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Abstract—This paper considers transmit antenna selection
(TAS) and receive generalized selection combining (GSC) for se-
cure communication in the multiple-input–multiple-output wire-
tap channel, where confidential messages transmitted from an
NA-antenna transmitter to an NB-antenna legitimate receiver
are overheard by an NE-antenna eavesdropper. We assume
that the main channel and the eavesdropper’s channel undergo
Nakagami-m fading with fading parameters mB and mE , re-
spectively. In order to assess the secrecy performance, we present
a new unifying framework for the average secrecy rate and the se-
crecy outage probability. We first derive expressions for the prob-
ability density function and the cumulative distribution function
of the signal-to-noise ratio with TAS/GSC, from which we derive
exact expressions for the average secrecy rate and the secrecy
outage probability. We then derive compact expressions for the
asymptotic average secrecy rate and the asymptotic secrecy outage
probability for two distinct scenarios: 1) the legitimate receiver is
located close to the transmitter, and 2) the legitimate receiver and
the eavesdropper are located close to the transmitter. For these
scenarios, we present new closed-form expressions for several key
performance indicators: 1) the capacity slope and the power offset
of the asymptotic average secrecy rate, and 2) the secrecy diversity
order and the secrecy array gain of the asymptotic secrecy outage
probability. For the first scenario, we confirm that the capacity
slope is one and the secrecy diversity order is mBNBNA. For the
second scenario, we confirm that the capacity slope and the secrecy
diversity order collapse to zero.

Index Terms—Diversity combining, average secrecy rate,
Nakagami-m fading, physical layer security, secrecy outage
probability.

I. INTRODUCTION

S ECURE transmission in wireless networks is confronted
with increasing problems due to the rapid evolution

of future wireless network architectures [1]–[3]. Mobile ter-
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minals are more vulnerable to eavesdropping than their fixed
counterparts. Furthermore, the trend towards network den-
sification and multi-layer deployments, as well as the de-
velopment of decentralized wireless mesh networks pose
great challenges to the implementation of higher-layer key
distribution and management in practice [4], [5]. Physi-
cal layer security is an appealing alternative to resist vari-
ous malicious abuses and security attacks. The initial work
was pioneered by Wyner from an information-theoretic per-
spective [6]. Stimulated by the development of multiple-
input multiple-output (MIMO) communications [7], physical
layer security in MIMO wiretap channels has recently been
addressed [8]–[11].

The basic concept behind physical layer security is to exploit
characteristics of wireless channels for transmitting confidential
messages [12]. In [13], secure connectivity of wireless random
networks with multi-antenna transmission in Rayleigh fading
channels was analyzed to show the connectivity improvement.
In [14], the diversity-multiplexing tradeoff (DMT) for MIMO
wiretap channel was analyzed. The close relationship between
the multi-antenna secrecy communications and cognitive radio
communications was explored in [15]. Transmit antenna se-
lection (TAS) can be adopted to improve information security
at low cost and complexity [16], [17]. In [17], the secrecy
outage probability with receiver side antenna correlation was
derived for Rayleigh fading channels. In [18], maximal-ratio
combining (MRC) and selection combining (SC) were used
to secure the communication in Nakagami-m fading channels.
Secrecy mutual information in single-input multiple-output
(SIMO) wiretap channels with Nakagami-m fading was exam-
ined in [19]. In [20], TAS with receive generalized selection
combining (GSC) was applied to enable secure transmission
over Rayleigh fading channels. In [21], the secrecy outage
was analyzed in MISO wiretap channels when partial in-
formation of the eavesdropper’s channel is known at the
transmitter.

In this paper, we explore antenna selection to secure the
transmission in wiretap channels. We consider the Nakagami-m
fading environment due to its versatility in providing a good
match to various empirically obtained measurement data [22].
Moreover, it includes Rayleigh fading as a special case [19].
At the transmitter side, TAS selects the optimal transmit an-
tenna which maximizes the instantaneous signal-to-noise ratios
(SNRs) at the legitimate receiver. Owing to the fact that the
feedback requirements of TAS are considerably lower com-
pared to the so-called closed-loop transmit diversity, it has
been applied to the uplink of 4G long term evolution (LTE)
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and LTE-Advanced [23]. At the receiver side, GSC selects and
combines the subset of receive antennas with the largest SNRs.
This approach offers a performance/implementation tradeoff
between MRC and SC [24], and reduces the power consump-
tion and the cost of RF electronics at the receiver [25]. In non-
identically distributed noise, GSC can outperform MRC [26].
It is also robust to channel estimation errors since the weak
SNR antennas are eliminated [27]. Therefore, research efforts
have been devoted to GSC. For example, the performance of
GSC was examined for Rayleigh fading [28] and Nakagami-m
fading [29]. In [30], [31], GSC in correlated Nakagami-m
fading channels was considered. In [32], the high SNR per-
formance of GSC was analyzed in various fading environ-
ments. In [33], approximations were presented for the high
SNR performance of GSC in relay networks with Nakagami-m
fading.

While the aforementioned literature [24]–[33] laid a solid
foundation for the role of GSC in Nakagami-m fading, the
impact of GSC on the wiretap channel in Nakagami-m fading
has not been investigated yet and the secrecy performance of
TAS/GSC in Nakagami-m fading channels is not well under-
stood. In this paper, we address two eavesdropping scenarios:
1) Passive eavesdropping and 2) active eavesdropping. For
passive eavesdropping, we characterize the secrecy outage
probability as the fundamental security metric. For active
eavesdropping, we characterize the average secrecy rate as the
fundamental security metric. Our detailed contributions are as
follows.

• We derive a new exact closed-form expression for the
cumulative distribution function (CDF) of the SNR with
the GSC. Although CDF expressions were presented in
[24], [34] with the aid of the trapezoidal rule, they are not
in closed-form and cannot be used to derive the CDF of
the SNR with TAS/GSC. Hence, we derive new closed-
form expressions for the CDF and the probability density
function (PDF) of the SNR with TAS/GSC.

• We derive new exact closed-form expressions for the
average secrecy rate and the secrecy outage probabil-
ity using the new CDF and PDF of the SNR with
TAS/GSC. Notably, we develop a new comprehensive
analytical framework for the average secrecy rate. We
accurately examine the impact of the antenna configu-
ration and the channel fading conditions on the average
secrecy rate.

• We derive new expressions for the average secrecy rate
in the high SNR regime for two cases: 1) The legitimate
receiver is located close to the transmitter, and 2) the
legitimate receiver and the eavesdropper are located close
to the transmitter. Based on the asymptotic average secrecy
rate, we characterize the average secrecy rate in terms
of the high SNR slope and high SNR power offset. We
show that although the high SNR slope is unaffected by
the network parameters, the high SNR power offset is
dependent on the system parameters including transceiver
antenna configuration and the fading parameters in the
main and the eavesdropper’s channels. We reach the inter-
esting conclusion that a capacity ceiling is created when

both the legitimate receiver and the eavesdropper are close
to the transmitter.

