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Secure Transmission With Artificial Noise Over
Fading Channels: Achievable Rate and

Optimal Power Allocation
Xiangyun Zhou, Student Member, IEEE, and Matthew R. McKay, Member, IEEE

Abstract—We consider the problem of secure communication
with multiantenna transmission in fading channels. The trans-
mitter simultaneously transmits an information-bearing signal to
the intended receiver and artificial noise to the eavesdroppers.
We obtain an analytical closed-form expression of an achievable
secrecy rate and use it as the objective function to optimize the
transmit power allocation between the information signal and the
artificial noise. Our analytical and numerical results show that
equal power allocation is a simple yet near-optimal strategy for
the case of noncolluding eavesdroppers. When the number of
colluding eavesdroppers increases, more power should be used
to generate the artificial noise. We also provide an upper bound
on the SNR, above which, the achievable secrecy rate is positive
and shows that the bound is tight at low SNR. Furthermore, we
consider the impact of imperfect channel state information (CSI)
at both the transmitter and the receiver and find that it is wise to
create more artificial noise to confuse the eavesdroppers than to
increase the signal strength for the intended receiver if the CSI is
not accurately obtained.

Index Terms—Artificial noise, channel estimation error, multi-
antenna transmission, power allocation, secrecy rate.

I. INTRODUCTION

S ECURITY IS A fundamental problem in wireless com-

munications due to the broadcast nature of the wireless

medium. Traditionally, secure communication is achieved by

using cryptographic technologies such as encryption. On the

other hand, studies from an information-theoretic viewpoint

have found conditions for reliable secure communication with-

out using secret keys. In the pioneering works on information-

theoretic security, Wyner introduced the wiretap channel model

in which the eavesdropper’s channel is a degraded version of

the receiver’s channel [1]. Csiszár and Körner considered a

general nondegraded channel condition and studied the trans-

mission of both a common message to two receivers and a
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confidential message to only one of them [2]. The results in

these early works showed that a positive secrecy capacity can

be achieved if the intended receiver has better channel than the

eavesdropper.

Recently, information-theoretic security with multiantenna

transmission has drawn a lot of attention. Many works have

been devoted to analyzing the secrecy capacity with various

antenna configurations and channel conditions, e.g., [3]–[6].

With multiple antennas at the transmitter, the optimal input

structure (for Gaussian codes) that maximizes the secrecy rate

of Gaussian channels was found to be in the form of beam-

forming transmission [3], [4]. The secrecy capacity of Gaussian

channels with multiple antennas at both the transmitter and the

receiver was obtained in [5] and [6]. One of the main assump-

tions in the aforementioned works is that the eavesdropper’s

channel is known at the transmitter. Clearly, this assumption

is usually impractical, particularly for fading channels. The

ergodic secrecy capacity with and without knowing the eaves-

dropper’s channel was studied for fading channels in [7]–[11].

The authors in [9] studied a fading broadcast channel with con-

fidential information intended only for one receiver and derived

the optimal power allocation that minimizes the secrecy outage

probability. The authors in [10] proposed an on–off power

transmission with variable-rate-allocation scheme for single-

antenna systems, which was shown to approach the optimal

performance at asymptotically high SNR. The authors in [11]

extended the ergodic secrecy capacity result to systems with

multiple antennas and developed capacity bounds in the large

antenna limit.

Furthermore, various physical-layer techniques were

proposed to achieve secure communication, even if the

receiver’s channel is worse than the eavesdropper’s channel.

One of the main techniques is the use of interference or artificial

noise to confuse the eavesdropper. With two base stations

connected by a high-capacity backbone, one base station can

simultaneously transmit an interfering signal to secure the

uplink communication for the other base station [12], [13]. In

the scenario where the transmitter has a helping interferer or

a relay node, the secrecy level can also be increased by having

the interferer [14] or relay [15] to send codewords independent

of the source message at an appropriate rate. When multiple

cooperative nodes are available to help the transmitter, the op-

timal weights of the signal transmitted from cooperative nodes,

which maximize an achievable secrecy rate, were derived for

both decode-and-forward [16] and amplify-and-forward [17]

protocols. The use of interference for secrecy is also extended

0018-9545/$26.00 © 2010 IEEE
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to multiple access and broadcast channels with user cooperation

[18]–[20].

When multiple antennas are available at the transmitter, it

is possible to simultaneously transmit both the information-

bearing signal and the artificial noise to achieve secrecy in a

fading environment [21]–[23]. The artificial noise is radiated

isotropically to mask the transmission of the information signal

to the intended receiver. In the design of this multiantenna tech-

nique, the transmit power allocation between the information

signal and the artificial noise is an important parameter, which

has not been investigated in [21] and [22]. A suboptimal power

allocation strategy was considered in [23], which aims to meet

a target signal-to-interference-and-noise ratio at the intended

receiver to satisfy a quality of service requirement.

In this paper, we study the problem of secure communication

in fading channels with a multiantenna transmitter capable of

simultaneous transmission of both the information signal and

the artificial noise. We derive a closed-form expression for

an achievable secrecy rate in fading channels. The availability

of a closed-form secrecy rate expression greatly reduces the

complexity of obtaining the optimal power allocation between

transmission of the information signal and the artificial noise.

