖EI‖22

with ∆s strictly less than 1.

Proof. We first define the set Γ∗ ⊂ I as the set of indices on

which the attack vector E is supported, and note that EΓ∗ = 0.

Hence:

∥∥(I −OIO+
I )EI

∥∥2
2
= ET

I

(
I −OIO+

I

)2
EI

(a)
= ET

I

(
I −OIO+

I

)
EI

= ET
I EI − ET

I OI(OT
IOI)

−1OT
IEI

(b)
= ET

Γ∗EΓ∗ − ET
Γ∗OΓ∗(OT

IOI)
−1OT

Γ∗EΓ∗ , (9)

where equality (a) follows from the fact that the matrix

I − OIO+
I is idempotent and equality (b) follows from the
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definition of the set Γ∗. The second term on the right side of

the equality (9) can be bounded as:

ET
Γ∗OΓ∗(OT

IOI)
−1OT

Γ∗EΓ∗

≤ λmax{OΓ∗(OT
IOI)

−1OT
Γ∗}ET

Γ∗EΓ∗ . (10)

Moreover, we recall that for any two matrices A and B with

appropriate dimensions, λmax{AB} = λmax{BA}. Hence, we

can rewrite the right hand side of (10) as:

λmax{OT
Γ∗OΓ∗(OT

IOI)
−1}ET

Γ∗EΓ∗ .

Finally, to show that ∆s is strictly less than one, we recall

that λmax{OT
Γ∗OΓ∗(OT

IOI)
−1} ≤ ∆s by definition and the

equality is achievable. Therefore, it is sufficient to show that

the inequality:

λmax{OT
ΓOΓ(OT

IOI)
−1} < 1 (11)

holds for any set I and Γ ⊂ I with |Γ| ≤ s and |I| ≥ p− s.
For this purpose, we notice that:

OT
IOI =

∑

i∈I

OT
i Oi =

∑

i∈Γ

OT
i Oi +

∑

i∈I\Γ

OT
i Oi

= OT
ΓOΓ +OT

I\ΓOI\Γ

and rewrite (11) as:

λmax

{
OT

ΓOΓ

(
OT

ΓOΓ +OT
I\ΓOI\Γ

)−1
}
< 1,

where the set I \ Γ has a cardinality of at least p − 2s.
Hence, it follows from the 2s-sparse observability condition

that the matrix OT
I\ΓOI\Γ is positive definite and therefore

we can apply Proposition A.1 in the appendix to show that

the statement holds.

Using the two quantities defined above, we can state our

main result, which is the version of Theorem III.7 in the

presence of noise.

Theorem IV.3. Let the linear system defined in (1) be 2s-
sparse observable, let ǫ > 0 be the numerical solver tolerance.

Then, if each attack signal Ei, for all i ∈ S ⊂ {1, . . . , p} with

|S| ≤ s, satisfies:

‖Ei‖2 >
(

2√
1−∆s

)
Ψ+

√
ǫ√

1−∆s

, (12)

then Algorithm 1, modified as in (8), is δ-complete with

δ = oΨ
2
.

Proof. To prove the result, we need to show that the condi-

tion (8), resulting in δ-satisfiability, is satisfied if and only if

no sensor in I is under attack. If no sensor is under attack,

condition (8) is trivially satisfied. Therefore, we focus on

proving the reverse implication, showing that if at least one

sensor ia ∈ I is under attack, then (8) does not hold as long

as the attack Eia satisfies (12).

To do so, we consider the set I that contains the attacked

sensor ia, and recall that the solution of the unconstrained

least squares problem in Algorithm 2 is given by:

x =
(
OT

IOI

)−1 OT
I YI = O+

I YI ,

where O+
I =

(
OT

IOI

)−1 OT
I is the Moore-Penrose pseudo

inverse of OI . Hence, the value of the objective function at

the optimal point x can be bounded from below as:

‖YI −OIx‖22
(a)
=
∥∥YI −OIO+

I YI
∥∥2
2

(b)
=
∥∥(I −OIO+

I )(OIx
∗ +ΨI + EI)

∥∥2
2

(c)
=
∥∥(I −OIO+

I )(ΨI + EI)
∥∥2
2

(d)

≥
(∥∥(I −OIO+

I )EI

∥∥
2
−
∥∥(I −OIO+

I )ΨI

∥∥
2

)2
, (13)

where (a) follows from the definition of x, (b) and (c)
follow from the definition of YI as in (3) and the fact that

OIO+
I OI = OI . Finally, the inequality in (d) follows from

the inverse triangular inequality.