• In contrast to the prior literature such as [16]–[20], we
carefully investigate the impact of the locations of the legi-
timate receiver and the eavesdropper relative to the trans-
mitter. As such, we derive new expressions for the secrecy
outage probability in the high SNR regime for two im-
portant cases: 1) The legitimate receiver is located close
to the transmitter, and 2) the legitimate receiver and the
eavesdropper are located close to the transmitter. Based
on the asymptotic secrecy outage probability, we char-
acterize the secrecy outage probability in terms of the
secrecy diversity order and the secrecy array gain. We
show that when the legitimate receiver is close to the
transmitter, the full secrecy diversity order is achieved
and is entirely determined by the antenna configuration
and the fading parameters in the main channel. The
impact of the eavesdropper is only reflected in the se-
crecy array gain. We reach the interesting conclusion that
the secrecy diversity order collapses to zero when both
the legitimate receiver and the eavesdropper are close to
the transmitter.

Notation: In this paper, (·)T denotes the transpose operator,
IM denotes the M ×M identity matrix, 0M×N denotes the
M ×N zero matrix, E[·] denotes the expectation operator,
Fϕ(·) denotes the CDF of random variable (RV) ϕ, fϕ(·)
denotes the PDF of ϕ, sgn(·) denotes the signum function, o(·)
denotes the higher order terms, and [x]+ = max{x, 0}.

II. SYSTEM MODEL

We consider a MIMO wiretap channel model which consists
of a transmitter (Alice) with NA antennas, a legitimate receiver
(Bob) with NB antennas, and an eavesdropper (Eve) with
NE antennas. The main channel (Alice-Bob) and the eaves-
dropper’s channel (Alice-Eve) are assumed to undergo quasi-
static Nakagami-m fading with fading parameters mB and mE ,
respectively. In the main channel, Alice selects a single transmit
antenna among NA antennas that maximizes the GSC output
SNR at Bob, while Bob combines the LB (1 ≤ LB ≤ NB)
strongest receive antennas. In the eavesdropper’s channel, Eve
combines the LE (1 ≤ LE ≤ NE) strongest receive antennas.
The channel power gain from the pth transmit antenna to
the lB th receive antenna at Bob is denoted as |hp,lB |2 with
E[|hp,lB |2] = Ω1, p = 1, · · · , NA, lB = 1, · · · , NB . The chan-
nel power gain from the pth transmit antenna to the lE th receive
antenna at Eve is denoted as |gp,lE |2 with E[|gp,lE |2] = Ω2,
lE = 1, · · · , NE . Based on GSC, we arrange {|hp,(lB)|2, 1 ≤
lB ≤ NB} in descending order as |hp,(1)|2 ≥ |hp,(2)|2 ≥ · · · ≥
|hp,(NB)|2, and {|gp,(lE)|2, 1 ≤ lE ≤ NE} in descending order
as |gp,(1)|2 ≥ |gp,(2)|2 ≥ · · · ≥ |gp,(NE)|2. The index of the
optimal transmit antenna is determined as

p∗ = argmax
1≤p≤NA

{
LB∑

lB=1

∣∣hp,(lB)

∣∣2} . (1)

Secure transmission is achieved by encoding the confidential
message block W into a codeword x = [x(1), · · · , x(l), · · · ,
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x(L)], where L is the length of x. The codeword is subject to an
average power constraint 1

L

∑L
l=1 E[|x(l)|2] ≤ P . In the main

channel, at time slot l, the received signal vector is given by

yB(l) = hx(l) + nB(l), (2)

where h = [hp∗,1, hp∗,2, · · · , hp∗,NB
]T ∈ CNB×1 is the main

channel vector between transmit antenna p∗ at Alice and the
NB receive antennas at Bob, and nB(l) ∼ CNNB×1(0NB×1,
δ2BINB

) is the additive white Gaussian noise (AWGN) vector at
Bob. We denote γ̄B = Ω1

P
δ2
B

as the average SNR per antenna at

Bob. Combining the subset of receive antennas with the largest
SNRs at Bob results in the instantaneous SNR in the main
channel as

γB =

LB∑
lB=1

γB
(lB), (3)

where γB
(lB) = |hp∗,(lB)|2 P

δ2
B

. In the eavesdropper’s channel, at

time slot l, the received signal vector is given by

yE(l) = gx(l) + nE(l), (4)

where g = [gp∗,1, gp∗,2, · · · , gp∗,NE
]T ∈ CNE×1 is the eaves-

dropper’s channel vector between transmit antenna p∗ at
Alice and the NE receive antennas at Eve, and nE(l) ∼
CNNE×1(0NE×1, δ

2
EINE

) is the additive white Gaussian noise
(AWGN) vector at Eve. We denote γ̄E = Ω2

P
δ2
E

as the average

SNR per antenna at Eve. Combining the subset of receive an-
tennas with the largest SNRs at Eve results in the instantaneous
SNR in the eavesdropper’s channel as

γE =

LE∑
lE=1

γ(lE), (5)

where γ(lE) = |gp∗,(lE)|2 P
δ2
E

.

III. NEW STATISTICAL PROPERTIES

In this section, we derive new closed-form expressions for
the PDF and the CDF of γB in the main channel, and the PDF
and the CDF of γE in the eavesdropper’s channel, which lay the
foundation for extracting several key secrecy performance indi-
cators, namely the high SNR slope, the high SNR power offset,
the secrecy diversity order, and the secrecy array gain. These
statistics are general in nature and as such are useful for deter-
mining the performance of other wireless systems with GSC.

A. CDF and PDF of the SNR in the Main Channel

Theorem 1: The expressions for the CDF and the PDF of γB
are derived as

FγB
(x)=

(
LB

(mB−1)!

(
NB

LB

))NA

NA!
∑̃

�ρx
θρe−ηρx, (6)

fγB
(x)=

(
LB

(mB−1)!

(
NB

LB

))NA

NA!
∑̃

�ρx
θρ−1e−ηρx(θρ−ηρx),

(7)

where
∑̃ Δ

=
∑
SB

∑
S1
B

· · ·
∑
Sk
B

· · ·
∑
S|S|
B

, SB=

{(
nτ,1, · · · , nτ,|S|

)∣∣∣∣ |S|∑
k=1

nτ,k = NA

}
, |S| is the cardinality of set S , and S denotes a set

of (2mB + 1)-tuples satisfying the condition

S =

{(
nΦ
k,0 · · · , nΦ

k,mB−1, n
F
k,0, · · · , nF

k,mB

) ∣∣
mB−1∑
i=0

nΦ
k,i = LB − 1,

mB∑
j=0

nF
k,j = NB − LB

}
,

thereby |S| =
(
mB+LB−2

mB−1

)(
mB+NB−LB

mB

)
, Sk

B ={(
nρk,0, · · · , nρk,mBLB+bF

k

) ∣∣∣mBLB+bF
k∑

n=0
nρk,n = nτ,k

}
,

k = 1, · · · , |S|, and �ρ, θρ, and ηρ are respectively given by

�ρ =

|S|∏
k=1

⎛⎜⎜⎜⎝
(
aΦk a

F
k

(n1 − 1)!