We also study the critical SNR above which the achievable se-

crecy rate is positive. This is an important problem in wideband

communications in which a higher throughput is achieved by

reducing the SNR per hertz while increasing the bandwidth

[24]. Furthermore, perfect channel state information (CSI) at

both the transmitter and the receiver is usually assumed in

the existing studies on information-theoretic security. With this

assumption, the artificial noise is accurately transmitted into the

null space of the intended receiver’s channel. When the CSI

is not perfectly known at the transmitter, the artificial noise

leaks into the receiver’s channel. The effects of imperfect CSI

on the achievable secrecy rate and the aforementioned design

parameters are investigated.

The main contributions of this paper are the following.

1) In Section III, we derive analytical closed-form lower

bounds on the ergodic secrecy capacity for both non-

colluding and colluding eavesdroppers. These closed-

form expressions, which give achievable secrecy rates

for secure communications with artificial noise, greatly

reduce the complexity of system design and analysis and

also allow analytical insights to be obtained.

2) In Section IV, we study the optimal power allocation

between transmission of the information signal and the

artificial noise. For the noncolluding eavesdropper case,

the equal power allocation is shown to be a simple

strategy that achieves nearly the same secrecy rate as the

optimal power allocation. For the colluding eavesdropper

case, more power should be used to transmit the artificial

noise as the number of eavesdropper increases. Analytical

results are obtained in the high SNR regime in both cases.

3) In Section V, we derive an upper bound on the critical

SNR above which the achievable secrecy rate is positive.

The bound is shown to be tight at low SNR and hence

is useful in the design and analysis of wideband secure

communications.

4) In Section VI, we derive an ergodic secrecy capacity

lower bound taking into account channel estimation er-

rors and investigate the effects of imperfect CSI on the

optimal power allocation and the critical SNR for secure

communication. In particular, we find that it is better to

create more artificial noise for the eavesdroppers than to

increase the signal strength for the intended receiver as

the channel estimation error increases.

Throughout this paper, the following notations will be used:

Boldface upper and lower cases denote matrices and vectors,

respectively. [·]T denotes the matrix transpose operation, [·]∗

denotes the complex conjugate operation, and [·]† denotes the

conjugate transpose operation. The notation E{·} denotes the

mathematical expectation. ‖ · ‖ denotes the norm of a vector,

and | · | denotes the determinant of a matrix.

II. SYSTEM MODEL

We consider secure communication between a transmitter

(Alice) and a receiver (Bob) in the presence of eavesdroppers

(Eves). Alice has NA antennas (NA > 1), and Bob has a

single antenna. This scenario is representative, for example, of

downlink transmission in cellular systems and wireless local

area networks. In addition, each Eve is equipped with a single

antenna. We consider two cases, namely, noncolluding and

colluding eavesdroppers. In the former case, Eves individually

overhears the communication between Alice and Bob without

any centralized processing. Whereas in the latter case, there are

NE Eves capable of jointly processing their received informa-

tion. Therefore, the noncolluding case can be seen as a special

colluding case where NE = 1. We assume that NA > NE , for

which the reason will become clear in the next section. We

also assume that Eves are passive; hence, they cannot transmit

jamming signals. The received symbols at Bob and the multiple

colluding Eves are, respectively, given by

yB =hx + n (1)

yE =Gx + e (2)

where h is a 1 × NA vector denoting the channel between Alice

and Bob, and G is an NE × NA matrix denoting the channel

between Alice and multiple colluding Eves. The elements of h

and G are independent zero-mean complex Gaussian random

variables. n and e are the additive white Gaussian noises at Bob

and Eves, respectively. Without loss of generality, we normalize

the variance of n to unity. We assume that h is accurately

estimated by Bob and is also known by Alice using a noiseless

feedback link from Bob.1 Similar to [21], we assume that

knowledge of both h and G is available at Eve, which makes

the secrecy of communication independent of the secrecy of

channel gains.

1A reliable feedback link could be achieved by using a low-rate transmission
with appropriate quantization schemes. The design of a high-quality feedback
link and the effect of noisy feedback are beyond the scope of this paper.
However, we will investigate the effect of imperfect channel knowledge at Alice
by considering channel estimation errors at Bob in Section VI.
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The key idea of guaranteeing secure communication using

artificial noise proposed in [21] is outlined as follows: We

let an NA × NA matrix W = [w1 W 2] be an orthonormal

basis of C
NA , where w1 = h†/‖h‖. The NA × 1 transmitted

symbol vector at Alice is given by x = w1u + W 2v, where

the variance of u is σ2
u, and the NA − 1 elements of v are

independent identically distributed (i.i.d.) complex Gaussian

random variables each with variance σ2
v . u represents the

information-bearing signal, and v represents the artificial noise.

The received symbols at Bob and Eves become

yB = hw1u + hW 2v + n = ‖h‖u + n (3)

yE = Gw1u + GW 2v + e = g1u + G2v + e (4)

where we have defined g1 = Gw1, and G2 = GW 2.

We consider a total power per transmission denoted by P ,

that is, P = σ2
u + (NA − 1)σ2

v . Due to the normalization of

the noise variance at Bob, we also refer to P as the transmit

SNR. One important design parameter is the ratio of power

allocated to the information-bearing signal and the artificial

noise. We denote the fraction of total power allocated to

the information signal as φ. Hence, we have the following

relationships:

σ2
u =φP (5)

σ2
v = (1 − φ)P/(NA − 1). (6)

Since h is known by Alice, she can adaptively change the

value of φ according to the instantaneous realization of h. We

refer to this strategy as the adaptive power allocation strategy.

