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Secure Tensor Decomposition Using Fully
Homomorphic Encryption Scheme

Liwei Kuang, Laurence T. Yang, Jun Feng, and Mianxiong Dong

Abstract—As the rapidly growing volume of data are beyond the capabilities of many computing infrastructures, to securely process

them on cloud has become a preferred solution which can both utilize the powerful capabilities provided by cloud and protect data

privacy. This paper puts forward a new approach to securely decompose tensor, the mathematical model widely used in data-intensive

applications, to a core tensor and some truncated orthogonal bases. The structured, semi-structured as well as unstructured data are

all transformed to low-order sub-tensors which are then encrypted using the fully homomorphic encryption scheme. A unified high-order

cipher tensor model is constructed by collecting all the cipher sub-tensors and embedding them to a base tensor space. The cipher

tensor is decomposed through a proposed secure algorithm, in which the square root operations are eliminated during the Lanczos

procedure. The paper makes an analysis of the secure algorithm in terms of time consumption, memory usage and decomposition

accuracy. Experimental results reveals that this approach can securely decompose tensor models. With the advancement of fully

homomorphic encryption scheme, the proposed secure tensor decomposition method is expected to be widely applied on cloud for

privacy-preserving data processing.

Index Terms—Tensor Decomposition, Fully Homomorphic Encryption, Lanczos Method, Cloud.
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1 INTRODUCTION

THe size of data in many fields is rapidly increasing
towards Terabyte level or even Petabyte level, and

the data structures are becoming more varied. The large
scale heterogeneous data have posed great challenges on
current computing infrastructures, and novel approaches
are in urgent need to address them. Cloud Computing
[1] is a model that can enable ubiquitous and conve-
nient access to a large pool of configurable computing
resources such as platforms, softwares and services. A
cloud infrastructure is the collection of hardware and
software which can provide capabilities to the consumers
on a pay-per-use or charge-per-use basis. It is a quite
feasible approach to upload the large scale data to cloud
for deeply processing and mining such as dimensionality
reduction [2], classification [3], and prediction [4]. How-
ever, carrying out such types of tasks on cloud may cause
a series of security problems including loss of privacy,
disclosure of business information, unauthorized tam-
pering, etc. Therefore, the study of secure data mining
and data analyzing on cloud is highly necessary as it
is an important method to extract valuable information
from the large scale heterogeneous data.
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The fully homomorphic encryption scheme, which
was suggested in 1978 by Rivest, Adleman, and Der-
touzos [5], allows a certain types of operations to be
performed on the cyphertext to generate an encrypted
result, of which the decryption is identical to the result
generated by directly carrying out operations on the
plaintext. The ideal lattice based scheme [6] proposed
by Gentry in 2009 solves the problem of limited number
of operations of fully homomorphic encryption, which
paves the way for trusted computing on cloud. The
Learning with Errors (LWE) scheme reported in [7] is
more practical to be employed in data-intensive applica-
tions. Although the previously mentioned schemes pro-
vide both additive and multiplicative homomorphisms,
they can cause decryption errors when be used by algo-
rithms implemented with non-homomorphic operations
such as square root and division, which are frequently
carried out during data processing.

Many heterogenous data are modeled as tensor [8, 9],
a high-dimension matrix used in a large number of
applications. Tensor decomposition is a powerful tool to
extract valuable information from large scale raw data.
The decomposition is computationally expensive and is
strongly suggested to be performed on cloud. Therefore,
it is necessary to investigate approaches for secure ten-
sor decomposition on cloud and address the challenges
caused by non-homomorphic operations. However, little
research has been devoted to this type of method.

This research presents a new computing approach
which can securely decompose the tensor model gen-
erated from large scale heterogeneous data. The major
contributions are summarized as follows.

• We present a holistic framework to address the
problem of secure tensor decomposition on cloud.
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The framework not only allows us to utilize the
powerful computational capabilities of the cloud,
but also ensures data security during the process
of tensor decomposition.

• We introduce a Unified Cipher Tensor (UCT) mod-
el for heterogeneous data representation. The de-
tailed procedures of how to encrypt the low-order
sub-tensors constructed from heterogeneous data
as cipher counterparts using the fully encryption
scheme, and how to embed them to a base tensor
space to generate a unified cipher tensor model are
illustrated in this paper.

• We propose to employ the Lanczos method to de-
compose the generated cipher tensor model to a
core tensor and some truncated orthogonal bases. A
secure tensor decomposition algorithm is designed
in which the non-homomorphic square root oper-
ations are removed during the Lanczos procedure.
Theoretical analyses of the algorithm in terms of
time consumption, memory usage as well as de-
composition accuracy are provided.

The rest of this paper is organized as follows. Section
2 recalls the preliminaries. In Section 3, the problem of
secure tensor decomposition is formalized and a solution
framework is illustrated. Section 4 explores the method
to represent the heterogeneous data as a unified cipher
tensor. A Lanczos based secure tensor decomposition
algorithm is proposed in Section 5. Performance of
the proposed approach is evaluated in Section 6. After
recalling the related works in Section 7, we offer the
conclusion in Section 8.

2 PRELIMINARIES

This section provides the preliminaries on tensor decom-
position, fully homomorphic encryption, and Lanczos
method. Some symbols frequently used in this paper are
demonstrated in Table 1.