(LB)n1

)nτ,k

mBLB+bF
k∏

n=0
�
nρk

,n
n

mBLB+bF
k∏

n=0
nρk,n!

⎞⎟⎟⎟⎠ ,

θρ =

|S|∑
k=1

mBLB+bF
k∑

n=0

μnnρk,n, ηρ =

|S|∑
k=1

mBLB+bF
k∑

n=0

νnnρk,n,

where n1 = bΦk + bFk +mB , aΦk , aFk , �n, bFk , bΦk , μn, and νn are
defined in Appendix A.

Proof: The proof is given in Appendix A. �
Theorem 2: In the high SNR regime with γB → ∞, the

asymptotic CDF of γB is given by

FγB
(x) =

(
LB

(
NB

LB

))NA
(

mB

γ̄B

)mBNBNA

xmBNBNA

((mB − 1)!(mB !)NB−LB (mBNB)!)
NA

×

⎛⎝∑
SΦ
B

aΦk

(
bΦk +mB(NB − LB) +mB − 1

)
!

(LB)
bΦ
k
+mB(NB−LB)+mB

⎞⎠NA

, (8)

where SΦ
B =

{(
nΦ
k,0, · · · , nΦ

k,mB−1

) ∣∣∣mB−1∑
i=0

nΦ
k,i = LB − 1

}
.

Proof: The proof is given in Appendix B. �

B. CDF and PDF of the SNR in the Eavesdropper’s Channel

Alice selects the strongest transmit antenna according to the
channel power gains of the main channel, which corresponds to
selecting a random transmit antenna for Eve. Hence, similar to
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(59) given in Appendix A, the expressions for the CDF and the
PDF of γE are respectively derived as

FγE
(x) =

LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bF
k∑

n=0

aΦk a
F
k(

bΦk + bFk +mE − 1
)
!

(LE)
bΦ
k
+bF

k
+mE

�nx
μne−νnx, (9)

fγE
(x) =

LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bF
k∑

n=1

aΦk a
F
k(

bΦk + bFk +mE − 1
)
!

(LE)
bΦ
k
+bF

k
+mE

�nx
μn−1e−νnx(μn−νnx),

(10)

where SE denotes a set of (2mE + 1)-tuples satisfying the
condition

SE =

{(
nΦ
k,0 · · · , nΦ

k,mE−1, n
F
k,0, · · · , nF

k,mE

) ∣∣
mE−1∑
i=0

nΦ
k,i = LE − 1,

mE∑
j=0

nF
k,j = NE − LE

}
.

All the parameters in (9) and (10) are identical to those in
Theorem 1 and are calculated accordingly.

IV. AVERAGE SECRECY RATE

In this section, we focus on the active eavesdropping
scenario,1 where the CSI of the eavesdropper’s channel is also
known at Alice. Following the wiretap channel in [11], [35],
Alice encodes a message block W k into a codeword Xn, and
Eve receives Y n

w from the output of its channel. The equivoca-
tion rate of Eve is Re = H(W k|Y n

w )/n, which is the amount
of ignorance that the eavesdropper has about a message W k

[11]. In the active eavesdropping scenario, Alice can adapt the
achievable secrecy rate R such that R ≤ Re [11], [35]. Here,
We focus on the maximum achievable secrecy rate Cs = Re

[11], [35], which is characterized as [8], [11], [14], [35]

Cs = [CB − CE ]
+, (11)

where CB = log2(1 + γB) is the capacity of the main channel
and CE = log2(1 + γE) is the capacity of the eavesdropper’s
channel. Since the CSI of eavesdropper’s channel is available
to Alice, Alice can transmit confidential messages at a rate Cs,
to guarantee perfect secrecy.

In active eavesdropping scenario, the average secrecy rate
is essentially a fundamental secrecy performance metric. We
derive new exact and asymptotic expressions for the average
secrecy rate. Based on the asymptotic expressions, we charac-
terize the average secrecy rate in terms of the high SNR slope
and the high SNR power offset, to explicitly capture the impact
of arbitrary antennas and channel parameters on the average
secrecy rate at high SNR [36].

1In this scenario, the eavesdropper is active [35]. Such a scenario is particu-
larly applicable in the multicast and unicast networks where the users play dual
roles as legitimate receivers for some signals and eavesdroppers for others [12].

A. Exact Average Secrecy Rate

The average secrecy rate is the average of the secrecy rate
Cs over γB and γE . As such, the exact average secrecy rate is
given by

C̄s =

∫ ∞

0

∫ ∞

0

CsfγB
(x1)fγE

(x2)dx1dx2

=

∫ ∞

0

[∫ ∞

0

CsfγE
(x2)dx2

]
︸ ︷︷ ︸

ω1

fγB
(x1)dx1. (12)

We first calculate ω1 in (12) as

ω1 =

∫ x1

0

(log2(1 + x1)− log2(1 + x2)) fγE
(x2)dx2. (13)

Using integration by parts, and applying some algebra, we
derive (13) as

ω1 = log2(1 + x1)FγE
(x1)

−
(
log2(1+x1)FγE

(x1)−
1

ln 2

∫ x1

0

1

1+x2
FγE

(x2)dx2

)
=

1

ln 2

∫ x1

0

FγE
(x2)

1 + x2
dx2. (14)

Substituting (14) into (12), and changing the order of integra-
tion, we obtain

C̄s =
1

ln 2

∫ ∞

0

FγE
(x2)

1 + x2

[∫ ∞

x2

fγB
(x1)dx1

]
dx2

=
1

ln 2

∫ ∞

0

FγE
(x2)

1 + x2
(1− FγB

(x2)) dx2. (15)

Using the new statistical properties in Section III, we calculate
(15) as

C̄s =
LE

ln 2(mE − 1)!

(
NE

LE

)∑
SE

mELE+bF
k∑

n=0

aΦk a
F
k

×
(
bΦk + bFk +mE − 1

)
!

(LE)
bΦ
k
+bF

k
+mE

�n

×
[∫ ∞

0

xμn

2

1 + x2
e−νnx2dx2

−
(

LB

(mB − 1)!

(
NB

LB

))NA

NA!
∑̃

�ρ

×
∫ ∞

0

x
μn+θρ
2

1 + x2
e−(νn+ηρ)x2dx2

]

=
LE

ln 2(mE − 1)!

(
NE

LE

)∑
SE

mELE+bF
k∑

n=0

aΦk a
F
k

×
(
bΦk + bFk +mE − 1

)
!

(LE)
bΦ
k
+bF

k
+mE

�n
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×
[
μn!Ψ(μn + 1, μn + 1; νn)

−
(

LB

(mB − 1)!

(
NB

LB

))NA

NA!
∑̃

�ρ(μn + θρ)!

×Ψ(μn + θρ + 1, μn + θρ + 1; νn + ηρ)

]
, (16)

where Ψ(·, ·; ·) is the confluent hypergeometric function [37,
eq. (9.211.4)]. Our new expression for the exact average secrecy
rate in (16) applies to arbitrary numbers of antennas, arbitrary
fading parameters, and arbitrary average SNRs.