Alternatively, Alice can choose a fixed value for φ, regardless

of the instantaneous channel realization, which we refer to as

the nonadaptive power allocation strategy. Note that Alice does

not know G and, thus, equally distributes the transmit power

among the artificial noise signal, as given by (6).

III. SECRECY CAPACITY LOWER BOUND

The secrecy capacity is the maximum transmission rate at

which the intended receiver can decode the data with arbitrarily

small error, whereas the mutual information between the trans-

mitted message and the received signal at the eavesdropper is

arbitrarily small. It is bounded by the difference in the capacity

of the channel between Alice and Bob and that between Alice

and Eve [2]. In this section, we derive a closed-form expression

for an ergodic secrecy capacity lower bound with transmission

of artificial noise.

The capacity of the channel between Alice and Bob is

given by

C1 =Eh

{

log2

(

1 + σ2
u‖h‖

2
)}

=Eh

{

log2

(

1 + φP‖h‖2
)}

. (7)

Without loss of generality, we normalize the variance of each

element of h to unity. It is then easy to see that ‖h‖2 follows

a Gamma distribution with parameters (NA, 1). Therefore, for

systems with nonadaptive power allocation strategy, we can

rewrite (7) in integral form as

C1 =
1

ln 2

∞
∫

0

ln(1 + φPx)xNA−1 exp(−x)

Γ(NA)
dx

=
1

ln 2
exp

( z

P

)

NA
∑

k=1

Ek

( z

P

)

(8)

where Γ(·) is the Gamma function, En(·) is the generalized

exponential integral, (8) is obtained using an integral identity

given in [25], and we have defined z = φ−1.

Next, we study the capacity of the channel between Alice and

the multiple colluding Eves. When multiple Eves are present,

the noise at each Eve may be different. In addition, the receiver

noise levels at Eves may not be known by Alice and Bob. To

guarantee secure communication, it is therefore reasonable to

consider the worst-case scenario where the noises at Eves are

arbitrarily small. Note that this approach was also taken in [22].

In this case, we can normalize the distance of each Eve to make

the variance of the elements of G equal to unity without loss of

generality.2

The noiseless eavesdropper assumption effectively gives an

upper bound on the capacity of the channel between Alice and

the multiple colluding Eves as

C2 = Eh,g
1
,G2

{

log2

∣

∣

∣
I + σ2

ug1g1
†
(

σ2
vG2G2

†
)−1

∣

∣

∣

}

= Eh,g
1
,G2

{

log2

(

1 +
NA − 1

z − 1
g1

†
(

G2G2
†
)−1

g1

)}

(9)

where we have again used z = φ−1. The expectation over h

in (9) is due to the fact that z may be dependent on h (which

happens when adaptive power allocation strategy is used). It

is required in (9) that G2G
†
2 is invertible, which is guaranteed

with the assumption of NA > NE . If the assumption is violated,

then the colluding eavesdroppers are able to eliminate the artifi-

cial noise, resulting in C2 = ∞. Hence, we assume NA > NE

for guaranteeing secure communication.

Since G has i.i.d. complex Gaussian entries, and W is a uni-

tary matrix, GW = [g1 G2] also has i.i.d. complex Gaussian

entries. Therefore, the elements of g1 and G2 are independent.

As a result, the quantity g
†
1(G2G

†
2)

−1g1 is equivalent to the

signal-to-interference ratio of a NE-branch MMSE diversity

combiner with NA − 1 interferers. The complementary cumu-

lative distribution function of X = g
†
1(G2G

†
2)

−1g1 is given in

[26] as

RX(x) =

∑NE−1

k=0

(

NA−1

k

)

xk

(1 + x)NA−1
. (10)

2With the noiseless eavesdropper assumption, the capacity between Alice
and each Eve is determined from the signal-to-artificial-noise ratio. Considering
the signal reception at a particular Eve, both the information signal and the
artificial noise are generated from the same source (Alice), and hence, their
ratio is independent of the large-scale fading from Alice to Eve. That is to
say, the signal-to-artificial-noise ratios are i.i.d. random variables for all Eves,
regardless of their distances from Alice.
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Therefore, we can rewrite (9) in integral form as

C2 = Eh

⎧

⎨

⎩

∞
∫

0

log2

(

1+
NA−1

z−1
x

)

fX(x)dx

⎫

⎬

⎭

= Eh

⎧

⎨

⎩

1

ln 2

∞
∫

0

NA−1

z−1

(

1+
NA−1

z−1
x

)−1

RX(x)dx

⎫

⎬

⎭

(11)

= Eh

{

1

ln 2

NE−1
∑

k=0

(

NA−1

k

)

×

∞
∫

0

(

z−1

NA−1
+x

)−1

(1+x)1−NAxkdx

}

= Eh

{

1

ln 2

NE−1
∑

k=0

(

NA−1

k

)

NA−1

z−1
B(k+1, NA−1−k)

× 2F1

(

1, k+1;NA;
z−NA

z−1

)

}

(12)

where fX(x) denotes the probability density function of

X , B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the beta function, and

2F1(·) is the Gauss hypergeometric function. Note that (11) is

obtained using integration by parts, and (12) is obtained using

an integration identity given in [27].

