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ABSTRACT 
In this paper, we analyze attacks on existing time synchronization 
protocols for wireless sensor networks. We propose a secure time 
synchronization toolbox to counter these attacks. This toolbox 
includes protocols for secure pairwise and group synchronization 
of nodes that lie in each other’s power ranges and of nodes that 
are separated by multiple hops. We provide an in-depth analysis of 
security and energy overhead of the proposed protocols.  

Categories and Subject Descriptors 
C.2.2 [Computer Systems Organization]: Computer 
Communication Networks – Network Protocols.  

General Terms 
Algorithms, Security, Verification. 

Keywords 
Sensor Networks, Security, Time Synchronization, Message 
Authentication Code, Delay. 

1. INTRODUCTION 
Time synchronization is critical to sensor networks at many layers 
of its design. It enables better duty-cycling of the radio, accurate 
and secure localization, beamforming and other collaborative 
signal processing. Examples of existing sensor network 
applications where precise time is needed include: measuring the 
time-of-flight of sound; distributing an acoustic beam forming 
array; forming a low-power TDMA radio schedule; integrating a 
time-series of proximity detections into a velocity estimate; 
suppressing redundant messages by recognizing duplicate 
detections of the same event by different sensors; ordered logging 
of events during system debugging; integrating multi sensor data; 
or coordinating on future action. Imagine the detrimental affect on 
the functionality of all these applications if a malicious adversary 
is able to abuse the underlying time synchronization protocol. 
Nodes will have faulty estimates about the location of other nodes. 
Packets will be lost if the sleep-wakeup schedules of nodes do not 
intersect. This can further trigger unnecessary packet 
retransmissions if MAC layer acknowledgements are enabled. It 
will be trivial for adversaries to perform replay attacks. 
Collaborative data processing and signal processing techniques 
will be adversely affected. 

Although time synchronization problem has been thoroughly 
studied in sensor networks [1] and there are several prototype 
implementations, such as RBS [2], TPSN [3], FTSP [4] that can 
achieve microseconds accuracy, none of the existing protocols are 
resilient to malicious attacks. These protocols have not been built 
with security in mind. Realizing the inadequacy of existing time 
synchronization solutions, we develop several schemes for 
achieving secure time synchronization in sensor networks. Our 
approach involves integrating security mechanisms into existing 
protocols as well as developing new protocols from scratch. Our 
contributions are three fold. 
First, we perform an in-depth security analysis of the sender-
receiver synchronization protocols [2], [3]. We show that as 
sensor networks are deeply coupled with the physical world that 
they monitor, a malicious adversary can subvert the time 
synchronization protocol by exploiting weaknesses at the interface 
between the sensor network and the physical world. Examples of 
time synchronization protocols vulnerable to these attacks include 
TPSN [3], FTSP [4], LTS [5], Mini/Tiny Sync [6]. Although 
exactly the same attacks are feasible on receiver-receiver 
synchronization [3], we do not explicitly cover them in this paper 
due to space constraints.   
Second, we integrate security mechanisms into the basic approach 
of sender-receiver synchronization to propose a protocol for 
secure pairwise time synchronization in sensor networks. We 
show that for a nominal overhead, our protocol can counter 
malicious attacks from external attackers. We extend this basic 
scheme to propose and analyze three protocols for secure pairwise 
synchronization over multiple hops: opportunistic, direct and 
transitive. Each of these protocols offers a different point of 
operation in the energy – security subspace and should be used 
according to the application needs. 
Third, we propose a protocol for secure group time 
synchronization. We show that this protocol is resilient to attacks 
from external attacker as well as to attacks from a subset of 
compromised group nodes. Typical applications of secure group 
synchronization include object tracking, beamforming, intruder 
detection and fire monitoring. These applications will function 
accurately only if the synchronization error between any two 
nodes in a monitoring group is bounded within some pre-specified 
limits. In our protocol this is achieved, in part, through data 
fusion, the process of transforming and merging individual sensor 
readings into a high-level sensing result. 
In this paper, we focus on detecting the malicious attacks. We 
abort the ongoing time synchronization protocol once the attack is 
detected. We neither provide mechanisms to prevent the attacks 
from taking place nor do we provide mechanisms to continue with 
the process of time synchronization while modifying the protocol 
taking into account the malicious attack. Both of these are 
challenging problems and form part of our future work. Yet, a 
significant contribution of this paper is to highlight the security 
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flaw of existing time synchronization protocols and prevent the 
sensor nodes from incorrectly assuming that they are synchronized 
when in reality they are not. 

2. PROBLEM FORMULATION 
Our system consists of a network of sensor nodes. If two sensor 
nodes reside within the power range of one another, they are 
considered neighbors. We assume that the radio link between 
neighbors is bidirectional. We also assume that neighboring 
sensors share pairwise secret keys. There are several schemes in 
literature for secure pairwise key establishment between sensor 
nodes [7], [8], [9]. 

2.1 Sensor Node Clock 
Every sensor node maintains its own clock and this is the only 
notion of time that a node has. The clock is an ensemble of 
hardware and software components; it is essentially a timer that 
counts the oscillations of a quartz crystal running at a particular 
frequency. Let us represent this clock for node A by CA. 
Furthermore CA(t) represents the time in the local clock of node A 
at real time t. This real time can be UTC. In this paper, we are not 
concerned about synchronizing the clocks with real time; we will 
use it as a common reference to compare different sensor node 
clocks. The difference in the clocks of two sensor nodes at any 
time t is referred as the offset error between them.  
There are three reasons for the nodes to be representing different 
times in their respective clocks – (1) The nodes might have been 
started at different times, (2) The quartz crystals at each of these 
nodes might be running at slightly different frequencies, causing 
the clock values to gradually diverge from each other (termed as 
the skew error), (3) The frequency of the clocks can change 
variably over time because of aging or ambient conditions such as 
temperature (termed as the drift error). Figure 1 summarizes these 
sources of error using a representative example of two nodes, A 
and B. 
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Figure 1. Sources of Error 

In this paper, we aim to achieve instantaneous synchronization 
between sensor nodes. So our aim is to remove the offset error 
between the nodes at any given instant of time. 