B. Asymptotic Average Secrecy Rate

In order to explicitly examine the performance in the high
SNR regime, we proceed to derive the asymptotic average
secrecy rate. We take into account two realistic scenarios:
1) Bob is located close to Alice, which can be mathematically
described as γ̄B → ∞ for arbitrary γ̄E , and 2) Bob and Eve are
located close to Alice, which can be mathematically described
as γ̄B → ∞ and γ̄E → ∞.

To facilitate the analysis, we rewrite the CDF of γE as

FγE
(x) = 1 + χγE

(x), (17)

where

χγE
(x) =

LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bF
k∑

n=1

aΦk a
F
k

×
(
bΦk + bFk +mE − 1

)
!

(LE)
bΦ
k
+bF

k
+mE

�nx
μne−νnx.

1) γ̄B → ∞: In this case, we introduce a new general form
to derive the average secrecy rate in the following theorem.

Theorem 3: The asymptotic average secrecy rate is given by

C̄∞
s = Δ1 +Δ2, (18)

where

Δ1 =
1

ln 2

∫ ∞

0

ln(x1)fγB
(x1)dx1 (19)

and

Δ2 =
1

ln 2

∫ ∞

0

χγE
(x2)

1 + x2
dx2. (20)

Proof: The proof is given in Appendix C. �
Based on Theorem 3, we calculate the asymptotic average

secrecy rate using the new statistical properties in Section III.
Specifically, by substituting (7) into (19), and employing [37,
eq. (4.352.1)], Δ1 is derived as

Δ1 = log2(γ̄B)− log2(mB) +
1

ln 2

×
(

LB

(mB − 1)!

(
NB

LB

))NA

NA!
∑̃

�̃ρζ1, (21)

where �̃ρ = �ρ

(
mB

γ̄B

)−θρ
and

ζ1 =

⎧⎨⎩
0, θρ = 0, η̃ρ = 0,
ln(η̃ρ) + C, θρ = 0, η̃ρ > 0,

− (θρ−1)!

(η̃ρ)
θρ

, θρ > 0, η̃ρ > 0,
(22)

In (22), C is the Euler’s constant [37, eq. (8.367.1)] and η̃ρ =(
mB

γ̄B

)−1

ηρ. It is worth noting that �̃ρ and η̃ρ are independent

of γ̄B . We should also note that Δ1 in (21) explicitly quantifies
the impact of the main channel on the average secrecy rate.

Substituting χγE
given in (17) into (20), we obtain Δ2

Δ2 =
LE

ln 2(mE − 1)!

(
NE

LE

)∑
SE

mELE+bF
k∑

n=1

aΦk a
F
k

×
(
bΦk + bFk +mE − 1

)
!

(LE)
bΦ
k
+bF

k
+mE

�nμn!Ψ(μn + 1, μn + 1, νn), (23)

which explicitly quantifies the impact of the eavesdropper’s
channel on the average secrecy rate.

Based on (18), (21), and (23), we derive the asymptotic
average secrecy rate as

C̄∞
s = log2(γ̄B)−log2(mB)+

1

ln 2

(
LB

(mB − 1)!

(
NB

LB

))NA

×NA!
∑̃

�̃ρζ1+
LE

ln 2(mE−1)!

(
NE

LE

)∑
SE

mELE+bF
k∑

n=1

aΦka
F
k

×
(
bΦk+ bFk +mE−1

)
!

(LE)
bΦ
k
+bF

k
+mE

�nμn!Ψ(μn+1, μn+1, νr). (24)

Based on (24), we derive two key performance indicators that
determine the average secrecy rate at high SNR, namely the
high SNR slope and the high SNR power offset [36], [38]. The
asymptotic average secrecy rate in (24) can be conveniently re-
expressed as [36]

C̄∞
s = S∞ (log2(γ̄B)− L∞) , (25)

where S∞ is the high SNR slope in bits/s/Hz/(3 dB) and L∞
is the high SNR power offset in 3 dB units. We note that the
high SNR slope is also known as the maximum multiplexing
gain or the number of degrees of freedom [7]. The high SNR
power offset is a more intricate function which depends on the
number of transmit and receive antennas, as well as the channel
characteristics [36], [38].

The high SNR slope S∞ is given by

S∞ = lim
γ̄B→∞

C̄∞
S

log2(γ̄B)
. (26)

Substituting (24) into (26), we obtain

S∞ = 1. (27)

From (27), we see that the eavesdropper’s channel and the
number of Bob’s receive antennas have no impact on the high
SNR slope S∞.
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The high SNR power offset L∞ is given by

L∞ = lim
γ̄B→∞

(
log2(γ̄B)−

C̄∞
S

S∞

)
. (28)

Substituting (24) and (27) into (28), we derive L∞ as2

L∞=LB
∞(mB , NB , LB , NA)+LE

∞(mE , NE , LE , γ̄E), (29)

where

LB
∞(mB , NB , LB , NA) = log2(mB)−

× 1

ln 2

(
LB

(mB − 1)!

(
NB

LB

))NA

NA!
∑̃

�̃ρζ1 (30)

and

LE
∞(mE , NE , LE , γ̄E) = −Δ2. (31)

In (30), LB
∞ quantifies the contribution of the main channel

to the high SNR power offset. In (31), LE
∞ quantifies the

contribution of the eavesdropper’s channel to the high SNR
power offset. We next examine special cases of LB

∞ and LE
∞

in which these expressions reduce to more simple forms.
Corollary 1: For the special case of Rayleigh fading, where

mB = mE = 1, LB
∞ in (30) reduces to

LB
∞(1, NB , LB , NA)=− 1

ln 2

(
LB

(
NB

LB

))NA

NA!
∑̃

�̃ρζ1 (32)

and LE
∞ in (31) reduces to

LE
∞(1, NE , LE , γ̄E) = − 1

ln 2

(
NE

LE

)∑
SF
E

LE∑
n=1

aFk �nμn!

×Ψ(μn + 1, μn + 1, νn), (33)

where SF
E =

{(
nF
k,0, n

F
k,1

) ∣∣∣ 1∑
j=0

nF
k,j = NE − LE

}
.

Corollary 2: For the special case of Rayleigh fading with
TAS/MRC, where mB = mE = 1, LB = NB , and LE = NE ,
LB
∞ in (30) reduces to

LB
∞(1, NB , NB , NA)=− 1

ln 2
NA!

∑
S1
B

NB∏
n=1

(
−1

(n−1)!

)nρ1,n

NB∏
n=0

nρ1,n!

β, (34)

where S1
B =

{
(nρ1,0, · · · , nρ1,NB

)|
NB∑
n=0

nρ1,n = NA

}
and

β =

{
ln(NA) + C, θρ = 0,

− (θρ−1)!

(NA)θρ
, θρ > 0. (35)

From (31), LE
∞ reduces to

LE
∞(1, NE , NE , γ̄E)=

1

ln 2

NE∑
n=1

(
1

γ̄E

)n−1

Ψ

(
n, n,

1

γ̄E

)
. (36)

2Here, we explicitly reveal the dependence of the high SNR power offset on
mB , NA, NB , LB , mE , NE , LE , γ̄E .