After deriving expressions for C1 and C2, a lower bound

on the ergodic secrecy capacity can now be obtained as C =
[C1 − C2]

+, where [α]+ = max{0, α}. This is a data rate that

can always be guaranteed for secure communication (without

knowing the noise level at Eves). For systems with adaptive

power allocation, the ergodic secrecy capacity lower bound is

given as

C =
1

ln 2

[

Eh

{

ln

(

1 +
P

z
‖h‖2

)

−

NE−1
∑

k=0

(

NA − 1

k

)

NA − 1

z − 1

× B(k + 1, NA − 1 − k) 2F1

(

1, k + 1;NA;
z − NA

z − 1

)

}]+

(13)

where z is a function of h. For systems with nonadaptive power

allocation, the ergodic secrecy capacity lower bound is given as

C =
1

ln 2

[

exp
( z

P

)

NA
∑

k=1

Ek

( z

P

)

−

NE−1
∑

k=0

(

NA − 1

k

)

NA − 1

z − 1

× B(k + 1, NA − 1 − k) 2F1

(

1, k + 1;NA;
z − NA

z − 1

)

]+

(14)

where z is a constant independent of h.

Fig. 1 shows the ergodic secrecy capacity lower bound C in

(14) for systems with different numbers of antennas. We see

that the presence of multiple colluding Eves dramatically re-

Fig. 1. Ergodic secrecy capacity lower bound C in (14) versus SNR P for
systems with different numbers of antennas. The ratio of power allocation is set
to φ = 0.5.

duces the secrecy rate compared with the case of noncolluding

Eves. Furthermore, the secrecy rate quickly reduces to zero at

low to moderate SNR.

In the following sections, we aim to give simplified or ap-

proximated expressions of the secrecy capacity lower bound in

two special scenarios. These expressions will be used to obtain

analytical results and useful insights on the optimal power

allocation in Section IV. Note that the derived approximation

may not be an achievable secrecy rate, although it is useful for

the design of power allocation.

A. Noncolluding Eavesdroppers

In the case where Eves cannot collude, we have NE = 1.

Then, C2 in (12) reduces to

C2 = Eh

{

1

ln 2

1

z−1
2F1

(

1, 1;NA;
z−NA

z−1

)}

= Eh

{

1

ln 2

(

NA−1

NA−z

)NA−1

×

(

ln

(

NA−1

z−1

)

−

NA−2
∑

l=1

1

l

(

NA−z

NA−1

)l
)}

(15)

where (15) is obtained using an identity for the Gauss hypergeo-

metric function derived in the Appendix. This can then be sub-

stituted into C = [C1 − C2]
+ to yield simplified expressions

for the ergodic secrecy capacity lower bound.

B. Large NA Analysis

C1 in (7) can be rewritten as

C1 =Eh

{

log2

(

1 +
P

z
‖h‖2

)}

= log2 NA + Eh

{

log2

(

1

NA

+
P

z

‖h‖2

NA

)}

. (16)
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The law of large numbers implies that limNA→∞ ‖h‖2/NA =
1. Hence, we focus on the nonadaptive power allocation strat-

egy where z is a constant. In the large NA limit, we have

lim
NA→∞

(C1 − log2 NA)

= lim
NA→∞

Eh

{

log2

(

1

NA

+
P

z

‖h‖2

NA

)}

= log2

P

z
. (17)

That is to say, the difference between C1 and log2 NA ap-

proaches log2(P/z) as NA increases. Therefore, in the large

NA regime, we have3

C1 = log2

(

NAP

z

)

+ o(1). (18)

From the law of large numbers, we also know that

limNA→∞ G2G
†
2/(NA − 1) = I . Using (9) with the nonadap-

tive power allocation strategy, we have

lim
NA→∞

C2

= lim
NA→∞

Eg
1
,G2

{

log2

(

1+
1

z−1
g1

†

(

G2G2
†

NA − 1

)−1

g1

)}

= Eg
1

{

log2

(

1+
1

z−1
‖g1‖

2

)}

=
1

ln 2
exp(z − 1)

NE
∑

k=1

Ek(z − 1) (19)

where ‖g1‖
2 has a Gamma distribution with parameters

(NE , 1). We can see from (19) that altering the number of

antennas in Alice does not affect the channel capacity between

Alice and Eves in the large NA limit.

The ergodic secrecy capacity lower bound in the large NA

regime is then given by

C =
1

ln 2

[

ln

(

NAP

z

)

−exp(z−1)

NE
∑

k=1

Ek(z−1)+o(1)

]+

.

(20)

In Section IV, we will use the expression (dropping o(1))
in (20) as an approximation of the secrecy capacity lower

bound for systems with large NA to study the optimal power

allocation.

Fig. 2 shows the ergodic secrecy capacity lower bound C in

(14) as well as its large NA approximation in (20). We see that

(14) converges to (20) as NA increases. The convergence is fast

for a small number of colluding Eves, e.g., NE = 2, and is slow

for a large number of colluding Eves, e.g., NE = 6.

3The notation f(x) = o(g(x)) implies that limx→∞(f(x)/g(x)) = 0.
This limit is taken w.r.t. NA in (18).

Fig. 2. Ergodic secrecy capacity lower bound C in (14) at 10 dB versus
the number of antennas at Alice NA for systems with different numbers of
colluding eavesdroppers. The large NA approximations of C in (20) are shown
as dashed lines. The ratio of power allocation is set to φ = 0.5.

IV. OPTIMAL POWER ALLOCATION

In this section, we study the optimal power allocation be-

tween the information-bearing signal and the artificial noise.

As we have discussed, the power allocation strategy can be

either adaptive or nonadaptive. The former depends on every

realization of the channel gain, whereas the latter is fixed

for all channel realizations. The objective function for this

optimization problem is the ergodic secrecy capacity lower

bound. The closed-form expressions derived in the previous

section greatly reduce the computational complexity of the

optimization process. In the following, we first study the case

of noncolluding eavesdroppers and then look at the case of

colluding eavesdroppers.