2.1 Tensor Decomposition

Tensor model is a type of high-dimension matrix used in
a large number of applications [8]. High-Order Singular
Value Decomposition (HO-SVD) [10] is an approach that
can factorize the tensor model to a core tensor and some
truncated orthogonal matrices. Let T ∈ RI1×I2×...×IN

denote an N -th order tensor model, S and T̂ refer to the
core tensor and approximate tensor respectively, then the
HO-SVD method is defined as

S = T×1U1
T×2U2

T...×NUN
T,

T̂ = S×1U1×2U2...×NUN .
(1)

The i-mode product T×iU, 1 ≤ i ≤ N , of tensor T by
matrix U in Eq. (1) is defined as

(T×iU)j1j2...ji−1kiji+1...jN

=
Ii
∑

ji=1

(tj1j2...ji−1jiji+1...jN × ukiji),
(2)

TABLE 1

Table of symbols.

Symbol Definition

T initial tensor

S core tensor

T̂ approximate tensor

T(i) i-mode tensor unfolding

Sym(T(i)) symmetric matrix generated with T(i)

Du, Dsemi, Ds unstructured, semi-structured, structured data

L tridiagonal matrix

α, β elements of the tridiagonal matrix

×i i-mode product of a tensor by a matrix

R set of real numbers

Z set of integers

R (R[x]) ring (polynomial ring)

m plaintext

c ciphertext

χ discrete gauss distribution

e randomly selected error from χ

q, p big prime integers

Enc (Dec) encryption (decryption) function

ΨE cipher data of Ψ, namely ΨE = Enc(Ψ)

where tj1j2...ji−1jiji+1...ji and ukiji refer to the elements
of tensor T and matrix U , respectively.

For instance, Fig. 1 demonstrates the generated core
tensor model S and three truncated orthogonal bases
U1, U2, U3 by decomposing the initial tensor T . The
4 by 4 by 3 tensor is decomposed to a 2 by 2 by 2 core
tensor, two matrices of 4 by 2 and a matrix of 3 by 2.
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Fig. 1. Decomposing a three-order tensor to a core tensor

S and three orthogonal bases U1, U2 and U3.

2.2 Fully Homomorphic Encryption

The homomorphic encryption scheme allows some types
of operations to be carried out on the cyphertext to
generate the cipher results, on which the decryptions are
identical to the results directly computed by performing
operations on the plaintext. Two fully homomorphic en-
cryption schemes [6, 11] are proposed using ideal lattice
and polynomial ring, respectively. In [12], a General
Learning with Errors (GLWE) based scheme is reported,
of which the four key steps are as follows:
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1) E.Setup(1λ, 1µ, b): Choose a µ-bit modulus q,
and parameters d, n, N , χ. Suppose R is e-
qual to Z[x]

/

(xd + 1) and params is equal to
{q, d, n, N, χ}.

2) E.SectKeyGen(params): Set the secret key sk = s←
(1, s′[1], . . . , s′[n]) ∈ Rn+1

q where s′ is from χn.
3) E.PubKeyGen(params, sk): Choose a vector e ←

χN and generate a matrix A′ ← RN×n
q , then com-

pute b← A′s′+2e. Generate an n+1 column matrix
A which consists of vector b and matrix −A′. Set
the public key pk = A.

4) E.Enc(params, m, pk): Randomly choose a vec-
tor r ← RN

2 and output the ciphertext c ←
(m, 0, . . . , 0) +ATr where m ∈ R2 and c ∈ Rn+1

q .
5) E.Dec(params, c, sk): Obtain the plaintext using

the equation m← [[< c, s >]q]2.

The encryption scheme supports the homomorphism
of addition and multiplication, which can be illustrat-
ed as Fig. 2. Let m1 and m2 be two elements in the
plaintext, c1 and c2 in the ciphertext, let c1 = Enc(m1),
c2 = Enc(m2), then m1+m2 = Dec(Enc(m1)+Enc(m2)).
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Fig. 2. An illustration of the homomorphic encryption

scheme.

2.3 Lanczos Method

The Lanczos method [13, 14] can efficiently compute
the eigenvectors as well as eigenvalues of a sparse
symmetric matrix. It transforms the matrix M with an
orthogonal matrix W , where W = [w1, . . . , wk] and
WTW = I , to a tridiagonal matrix as follows

L =













α1 β2

β2 α2
. . .

. . .
. . . βk

βk αk













. (3)

Equating columns in the expression MW = WL, the
tridiagonal matrix L can be generated by carrying out
the iteration procedures

αj = wT
j Mwj ,

rj = Mwj − αjwj − βjwj−1,

βj+1 = ∥rj∥2, wj+1 = rj/βj+1.

(4)

The components of α, β, r can be progressively cal-
culated. Let the eigenvalue decomposition of matrix L

be defined as L = QΛQT, then the eigenvalues and
eigenvectors of matrix M are Λ and WQ, respectively.

3 PROBLEM DESCRIPTION AND SOLUTION

OVERVIEW

This section formalizes the problem of secure tensor
decomposition based on the fully homomorphic encryp-
tion scheme, and provides an overview of the proposed
solution framework.