2.2 Sender-Receiver Synchronization 
The approaches for synchronizing a pair of nodes can be broadly 
classified as sender-receiver or receiver-receiver [3]. Pairwise 
sender-receiver synchronization is performed by a handshake 
protocol between a pair of nodes. This protocol is executed in 
three steps as follows1: 

Pairwise Sender-receiver Synchronization 
1. A(T1) → (T2)B : A, B, sync 

                                                                 
1 We use the following notation throughout this paper. 

Node-id (Send time) → (Receive time) Node-id : Packet contents. 

2. B(T3)  → (T4)A : B, A, T2, T3, ack 
3. A calculates offset between the nodes. 

Here, T1, T4 represent the time measured by the local clock of 
node A, CA. Similarly T2, T3 represent the time measured by CB. 
At time T1, A sends a synchronization pulse packet to B. Node B 
receives this packet at T2, where T2 is equal to T1+δ+d. Here, δ 
and d represent the offset between the two nodes and end-to-end 
delay respectively. At time T3, B sends back an acknowledgement 
packet. This packet contains the values of T2 and T3. Node A 
receives the packet at T4. Similarly, T4 is related to T3 as T4 = 
T3-δ+d. Node A can now calculate the clock offset and the end-to-
end delay as: 

)1(
2

)34()12(;
2

)34()12(
K

TTTTdTTTT −+−=−−−=δ  

Several schemes such as TPSN [2], LTS [5], Mini/Tiny Sync [6] 
are based on sender-receiver synchronization.  

2.3 Malicious Attacks  
In this section, we list some of the attacks that an external 
malicious attacker can perform to abuse the functionality of the 
pairwise sender-receiver synchronization protocol. An external 
attacker will be successful if he makes node A calculate a faulty 
value of the offset. 
• The attacker can modify the values of T2 and T3. It can 

change the contents of the message being sent from B to A or 
it can generate a completely new message by assuming the 
identity of node B.   

• Besides directly modifying the values of T2 and T3, the 
attacker can influence their measurement. Notably, T2 is 
measured as the time at which the initial synchronization 
pulse packet sent by A is received at B. If an attacker could 
delay the time at which B receives the synchronization pulse, 
he could modify the computation of the offset at A. To delay 
the synchronization pulse, an attacker can simply jam the 
initial pulse, store in its memory and replay it at some 
arbitrary time in the future as shown in Figure 3. This attack 
cannot be prevented by the use of conventional cryptographic 
primitives. From now onwards, we refer to this attack as the 
pulse-delay attack. Here, we assume that the attacker can jam 
the communication between two nodes by transmitting 
signals which will disrupt packet reception at the receiver. By 
jamming, we consider disruptive jamming that cannot be 
detected at the receiver. Currently available sensor network 
platforms use 433MHz Chipcon1000, 2.4 GHz IEEE 
802.15.4 compliant (Direct Sequence (DSSS)) or Bluetooth 
(Frequency Hopping (FHSS)). Even if DSSS and FHSS resist 
various types of jamming well, because of their low 
transmitting RF power (1mW), these sensor platforms are 
vulnerable to broadband jamming (BBN). Recently, Xu et al. 
[10] showed that jamming attacks are indeed feasible against 
Mica2 motes, and that detecting these attacks requires 
significant resources. 

• The attacker can perform a similar pulse-delay attack on the 
acknowledgement packet to modify T4. 

2.3.1 Pulse-Delay Attack 
Figure 2 shows the idea behind pulse-delay attack. We have 
already shown that we use two equations to derive the end-to-end 
delay and the clock offset between the sender and the receiver. 
These are: T2= T1+δ+d and T4 = T3-δ+d. If an attacker performs 
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a pulse-delay attack (e.g., on the initial sync packet), the equations 
will change to: T2* = T1+δ+d and T4 = T3-δ+d, where T2* = 
T2+Δ. Here Δ is the pulse-delay introduced by the attacker.  
The clock offset and the end-to-end delay then become:  

)2(
2

)34()12(;
2

)34()12(
K

Δ+−+−=Δ+−−−= TTTTdTTTTδ

This shows that the attacker can, by varying the pulse-delay, Δ, 
arbitrarily change the computed clock offset. An important 
observation is that in the process of carrying out a pulse-delay 
attack, the attacker also changes the computed end-to-end delay. 
In equation (2) both offset, δ, and the end-to-end delay, d, are 
higher by Δ/2 than equation (1).  Note that the attacker has no 
control over the calculation of the end-to-end delay. As we will 
show in later sections, we exploit this observation to develop a 
protocol for detecting pulse-delay attacks. 
 

Δ+++= δdTT 1*2
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A B
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☺
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PULSE DELAY FACTORΔ+++= δdTT 1*2

☺ ☺
A B
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☺
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Snoop Replay it later

PULSE DELAY FACTOR  
Figure 2. Pulse-delay attack 

3. SECURE TIME SYNCHRONIZATION 
In this section, we integrate security mechanisms into the basic 
approach of sender-receiver synchronization to make it resilient to 
adversarial attacks from external attackers. 

3.1 Secure Pairwise Synchronization (SPS) 
We propose the following protocol: 

Secure Pairwise Synchronization (SPS) 
1. A (T1) → (T2) B  : A, B, NA, sync 
2. B (T3) → (T4) A :  
    B,A,NA,T2,T3,ack, MAC{KAB}[B,A,NA,T2,T3,ack] 
3. A calculates end-to-end delay d={(T2-T1)+(T4-T3)}/2  
    If d≤d* then δ={(T2-T1)-(T4-T3)}/2, else abort 

In this protocol, message integrity and authenticity are ensured 
through the use of Message Authentication Codes (MAC) and a 
key KAB shared between A and B. This prevents external attackers 
from successfully modifying any values in the synchronization 
pulse or in the acknowledgement packet. Furthermore, the attacker 
cannot assume an identity of node B as it does not hold the secret 
key KAB. An attacker can hear the packet over the wireless channel 
and can use the MAC in the future to generate authenticated 
packets. Using a random nonce, NA, during the handshake 
safeguards the protocol against such replay attacks.  
Potentially more harmful attacks are pulse-delay attacks. In our 
protocol, these attacks are detected through a comparison of the 
computed message end-to-end delay, d, with the maximal 
expected message delay d*. Note that the calculation of the end-
to-end delay, d, comes as an auxiliary benefit of the protocol. We 
have added no extra overhead on the functionality of sender-
receiver synchronization. If the computed delay is greater than the 
maximal expected delay, we abort the offset calculation.  