A. Noncolluding Eavesdropper Case

The optimal value of φ or z can easily be found numeri-

cally using the capacity lower bound expressions derived in

Section III. Moreover, these expressions enable us to analyti-

cally obtain useful insights into the optimal z in the high SNR

regime as follows.

In the high SNR regime, i.e., P ≫ 1, C1 in (7) can be

approximated as

C1 ≈Eh

{

log2

(

P

z
‖h‖2

)}

= Eh

{

log2(P‖h‖2)
}

− Eh{log2 z}. (21)

We see in (21) that Eh{log2(P‖h‖2)} is a constant, and

Eh{log2 z} does not directly depend on h, although z may

be a function of h. Therefore, the high SNR approximation

of the secrecy capacity lower bound does not have h in its

expression (except for the expectation over h). Consequently,

for any value of h, the optimal z that maximizes the high

SNR approximation of the secrecy capacity lower bound is the

same. In other words, the value of h is irrelevant in finding
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Fig. 3. Optimal ratio of power allocation φ versus SNR P for different
numbers of antennas at Alice NA. The nonadaptive power allocation strategy is
used. The values of φ are shown for SNRs at which the ergodic secrecy capacity
lower bound is positive.

the optimal power allocation. Therefore, the adaptive power

allocation strategy does not need to be considered at high SNR.

The optimal value of z in the high SNR regime satisfies

dC

dz
=

dC1

dz
−

dC2

dz
= −

1

z ln 2
−

dC2

dz
= 0 (22)

where the derivative of C2 w.r.t. z can be computed in closed-

form using (15).

In the special case of NA = 2, (22) reduces to

−
1

z
−

1

(z − 2)(z − 1)
+

ln(z − 1)

(z − 2)2
= 0. (23)

The solution to the preceding equation is given by z = 2. It

can be shown that limz→2(d
2C/dz2) < 0. Hence, the optimal

ratio of power allocation is given by φ = 0.5, that is to say,

equal power allocation between the information signal and the

artificial noise is the optimal strategy in the high SNR regime

for NA = 2.

For large NA, using (19) with NE = 1, we have

dC2

dz
=

1

ln 2
(exp(z − 1)E1(z − 1) − exp(z − 1)E0(z − 1))

=
1

ln 2

(

exp(z − 1)E1(z − 1) − (z − 1)−1
)

. (24)

Hence, the optimal value of z satisfies

−
1

z
− ez−1E1(z − 1) +

1

z − 1
= 0 (25)

which gives z = 1.80. It can be shown that at z = 1.80,

(d2C/dz2) < 0. Hence, the optimal ratio of power allocation is

given by φ = 0.55 in the high SNR regime for sufficiently large

NA. We see that the difference between the optimal values of

φ for the smallest NA (i.e., NA = 2) and asymptotically large

NA is very small.

Fig. 3 shows the optimal values of φ using the nonadaptive

power allocation strategy for systems with different numbers

Fig. 4. Ergodic secrecy capacity lower bound C in (14) versus SNR P for
different numbers of antennas at Alice NA. The nonadaptive power allocation
strategy is used. The ergodic secrecy capacity lower bound with equal power
allocation for each case, which is indicated by solid line, is also shown for
comparison.

of antennas at Alice NA. The values of φ are shown for SNRs

at which the ergodic secrecy capacity lower bound is positive.

The general trend is that more power needs to be allocated to

the information signal as the SNR or NA increases. In the high

SNR regime, we see that the optimal values of φ converge to

constant values. For NA = 2, the optimal value of φ converges

to 0.5, which agrees with our analytical result. Furthermore,

this constant value only increases slightly with NA, and the

maximum value is 0.55, which agrees with our large NA analy-

sis. These observations suggest that a near-optimal yet simple

power allocation strategy at moderate to high SNR values is the

equal power allocation between the information signal and the

artificial noise.

Fig. 4 shows the ergodic secrecy capacity lower bound C
in (14) with the optimized φ using the nonadaptive power al-

location strategy. For comparison, we also include the capacity

lower bound with equal power allocation, i.e., φ = 0.5, which is

indicated by solid lines. We see that the equal power allocation

strategy achieves nearly the same secrecy rate as the optimal

nonadaptive power allocation in all cases over a wide range

of SNR values. This confirms that equal power allocation is

a simple and generic strategy, which yields close to optimal

performance in terms of the derived achievable secrecy rate.

Fig. 5 shows the ergodic secrecy capacity lower bound C
in (13) and (14) with the optimized φ using both adaptive and

nonadaptive power allocation strategies. For adaptive power

allocation, we apply a linear search on φ to find the optimal

value that maximizes the secrecy capacity lower bound for each

realization of h. The maximum value of the secrecy capacity

lower bound for each channel realization is recorded, and the er-

godic secrecy capacity lower bound is then computed using the

distribution of h. We see that there is no difference between the

secrecy rate achieved by the adaptive and nonadaptive strategies

over a wide range of SNR values. The adaptive strategy only

gives marginal advantage when the secrecy rate is close to

zero. This result suggests that the nonadaptive power allocation
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Fig. 5. Ergodic secrecy capacity lower bound C in (13) and (14) versus
SNR P for different numbers of antennas at Alice NA. Both the adaptive
and nonadaptive power allocation strategies are used, which are indicated by
markers and lines, respectively.

strategy is sufficient to achieve almost the best possible secrecy

rate performance.4 For this reason, we will only focus on the

nonadaptive scheme in the rest of this paper.