It is clear from (36) that LE
∞ is an increasing function of NE . As

such, when the number of antennas at Eve increases, the high
SNR power offset also increases, which in turn decreases the
average secrecy rate.

Corollary 3: For the special case of Rayleigh fading with
TAS/SC, where mB = mE = 1, LB = 1, and LE = 1, LB

∞ in
(30) reduces to

LB
∞(1, NB , 1, NA) = − 1

ln 2
(NB)

NANA!
∑̃

�̃ρ

× sgn(η̃ρ) (ln(η̃ρ) + C) . (37)

By applying [37, eq. (3.352.4)], LE
∞ in (31) reduces to

LE
∞(1, NE , 1, γ̄E)=

NE

ln 2

∑
SF
E

(NE−1)!
1∏

j=0

nF
k,j !

(−1)n
F
k,1

×

⎛⎝ sgn
(
nF
k,1

)
nF
k,1+1

+ 1− sgn
(
nF
k,1

)⎞⎠

×

⎛⎝−e
(nF

k,1
+1)

γ̄E Ei

⎛⎝−

(
nF
k,1 + 1

)
γ̄E

⎞⎠⎞⎠ ,

(38)

where SF
E =

{
(nF

k,0, n
F
k,1)|

1∑
j=0

nF
k,j = NE − 1

}
and Ei(·) is

the exponential integral function defined in [37, eq. (8.211.1)].
2) γ̄B → ∞ and γ̄E → ∞: In this case, the average secrecy

rate can be easily obtained based on Theorem 3. We only need
to further provide the asymptotic Δ2 with γ̄E → ∞. Observing
Δ1 in (21), the asymptotic Δ2 is derived according to

Δ2 = − (log2(γ̄E)− log2(mE))− Ξ, (39)

where

Ξ =
1

ln 2

LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bF
k∑

n=1

aΦk a
F
k

×
(
bΦk + bFk +mE − 1

)
!

(LE)
bΦ
k
+bF

k
+mE

�̃n

×
(
(1− sgn(μn))×(C+ln(ν̃n))−sgn(μn)

(μn−1)!

(ν̃n)μn

)
.

(40)

In (40), �̃n = �n

(
mE

γ̄E

)−μn

and ν̃n = νn

(
mE

γ̄E

)−1

. We should

note that in (40), Ξ is independent of γ̄E .
Substituting (21) and (39) into (18), we derive the asymptotic

average secrecy rate as

C̄∞
s = log2

(
γ̄B
γ̄E

)
− log2

(
mB

mE

)

+
1

ln 2

(
LB

(mB − 1)!

(
NB

LB

))NA

NA!
∑̃

�̃ρζ1 − Ξ. (41)
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Fig. 1. Average secrecy rate for NA = 2, NB = 4, NE = 3, LE = 2,
mB = mE = 2, and γ̄E = 10 dB.

From (41), we see that for a fixed ratio of γ̄B and γ̄E , the
average secrecy rate is a constant value at high SNR. According
to (26), the high SNR slope S∞ is zero. This new result shows
that when the eavesdropper is located close to the transmitter,
increasing the transmit power does not have an impact on the
average secrecy rate.

C. Numerical Examples

Fig. 1 plots the average secrecy rate versus γ̄B for different
LB . The exact curves are obtained from (16). Considering the
scenario where Bob is located close to Alice, the asymptotic
average secrecy rate curves are obtained from (24). We see that
the exact curves are well-validated by Monte Carlo simulations3

marked with ‘•’. We also see that the asymptotic curves well
approximate the exact curves at high SNR. As suggested by
(27), the high SNR slope is independent of LB , which is also
indicated by the parallel slopes of the asymptotes. The average
secrecy rate increases with the number of selected antennas
LB . This is because LB

∞ in (30) decreases with increasing LB

and accordingly the high SNR power offset L∞ decreases.
Notably, the performance difference diminishes for large LB .
This confirms that TAS/GSC provides a performance tradeoff
between TAS/MRC and TAS/SC in MIMO wiretap channels.

Fig. 2 plots the average secrecy rate versus γ̄B for different
LE . The parallel slopes of the asymptotes confirm that the high
SNR slope is independent of LE . The average secrecy rate
decreases with the number of selected antennas LE . This is due
to the fact that LE

∞ in (31) increases with LE and accordingly
the high SNR power offset L∞ increases.

Fig. 3 plots the high SNR power offset for several cases.
Here, (a) and (b) represent the impact of increasing Eve’s an-
tennas for different LE , and (c) and (d) represent the impact of
increasing Bob’s antennas for different LB . The power offset is
obtained using (29). We see that the power offset increases with
increasing NE and LE , which in turn decreases the average
secrecy rate, as shown in (25). We also see that the power offset
decreases with increasing NB and LB , which in turn increases
the average secrecy rate.

3In this paper, Monte Carlo simulated results are numerically computed
based on system parameters given in each figure, which validate the accuracy
of our analytical results.

Fig. 2. Average secrecy rate for NA = 2, NB = 4, NE = 4, LB = 2,
mB = mE = 2, and γ̄E = 10 dB.

Fig. 3. High SNR power offset with mB = mE = 2 and γ̄E = 10 dB for
four cases: (a) NA = 2, NB = 4, NE = N , LB = 2, LE = 4, (b) NA =
2, NB = 4, NE = N , LB = 2, LE = 2, (c) NA = 4, NB = N , NE = 3,
LB = 2, LE = 2, and (d) NA = 4, NB = N , NE = 3, LB = 4, LE = 2.

Fig. 4. Average secrecy rate for NA = 2, NB = 4, NE = 3, mB = mE =
2, and LE = 2.

Fig. 4 plots the average secrecy rate versus γ̄B for different
LB . The exact curves are obtained from (16). Considering the
scenario where Bob and Eve are located close to Alice, we
set γ̄B

γ̄E

∣∣∣
dB

= 10 dB, and the asymptotic curves are obtained

from (41). Observe that the average secrecy rate increases with
increasing LB . As predicted by (41), the average secrecy rate
converges to a finite limit at high SNR, which proves that the
high SNR slope collapses to zero.
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Fig. 5. Average secrecy rate for NA = 2, NB = 4, NE = 4, mB = mE =
2, and LB = 2.

Fig. 5 plots the average secrecy rate versus γ̄B for different

LE . Here, we set γ̄B

γ̄E

∣∣∣
dB

= 10 dB. We see that the average

secrecy rate decreases with increasing LE . As reflected in (41),
the average secrecy rate approaches a constant at high SNR.

V. SECRECY OUTAGE PROBABILITY

In this section, we concentrate on passive eavesdropping
scenario, where the CSI of the eavesdropper’s channel is not
known at Alice. In such a scenario, Alice has no choice but
to encode the confidential data into codewords of a constant
rate Rs [35], if Rs ≤ Cs (Cs has been defined in (11)), perfect
secrecy can be achieved. Otherwise, if Rs > Cs, information-
theoretic security is compromised. In other words, unlike the
active eavesdropping scenario, perfect secrecy cannot be guar-
anteed in the passive eavesdropping scenario, since Alice has
no information about the eavesdropper’s channel. Motivated
by this, we adopt the secrecy outage probability as a useful
performance measure. We derive new closed-form expressions
for the exact and the asymptotic secrecy outage probability.
Based on the asymptotic expressions, we present two key
performance indicators, namely the secrecy diversity order and
the secrecy array gain.