3.1 Problem Definition

The heterogeneous data generally consist of structured
data Du, semi-structured data Dsemi as well as un-
structured data Ds. Let S denote the core tensor,
U1, U2, . . . , UN refer to the truncated orthogonal bases,
then the secure tensor decomposition problem can be
formalized as

fr : {Enc(Du), Enc(Dsemi), Enc(Ds)} → Enc(T ),
fd : Enc(T )→ {Enc(S), Enc(U1), . . . , Enc(UN )}.

(5)
In Eq. (5), the data representation function fr integrates
all encrypted data as a unified cipher tensor model
(UCT), on which the decomposition function fd is carried
out to generate the cipher core tensor and truncated
orthogonal bases.

The decomposition operations are performed on the
encrypted data. Therefore, the user’s privacy are protect-
ed. In order to guarantee the correctness of the decompo-
sition result, Eq. (5) satisfies S = T×1U

T
1 ×2U

T
2 . . .×NUT

N .
According to the fully homomorphic encryption scheme,
the secure decomposition process satisfies the following
equation

Dec(sk, Eva(pk, Cfd , Enc(T ))) = Cfd(T ), (6)

where Eva, Enc, Dec refer to the evaluation, encryption,
and decryption function, pk and sk denote the public key
and private key, Cfd refers to the boolean circuits of the
tensor decomposition function fd defined in Eq. (5).

The homomorphism can be guaranteed by perform-
ing addition, subtraction, and multiplication operations
on the cipher data during the tensor decomposition
process. However, new challenges arise when the non-
homomorphic operations such as square root and di-
vision are adopted in some types of decomposition
methods, for example, Lanczos-based algorithm. A se-
cure tensor decomposition algorithm is proposed in this
paper to address these challenges.

For convenience, in the following sections this paper
adopts the symbol ΨE to denote the cipher data accord-
ing to the plain data Ψ, namely ΨE = Enc(Ψ). Therefore,
the encrypted tensor Enc(T ) is denoted as TE .

3.2 Overview of the Solution Framework

In order to solve the problem defined above, we propose
a secure tensor decomposition approach based on the
fully homomorphic encryption scheme. Fig. 3 provides
an overview of the framework where the heterogeneous
data are first encrypted and represented as a unified
tensor model, then securely decomposed to a core tensor
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and some truncated orthogonal bases. The four represen-
tative steps of the solution framework are summarized
as follows.
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Fig. 3. Framework overview of the secure tensor decom-

position approach.

1) Data Representation, Encryption and Submission:
The heterogeneous data collected in the clients
are represented as low-order sub-tensors using the
method proposed in our previous work [9]. Then
the sub-tensors are encrypted using the fully homo-
morphic encryption scheme and the generated ci-
pher results are submitted to the cloud for unifica-
tion and decomposition. In Fig. 3, the unstructured
video data V D, semi-structured XML document
XD, and structured database DB are transformed
to cipher low-order sub-tensors TE

VD, TE
XD, TE

DB ,
respectively.

2) Construction of Cipher Tensor: The generat-
ed sub-tensors TE

VD, TE
XD, and TE

DB are then
embedded to a base tensor model Tbase ∈
RItim×Ispa×Iclt to generate a unified cipher tensor
model TE using the tensor extension operation [9]

TE = Tbase

⇀×TE
VD

⇀×TE
XD

⇀×TE
DB . The three orders

Itim, Ispa, Iclt of the base tensor model denote
time, space and client.

3) Secure Tensor Decomposition: After unfolding the
N -order unified cipher tensor TE to matrices
TE
(1), . . . , T

E
(N), the symmetrization transformation

is performed on each tensor unfolding to generate
the symmetric matrix sym(TE

(i)) = TE
(i)(T

E
(i))

T, (1 ≤
i ≤ N ). The eigen vectors of the symmetric matrix
sym(TE

(i)) are corresponding to the left singular

vectors of matrix TE
(i). The Lanczos method is em-

ployed to perform the eigen value decomposition,
namely, sym(TE

(i)) = UE
i ΛE(UE

i )T. The cipher core

tensor SE can be computed by applying Eq. (1) to
the truncated bases UE

1 , . . . , UE
N and the unified

cipher tensor TE .
4) Obtain the Plain Core Tensor and Bases: By de-

crypting the cipher core tensor and cipher truncat-
ed bases generated in Step 3, the plain core tensor S
and plain truncated orthogonal bases U1, . . . , UN

can be computed. As the homomorphism are sup-
ported during the secure tensor decomposition, the
generated results are correct and are identical to
that directly computed using the plain data.

This paper focuses on Step 2 and Step 3, which corre-
spond to the secure representation function fr and secure
tensor decomposition function fd.

4 CONSTRUCTION OF CIPHER TENSOR ON

CLOUD USING FULLY HOMOMORPHIC ENCRYP-
TION SCHEME

This section illustrates the process of representing the
heterogeneous data as a unified cipher tensor model
using the fully homomorphic encryption scheme. New
concepts and operations closely related to the cipher
tensor model are introduced.

4.1 Cipher Tensor and Nil Element

In order to clearly describe the process of representing
the structured, semi-structured as well as unstructured
data as a unified cipher tensor model, this paper intro-
duces some definitions as follows.