3.2 Performance Evaluation 
Clearly, how much the attacker can influence the synchronization 
relies on our estimate of the maximal delay d* and in order to 
make a judicious choice let us first analyze the end-to-end delay, 
d, in the absence of any external attackers. The three significant 
contributors to the end-to-end delay are:  
1. Waiting time at the medium access control (mac2) layer to 

access the channel: This delay is variable in nature and can 
range from a few microseconds to a few minutes. 

2. Time taken in transmitting the packet bit-by-bit at the radio 
of the sender node: This time will be in hundreds of 
microseconds and is deterministic in nature. It depends on the 
packet size and the radio speed. 

3. Propagation time over the wireless link between the sender 
and receiver node: This is only a few nanoseconds.  

Time stamping the packets below the mac layer is feasible on 
typical sensor networking platforms [3], which removes the most 
significant variable factor, mac access waiting time. The only 
other variable component is the propagation time over the wireless 
link. The transmission delay only depends on the size of the 
packet which can be fixed. Note that although the relevant 
contents in the sync and ack packets are of different lengths, we 
add some redundant bits to each packet to ensure that they are of 
the same length. This ensures that the transmission delay is 
symmetric for the two packet exchanges. Since the transmission 
delay is many orders of magnitude larger than the end-to-end 
delay, a stable value of the end-to-end delay can be calculated.  

3.2.1 Measurement on Mica2 Motes 
Timing-sync protocol for sensor networks (TPSN), proposed in 
[3], is one of the most popular approaches for time 
synchronization in sensor networks that is based on sender-
receiver synchronization. This protocol uses mac layer time 
stamping to achieve an accuracy of around 10μs for mica2 motes. 
We needed to incorporate the cryptographic functionality in this 
protocol. Specifically, as the packets are time stamped below the 
mac layer, we needed a cryptographic library that can calculate the 
Message Authentication Code (MAC) on-the-fly as the packets are 
being transmitted. TinySec [19], a symmetric cryptographic 
library on motes, enables this MAC calculation. Essentially, our 
prototype implementation of SPS integrates the time stamping 
library provided by TPSN with TinySec and performs a 
thresholding on the computed delay at the end of the two-way 
packet exchange.  
We ran this prototype implementation of SPS on 5 different pair 
of motes. For every pair we ran multiple independent runs to 
calculate the value of the computed delay (d in equation (1)) from 
the protocol. In all, we computed the delay for 1000 independent 
runs. The first plot in Figure 3 shows the actual delay measured in 
every run and the second plot shows the corresponding histogram 
of the measured delay. Table 1 summarizes the statistics.  

                                                                 
2 We use lowercase for Medium Access Control (mac) and 

uppercase for Message Authentication Codes (MAC). 
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Figure 3. End-to-end delay over a single link 

Table 1: Statistics of end-to-end delay over a link 

Maximum 
(μs) 

Minimum 
(μs) 

Average 
(μs) (davg) 

Standard 
deviation (σ) 

768 755 762 2.82 

The histogram of the computed delay closely resembles a 
Gaussian distribution. This is consistent with the results reported 
by authors in [2], [3]. Since the end-to-end delay follows a 
Gaussian distribution, d ≈ N(davg, σ), with a 99.97% confidence 
the delay will fall in the interval [davg - 3σ, davg + 3σ]. Hence, the 
maximal delay should be set to davg + 3σ, i.e., d* = davg + 3σ = 
762 + 3*2.82 ≈ 771μs. 

3.2.2 Minimum Synchronization Precision 
If the end-to-end delay was a constant, we should have been able 
to synchronize the nodes perfectly (zero error). The delay 
variation introduces synchronization error. Intuitively, the 
minimum synchronization precision (maximum error) will occur 
when the end-to-end delay variations in the two directions (from A 
to B and from B to A) are maximal, i.e., in one direction d is equal 
to davg - 3σ and in the other direction d is equal to davg + 3σ. 
Using equations (1) and (2), the synchronization error for this 
worst-case scenario will be 3σ (around 10μs).  

3.2.3 Maximum Attacker Impact 
We define the maximum attacker impact to be the maximum 
difference between the clocks of two nodes that the attacker can 
cause without getting detected. The worst case will occur when the 
actual end-to-end delay is equal to the minimum, davg - 3σ. In this 
scenario, the attacker can introduce a maximum pulse-delay factor 
of 12σ (Δ=12σ). Node A will calculate the end-to-end delay, d, as: 

)3(3)2/12(32/ *Kddddd avgavgactual =+=+−=Δ+= σσσ  

As the computed end-to-end delay is equal to the maximal delay, 
the thresholding verification will pass. Using equation (2), the 
calculated offset will be off by Δ/2. Thus, the maximum attacker 
impact is 6σ (around 20μs). 

3.2.4 Discussion 
In the absence of any malicious behavior, SPS is able to achieve 
the same accuracy as TPSN. The extra computation overhead of 
MAC calculation does not impact the accuracy of time 

synchronization as we are able to do on-the-fly MAC calculation. 
This parallelism will not be feasible on emerging new 802.15.4 
compliant platforms such as Micaz, Telos [20] etc., where the 
radio speeds are higher than Mica2 motes by an order of 
magnitude. However, 802.15.4 standards also mandate the 
implementation of the cryptographic library (equivalent of 
TinySec) in hardware. Specifically, AES is available in hardware 
providing a faster interface. Furthermore, 802.15.4 compliant 
radios expose a packet interface to the application layer unlike the 
byte interface exposed by the chipcon radios in Mica2 platforms. 
These different set of attributes opens up an interesting design 
challenge. The implementation of SPS for this new class of 
platforms forms the part of our future work. 