A. Exact Secrecy Outage Probability

A secrecy outage is declared when the secrecy rate Cs is less
than the expected secrecy rate Rs. As such, the secrecy outage
probability is derived as

Pout(Rs) = Pr(Cs < Rs)

=

∫ ∞

0

fγE
(x2)FγB

(
2Rs(1 + x2)− 1

)
dx2. (42)

Substituting (6) and (10) into (42), and applying the binomial
expansion [37, eq. (1.111)] and [37, eq. (3.351.3)], we obtain

Pout(Rs) =
LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bF
k∑

n=1

aΦk a
F
k

×
(
bΦk + bFk +mE − 1

)
!

(LE)
bΦ
k
+bF

k
+mE

�n

×
(

LB

(mB − 1)!

(
NB

LB

))NA

NA!

×
∑̃

�ρ

θρ∑
q=0

(
θρ
q

)
2Rsq(2Rs−1)θρ−qe−ηρ(2

Rs−1)

×
(

μnΓ(q + μn)

(ηρ2Rs + νn)q+μn
− νn(q+μn)!

(ηρ2Rs+νn)q+μn+1

)
.

(43)

Our new expression for the exact secrecy outage probability
in (43) applies to arbitrary numbers of antennas at Bob and
Eve, arbitrary fading parameters, and arbitrary average SNRs
in the main and eavesdropper’s channels. As shown in [17], the
probability of positive secrecy can be evaluated as 1− Pout(0).

B. Asymptotic Secrecy Outage Probability

In this subsection, we turn our attention to the asymptotic
secrecy outage probability. We consider the following two
scenarios.

1) γ̄B → ∞: In this case, Bob is located close to Alice.
We substitute (8) and (10) into (42), and derive the asymptotic
secrecy outage probability as

P∞
out(Rs) = (Gaγ̄B)

−Gd + o
(
γ̄−Gd

B

)
, (44)

where the secrecy diversity order is

Gd = mBNBNA (45)

and the secrecy array gain is

Ga=

⎡⎢⎣ LE

(mE − 1)!

(
LB

(
NB

LB

))NA

(mB)
mBNBNA

(Γ(mB)(mB !)NB−LB (mBNB)!)
NA

×
(
NE

LE

)⎛⎝∑
SΦ
B

aΦk

(
bΦk +mB(NB−LB)+mB−1

)
!

(LB)
bΦ
k
+mB(NB−LB)+mB

⎞⎠NA

×
∑
SE

mELE+bF
k∑

n=1

aΦk a
F
k

(
bΦk + bFk +mE − 1

)
!

(LE)
bΦ
k
+bF

k
+mE

�n

×
mBNBNA∑

q=0

(
mBNBNA

q

)
(Γ(q+μn)μn−(q + μn)!)

× 2Rsq(2Rs − 1)
mBNBNA−q

(νn)q+μn

]− 1
mBNBNA

. (46)

Based on (45) and (46), we find that the secrecy diversity
order is entirely determined by the antenna configuration and
the fading parameters in the main channel. The impact of
the eavesdropper’s channel is only reflected in the secrecy
array gain.

In order to characterize the impact of GSC on the secrecy
outage probability, we quantify the secrecy outage tradeoff
between LB + l and LB , l = 1, · · · , NB − LB . From (45), we
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confirm that LB + l and LB have the same secrecy diversity
order. As such, one can conclude that the SNR gap between
LB + l and LB is strictly determined by their respective se-
crecy array gains and is expressed as

Ga(LB + l)

Ga(LB)
=

[
(mB !)

l(LB + l)
(

NB

LB+l

)
LB

(
NB

LB

)

×

∑
SΦl

B

aΦ
l

k

(
bΦ

l

k
+mB(NB−LB−l)+mB−1

)
!

(LB+l)
bΦ

l

k
+mB(NB−LB−l)+mB∑

SΦ
B

aΦk
(bΦk +mB(NB−LB)+mB−1)!

(LB)
bΦ
k

+mB(NB−LB)+mB

⎤⎥⎥⎥⎥⎦
− 1

mBNB

(47)

where SΦl

B satisfies the condition

SΦl

B =

{(
nΦl

k,0, · · · , nΦl

k,mB−1

)∣∣∣mB−1∑
i=0

nΦl

k,i = LB + l − 1

}
.

Corollary 4: For the special case of Rayleigh fading, the
secrecy diversity order in (45) reduces to NBNA and the
secrecy array gain in (46) reduces to

Ga =

⎡⎣(NE

LE

)
(2Rs − 1)NBNA

(LB !)NA(LB)NA(NB−LB)

∑
SF
E

×
LE∑
n=1

aFk �n

NBNA∑
q=0

(
NBNA

q

)(
2Rs

2Rs − 1

)q

× (Γ(q + μn)μn − (q + μn)!)

(νn)q+μn

]− 1
NBNA

. (48)

Based on (48), we confirm that Ga(LB+1)
Ga(LB) > 1. This proves that

the secrecy array gain is an increasing function of LB . It follows
that the SNR gap between LB + l and LB in (47) reduces to

Ga(LB+l)

Ga(LB)
=

⎡⎢⎣ (LB)
lLB !

(LB+l)!
(
1+ l

LB

)NB−LB−l

⎤⎥⎦
− 1

NB

. (49)

Based on (49), we confirm that
(

Ga(LB+1+l)
Ga(LB+1)

)/
(

Ga(LB+l)
Ga(LB)

)
< 1. This proves that the SNR gap is a decreasing

function of LB .

Fig. 6. Secrecy outage probability for NB = 3, NE = 3, LE = 2, mB =
1, mE = 2, and γ̄E = 10 dB.

2) γ̄B → ∞, γ̄E → ∞: In this case, both Bob and Eve are
located close to Alice. Based on (43), the asymptotic secrecy
outage probability is derived as

P∞
out(Rs) = lim

γ̄B→∞,γ̄E→∞
Pout(Rs)

=
LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bF
k∑

n=1

aΦk a
F
k

× �̃n

(
bΦk + bFk +mE − 1

)
!

(LE)
bΦ
k
+bF

k
+mE

×
(

LB

(mB − 1)!

(
NB

LB

))NA

NA!

×
∑̃

�̃ρ

(
mB γ̄E
mE γ̄B

)θρ 2Rsθρ(
η̃ρ2Rs

mB γ̄E

mE γ̄B
+ν̃n

)θρ+μn

×
(
μnΓ(θρ + μn)−

ν̃n(θρ + μn)!

η̃ρ2Rs
mB γ̄E

mE γ̄B
+ ν̃n

)
. (50)

For a fixed ratio of γ̄B and γ̄E , (50) confirms that the secrecy
outage probability approaches a constant at high SNR, which
implies that the secrecy diversity order is zero. Once again, this
result shows that increasing the transmit power does not have
an impact on the secrecy outage probability.