On the other hand, the condition on the attack signal (12)

implies that:

‖Eia‖2 >
(

2√
1−∆s

)
Ψ+

√
ǫ√

1−∆s

≥
(

2√
1−∆s

)
ΨI +

√
ǫ√

1−∆s

.

Therefore, by noticing that ‖EI‖22 ≥ ‖Eia‖22 since ia ∈ I, we

conclude that:

‖EI‖2 >
(

2√
1−∆s

)
ΨI +

√
ǫ√

1−∆s

⇒
√
(1−∆s) ‖EI‖2 > ΨI +ΨI +

√
ǫ

(e)⇒
√
(1−∆s) ‖EI‖2 > ΨI +

∥∥I −OIO+
I

∥∥
2
‖ΨI‖2 +

√
ǫ

(f)⇒
√
(1−∆s) ‖EI‖2 > ΨI +

∥∥(I −OIO+
I )ΨI

∥∥
2
+
√
ǫ

(g)⇒
∥∥(I −OIO+

I )EI

∥∥
2
> ΨI +

∥∥(I −OIO+
I )ΨI

∥∥
2
+
√
ǫ

⇒
∥∥(I −OIO+

I )EI

∥∥
2
−
∥∥(I −OIO+

I )ΨI

∥∥
2
> ΨI +

√
ǫ

(h)⇒
(∥∥(I −OIO+

I )EI

∥∥
2
−
∥∥(I −OIO+

I )ΨI

∥∥
2

)2
> Ψ

2

I + ǫ,
(14)

where the implication (e) follows from the fact that the matrix

I −OIO+
I is idempotent, hence

∥∥I −OIO+
I

∥∥2
2
≤ 1; (f) fol-

lows from the properties of the induced 2-norm, which implies

that for any matrix A and vector z then ‖Az‖2 ≤ ‖A‖2 ‖z‖2,

and hence
∥∥(I −OIO+

I )ΨI

∥∥
2
≤
∥∥I −OIO+

I

∥∥
2
‖ΨI‖2; (g)

follows from Proposition IV.2. Finally, (h) follows from the

fact that (Ψ
2

I +
√
ǫ)2 ≥ Ψ

2

I + ǫ.
Combining the bounds (13) and (14) we conclude that the

following holds:

‖YI −OIx‖22 > Ψ
2

I + ǫ

which implies that the result of Algorithm 2 is UNSAT

whenever (12) is satisfied.

The error bound δ can be then computed directly as:

‖x∗ − x‖22 =
∥∥x∗ −O+

I YI
∥∥2
2

(i)
=
∥∥O+

I ΨI

∥∥2
2
≤
∥∥O+

I

∥∥2
2
‖ΨI‖22

(j)

≤ oΨ
2
,

where the equality (i) follows from the fact that all attacks

satisfy (12) and hence can be detected. Accordingly, the set I
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contains only sensors which are attack-free and therefore (3)

can be simplified into YI = OIx
∗ + ΨI , which in return

implies that:

O+
I YI = O+

I OIx
∗ +O+

I ΨI = x∗ +O+
I ΨI .

Finally, inequality (j) follows from the definition of o in IV.1.

Remark IV.4. The proof of Theorem IV.3 only relies on

following assumption:

‖EI‖2 >
(

2√
1−∆s

)
ΨI +

√
ǫ√

1−∆s

.

However, the set I is not known a priori, since it will be

selected by the SAT solver; we then need to resort to the more

conservative assumption in the statement of Theorem IV.3:

‖Ei‖2 >
(

2√
1−∆s

)
Ψ+

√
ǫ√

1−∆s

,

which will also be used in Theorem IV.5 below.

Theorem IV.3 characterizes the class of attack signals that

lead to detection. However, a smart attacker may be tempted

to inject attack signals which are not detected by the proposed

algorithm, yet increase the estimation error. The following

result characterizes the estimation error in the presence of un-

detectable attacks.

Theorem IV.5. Let the linear system defined in (1) be 2s-
sparse observable, let ǫ > 0 be the numerical solver tolerance.