4. MULTIHOP SYNCHRONIZATION 
So far, we have assumed that the two nodes that need to 
synchronize are in each-other’s power range and thus can directly 
communicate. In this section, we propose and analyze three 
protocols for secure sender-receiver synchronization over multiple 
hops: opportunistic, direct and transitive. We assume that two 
sensors can obtain sets of communication paths between them, 
either through a priori knowledge of network topology, through 
topology discovery [11], or through routing information [12].  
We present the protocols through a representative example: A – C 
– D – B. In this example, node A wants to synchronize to node B 
which is not in its direct communication range. In fact the shortest 
path between these two nodes comprises of three hops, going 
through nodes C and D. 

4.1 Secure Opportunistic Multi-hop (SOM) 
The SOM protocol is executed as follows: 

Secure Opportunistic Multi-hop Synchronization (SOM) 
1. A (T1) → C → D → (T2) B  : A, B, NA, sync 
2. B (T3) → D → C → (T4) A :  
    B,A,NA,T2,T3,ack, MAC{KAB}[B,A,NA,T2,T3,ack] 
3. A calculates end-to-end delay d={(T2-T1)+(T4-T3)}/2  
    If d≤dM* then δ={(T2-T1)-(T4-T3)}/2, else abort 

This protocol is essentially the same as the protocol used for one-
hop synchronization, with a difference that in this protocol we 
assume that there are several forwarding nodes between the sender 
and the receiver. Note that this protocol assumes that there exist a 
secret key between A and B, KAB, which are multiple hops apart. 
The expected end-to-end delay d, computed at A will be much 
longer in this protocol than in the one-hop case. We take this into 
account by estimating a maximum expected (and allowed) end-to-
end delay by a larger value dM*>>d*. Like in the one-hop time 
synchronization protocol, the variance of dM* will determine how 
fine-grained synchronization is and will upper-bound attacker’s 
possible impact on the synchronization precision. 
The end-to-end delay in SOM is equal to the cumulative sum of 
the transmission delays between each pair of nodes on the path 
and the mac access delays of the forwarding nodes. Here, the 
processing delays at nodes can be neglected, as they are two to 
three orders of magnitude smaller than transmission and mac 
access delays.  Although the transmission delays can be accurately 
predicted from radio speed, mac access times can be very 
unpredictable and can range from microseconds to a few minutes 
depending on the condition of the channel. Furthermore, channel 
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access times also depend on the intensity of the communication 
between the nodes in the network, which is application-specific.  

4.1.1 Performance Evaluation 
We performed an empirical study to find out the delay variations 
over multiple hops in a typical sensor network.  The results were 
obtained in simulations using the Avrora simulator [13]. Avrora 
provides a cycle-accurate simulation of the AVR microcontroller, 
allowing real programs to be run with precise timing. We use the 
same TinyOS code – network stack, time stamping, etc. as in the 
previous section to obtain these results. Table 2 summarizes the 
results for varying number of hops between the sender and 
receiver. The statistics were obtained from 1000 independent runs. 

Table 2: Statistics of the end-to-end delay over multiple hops 

Hop 
distance 

Maximum  
(μs) 

Minimu
m (μs) 

Average 
(μs) 
(davg)M 

Standard 
deviation 
(μs) (σM) 

2 32094 18761 25120 3861 

3 62926 37510 49940 5450 

4 92509 56260 74781 6738 

5 120841 76259 99667 7827 

6 149174 97092 124393 8841 

It can be observed from Table 1 and 2 that the average delay and 
the standard deviation for the multi-hop case are significantly 
higher, by three orders of magnitude, than the corresponding 
numbers over a link (single hop). We observed that the end-to-end 
delay over multiple hops also follows a Gaussian distribution.  
Given this, the same analysis can be worked out for SOM as in 
SPS. The maximal delay should be set to dM* = (davg)M + 3σM. 
The minimum synchronization precision and the maximum 
attacker impact will be given by 3σM and 6σM respectively. Figure 
4 plots these two quantities for varying number of hops.  Note that 
the values are significantly higher, by three orders of magnitude, 
than the SPS protocol.  
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Figure 4. Secure Opportunistic Multi-hop Synchronization 

We would like to point out that the values of (davg)M and σM, as 
shown in Table 2, will change with changes in the network 
topology and the underlying communication traffic. The objective 
of this empirical study is to give representative numbers so that a 
meaningful relative comparison can be made with the other 
protocols. Even if SOM protocol provides very low 

synchronization accuracy, it can provide protection against 
external as well as internal attackers. This is because the 
intermediate nodes in SOM do not perform any processing on the 
packet. They simply receive the packet and forward it to the next 
hop node. Thereby, even if node D has been compromised and the 
attacker tries to modify the value of T2, T3 at node D, it will result 
in a MAC verification failure at node A.  
In the following sections, we propose two protocols – Secure 
Direct Multi-hop Synchronization (SDM) and Secure Transitive 
Multi-hop Synchronization (STM) that provide much better 
accuracy than SOM. However, both of them assume that 
intermediate nodes (C and D in the example) are trustworthy and 
hence, the protocols are not resilient to attacks from compromised 
nodes.  

4.2 Secure Direct Multi-hop (SDM) 
The SDM protocol is executed as follows:  

Secure Direct Multi-hop Synchronisation (SDM) 
1. A (T1) → (T2)C(T3) → (T4)D(T5) → (T6) B :  
    A,B,NA,sync 
2. B : m1={B,A,T6,T7,ack} 
        : M1= MAC{KBD}[B, D, NA, m1] 
    B (T7) → (T8) D: B, D, NA, m1, M1 
3. D : m2={B,D,A,T4,T9,(T6-T5),(T8-T7),ack} 
        : M2= MAC{KDC}[D, C, NA, m2] 
    D (T9) → (T10) C: D, C, NA, m2, M2 
4. C : m3={B,D,C,A,T2,T11,(T4-T3),(T10-T9),(T6-T5),(T8-
T7),ack} 
        : M3= MAC{KCA}[C, A, NA, m3]  
    C (T11) → (T12) A: C, A, NA, m3, M3 
5. A : calculate 

2

)}78()910()1112{()}56()34()12{( TTTTTTTTTTTT
d

−+−+−+−+−+−
=  

if d < dT * then  

2

)}78()910()1112{()}56()34()12{( TTTTTTTTTTTT −+−+−−−+−+−
=δ  

else abort  

Unlike SOM, both SDM and STM (proposed in the next section) 
require only neighboring nodes (A and C, C and D, D and B) to 
share pairwise secret keys. There is no need for A and B to share a 
secret key between them. To analyze this protocol, we first 
observe the communication between a pair of nodes, A and C, 
over the course of the protocol. 