C. Numerical Examples

Fig. 6 plots the secrecy outage probability versus γ̄B for
different LB and NA. The expected secrecy rate is Rs =
1 bit/s/Hz. The exact curves are obtained from (43). Consid-
ering Bob is located close to Alice, the asymptotic curves are
obtained from (44). The exact curves are in precise agree-
ment with the Monte Carlo simulations. We also see that
the asymptotic curves accurately predict the secrecy diversity
order and the secrecy array gain. According to (45), we see
that the secrecy diversity order increases with NA, which in
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Fig. 7. SNR gap for mB = 2 and NB = 10.

Fig. 8. Secrecy outage probability for NB = 3, NE = 3, mB = 1, mE =
2, and LE = 2.

turn decreases the secrecy outage probability. We also see that
the secrecy outage probability decreases with LB , due to an
increase in the secrecy array gain.

Fig. 7 plots the SNR gap versus LB for different l. The
SNR gap between LB + l and LB is obtained from (47). The
expected secrecy rate is Rs = 1 bit/s/Hz. On the one hand,
the SNR gap increases with increasing l. This confirms that the
secrecy array gain is an increasing function of LB . On the other
hand, the SNR gap decreases with increasing LB . This shows
that the SNR gap is a decreasing function of LB .

Fig. 8 plots the secrecy outage probability versus γ̄B for
different LB and NA. The expected secrecy rate is Rs =
1 bit/s/Hz. The exact curves are obtained from (43). Consid-
ering both Bob and Eve are located close to Alice, we set
γ̄B

γ̄E

∣∣∣
dB

= 10 dB and the asymptotic curves are obtained from

(50). Observe that the secrecy outage probability decreases
with LB and NA. As suggested by (50), the secrecy outage
probability approaches a constant at high SNR, which confirms
that the secrecy diversity order is zero.

VI. CONCLUSION

We analyzed TAS/GSC for physical layer security in MIMO
wiretap channels. In doing so, we derived new analytical
expressions of the statistical properties on the SNR with
TAS/GSC in Nakagami-m fading. With the aid of these results,
we first presented new closed-form expressions for the exact
and the asymptotic average secrecy rate. Using these expres-

sions, we precisely characterized the high SNR slope and the
high SNR power offset. We then presented new closed-form
expressions for the exact and the asymptotic secrecy outage
probability, which concisely characterized the secrecy diversity
order and the secrecy array gain. Several key observations were
drawn based on the locations of the legitimate receiver and
the eavesdropper relative to the transmitter. We showed that a
capacity ceiling and an outage floor were created when both
the legitimate receiver and the eavesdropper were close to the
transmitter. Massive MIMO [39] could be used to cope with
this issue. Moreover, our results provide a useful analytical
guideline for the more general scenarios of: 1) Cooperative
jamming [40] to confound the eavesdroppers, 2) imperfect
channel knowledge, and 3) multiple destinations and multiple
eavesdroppers.

APPENDIX A
PROOF OF THEOREM 1

We first present the PDF and the CDF of the SNR of a single
branch in the main channel with Nakagami-m fading as [41]

f(x) =
xmB−1

(mB − 1)!

(
mB

γ̄B

)mB

e
−mB

γ̄B
x (51)

and

F (x) = 1− e
−x

mB
γ̄B

mB−1∑
j=0

(
xmB

γ̄B

)j

j!
, (52)

respectively. The marginal moment generating function (MGF)
of (51) is given by [24]

Φ(s, x) =

(
mB

γ̄B

)mB mB−1∑
i=0

xie
−
(
s+

mB
γ̄B

)
x

i!
(
s+ mB

γ̄B

)mB−i
. (53)

As shown in [24], [34], the MGF expression for the SNR γ after
GSC is expressed as

Φγ(s) = LB

(
NB

LB

)∫ ∞

0

e−sxf(x)

× (Φ(s, x))LB−1 (F (x))NB−LB dx. (54)

Here, the MGF is defined as Φγ(s) = E[e−γs]. In order to
evaluate the integral in (54), we will rewrite (Φ(s, x))LB−1 and
(F (x))NB−LB .

Based on (53), using the multinomial theorem [42], we
rewrite (Φ(s, x))LB−1 as

(Φ(s, x))LB−1 =

(
mB

γ̄B

)mB(LB−1)∑
SΦ
B

aΦk

×
(
s+

mB

γ̄B

)bΦ
k
−mB(LB−1)

xbΦ
k e−cΦ

k
x, (55)
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where SΦ
B =

{(
nΦ
k,0, · · · , nΦ

k,mB−1

) ∣∣∣mB−1∑
i=0

nΦ
k,i = LB − 1

}
,

aΦk = (LB−1)!
mB−1∏
i=0

nΦ
k,i

!

mB−1∏
i=0

(
1
i!

)nΦ
k,i , bΦk =

mB−1∑
i=0

nΦ
k,ii, and cΦk =

(LB − 1)
(
s+ mB

γ̄B

)
.

Based on (52), we proceed to employ the multinomial theo-
rem to express (F (x))NB−LB as

(F (x))NB−LB =
∑
SF
B

aFk

(
mB

γ̄B

)bF
k

xbF
k e−cF

k
x, (56)

where SF
B =

{(
nF
k,0, · · · , nF

k,mB

) ∣∣∣mB∑
j=0

nF
k,j = NB − LB

}
,

aFk = (NB−LB)!
mB∏
j=0

nF
k,j

!

mB−1∏
j=0

(
−1
j!

)nF
k,j+1

, bFk =
mB−1∑
j=0

jnF
k,j+1, and

cFk = mB

γ̄B

mB∑
j=1

nF
k,j .

Substituting (51), (55), and (56) into (54), and applying [37,
eq. (3.351.3)], Φγ(s) is derived as

Φγ(s) =
LB

(mB − 1)!

(
NB

LB

)
×
(
mB

γ̄B

)mBLB∑
SΦ
B

∑
SF
B

aΦk a
F
k

(
mB

γ̄B

)bF
k

×
Γ
(
bΦk +bFk +mB

) (
s+mB

γ̄B

)bΦ
k
−mB(LB−1)

(
s+cΦk +cFk +mB

γ̄B

)bΦ
k
+bF

k
+mB

. (57)

Let Fγ(x) denote the CDF of γ, the Laplace transform of Fγ(x)
is given by L[Fγ(x)] = Φγ(s)/s [25]. Therefore, the Laplace
transform of the CDF of γ is

L[Fγ(x)]=
LB

(mB−1)!

(
NB

LB

)
×
(
mB

γ̄B

)mBLB∑
SΦ
B

∑
SF
B

aΦk a
F
k

(
mB

γ̄B

)bF
k

×
Γ
(
bΦk +bFk +mB

)
(LB)

bΦ
k
+bF

k
+mB

(
s+mB

γ̄B

)bΦ
k
−mB(LB−1)

s
(
s+

cF
k

LB
+mB

γ̄B

)bΦ
k
+bF

k
+mB

.