B. Colluding Eavesdropper Case

As we have seen in Fig. 1, the presence of multiple colluding

Eves severely degrades the secrecy rate. Therefore, it is essen-

tial for Alice to have a relatively large number of antennas to

maintain a good secure communication link. For any value of

NE , the optimal value of φ or z can easily be found numerically

using the closed-form capacity lower bound expression given in

Section III. As the number of antennas at Alice is desired to be

large, we carry out large NA analysis to obtain an asymptotic

result on optimal z in the high SNR regime as follows.

In the high SNR regime with large NA, C in (20) can be

approximated as

C ≈
1

ln 2

[

ln(NAP ) − ln z − exp(z − 1)

NE
∑

k=1

Ek(z − 1)

]

.

(26)

By taking the derivative of C w.r.t. z, the optimal z satisfies

−
1

z
− ez−1ENE

(z − 1) +
1

z − 1
= 0. (27)

Using ez−1ENE
(z − 1) ≈ (z − 1 + NE)−1 from [28], which

is accurate when either NE or z is large, (27) reduces to

−
1

z
−

1

z − 1 + NE

+
1

z − 1
= 0. (28)

Hence, the optimal z is given by

z∗ = 1 +
√

NE . (29)

4The same result is found for the colluding Eves case. The numerical results
are omitted for brevity.

Fig. 6. Optimal ratio of power allocation φ versus SNR P for systems with
different numbers of colluding Eves NE . The values of φ are shown for SNRs
at which the ergodic secrecy capacity lower bound is positive.

From (29), we see that the optimal value of z only depends on

NE in the high SNR and large antenna regime. Moreover, (29)

suggests that more power should be used to generate artificial

noise when the number of Eves increases.

Fig. 6 shows the optimal value of φ for systems with different

numbers of colluding Eves NE . Similar to the noncolluding

Eves case, we see that more power should be used to transmit

the information signal as the SNR increases. The optimal value

of φ stays constant in the high SNR regime. Furthermore, the

optimal value of φ for the colluding Eves case is usually much

smaller than 0.5, i.e., equal power allocation, which is near

optimal for noncolluding Eves case. In particular, the optimal

φ reduces as NE grows, which implies that more power should

be allocated to generate the artificial noise as the number of

colluding Eves increases. This observation agrees with our

analytical insight and intuition.

Fig. 7 shows the ergodic secrecy capacity lower bound C
in (14) for systems with different NE . Here, we investigate

sensitivity in the secrecy rate to the design of power allocation.

Consider a scenario where the total number of Eves that can

collude is 8, and hence, Alice has optimized φ for NE = 8.

When NE changes, the power allocation parameter φ does not

need to be optimized again as long as NE stays reasonably close

to 8, e.g., NE = 6, since the value of φ optimized for NE = 8
still works well for NE = 6 (with a power loss of 0.2 dB), as

shown in Fig. 7. However, redesigning of φ becomes important

when NE is considerably different from 8, e.g., NE = 2 to 4.

For example, if NE changes from 8 to 4, then a power loss of

approximately 1 dB will incur if Alice still uses the value of φ
optimized for NE = 8, as shown in Fig. 7.

We also provide numerical verification of the optimal power

allocation obtained from the large antenna approximation in the

high SNR regime. Fig. 8 shows the ratio of power allocation

φ at 20 dB versus the number of antennas at Alice NA for

systems with different numbers of colluding Eves NE . For a

fixed NE , we see that the optimal value of φ increases with

NA and reaches a constant value when NA is sufficiently large.

This agrees with our analytical insight that the optimal power
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Fig. 7. Ergodic secrecy capacity lower bound C in (14) versus SNR P for
systems with different numbers of colluding Eves NE . The solid lines with
markers indicate C achieved with optimal values of φ for the corresponding
system. The dashed lines indicate C achieved with value of φ optimized for
NE = 8, which represents the case where the power allocation was initially
designed for NE = 8, but the current value of NE reduces from 8, and the
power allocation is not redesigned.

Fig. 8. Ratio of power allocation φ at 20 dB versus the number of antennas
at Alice NA for systems with different numbers of colluding Eves NE . The
solid lines with markers indicate optimal values of φ, whereas the dashed lines
indicate the values of φ from the large antenna approximation given in (29).

allocation depends on NE but not on NA when NA is large. The

asymptotic constant value of φ is close to the analytical value

given in (29) obtained from the large antenna approximation.

In the system model, we have assumed fixed power transmis-

sion over time. When variable power transmission is allowed

subject to an average power constraint, the achievable secrecy

rate can be increased by having temporal power allocation

according to the channel gain at each time instant. From the

derived secrecy rate expression, we see that the transmit power

only affects the transmission rate between Alice and Bob. The

existing study on the point-to-point channel capacity, e.g., in

[29], showed that the temporal power optimization gives little

capacity gain, provided that the spatial power optimization is

used.

In reality, noise is always present at the eavesdroppers,

and hence, the designed power allocation strategy is not the

optimal strategy in practice. If the eavesdroppers’ noise levels

are known to the transmitter and, hence, are taken into account

in the secrecy rate expression, the efficiency of using artificial

noise in degrading the capacity between Alice and Eve is

reduced. Therefore, more power should be used to transmit the

information signal.