Definition 1: Cipher Tensor. A cipher tensor model
TE is generated by encrypting the elements in the
plain tensor T using the fully homomorphic encryption
scheme. The construction process is defined as TE =
{Enc(t)|t ∈ T}.
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Fig. 4. A plain tensor and the corresponding cipher tensor.

Fig. 4 demonstrates a plain tensor and the correspond-
ing cipher tensor. In this instance, the private key is
sk = (1, 7, 8) and the public key is

pk = A =





134 −3 −2
218 0 −3
507 −2 −1



 . (7)

The encryption function is formalized as tEijk = tijk +

(pk)Tr where r is a randomly selected three-dimensional

vector. The decryption function is tijk =

[

[

tEijk, s
]

q

]

p
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where the parameter q and p are 65537 and 97 respec-
tively. The two tensors in Fig. 4 satisfy the equation
TE = Enc(pk, T ). This is a simple example to illustrate
the construction of a cipher tensor. In practice, the fully
homomorphic encryption scheme chooses large integers
for these parameters.

Definition 2: Nil Cipher Element. The element gen-
erated by encrypting the plain element 0 is called the Nil
cipher element. This paper adopts symbol 0E to denote
the Nil cipher element, namely 0E = Enc(0).

In the fully homomorphic encryption scheme, the
plain element 0 may be encrypted to different Nil cipher
elements.

Definition 3: Sparse Cipher Tensor. A cipher tensor
containing a large portion of Nil elements is called a
sparse tensor. In this paper, a sparse tensor is assumed
to contain more than 60% Nil elements.

In Fig. 4, the cipher tensor TE consists of 18 elements.
There are 15 Nil elements and 3 nonzero elements.
Therefore, TE is a sparse cipher tensor.

Definition 4: Reduced Cipher Tensor. A reduced ci-
pher tensor is generated by removing all the Nil cipher
elements from the cipher tensor model.

As the zero element in the plain data may be encrypt-
ed to different Nil cipher elements in the cipher tensor,
special methods are needed to remove the Nil cipher
elements to obtain the reduced cipher tensor. In the
proposed solution framework demonstrated in Fig. 3, the
clients are responsible for removing the zero elements
from the plain tensor models before encryption. This
method can reduce the communication traffic as well as
the encryption time.

4.2 Constructing a Unified Cipher Tensor Model on
Cloud

In this paper, the heterogenous data are first repre-
sented and encrypted as cipher low-order sub-tensors
on the clients, then they are submitted to the cloud
for unification. To integrate all the cipher sub-tensors,
a base tensor model is proposed, which is defined as
Tbase ∈ RItim×Ispa×Iclt , where Itim, Ispa, Iclt refer to
time, space and client. The three orders serve as bases to
which the encrypted sub-tensors can be embedded for
generation of a unified cipher tensor model.

For example, the unstructured video data V D can
be represented as a four-order tensor model TV D ∈
RIf×Ih×Iw×Ics [9], where the tensor orders If , Ih, Iw,
Ics denote frame, height, width, and color space. The
semi-structured XML document XD can be transformed
to a three-order tensor model TXD ∈ RIia×Iib×Ir [9],
where the orders Iia, Iib, Ir denote the XML elements
and relationships. In Fig. 5, the two sub-tensors TV D

and TXD are encrypted to cipher counterparts TE
VD, TE

XD,
respectively, which are then embedded to the base tensor
model Tbase. The unified cipher tensor TE is as follows

TE ∈ RItim×Ispa×Iclt×Ih×Iw×Ics×Iia×Iib×Ir . (8)

The frame order of the unstructured video data is inte-
grated to the order Itim. The nine-order tensor in Eq. (8)
contains all data characteristics of the video, XML docu-
ment and base tensor. All elements in the cipher tensor
TE get involved in the secure tensor decomposition.
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Fig. 5. Embedding two encrypted sub-tensors to the base

tensor model on cloud.

4.3 Tensor Unfolding and Memory Storage Scheme

When the unified cipher tensor is generated, the next
critical step is to obtain the unfolded matrices, which
are used to construct the symmetric matrices. This paper
proposes to use the Compressed Row Storage (CRS)
[15] scheme to store the sparse unfolded matrices. Ad-
ditionally, in order to decrease execution time of the se-
cure tensor decomposition algorithm, the data-intensive
application can employ TE

(i)((T
E
(i))

T v) to perform the
matrix-vector operation on the symmetric matrix of the
i-mode tensor unfolding. Namely, the vector v is first
left multiplied with matrix (TE

(i))
T to obtain a temporary

vector, which is then left multiplied with matrix TE
(i).

In order to unfold a cipher unified tensor, the non-
Nil elements in the cipher tensor are rearranged along
the rows of the corresponding unfolded matrices. Fig.
6 demonstrates the 2-mode tensor unfolding of a three-
order cipher tensor. The three none-Nil elements in ten-
sor TE are rearranged to the unfolded matrix TE

(2). This
unfolded cipher matrix is used to perform the matrix-
vector product operation during the Lanczos algorithm.
The CRS scheme of the unfolded matrix is demonstrated
at the bottom table in Fig. 6. The array val consists of
the three non-Nil elements, array col-ind includes the
column indices, row-ptr stores the four locations that start
new rows. For example, the element 3 in array row-ptr
indicates that the cipher element (8211, −37, −48) in
the unfolded matrix TE

(2) starts a new row.
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Fig. 6. The 2-mode unfolded matrix of a three-order cipher

tensor and the corresponding storage scheme.