Then, Algorithm 1, modified as in (8), returns an estimate x
which satisfies:

‖x∗ − x‖2 ≤ o

(
1 +

2√
1−∆s

)
Ψ+

o
√
ǫ√

1−∆s

.

Proof. The error ‖x∗ − x‖2 can be bounded as follows:

‖x∗ − x‖2 =
∥∥x∗ −O+

I YI
∥∥
2

=
∥∥x∗ −O+

I OIx
∗ −O+

I ΨI −O+
I EI

∥∥
2

=
∥∥O+

I ΨI +O+
I EI

∥∥
2

(a)

≤
∥∥O+

I

∥∥
2
‖ΨI‖2 +

∥∥O+
I

∥∥
2
‖EI‖2

(b)

≤ oΨ+ o ‖EI‖2
(c)

≤ oΨ+ o
2√

1−∆s

‖Ψ‖2 + o

√
ǫ√

1−∆s

= o

(
1 +

2√
1−∆s

)
Ψ+

o
√
ǫ√

1−∆s

,

where inequality (a) follows from Cauchy-Schwarz inequality;

(b) follows from the definition of o in (IV.1) along with the fact

that ‖ΨI‖2 ≤ ‖Ψ‖2; (c) follows from Theorem IV.3 (along

with Remark IV.4), stating that only attacks with norm

‖EI‖2 ≤
(

2√
1−∆s

)
Ψ+

√
ǫ

1−∆s

may not be detected by Algorithm 1 and hence can affect the

estimation error.

V. EXPERIMENTAL RESULTS

We developed our theory solver in MATLAB, and interfaced

it with the pseudo-Boolean SAT solver SAT4J [26]. All

the experiments were executed on an Intel Core i7 3.4-GHz

processor with 8 GB of memory. To validate our approach, we

first compare the effect of the two proposed certificates on the

required number of iterations. We then compare the runtime

performance against previously proposed algorithms. Finally,

we demonstrate the effect of attack detection on the problem

of controlling a robotic vehicle under sensor attacks.

A. Runtime Performance

To assess the effectiveness of the algorithms introduced

in Sec. III-D and III-E, Figure 3(a) shows the number of

iterations of IMHOTEP-SMT when only one of the three

certificates, the trivial certificate φtriv-cert, the conflicting cer-

tificate φconf-cert, and the joint certificate φconf-cert ∧φagree-cert, is

used. In each test case we generated a random support set

for the attack vector, a random attack signal, and random

initial conditions. All reported results are averaged results

over 20 runs of the same experiment. Although we claim

no statistical significance, the results reported in this section

are representative of the several simulations performed by the

authors.

In the first experiment (top), we increase the number s of

actual sensors under attack for a fixed s = 20 (n = 25,

p = 60). In the second experiment (bottom), we increase

both n and p simultaneously, with p = 3n, while p/3 sensors

are under attack, and s = p/3. In both cases, the system is

constructed to be 3s-sparse observable, with the dimensions

of the kernels of Oi ranging between n−1 and n−2, meaning

that the state is “poorly” observable from individual sensors.

We also show the number of iterations against the theoretical

limit in Proposition III.5. We observed an average of 50×
reduction in iterations when φconf-cert was used compared to

φtriv-cert, while using both φconf-cert and φagree-cert decreased the

number of iterations by a factor of 75.

We also compared the performance of IMHOTEP-SMT

against the MIQP formulation (5), the ETPG algorithm [11],

and the l1/lr decoder [6], with respect to both execution time

and estimation error. The MIQP is solved using the commer-

cial solver GUROBI [27], the ETPG algorithm is implemented

in MATLAB, while the l1/lr decoder is implemented using the

convex solver CVX [28].

Figure 3 reports the numerical results in two test cases.

In Figure 3(b), we fix the number of sensors p = 20 and

increase the number of system states from n = 10 to n =
150. In Figure 3(c), we fix the number of states n = 50 and

increase the number of sensors from p = 3 to p = 150. In

both cases, half of the sensors are attacked. Our algorithm

always outperforms both the ETPG and the l1/lr approaches

and scales nicely with respect to both n and p. In particular,

as evident from Figure 3(b), increasing n has a small effect

on the overall execution time, which reflects the fact that the

number of constraints to be satisfied does not depend on n.