(58)

Using a partial fraction expansion [37, eq. (2.102)], we can
rewrite (58) in an equivalent form. Then, taking the inverse
Laplace transform of L[Fγ(x)] to obtain

Fγ(x) =
LB

(mB − 1)!

(
NB

LB

)∑
S

mBLB+bF
k∑

n=0

aΦk a
F
k

×
Γ
(
bΦk + bFk +mB

)
(LB)

bΦ
k
+bF

k
+mB

�nx
μne−νnx, (59)

where S denotes

S =

{(
nΦ
k,0 · · · , nΦ

k,mB−1, n
F
k,0, · · · , nk,mF

B

) ∣∣∣
mB−1∑
i=0

nΦ
k,i = LB − 1,

mB∑
j=0

nF
k,j = NB − LB

⎫⎬⎭ ,

and we define �n as

�n=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
mB

γ̄B

)μn

(
1

LB

mB∑
j=1

nF
k,j+1

)−n1

n=0(
mB

γ̄B

)μn

(
Υ1+Υ2−

1−sgn(cFk )
(n−1)!

)
1≤n≤mB(LB−1)

− bΦk(
mB

γ̄B

)μn

(
Υ3+Υ4−

1−sgn(cFk )
(n−1)!

)
mB(LB−1)−bΦk

<n≤mBLB+bFk
(60)

with n1 = bΦk + bFk +mB ,

Υ1 = −
sgn

(
cFk
)

(n− 1)!

⎛⎝ 1

LB

mB∑
j=1

nF
k,j + 1

⎞⎠−n1

,

Υ2 =
sgn

(
cFk
)

(n− 1)!
(−1)1−n2

n1∑
l=1

(
l − n2 − 1

l − 1

)
⎛⎝ 1

LB

mB∑
j=1

nF
k,j + 1

⎞⎠−(n1−l+1)⎛⎝ 1

LB

mB∑
j=1

nF
k,j

⎞⎠n2−l

,

Υ3 = −
sgn

(
cFk
)

(n2 − 1)!

⎛⎝ 1

LB

mB∑
j=1

nF
k,j + 1

⎞⎠−(n1−n2+1)

,

Υ4 =
sgn

(
cFk
)

(n2 − 1)!

mB(LB−1)−bΦ
k∑

l=1

(−1)l+1

(
n1 − n2 + l − 1

l − 1

)⎛⎝ 1

LB

mB∑
j=1

nF
k,j

⎞⎠−(n1−n2+l)

,

where n2 = n−mB(LB − 1) + bΦk . In (59), we also have

μn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 n = 0
n− 1 1 ≤ n

≤ mB(LB − 1)− bΦk
n− sgn

(
cFk
)(

mB(LB − 1)− bΦk
)
− 1 mB(LB − 1)− bΦk

< n ≤ mBLB + bFk

and

νn =

⎧⎪⎨⎪⎩
0 n = 0
mB

γ̄B
1 ≤ n ≤ mB(LB − 1)− bΦk(

cF
k

LB
+ mB

γ̄B

)
mB(LB − 1)−bΦk <n≤mBLB+bFk

The CDF of γB with TAS and GSC is given by FγB
=

(Fγ(x))
NA . Based on (59), and employing the multinomial

theorem, we derive the CDF of γB as (6). Taking the derivative
of the CDF in (6), we obtain the PDF of γB as (7).
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APPENDIX B
PROOF OF THEOREM 2

We start with the asymptotic CDF for the SNR of a single
branch of the main channel. In the high SNR regime with γ̄B →
∞, applying the Taylor series expansion truncated to the kth

order given by ex =
k∑

j=0

xj

j! + o(xk) in (52), we obtain

F (x)=1−e
−xmB

γ̄B

⎛⎝exmB
γ̄B −

(
xmB

γ̄B

)mB

mB !
−o

((
x
mB

γ̄B

)mB
)⎞⎠

=

(
xmB

γ̄B

)mB

mB !
+ o(xmB ). (61)

Substituting (51), (55), and (61) into (54) yields

Φγ(s) =
LB

(mB − 1)!(mB !)NB−LB

×
(
NB

LB

)(
mB

γ̄B

)mBNB ∑
SΦ
B

aΦk

×
(
bΦk +mB(NB−LB)+mB−1

)
!

(LB)
bΦ
k
+mB(NB−LB)+mB (s+mB

γ̄B
)mBNB

. (62)

It is shown in Appendix A that L[Fγ(x)] = Φγ(s)/s. Taking
the inverse Laplace transform of L[Fγ(x)], Fγ is derived as

Fγ(x)

=
LB

(mB − 1)!(mB !)NB−LB

(
NB

LB

)

×
(
mB

γ̄B

)mBNB ∑
SΦ
B

aΦk

(
bΦk +mB(NB−LB)+mB−1

)
!

(LB)
bΦ
k
+mB(NB −LB)+mB

×

⎛⎜⎝(mB

γ̄B

)−mBNB

−
mBNB∑
n=1

(
mB

γ̄B

)−(mBNB−n+1)

(n−1)! xn−1e
−mB

γ̄B
x

⎞⎟⎠.
(63)

Still employing the Taylor series expansion truncated to the kth

order given by ex =
k∑

j=0

xj

j! + o(xk) in (63), we rewrite (63) as

Fγ(x) =
LB

(
NB

LB

) (
mB

γ̄B

)mBNB

xmBNB

(mB − 1)!(mB !)NB−LB (mBNB)!

×
∑
SΦ
B

aΦk

(
bΦk +mB(NB − LB) +mB − 1

)
!

(LB)
bΦ
k
+mB(NB−LB)+mB

. (64)

Based on (64), the asymptotic expression for the CDF of γB is
FγB

(x) = (Fγ(x))
NA and the final expression is shown in (8).

APPENDIX C
PROOF OF THEOREM 3

Substituting (14) into (12), we rewrite the average secrecy
rate as

C̄s =
1

ln 2

∫ ∞

0

[∫ x1

0

FγE
(x2)

1 + x2
dx2

]
fγB

(x1)dx1. (65)

Substituting (17) into (65), we transform (65) as

C̄s =
1

ln 2

∫ ∞

0

ln(1 + x1)fγB
(x1)dx1︸ ︷︷ ︸

ω2

+
1

ln 2

∫ ∞

0

∫ x1

0

χγE
(x2)

1 + x2
fγB

(x1)dx2dx1︸ ︷︷ ︸
ω3

. (66)

In the high SNR regime with γ̄B → ∞, ln(1 + x1) ≈ ln(x1),
thereby the asymptotic expression for ω2 can be written as Δ1

in (19). Changing the order of integration in ω3, we rewrite

ω3 =
1

ln 2

∫ ∞

0

χγE
(x2)

1 + x2

∫ ∞

x2

fγB
(x1)dx1dx2

=
1

ln 2

∫ ∞

0

χγE
(x2)

1 + x2
(1− FγB

(x2)) dx2. (67)

According to (8), when γ̄B → ∞, FγB
(x2) ≈ 0. Hence, the

asymptotic expression for ω3 can be expressed as Δ2 in (20).
Based on (19), (20), and (66), we derive the asymptotic expres-
sion for the average secrecy rate as (18).
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