4.4 A Cipher Tensor Representation Algorithm on

Cloud

Based on the previously mentioned methods, this paper
proposes Algorithm 1 to represent the heterogeneous
data as a unified cipher tensor (UCT) model on cloud.

Algorithm 1 Cipher Tensor Representation. TE =
fr(Ds, Dsemi, Du)

Input:
The structured, semi-structured and unstructured
data (Ds, Dsemi, data Du).

Output:
The unified cipher tensor model TE .

1: Represent the various types of local data as low-
order sub-tensors, and encrypt them to cipher low-
order sub-tensors on clients.

2: Upload the generated cipher sub-tensors to cloud.
3: Embed all the cipher sub-tensors to the base tensor

model Tbase ∈ RItim×Ispa×Iclt , and obtain the unified
cipher tensor model TE .

4: Unfold the cipher tensor to matrices and generate
the symmetric matrices for tensor decomposition.

In Line 1 of the proposed Algorithm 1, the structured,
semi-structured as well as unstructured data are trans-
formed to low-order sub-tensors, which are then en-
crypted using the fully homomorphic encryption scheme
on clients. All the cipher sub-tensors are uploaded to
cloud for unified representation. In this paper, the zero
elements of the plain data are removed during the
encryption procedure. The cloud embeds all the cipher
sub-tensors to the base tensor model in Line 3 to generate
the unified cipher tensor model TE . Line 4 generates the
symmetric matrices of each cipher tensor unfolding for
secure tensor decomposition.

5 SECURE TENSOR DECOMPOSITION ON

CLOUD AND CLIENT

This section presents a secure tensor decomposition al-
gorithm and makes an analysis of it in terms of time
consumption, memory usage and decomposition accu-
racy.

5.1 Non-Homomorphic Operations During Lanczos-
based Decomposition

Table 2 shows the five types of operations utilized in
the Lanczos iteration, namely, addition +, subtraction
−, multiplication ×, division ÷, and square root

√
x. To

guarantee the correctness of the decomposition results of
the cipher tensor, new methods need to be developed to
address the challenges of non-homomorphic operations
performed on the cipher tensor, which can be described
as follows:

Challenge 1: Non-Homomorphic Square Root Op-
eration on Cipher Data. This challenge is to perform
the operation βj+1 = ∥rj∥2, which is responsible for
computing the second norm of the vector rj .

Challenge 2: Non-Homomorphic Division Operation
on Cipher Data. The division operation is used to gener-
ate the normalized orthogonal vectors with the following
equation ωj+1 = rj/βj+1

.

TABLE 2

Operations in the Lanczos Method.

Operation Homomorphic Step

+ yes αj = wT
j Mwj

− yes rj = Mwj − αjwj − βjwj−1

× yes αj = wT
j Mwj

÷ no ωj+1 = rj/βj+1√
x no βj+1 = ∥rj∥2

5.2 Removing the Non-homomorphic Square Root
Operation in Lanczos Procedure

Theorem 1: Lanczos-based Cipher Tensor Decomposi-
tion without Square Root Operation. Let TE denote
an N -order cipher tensor, SE refer to the cipher core
tensor, UE

1 , . . . , UE
N be the truncated orthogonal bases.

Then with the Lanczos method, the core cipher data
coreE = {SE , UE

i } can be generated without performing
the non-homomorphic square root operations in the
Lanczos procedure.

Proof. During the decomposition process, the square
root operation is employed to compute the second norm
of a vector, namely, βj+1 = ∥rj∥2. Inspired by [16], we
extend the orthogonal unitary matrix W to an orthog-
onal but non-unitary matrix to remove the square root
operation. Let W be a matrix consisting of orthogonal
vectors, WTW = D, and D = diag(δ1, δ2, . . .). Then by
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multiplying the symmetric matrix of the i-mode tensor
unfolding with matrices WT and W , we obtain

WTTE
(i)(T

E
(i))

TW =











δ1
δ2
δ3

. . .























α1 β2

1 α2 β3

1 α3
. . .

. . .
. . .













.

(9)
Let βj = δj/δj−1

, Eq. (9) can be transformed to

WTTE
(i)(T

E
(i))

TW =













α1δ1 δ2
δ2 α2δ2 δ3

δ3 α3δ3
. . .

. . .
. . .













.

(10)
Selecting the j-th vector of the result matrix, we obtain
the following equation

TE
(i)(T

E
(i))

Twj = δjwj−1 + αjδjwj + δj+1wj+1. (11)

As the vectors of matrix W are orthogonal, according to
Eq. (11), all the parameters in the tridaigonal matrix can
be computed as

αj = wT
j T

E
(i)(T

E
(i))

Twj

/

δj
,

wj+1 = vj − αjwj ,

δj+1 = wT
j+1wj+1,

βj+1 = δj+1/δj ,

vj+1 = TE
(i)(T

E
(i))

Twj+1 − βj+1wj .