A (T1) → (T2)C ; C (T11) → (T12)A 
These four timestamps are interrelated as follows: 

)4(1112;12 KACACACAC dTTdTT +−=++= δδ  
Note that we have added subscripts to both the offset and the end-
to-end delay for clarity. Similarly, if you observe the 
communication between the other two node-pairs, (C, D) and (D, 
B), the following relationships can be derived: 

)5(910;34 KCDCDCDCD dTTdTT +−=++= δδ  

)6(78;56 KDBDBDBDB dTTdTT +−=++= δδ  

Adding the left hand and right hand side of equations (5) and (6), 
and introducing two new terms, δAB and dAB, we can get the 
following two equations: 

101



)7()56()34()12( KABAB dTTTTTT +=−+−+− δ  

)8()78()910()1112( KABAB dTTTTTT +−=−+−+− δ  

Here, δAB = δAC + δCD + δDB and dAB = dAC + dCD + dDB. The 
clock offset and the end-to-end delay can be calculated from 
equations (7) and (8). 

4.2.1 Performance Evaluation 
Just like SOM, the thresholding technique in SDM also requires 
the estimation of a new maximal delay dT*. However, an 
important and crucial difference is that the end-to-end delay in 
SDM is not corrupted by the mac access delays; all the time 
stamps from T1 to T12 are below the mac layer. In fact, the end-
to-end delay can be easily estimated knowing the number of hops. 
In the above example the end-to-end delay is equal to the 
cumulative sum of dAC, dCD and dDB. All these three delays, dAC, 
dCD and dDB, are equal to the end-to-end delay over a single link 
and hence, all of them follow the same Gaussian distribution 
calculated in Section 3.2.1, i.e., dAC = dCD = dDB ≈ N(davg, σ). As a 
result, the end-to-end delay for SDM becomes a cumulative sum 
of independent Gaussian variables, i.e., dAB ≈ N(ndavg, σ√n), where 
n is the number of hops. Given this, the maximal delay for an n 
hop network should be set to dT* = ndavg + 3σ√n. The minimum 
synchronization precision and the maximum attacker impact will 
be given by 3σ√n and 6σ√n respectively. Note that σ is three 
orders of magnitude lower than σM for any value of n and hence, 
the minimum synchronization precision as well as the maximum 
attacker impact in SDM is much lower, around three orders of 
magnitude,  than SOM. 
However, the packet size of ack packets in SDM is larger than 
SOM resulting in an increased overhead. Every ack packet in 
SDM has to carry the state information (timestamps) about all the 
previous packets with it. For example, the acknowledgment packet 
from C to A contains 6 timestamps. In SOM, every 
acknowledgement packet has to just contain 2 timestamps, the 
same as SPS.  

4.3 Secure Transitive Multi-hop (STM) 
The STM protocol is executed as follows: 

Secure Transitive Multihop Synchronization (STM) 
1. A  → C → D → B : A, B, NA, sync 
2. B : m1={B, D, notify} 
        : M1= MAC{KBD}[B, D, NA, m1] 
    B → D: B, D, NA, m1, M1 
3. D sync to B (SPS)  
    D : m2={B, D, C, notify} 
        : M2= MAC{KBD}[D, C, NA, m2] 
    D → C: D, C, NA, m2, M2 
4. C sync to D (SPS)  
    C : m3={B, D, C, A, notify} 
        : M3= MAC{KBD}[C, A, NA m3] 
    C → A: C, A, NA, m3, M3 
5. A sync to C (SPS)  

Secure transitive synchronization scheme is essentially performed 
as SPS synchronization along all the links in the path from the 
source to the destination. The proper scheduling of node 
synchronizations is achieved in this protocol through an explicit 
notification by the receiver node to its upstream neighbor (sender 

node). Authentication is achieved by attaching a MAC at the end 
of this notification packet.   

4.3.1 Performance Evaluation 
Unlike SOM or SDM, STM does not require the estimation of any 
new maximal delay parameter. It runs the SPS protocol on every 
link and hence, the threshold verification gets divided into stages. 
Every link is evaluated separately using the same maximal delay, 
d*, as in Section 3.2.1. This local verification has both advantages 
and disadvantages. 
Imagine an external attacker which can carry out pulse-delay 
attacks on the link joining C and D). In both SOM and SDM, the 
thresholding verification is done only when the acknowledgement 
reaches back to node A. Thus, the system will detect the malicious 
attack only after running the complete protocol, which in our 
example pertains to transmission and reception of two packets per 
node. In STM, only nodes C and D will need to resynchronize 
when the thresholding verification at node C will fail. In fact, 
other nodes A and B won’t even come to know about this 
malicious attack. Thereby, the overhead of countering a malicious 
attack in STM is lower than both SOM and SDM. 
However, local verification gives extra freedom to the external 
attacker. It can introduce multiple pulse-delay attacks on every 
link simultaneously, thereby; the cumulative sum result of these 
attacks can be huge. Note that the pulse-delay factor introduced at 
every link can be at most 12σ as we run SPS on every link (refer 
Section 3.2.1). Thereby, the maximum attacker impact for an n 
hop network on STM can be 6σn, which is higher than the 
corresponding number for SDM, 6σ√n. We note that both STM 
and SDM will achieve the same minimum synchronization 
precision, 3σ√n.  
Also, STM requires one extra packet transfer per node - the 
notification packet. In the absence of any malicious behavior, 
SOM and SDM require a total of 2n packet transmissions for 
synchronizing two nodes that are n hops away.  STM requires 3n 
packet transmissions. 