V. CRITICAL SIGNAL-TO-NOISE RATIO

FOR SECURE COMMUNICATIONS

Another important aspect of secure communication is the

minimum SNR required for a positive secrecy rate, which is

a critical parameter in wideband communications. With the

closed-form expression of the secrecy capacity lower bound

derived in Section III, one can numerically find the critical SNR

with low computational complexity. In this section, we derive a

closed-form upper bound on the critical SNR, which is useful

in the design of wideband communications.

Using properties of the exponential integral function in [28],

(8) can be bounded as

C1 >
1

ln 2

NA
∑

k=1

1
z
P

+ k
(30)

which is asymptotically tight as the SNR approaches zero, i.e.,

P → 0. Using the convexity of (30) in k, we can further bound

C1 as

C1 >
1

ln 2

NA

z
P

+ NA+1

2

(31)

which is also asymptotically tight as the SNR approaches zero.

Using the lower bound on C1 in (31) and C2 in (12), the ergodic

secrecy capacity lower bound can further be bounded as

C >
1

ln 2

NA

z
P

+ NA+1

2

−
1

ln 2

NE−1
∑

k=0

(

NA − 1

k

)

NA − 1

z − 1

× B(k + 1, NA − 1 − k) 2F1

(

1, k + 1;NA;
z − NA

z − 1

)

.

(32)

The critical SNR, which is denoted by PC , is the SNR at

which C drops to zero. With the lower bound on C given

in (32), an upper bound on PC can be found in (33), shown

at the bottom of the next page. In the case of noncolluding

eavesdroppers, i.e., NE = 1, (33) reduces to (34), also shown

at the bottom of the next page. The upper bound in (33) or (34)

indicates a minimum SNR that guarantees a positive secrecy

rate. Since (33) and (34) are asymptotically tight at low SNR,

they can be used to fine tune the power allocation parameter z to

minimize PC .

Fig. 9 shows the critical SNR PC versus number of antennas

at Alice NA for systems with different numbers of colluding

Eves NE . The power allocation is set to φ = 0.2 in all cases.

The general trend is that PC decreases as NA increases, and a
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Fig. 9. Critical SNR PC versus number of antennas at Alice NA for systems
with different numbers of colluding Eves NE . The ratio of power allocation is
set to φ = 0.2. The solid lines with markers indicate the exact value of PC ,
whereas the dashed lines indicate the analytical upper bound given in (33).

higher PC is required when NE increases. These observations

agree with intuition. Furthermore, we see that the analytical

upper bound on PC is very accurate for the case of noncolluding

Eves. For the case of colluding Eves, the upper bound is

reasonably accurate when PC < 0 dB. The difference between

the exact value of PC and its upper bound gradually increases

as NE increases, which is mainly due to the increase in PC .

When NE is relatively large, e.g., NE = 6, one should allocate

more power to generate the artificial noise (i.e., reduce φ), as

suggested in Fig. 6, to achieve a lower PC , which in turn makes

the bound tighter.

VI. EFFECT OF IMPERFECT

CHANNEL STATE INFORMATION

So far, we have assumed that the CSI can perfectly be

obtained at Alice and Bob. In this section, we investigate

the effect of imperfect CSI by considering channel estimation

errors. With imperfect CSI, the beamforming transmission from

Alice to Bob is designed based on the estimated channel gains

rather than the true channel gains. Therefore, the artificial noise

leaks into Bob’s channel.

To incorporate imperfect CSI, we consider that Bob performs

MMSE channel estimation. Therefore, we have

h = ĥ + h̃ (35)

σ2
h =σ2

ĥ
+ σ2

h̃
(36)

where ĥ denotes the channel estimate, and h̃ denotes the

estimation error. σ2
h denotes the variance of each element in

h. σ2

ĥ
and σ2

h̃
denote the variance of each element in ĥ and

h̃, respectively. As a general property of the MMSE estimator

for Gaussian signals [30], ĥ and h̃ are uncorrelated, with each

having i.i.d. complex Gaussian entries.

Similar to our system model in Section II, we assume that

knowledge of ĥ is available at Alice and Eves. Therefore, the

beamforming vector becomes w1 = ĥ
†
/‖ĥ‖, and the received

symbol at Bob is given by

yB = ĥx + h̃x + n = ‖ĥ‖u + h̃W [u vT ]T + n. (37)

A capacity lower bound for the channel between Alice and

Bob can be obtained by considering h̃W [u vT ]T + n as the

worst-case Gaussian noise [31]. Note that W is a unitary ma-

trix; hence, h̃W has the same distribution as h̃ [32]. Therefore,

the ergodic capacity lower bound for the channel between Alice

and Bob is given by

Ĉ1 = E
ĥ

{

log2

(

1 +
σ2

u‖ĥ‖
2

σ2

h̃
P + 1

)}

. (38)

With σ2
h normalized to unity, we have σ2

ĥ
= 1 − σ2

h̃
. Since

the elements of ĥ are i.i.d. complex Gaussian, ‖ĥ‖2 is a sum of

i.i.d. exponential distributed random variables, which follows a

Gamma distribution with parameter (NA, 1 − σ2

h̃
). Therefore,

we obtain a closed-form expression for Ĉ1 as

Ĉ1 =
1

ln 2
exp

(

z
σ2

h̃
+ P−1

1 − σ2

h̃

)

NA
∑

k=1

Ek

(

z
σ2

h̃
+ P−1

1 − σ2

h̃

)

.