(12)

In the above procedures, parameter i refers to the i-
mode unfolded matrix of the cipher tensor TE , and
j denotes the j-th iteration of the Lanczos procedure.
δj is a non-zero element prematurely. Based on the
tridiagonalized matrix, we can compute the left singular
matrix UE

i of the cipher tensor unfolding TE
(i). Therefore,

the core tensor SE can be computed with equation
SE = TE×1(U

E
1 )T×2(U

E
2 )T . . .×N (UE

N )T. In Eq. (12), the
non-homomorphic square root operations are removed.

Note that the parameters α, β, δ, w, v are all
in ciphertext format. For convenience, the superscripts
are omitted during the proof procedure in this paper.
The division operations are transferred to the client. In
each Lanczos iteration, the cloud send wT

j T
E
(i)(T

E
(i))

Twj ,
δj+1, δj to the client, where the division operations are
performed and the results are passed back to cloud in
ciphertext format.

5.3 Secure Tensor Decomposition Algorithm on
Cloud and Client

In this paper, Algorithm 2 is presented for secure tensor
decomposition. The numbers defined in real fields for
the raw data are multiplied with 10d [17] to obtain the
corresponding integers. Hence, all operations are defined
in the integer field. The non-homomorphic operation,
namely square root, is removed from the Lanczos pro-
cedure.

In Line 1 of Algorithm 2, the unified cipher tensor
model TE is unfolded to N matrices which are then
transformed to symmetric matrices TE

(i)(T
E
(i))

T. A random
integer vector is selected in Line 3. The left singular
vector matrix of TE

(i) is equal to the eigen vector matrix

of TE
(i)(T

E
(i))

T. From Line 2 to Line 13, Algorithm 2
computes the truncated orthogonal bases using the Lanc-
zos method. The non-homomorphic operation, square
root, is removed during the iterations, and the division
challenge is addressed by transferring the operations to
client in Line 5 and Line 9. The tridiagonal matrix L

generated in Line 12 is used for eigen value decompo-
sition. This paper employs the symmetric QR algorithm
[18] to compute the eigen values and eigen vectors of the
tridiagonal matrix L on clients. The truncated orthogonal
bases are computed in Line 13, and the cipher core tensor
is generated in Line 14.

Algorithm 2 Secure Tensor Decomposition on Cloud and
Client {SE , UE

1 , . . . , UE
N } = fd(T

E).

Input:
The reduced cipher tensor TE .

Output:
The cipher core tensor SE and cipher truncated
orthogonal bases UE

1 , . . . , UE
N .

1: Unfold the cipher tensor to matrices and obtain the
corresponding symmetric matrices TE

(i)(T
E
(i))

T.

2: for each matrix TE
(i)(T

E
(i))

T, 1 ≤ i ≤ N, do
3: Initialize the parameters by setting j = 1, wj =

random integer vector, δj = wT
j wj , β1 = 1, vj =

TE
(i)(T

E
(i))

Twj .
4: while δj ̸= 0 do
5: Compute wT

j T
E
(i)(T

E
(i))

Twj and obtain the param-
eter αj by receiving the division result comput-
ed on the client.

6: Compute vector wj+1 = vj − αjwj .
7: Increase j by 1, namely, j = j + 1.
8: Replace δj with wT

j wj .
9: Send δj and δj−1 to the client and receive the

division result βj .
10: Compute vector vj = TE

(i)(T
E
(i))

Twj − βjwj−1.
11: end while
12: Construct the tridiagonal matrix L using the gen-

erated elements αj , βj , and compute the eigen
values and eigen vectors on client.

13: Generate the left singular vector matrices and
truncated orthogonal bases.

14: Compute the cipher core tensor SE using equation
SE = TE×1(U

E
1 )T×2(U

E
2 )T . . .×N (UE

N )T.
15: Return tensor SE and the bases UE

1 , . . . , UE
N .

16: end for

5.4 Algorithm Analysis

The performance of the proposed secure tensor de-
composition algorithm is theoretically analyzed in this
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paper in terms of time consumption, memory usage and
decomposition accuracy.

Time Consumption: Execution time of the proposed
secure decomposition algorithm consists of matrix un-
folding, Lanczos-based singular value decomposition of
each tensor unfolding as well as product of a tensor
by the truncated matrices. Let Timeunf , Timelan and
Timeprod denote the time used by the above processes,
respectively, then the total time consumption Time may
be defined as

Time = T imeunf + Timelan + Timeprod. (13)

Tensor unfolding is a simple transformation with
O(1) time complexity. T imelan is equal to Timelan1 +

Timelan2 + ... + TimelanN =
∑N

i=1 T imelani, where
Timelani refers to the decomposition time consumed
by unfolded matrix TE

(i). The time complexity of gen-
erating a tridiagonal matrix for a tensor unfolding us-
ing the Lanczos method is O(kn). In this paper, the
time complexity of eigen value decomposition of the
tridiagonal matrix on client is not considered. For a
truncated orthogonal basis U with k column vectors,
time complexity of the product of a tensor by a matrix is
O(kn2), where k is the number of vectors in the truncated
basis UE

i . Hence, to decompose an N -order cipher tensor
TE with N unfolded matrices, the time complexity of
the proposed secure tensor decomposition algorithm is
O(1) +O(Nkn) +O(Nkn2), namely O(Nkn2), where N

refers to the number of tensor orders, n denotes the
dimensionality of the tensor unfolding.