5. GROUP SYNCHRONIZATION 
Several sensor network applications require all the nodes in a 
group to be time synchronized with each other. A few notable 
ones are – (1) Object tracking: The size, shape, direction, location, 
velocity, or acceleration of objects is determined by fusing 
proximity detections, done at the same time, from sensors at 
different locations, (2) Consistent state updates: The current state 
of an object is most accurately determined by the node that has 
seen the object most recently. This requires all the nodes in the 
cluster to have the same notion of time, (3) Distributed 
beamforming: Beam-forming arrays can perform “spatial 
filtering,” receiving only signals arriving from a certain direction. 
This depends on the relative time offsets of the array’s sensors, (4) 
Duplicate detection: The time of an event helps nodes in the 
cluster determine if they are seeing two distinct real-world events, 
or a single event seen from two vantage points. If they are indeed 
seeing the same event, they can further fuse their observations to 
get much meaningful information about the event. All these 
applications will function accurately only if the synchronization 
error between nodes in a group is bounded.  
In the following sections, we propose two group synchronization 
protocols – Lightweight Secure Group Synchronization (L-SGS) 
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and Secure Group Synchronization (SGS). These protocols differ 
in their resilience to attacks and in the number of messages that 
the group nodes mutually exchange. Just like secure pairwise 
synchronization protocols, both L-SGS and SGS can detect the 
pulse-delay and packet modification attacks from external 
attackers. In addition, SGS can also detect the false timing reports 
by internal attackers but at the cost of a higher communication 
overhead. 

5.1 System Model 
In this model, we assume that group membership is known to all 
group nodes and that group members can authenticate each other 
using pairwise secret keys. We further assume that all group nodes 
reside in each other’s power ranges; we do show that the proposed 
solutions can be easily extended to groups in which nodes are 
multiple hops apart. Given this assumption, we propose L-SGS 
and SGS exploiting the broadcast property of the wireless 
communication medium. Thereby, a message broadcast by a node 
in the group can be received by all the nodes in the cluster (here 
we assume that sensors have omnidirectional antennas). We 
represent the sending time of the packet at node i by Ti. Tij 
represents the time at which the packet broadcast by node i is 
received at j. Notice that, these times are measured by two 
different clocks. Ti is measured in the local clock of node i (Ci) 
whereas Tij is measured by the local clock of node j (Cj). We 
represent the offset (or the difference between the local clocks) 
between the two nodes by δij. The delay for the packet transfer 
from i to j is represented by dij. Although this delay is the same for 
every pair of nodes, we add the subscripts for clarity.   

5.2 Lightweight Secure Group 
Synchronization (L-SGS) 
L-SGS is executed as follows:  

Lightweight Secure Group Synchronization (L-SGS) 
1. G1  → * : G1, sync 
2. Gi(Ti) → (Ti1)G1 : Gi, Ni 
3. G1(T1) :  m =   {Ti1,Ni,Gi}i=2,...,N 
                :  M = {MAC{K1i}[G1, T1,ack, Ti1,Ni,Gi]}i=2,...,N 
    G1(T1) → (T1i)*: G1, T1, ack, m, M 
4. Gi : compute d=((Ti1- Ti)+(T1i - T1))/2 
    If d≤d* then δ=((Ti1- Ti)-(T1i - T1))/2, else abort 

In this protocol, one of the group members (G1) initiates the time 
synchronization (step 1) to which the rest of the group members 
reply with messages containing their ids and challenge nonces 
(step 2). In step 3 of the protocol, G1 replies with a single 
broadcast message to all other group nodes, containing MACs of 
the challenges and node ids. Note that the last protocol message 
(step 3) contains N-1 triples {Ti1, Ni, Gi}, one for each Gi, 
containing the receipt time of the challenge packet from Gi (Ti1), 
the nonce of Gi and the node-id of Gi respectively. It also contains 
N-1 MACs, one for each (G1, Gi) pair, which enable each node Gi 
to authenticate the packet broadcast by G1. In the last protocol step 
G2,...,GN synchronize to G1.  
Note that this protocol does not need to be preceded by any 
explicit leader election algorithm. The initiating node G1 does not 
need to be elected by other group members, but it can simply be 
the node that first broadcasts the sync packet after sensing a 
particular event. Therefore, L-SGS does not require any explicit 
scheduling in the group.   

5.2.1 Performance Evaluation 
We can observe L-SGS as an extension of the SPS protocol. In 
SPS, a single receiver synchronizes to a single sender; in L-SGS, 
multiple receivers synchronize to a single sender. L-SGS makes 
use of the broadcast property of the wireless channel. The total 
number of messages transmitted in an n-node cluster over the 
course of L-SGS is n+1. We note, however, that the last protocol 
message is significantly larger than other messages.  
As L-SGS relies on the same primitives as SPS, the resistance of 
L-SGS to external attacks is the same as with SPS, which means 
that L-SGS is resilient to pulse-delay and message modification 
attacks. The minimum synchronization precision and the 
maximum attacker impact of L-SGS is the same as SPS, equal to 
10μs (3σ) and 20μs (6σ) respectively. 
However, L-SGS is not resilient to internal attacks. If node G1 is 
malicious, it can produce a set of messages containing false times 
T1 and Ti1 for each node i and therefore have these nodes mutually 
desynchronized, while these nodes would believe to be 
synchronized.  

5.2.2 Implementation 
Step 3 of L-SGS requires G1 to calculate N-1 MACs on-the-fly. 
Clearly, this won’t be feasible for large values of N. Given this, 
we briefly mention some of the alternative design options that we 
plan to explore in detail in the future. First, the broadcast message 
in Step 3 can be replaced by multiple unicast messages, one to 
every node in the cluster. This unicast message to node j will 
contain the MAC generated using the secret key shared between 
nodes G1 and j. This will incur a significant communication 
overhead on G1. Second, we can use public key signatures [14], 
which would make sure that a single signature (MAC) by node G1 
can be verified by all group nodes. This is assuming that all the 
nodes are aware of the public key of G1, This will; however, incur 
a significant computational cost at G1. Instead we can first 
establish a symmetric group key shared by all the nodes in the 
cluster. Node G1 can then attach a single MAC in the ack packet, 
which is generated using this symmetric group key. This looks the 
most promising solution as the cost of establishing the symmetric 
group key can be amortized over multiple time synchronization 
events. 