Conversely, as shown in Figure 3(c), as the number of sensors

increases, the number of constraints, hence the execution time
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of our algorithm, also increases. The runtime of the MIQP

formulation in (5) scales worse than our algorithm with n, but

better with p, because GUROBI can efficiently process many

conic constraints (whose number scales with p) but is more

sensitive to the size of each conic constraint (which scales with

n). Finally, Figure 3(b) (bottom) shows that the l1/lr decoder

reports incorrect results in multiple test cases, because of its

lack of soundness, as discussed in Section I.

B. Securing an Unmanned Ground Vehicle

We apply our algorithms to the model of a UGV, as detailed

in [11], [9], under different types of sensor attacks. We assume

that the UGV moves along straight lines and completely stops

before rotating. Under these assumptions, we can describe the

dynamics of the UGV as:
[
ẋ
v̇

]
=

[
0 1
0 −B

M

] [
x
v

]
+

[
0
1
M

]
F,

where x and v are the states, corresponding to the UGV posi-

tion and linear velocity, respectively. The parameters M and

B denote the mechanical mass and the translational friction

coefficient. The inputs to the UGV is the force F . The UGV is

equipped with a GPS sensor which measures its position and

two motor encoders which measure the translational velocity.

The resulting output equation is:

y =



1 0
0 1
0 1



[
x
v

]
+



ψ1

ψ2

ψ3


 ,

where ψi is the measurement noise on the ith sensor which

is assumed to be bounded. In our experiments, we used M =

0.8 kg, B = 1, ψ
2

1 = 0.2 m2, ψ
2

2 = ψ
2

3 = 0.2 (m/s)2.

The model is discretized with a time step equal to 0.1 s.

The SMT-based detector uses the discretized model along

with sensor measurements to provide an estimate for the state

vector, which is then used by a feedback controller to regulate

the robot and follow a squared-shape path of length equal to

5 m.

Figure 4 shows the performance of the SMT-based detector.

The attacker alternates between corrupting the first and the

second encoder measurements as shown in Figure 4(b). Three

different types of attacks are considered. First, the attacker

corrupts the sensor signal with random noise. The next attack

consists of a step function followed by a ramp. Finally, a

replay-attack is mounted by replaying the previously measured

UGV velocity. The estimated position and velocity are shown

in Figure 4(a). We recall that the SMT-based detector is also

able to return the indicator variable vector b, denoting which

sensors are under attack. Figure 4(b) shows both the attack and

the corresponding indicator variables as returned by the SMT-

based detector. The proposed algorithm is able to estimate the

state and the support of the attack also in the presence of noise.

VI. CONCLUSIONS

We proposed a sound and complete algorithm which adopts

a Satisfiability Modulo Theory paradigm to tackle the intrinsic

combinatorial complexity of the secure state estimation prob-

lem for linear dynamical systems under sensor attacks and in

the presence of noise. At the heart of our detector lies a set of

routines that exploit the geometric structure of the problem to

efficiently reason about inconsistency of sensor measurements

and enhance the runtime performance. Our approach was

validated via numerical simulations and demonstrated on an

unmanned ground vehicle control problem. Future directions

include the extension and the characterization of the proposed

algorithm for nonlinear and hybrid dynamical systems.
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APPENDIX

In Proposition A.1, we recall a general result that will be

used in the proof of Proposition IV.2. In order to state this

result, we first recall the following two facts.

Fact 1: For any two square matrices A and B, both AB
and BA have the same eigenvalues.

Fact 2: If I − A is a positive definite matrix, then all the

eigenvalues of A are strictly less than 1.

Proposition A.1. Given a positive semidefinite matrix A and

a positive definite matrix B of the same dimension, then every

eigenvalue of A(A+B)−1 is strictly less than 1.

Proof. It follows from the positive (semi)definiteness assump-

tions of A and B that (A+ B)−1 is positive definite matrix,

hence it can be written using its square root matrix as:

(A+B)−1 = (A+B)−
1
2 (A+B)−

1
2 .

It also follows from Fact 1 that A(A + B)−1 has the same

eigenvalues of (A+B)−
1
2A(A+B)−

1
2 . Therefore, we obtain

I − (A+B)−
1
2A(A+B)−

1
2 = (A+B)−

1
2 (A+B)(A+B)−

1
2

− (A+B)−
1
2A(A+B)−

1
2

= (A+B)−
1
2B(A+B)−

1
2 ,

which is still positive definite. Hence, from Fact 2, all eigen-

values of (A + B)−
1
2A(A + B)−

1
2 are strictly less than 1,

which implies that also the eigenvalues of A(A + B)−1 are

strictly less than 1.
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(a) Estimated position and velocity versus ground truth.
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(c) Indicator variables b computed by the proposed SMT-based detector.