Memory Usage. The consumed memory of the secure
decomposition algorithm is related to the number of
non-Nil elements of the ciper tensor model TE . Assume
mi

nz denote the number of rows containing non-zero
elements in matrix Sym(TE

(i)), then the memory usage

can be computed using equation 2N×nnz(TE)+
N
∑

i=1

mi
nz .

According to the CRS scheme described in previous
section, the proposed secure tensor decomposition algo-
rithm can significantly save computer memory.

Decomposition Accuracy. The reconstruction error be-
tween the initial tensor and the generated approximate
tensor can be computed using the Frobenius Norm [19]
which is defined as

∥

∥

∥
T − T̂

∥

∥

∥

F
= (

I1
∑

i1=1

, ...,

IP
∑

ip=1

(ai1,...,ip − âi1,...,ip)
2
)

1
2 . (14)

For the unfolded matrix T(i) of initial tensor T , the

approximate matrix is T̂(i) = UiΣiV
T
i . The reconstruction

error is caused by approximation of all unfolded matri-
ces. To clearly analyze tensor dimensionality reduction
degree and tensor approximation degree, this paper
employs two ratios. The reduction ratio is defined as

ρ =
nnz(S)+

N∑

i=1

nnz(Ui)

nnz(T ) , where S denotes the core tensor,
and Ui is the i-mode truncated orthogonal basis. As only
nonzero elements of the core data set are stored, ratio

ρ can accurately reflect the dimensionality reduction

degree. The reconstruction error ratio is ϑ =
∥T−T̂∥

F

∥T∥F

,

which reflects the degree of reconstruction error with
tensor Frobenius Norm. In this paper, the pair (ρ, ϑ)
is used to describe the dimensionality reduction degree
and reconstruction error degree. Obviously, the ratio ρ is
inversely proportional to ratio ϑ.

6 PERFORMANCE EVALUATION

This section illustrates some very preliminary evaluation
results of the proposed secure tensor decomposition
approach. We performed the experiments on commodity
computers, each of them is of Intel(R) Core(TM) i5−3470
CPU @3.20 GHZ, 8 GB RAM, and is running CentOS
6.4 Operating System. We adopted the software library
HElib 1 which implements the BGV fully homomorphic
encryption scheme. The NTL-6.2.1 mathematical library
was compiled and installed in the experimental ma-
chines. The experimental data are from our university
including the unstructured video data collected with
fixed cameras, semi-structured XML documents about
staffs and students in our university, and structured
trajectory data collected by mobile phones. These data
are encrypted and integrated as a unified cipher tensor
model for secure tensor decomposition. We implemented
a number of secure algorithms on cipher data including
singular value decomposition, eigen value decomposi-
tion, tensor construction. But due to space constraints,
we only present some representative results.

To evaluate the effects of dimensionality reduction of
secure tensor decomposition, we utilized a three-order
tensor formed by gray video clips, which is of MPEG4
format, 15 frames per second. The tensor was unfolded
to three matrices, which were transformed to symmetric
matrices and then factorized using the Lanczos method.
We adopted different truncation ratios to preserve the
left singular vector matrices which contain the unitary
orthogonal vectors of the tensor unfolding. This section
demonstrates some experimental results of the singular
values, orthogonal bases, core tensor, dimensionality
reduction ratios and tensor approximation ratios.

The results demonstrated in this section need to be
viewed with a limitation in mind, that is more extensive
experiments should be carried out on cloud and client
to evaluate the performance of the secure tensor decom-
position approach.

6.1 Singular Values of Unfolded Matrices

Fig. 7 demonstrates the singular values of the three
unfolded matrices T(1), T(2), and T(3). We also drew the
super-diagonal values of the core tensor in the figure
for comparison. The graph shows that the first singular
values of the three tensor unfolding are generally greater
than the others. In our experiments, the first singular

1. https://github.com/shaih/HElib
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values are 6.559, 5.856, and 6.652 times of the second
singular values of the tensor unfolding, respectively.
In addition, there is an obvious declining trend from
the second singular value to the eighth singular value.
From the ninth singular value, the rate of decrease slows
down. The scaling ratios of the first singular values to
the thirtieth singular values are 48.00, 51.73, and 103.35,
respectively.
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Fig. 7. The singular values of unfolded matrices and the

diagonal values of the core tensor.

6.2 Unfolded Matrices and Truncated Orthogonal
Bases

Fig. 8 shows an example of the 1-mode tensor unfolding
T(1) and the truncated left singular vector matrix U1.
The number of rows in matrix T(1) is equal to the
dimensionality of order I1, and the number of columns
is equal to I2 × I3. The 1-mode unfolded matrix in Fig.
8(a) depicts the elements of the initial tensor model
along the first order. The singular vector matrices are
composed of unitary orthogonal vectors, the elements
of the orthogonal vectors are normalized which are
between −1 and 1. In Fig. 8(b), the maximum elements of
matrix U1 is 0.53, and the minimum value is −0.73. The
elements between (−0.2, 0.2) account for 98.54 percent.
About 33.96 percent of the elements range from −0.01
to 0.01.