5.3 Secure Group Synchronization (SGS) 
In this section, we propose a secure group synchronization 
protocol that also provides resiliency to internal adversaries; 
however, as we show, this protocol requires higher 
communication overhead than L-SGS. We start the section by 
proposing a simple consistency check that is the basic building 
block of the protocol. 

5.3.1 Triangle Consistency 
Consider a set of 3 nodes, [i, j, k], that have successfully 
established pairwise offsets with each other. Imagine a triangle 
connecting these three nodes such that the link weight on every 
edge is equal to the offset between them. We refer to the traversal 
of such a triangle starting and ending at the same node as making 
a cycle. As we traverse in a cycle, we keep on accumulating the 
link weight. For example, a valid cycle starting from node i will be 
[i->j, j->k, k->i]. The final accumulated weight at the end of the 
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cycle will be δij + δjk + δki. It can be easily observed that this 
should be equal to 0. 

Corollary: If the result of any cycle is not 0, there exists an 
internal adversary in the set. 
We note that the result of a cycle might not be exactly zero 
because of the drift and skew error. In practice, we will use a 
simple threshold based policy to account for this.  

5.3.2 Protocol 
SGS is executed as follows:  

Secure Group Synchronisation (SGS) 
1. Gi(Ti) → (Tij)* : Gi,Ni , sync; (i=1,...,N),j≠i 
2. Gi(T’i ) : m={Tji, Nj, Gj}j=1,...,N;j≠i 
                 : M={MAC{Kij}[Gi,T’i,ack,Tji,Nj,Gj]}j=1,...,N;j≠i 
    Gi(T’i ) → (T’ij)* : Gi,T’i, ack, m, M; (i=1,...,N),j≠i 
3. Gi : compute {dij=((Tij- Ti)+(T’ji – T’j))/2} j=1,...,N;j≠i 
    If all dij≤d*  
    then Oi={δij=((Tij- Ti)-(T’ji – T’j))/2} j=1,...,N;j≠i 
    else abort 
4. Gi : M={MAC{Kij}[ Gi,Oi]}j=1,...,N;j≠i  
    Gi → * : Gi,Oi, M; (i=1,...,N) ,j≠i 
5. Gi : check triangle consistencies 
        : if all triangles are consistent,  
          synchronize to the fastest clock 

In this protocol, every group member (Gi) broadcasts a packet 
containing their ids and challenge nonces (step 1). In step 2 of the 
protocol, every member (Gi) broadcasts another packet containing 
the response to the challenges issued by all the other nodes in the 
first step. This packet contains N-1 triples {Tji, Nj, Gj}, one for each 
Gj, containing the receipt time of the challenge packet from Gj 
(Tji), the nonce of Gj and the node-id of Gj respectively. It also 
contains N-1 MACs, one for each (Gi, Gj) pair, which enables each 
receiver node Gj to authenticate the packet broadcasted by Gi in 
the second step. Note that the sending node Gi also includes the 
sending time (T’i) in the response packet. The first two steps are 
reminiscent of sender-receiver synchronization; we are now 
establishing pairwise relationships between multiple senders and 
multiple receivers simultaneously using the broadcast property of 
the wireless communication medium. In the next step, each node 
Gi performs threshold verification on all the computed delays, dij, 
corresponding to the challenge-response with node Gj. This 
provides the resiliency to pulse-delay modifications from external 
attackers. If this step is successful, Gi will be able to construct a 
set Oi, containing clock offsets with other nodes in the group.  
Step 4 and 5 provide the resiliency to SGS against internal 
attackers. As mentioned earlier, a simple triangle consistency 
check can be used to detect an internal attacker in a set of three 
nodes. Imagine a set of 3 nodes [Gi, Gj, Gk]. After step 3, Gi has 
the offsets with both Gj and Gk but it does not know the offset 
between Gj and Gk to perform the triangle consistency check. Step 
4 of the protocol provides Gi with this information. In this step 
every node Gi broadcasts its offset set, Oi. This packet also 
contains N-1 MACs, one corresponding to every other node in the 
group, so that the contents of the packet can be authenticated at 
every receiver node. Following this, each node performs multiple 
triangle consistency checks. If this step is successful, Gi 
increments its clock by the largest offset, max{0,max{Oi}}. As a 

result, Gi (and all the other nodes in the group) will get implicitly 
synchronized to the fastest clock in the group. 

5.3.3 Performance Evaluation 
The number of messages transmitted in an n-node cluster over the 
course of SGS is 3n. SGS can also be viewed as an extension of 
the SPS protocol, whereby multiple nodes establish the pairwise 
clock relationships simultaneously. We note that the ack packet 
size in SGS (step 2) is significantly larger than other messages. 
Moreover, the computation of N-1 on-the-fly MACs opens up the 
same design challenges as in L-SGS (refer Section 5.2.2). 
As SGS is based on the same primitives as SPS, the minimum 
synchronization precision and the maximum attacker impact of 
SGS is the same as L-SGS and SPS, equal to 10μs (3σ) and 20μs 
(6σ) respectively. Just like L-SGS and SPS, it can counter external 
pulse-delay and message modification attacks. However, in 
addition SGS is resilient to internal attackers.   