Fig. 4. Performance of the UGV controller in the case when no attack takes place versus the case when the attack signal is applied to the UGV encoders.
The objective is to move 5 m, stop and perform a 90o rotation, and repeat this pattern to follow a square path. The controller uses the proposed SMT-based
approach to estimate the UGV states. In both cases we show the linear position and linear velocity (top), and the attack signal and its estimate (bottom).

Yasser Shoukry is a Postdoctoral Scholar at both the
Department of Electrical Engineering and Computer
Sciences of the University of California, Berkeley
and the Department of Electrical Engineering at
University of California, Los Angeles. He received
the Ph.D. in Electrical Engineering from the Uni-
versity of California at Los Angeles in 2015 where
he was affiliated with both the Cyber-Physical Sys-
tems Lab as well as the Networked and Embedded
Systems Lab. He received the M.Sc. and the B.Sc.
degrees (with distinction and honors) in Computer

and Systems engineering from Ain Shams University, Cairo, Egypt in 2010
and 2007, respectively. Before joining the University of California at Los
Angeles, he was an R&D engineer for four years where he worked in the
domain of automotive embedded systems and model-driven architecture. His
research interests include the design and implementation of secure cyber-
physical systems by drawing on tools from control theory, optimization theory,
embedded systems, and formal methods.

Dr. Shoukry is the recipient of the Chancellors prize, the Graduate Division
Fellowship, and the Preliminary Exam Fellowship, all from UCLA in 2011
and 2012.

Pierluigi Nuzzo is a Postdoctoral Scholar at the
Department of Electrical Engineering and Computer
Sciences of the University of California, Berkeley.
He received the Ph.D. in Electrical Engineering and
Computer Sciences from the University of California
at Berkeley in 2015, the Laurea degree in electrical
engineering (summa cum laude) from the University
of Pisa, Italy, in 2003 and the Diploma in engineer-
ing (summa cum laude) from the Sant’Anna School
of Advanced Studies, Pisa, Italy, in 2004.

Before joining the University of California at
Berkeley, he was a Researcher at IMEC, Leuven, Belgium, working on
the design of energy-efficient A/D converters and frequency synthesizers for
reconfigurable radio. During summer 2002, he was with the Fermi National
Accelerator Laboratory, Batavia, IL working on ASIC testing. From 2004
to 2006 he was with the Department of Information Engineering, University
of Pisa, and with IMEC, as a visiting scholar, working on low power A/D
converter design for wide-band communications and design methodologies for
mixed-signal integrated circuits. His research interests include: methodologies
and tools for cyber-physical system and mixed-signal system design; contracts,
interfaces and compositional methods for embedded system design; energy-
efficient analog and mixed-signal circuit design.

Dr. Nuzzo received First Place in the operational category and Best Overall
Submission in the 2006 DAC/ISSCC Design Competition, a Marie Curie
Fellowship from the European Union in 2006, the University of California at
Berkeley EECS departmental fellowship in 2008, the University of California
at Berkeley Outstanding Graduate Student Instructor Award in 2013, and the
IBM Ph.D. Fellowship in 2012 and 2014.

Alberto Puggelli (S09) received the B.Sc. and two
M.Sc. degrees in electrical engineering (summa cum
laude) from Politecnico di Milano, Milan, Italy, and
Politecnico di Torino, Tourin, Italy, in 2006 and
2008, respectively. He received the M.Sc. degree in
computer science and the Ph.D. degree in electrical
engineering and computer science from the Univer-
sity of California at Berkeley, Berkeley, CA, USA
in 2013 and 2014, respectively.

He was with ST-Ericsson in 2009 and with Texas
Instruments in 2011 and 2012, as an Intern Analog

Designer. He is currently Director of Technology at Lion Semiconductor Inc.
His research interests include the design of hybrid DC-DC voltage regulators.



16

Dr. Puggelli was a recipient of two Gold Medal Awards for the Best Student
from the Politecnico di Milano. He was the recipient of the AEIT Fellowship
Isabella Sassi Bonadonna in 2010. He is author or co-author of more than 20
publications in IEEE/ACM conference proceedings and journals. He holds 4
US patents.