6.3 Matrices of Core Tensor

In order to illustrate the structure of the core tensor,
we extracted four slices and demonstrated them in Fig.
9. The projection coordinates are contained in the core
tensor which has the same number of orders as the initial
tensor. The matrix S(:, :, 3) has more larger elements than
matrix S(:, :, 30). The maximum element of matrix S(:, :
, 3) and S(:, :, 30) are 6286.07 and 156.27, respectively.
The elements in matrix S(:, :, 12) are between −936.40
and 893.84, while the elements in matrix S(:, :, 21) are

(a)

(b)

Fig. 8. (a) The 1-mode unfolded matrix of a tensor; (b) the

corresponding left singular matrix of the tensor unfolding.
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Fig. 9. Illustration of the four matrices of a core tensor.
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between −1085.67 and 539.93. In our experiment, the
average values of the four matrices are −0.87, 0.41,
−0.69, and 0.65, respectively.

6.4 Reduction Ratio and Approximation Ratio

We decomposed the unified tensor model to a core tensor
multiplied with some truncated orthogonal bases. The
dimensionality reduction ratio and approximation ratio
which is equal to the subtraction of the reconstruction
error ratio from 100%, are utilized for evaluation. Fig.
10 demonstrates that the dimensionality reduction ratio
increases from 0.28% to 78.19% during the experiments,
while the tensor approximation ratio increases slowly
from 79.21% to 98.56%. In the fourteenth experiment,
14.72% core data accounted for 92.66% approximation
accuracy. In the eighteenth experiment, 23.41% core da-
ta accounted for 94.20% approximation accuracy. The
line graph of dimensionality reduction ratio in Fig. 10
increases sharply than the tensor approximation ratio.
Averagely, about 21% core data can guarantee 94% ap-
proximation accuracy during tensor decomposition.
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Fig. 10. The relationship between the dimensionality re-

duction ratio and tensor approximation ratio.

6.5 Approximation Comparison Between the Cipher
and Plain Tensor Decomposition

We carried out experiments of tensor decomposition on
small cipher tensor and plain tensor models. In order
to preserve the desired precision, we multiplied the
elements of the tensor models with some coefficients.
The elements are scaled up and the decimal parts are
dropped. In these three experiments, the coefficients
were 10, 100 and 1000, respectively. During the Lanczos
procedure, the division results were rounded to the
nearest integers for the following iterations.

Fig. 11 demonstrates the experimental results of tensor
decomposition on the plain and cipher tensors. In the

first experiment, the approximation ratio on the cipher
tensor is 81.72%, while the ratio on the plain tensor
increases to 86.60%. In the third experiment, the approx-
imation ratios of the cipher and plain tensors are 95.24%
and 95.45%, respectively. The column chart reveals that
with large coefficients, there is not a great deal of dif-
ferences between the approximation ratios of the cipher
tensor and plain tensor during tensor decomposition.
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Fig. 11. Approximation comparison of the cipher tensor

and plain tensor.

In practice, according to the requirements of the data-
intensive applications, the larger coefficients can be care-
fully selected to preserve computational accuracy.

7 RELATED WORK

This section reviews some previous studies on tensor
decomposition, fully homomorphic encryption scheme,
and Lanczos method.

7.1 Tensor and High-Order Singular Value Decom-

position

A tensor model is used to illustrate the linear rela-
tions between the scalars, vectors and other tensors.
Tensor [8, 20], usually called multidimensional array, is
a generalization of the matrix model. It can effectively
represent the heterogeneous data as a concise model
and extract high-quality core data using High Order
Singular Value Decomposition (HO-SVD) [10] approach.
HO-SVD is a special case of the widely used TUCKER
[21] decomposition approach.

7.2 Fully Homomorphic Encryption Scheme

The fully homomorphic encryption concept was first
reported in 1978 [5]. The encryption schemes reported
in [22–26] support either addition homomorphism or
multiplication homomorphism. However, none of them



11

can support both operations in a single scheme. A new
approach is presented in [27] which constructs a scheme
capable of carrying out both addition and multiplication
operations. In 1999, Gentry [6] constructed a fully homo-
morphic encryption scheme. From then on many studies
[7, 11, 12, 28, 29] have been performed in order to present
new efficient fully homomorphic encryption schemes.

7.3 Lanczos Method

The Lanczos method [13], an adaptation of the power
method, is employed to compute several extreme eigen-
values and eigenvectors of a sparse symmetric matrix.
A block Lanczos type algorithm is presented in [30] to
construct a tridiagonal matrix. A new algorithm [16] is
reported that can remove the square root operation from
the Lanczos iteration. An implicitly restarted method
is explored in [31] for obtaining the smallest singular
triplets. In [32], a new error bound for Lanczos method
is introduced.

8 CONCLUSION

Aiming to propose an efficient approach that can se-
curely process large scale heterogeneous data, this paper
formalizes the secure tensor decomposition problem,
and proposes a holistic solution framework to address it.
A unified cipher tensor model is presented to integrate
all the encrypted low-order sub-tensors as a unified
model. Concise examples are provided for illustrating
the process of cipher tensor construction and unfolding.
A Lanczos-based secure tensor decomposition algorithm
is introduced, in which the non-homomorphic square
root operations in Lanczos procedure are removed. Some
very preliminary experiments are carried out to evaluate
the performance of the methods. The results support that
the proposed approach is feasible and can pave a way
for secure data processing on cloud.
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