5.3.4 Resiliency to Internal Adversaries 
In SGS, there is no fixed node to which the nodes in the group 
will synchronize. Synchronization is implicitly done to the fastest 
clock in the cluster. The identity of the node with the fastest clock 
does not get revealed till the end of the protocol. This removes the 
vulnerability of the protocol to a single point of failure such as G1 
in L-SGS. Furthermore, if an internal attacker tries to create 
inconsistencies in the running of the protocol, the triangle 
consistency check will fail and the process will be aborted. Let us 
illustrate this by an example.  
Consider nodes 1-7 lying in the neighborhood of each other. 
Without any loss of generality, let us assume that node 1 is 
malicious and node 7 has the fastest clock. Node 1 can easily 
project itself as the fastest clock by creating a fictitious clock. At 
the end of the protocol, all the nodes will be synchronized to node 
1 rather than node 7. Note that this is not a valid attack. Although 
all the nodes are synchronized to some fictitious clock, they are 
consistently wrong. The relative error between them is still 
bounded. 
Having realized this, the aim of node 1 will be to introduce 
inconsistencies in the system by portraying itself as the fastest 
clock to only a few subsets of nodes. Node 1 has full control over 
the values of the receipt times, Tj1 for j= {2, 3, .., 7}, that it reports 
in the response packet (step 2). It can report arbitrary values 
creating inconsistent offset values at different nodes. We note that 
the thresholding verification in step 3 will provide some resiliency 
against arbitrary values reported by node 1 but it alone cannot 
guarantee safeguard against all possible malicious attacks.  
For example, imagine the scenario where node 1 just targets node 
2. It reports a faulty value of the sending time T’1 from the 
fictitious clock. It also reports the value of T21 from the same 
fictitious clock but reports an arbitrary value of receipt times for 
rest of the nodes, Tj1 for j= {3, .., 7}. As a result, the thresholding 
mechanism on dj1 will fail at nodes j={3,.., 7} and hence, they will 
abort SGS. The thresholding mechanism will pass at node 2 and it 
will update its clock so that it synchronizes to the fictitious clock 
by node 1. Thereby, in absence of steps 4 and 5, node 2 will be 
out of sync with rest of the nodes in the group. In SGS, when 
nodes exchange their offset sets, nodes 3-7 will not have valid 
pairwise offsets with node 1. As a result, the triangle consistency 
check will fail at node 2. Thereby, node 2 will also detect the 
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presence of malicious behavior in the system and will also abort 
SGS.  

5.3.5 Extension to Multiple Hops 
SGS is extendible to the scenario when group nodes are multiple 
hops away from each other. In this case, the steps 1 to 3 of the 
protocol will have to be changed. Currently we use the broadcast 
property of the wireless communication medium to establish 
pairwise offsets between the nodes in the group. If group nodes 
are multiple hops away, we would have to use any of the three 
protocols proposed in Section 3.3 for establishing these pairwise 
offsets. Steps 4 and 5 of the protocol will remain unchanged. 

6. NETWORK SYNCHRONIZATION 
Network-wide synchronization is achieved in two stages – (1) 
Hierarchical tree is established in the network with a reference 
node as the root, (2) Pairwise synchronization is performed along 
the edges of this tree using SPS. Every node synchronizes its 
clock to its parent in the tree. As a result, eventually all nodes in 
the network get synchronized to the reference node, which is the 
root of the hierarchical tree. Using SPS to perform pairwise 
synchronization provides resiliency against external attackers. 
However, the more challenging problem is to achieve secure 
network-wide synchronization when a few nodes in the network 
have been compromised. In this scenario, a compromised node 
can mislead all the nodes in its sub-tree to a different notion of 
time than the rest of the network.  
In general, the problem of network-wide synchronization can be 
viewed as a composition of several multi-hop synchronizations 
between the reference node and rest of the nodes in the network. 
However the solutions for secure multi-hop synchronization rely 
on the assumption that all the intermediate nodes are trustworthy. 
Clearly, even one compromised node in the path can bring 
detrimental effects to the functionality of SDM or STM. A 
possible solution for countering compromised nodes is to use 
redundancy by using disjoint multiple paths to synchronize nodes. 
The protocols can be modified to be resistant to as many internal 
attackers as independent routes can be found. This will require 
that pair wise keys are established between all nodes in the 

network, or that some broadcast authentication mechanisms are in 
place, (e.g., Tesla[15]). To get an idea of how protocols can resist 
to internal attackers through independent routes, we refer the 
reader to a rich literature on security of routing protocols in multi-
hop wireless networks [16], [17], [18]. We note that on a network-
level this means that the reference node needs to maintain multiple 
trees simultaneously.  

7. CONCLUSIONS 
Existing solutions for time synchronization in sensor networks are 
not resilient to malicious behavior from external attackers or 
internally compromised nodes. We showcase the feasibility of a 
pulse-delay attack, whereby an attacker can introduce arbitrarily 
long delays in the packet propagation time directly affecting the 
achieved synchronization precision.  
We then propose a suite of protocols for secure pairwise and 
group synchronization of nodes that lie in each other’s power 
ranges and of nodes that are separated by multiple hops. Table 3 
summarizes the key aspects of these protocols. These protocols 
offer different points of operation in the energy-accuracy subspace 
and the choice of the specific protocol should be made by the 
network designer depending on his application needs.  
We believe that we have just scratched the surface in the solution 
space of secure time synchronization for sensor networks. Our 
future work includes investigation of secure network-wide 
synchronization schemes in the presence of multiple compromised 
nodes. In parallel, we are also developing better remedial actions 
against the malicious attacks than a simple abort of the protocol. 
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Table 3: Summary of Secure Time Synchronization Protocols 

Secure Synchronization Neighboring 
nodes 

Multihop synchronization over n hops 
(Representative numbers for n=5) 

Group synchronization of 
n nodes in a cluster 

Protocols SPS SOM SDM STM L-SGS SGS 

Minimum Synchronization Precision 3σ (≈10μs) 3σM (≈25ms) 3σ√n (≈25μs) 3σ√n (≈25μs) 3σ (≈10μs) 3σ (≈10μs) 

Maximum external attacker impact 6σ (≈20μs) 6σM (≈50ms) 6σ√n (≈50μs) 6σn (≈120μs) 6σ (≈20μs) 6σ (≈20μs) 

Resiliency to internal attackers - Yes  No No No Yes 

Total number of transmitted messages 2 2n 2n 3n n+1 3n 

Ack Packet size3 - Same Large Same Large  Large 

 

                                                                 
3 Comparison with respect to the packet size in SPS. 
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