Alberto Sangiovanni-Vincentelli holds the Buttner
Chair of Electrical Engineering and Computer Sci-
ences, University of California, Berkeley. For his
scientific research, he was awarded the IEEE/RSE
James Clerk Maxwell Award for “groundbreaking
contributions that have had an exceptional impact
on the development of electronics and electrical
engineering or related fields”, the Kaufmann Award
for seminal contributions to EDA, the IEEE Darling-
ton Award, the IEEE Guillemin-Cauer Award, the
EDAA lifetime Achievement Award, the IEEE/ACM

R. Newton Impact Award, the University of California Distinguished Teaching
Award, the SRC Aristotle Award and the IEEE Graduate Teaching Award for
inspirational teaching of graduate students. He is a fellow of the ACM, a
member of the National Academy of Engineering and holds two honorary
Doctorates.

On the industrial side, he helped founding Cadence and Synopsys, the two
leading companies in Electronic Design Automation and is on the Board of
five companies including Cadence. He is on the Advisory Board of three
companies and has consulted for companies such as Intel, HP, Bell Labs,
IBM, Samsung, UTC, Kawasaki Steel, Fujitsu, Telecom Italia, Pirelli, BMW,
Mercedes, Magneti Marelli, ST Microelectronics, LElettronica and UniCredit.
He is an author of over 850 papers, 17 books and 2 patents.

Sanjit A. Seshia (S’99-M’05-SM’11) received the
B.Tech. degree in Computer Science and Engineer-
ing from the Indian Institute of Technology, Bombay,
India in 1998, and the M.S. and Ph.D. degrees in
Computer Science from Carnegie Mellon University,
Pittsburgh, PA, USA, in 2000 and 2005 respectively.

He is currently an Associate Professor in the
Department of Electrical Engineering and Computer
Sciences at the University of California, Berkeley,
CA, USA. His research interests are in dependable
computing and computational logic, with a current

focus on applying automated formal methods to problems in embedded and
cyber-physical systems, electronic design automation, computer security, and
synthetic biology. His Ph.D. thesis work on the UCLID verifier and decision
procedure helped pioneer the area of satisfiability modulo theories (SMT)
and SMT-based verification. He is co-author of a widely-used textbook on
embedded systems. He led the offering of a massive open online course on
cyber-physical systems for which his group developed novel virtual lab auto-
grading technology based on formal methods.

Prof. Seshia has served as an Associate Editor of the IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, and as co-chair of
the Program Committee of the International Conference on Computer-Aided
Verification (CAV) in 2012. His awards and honors include a Presidential
Early Career Award for Scientists and Engineers (PECASE) from the White
House, an Alfred P. Sloan Research Fellowship, the Prof. R. Narasimhan Lec-
ture Award, and the School of Computer Science Distinguished Dissertation
Award at Carnegie Mellon University.

Paulo Tabuada was born in Lisbon, Portugal, one
year after the Carnation Revolution. He received his
Licenciatura degree in Aerospace Engineering from
Instituto Superior Tecnico, Lisbon, Portugal in 1998
and his Ph.D. degree in Electrical and Computer
Engineering in 2002 from the Institute for Systems
and Robotics, a private research institute associated
with Instituto Superior Tecnico. Between January
2002 and July 2003 he was a postdoctoral researcher
at the University of Pennsylvania. After spending
three years at the University of Notre Dame, as an

Assistant Professor, he joined the Electrical Engineering Department at the
University of California, Los Angeles, where he established and directs the
Cyber-Physical Systems Laboratory.

Paulo Tabuada’s contributions to cyber-physical systems have been rec-
ognized by multiple awards including the NSF CAREER award in 2005,
the Donald P. Eckman award in 2009 and the George S. Axelby award in
2011. In 2009 he co-chaired the International Conference Hybrid Systems:
Computation and Control (HSCC’09) and in 2012 he was program co-chair for
the 3rd IFAC Workshop on Distributed Estimation and Control in Networked
Systems (NecSys’12). He also served on the editorial board of the IEEE
Embedded Systems Letters and the IEEE Transactions on Automatic Control.
His latest book, on verification and control of hybrid systems, was published
by Springer in 2009.