(39)

The presence of channel estimation errors does not affect

the signal reception at Eve given in (4). Therefore, the ergodic

PC < z

[

NA
∑NE−1

k=0

(

NA−1

k

)

NA−1

z−1
B(k + 1, NA − 1 − k) 2F1

(

1, k + 1;NA; z−NA

z−1

) −
NA + 1

2

]−1

(33)

PC < z

⎡

⎢

⎢

⎣

NA
(

NA−1

NA−z

)NA−1
(

ln
(

NA−1

z−1

)

−
∑NA−2

l=1
1

l

(

NA−z
NA−1

)l
) −

NA + 1

2

⎤

⎥

⎥

⎦

−1

(34)
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secrecy capacity lower bound can be obtained by subtracting

C2 from Ĉ1 as

C =
1

ln 2

[

exp

(

z
σ2

h̃
+ P−1

1 − σ2

h̃

)

NA
∑

k=1

Ek

(

z
σ2

h̃
+ P−1

1 − σ2

h̃

)

−

NE−1
∑

k=0

(

NA − 1

k

)

NA − 1

z − 1
B(k + 1, NA − 1 − k)

× 2F1

(

1, k + 1;NA;
z − NA

z − 1

)

]+

. (40)

Following the steps in Section V, we can also bound C to

obtain an upper bound on the critical SNR for secure commu-

nication with channel estimation errors as

C >
1

ln 2

NA

z
σ2

h̃
+P−1

1−σ2

h̃

+ NA+1

2

−
1

ln 2

NE−1
∑

k=0

(

NA − 1

k

)

NA − 1

z − 1

× B(k + 1, NA − 1 − k) 2F1

(

1, k + 1;NA;
z − NA

z − 1

)

.

(41)

The upper bound on the critical SNR is then given in (42),

shown at the bottom of the page, which is asymptotically tight

at low SNR.

We now present numerical results on the optimal power

allocation as well as the critical SNR in the presence of channel

estimation errors. For brevity, we focus on the case of non-

colluding eavesdroppers. The trends on the effect of channel

estimation errors observed in the following results also apply to

the case of colluding eavesdroppers.

Fig. 10 shows the optimal ratio of power allocation φ with

different channel estimation error variances σ2

h̃
. We see that the

channel estimation error has noticeable impact on the value

of φ, particularly for a small number of antennas at Alice,

e.g., NA = 2. The general trend is that less power should be

allocated to information signal as the channel estimation error

increases. This is mainly due to the fact that the efficiency

of improving Bob’s signal reception by boosting the trans-

mit power of the information signal reduces as the channel

estimation error increases. On the other hand, the efficiency

of degrading Eve’s signal reception by boosting the transmit

power of the artificial noise stays the same, regardless of the

channel estimation error. Hence, it is better to create more noise

for Eves than to increase the signal strength for Bob if the CSI

is not accurately obtained.

In practical systems, the channel estimation error usually

reduces as the SNR increases, although their exact relationship

depends on the training design. From Fig. 10, we can expect

Fig. 10. Optimal ratio of power allocation φ versus SNR P for different
numbers of antennas at Alice NA and different variances of the channel
estimation errors σ2

h̃
. The values of φ are shown for SNRs at which the ergodic

secrecy capacity lower bound is positive.

TABLE I
CRITICAL SNR (IN DECIBELS) FOR SECURE COMMUNICATIONS WITH

EQUAL POWER ALLOCATION

that at low to moderate SNR, where the channel estimation

error is usually noticeable, the optimal power allocation is very

different from that in the perfect CSI case. While at high SNR,

where the channel estimation error is usually small, the optimal

power allocation is expected to be very close to that of the

perfect CSI case. Therefore, in practical systems, it is important

to take channel estimation error into account when designing

the power allocation at relatively low SNR.

Table I lists the exact values of the critical SNR PC , as well

as the closed-form upper bound given in (42) with φ = 0.5. The

general trend is that the critical SNR increases as the channel

estimation error increases, which agrees with intuition. The

upper bound gets tighter as PC reduces (or NA increases) and

is accurate for NA ≥ 4, with an error of less than 1 dB.

VII. CONCLUSION

In this paper, we have considered secure communica-

tion in the wireless fading environment in the presence of

PC <

[

1 − σ2

h̃

z

(

NA
∑NE−1

k=0

(

NA−1

k

)

NA−1

z−1
B(k + 1, NA − 1 − k) 2F1

(

1, k + 1;NA; z−NA

z−1

) −
NA + 1

2

)

− σ2

h̃

]−1

(42)
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noncolluding or colluding eavesdroppers. The transmitter is

equipped with multiple antennas and is able to simultaneously

transmit an information signal to the intended receiver and arti-

ficial noise to confuse the eavesdroppers. We obtained a closed-

form expression for the ergodic secrecy capacity lower bound.

We studied the optimal power allocation between transmission

of the information signal and the artificial noise. In particular,

equal power allocation was shown to be a near-optimal strategy

in the case of noncolluding eavesdroppers. When the number

of colluding eavesdroppers increases, more power should be

used to generate artificial noise. We also derived an upper bound

on the critical SNR, above which, the secrecy rate is positive,

and this bound was shown to be tight at low SNR. When

imperfect CSI was considered in the form of channel estimation

errors, we found that it is wise to create more artificial noise to

confuse the eavesdroppers than to increase the signal strength

for the intended receiver. The results obtained in this paper

provide various insights into the design and analysis of secure

communication with multiantenna transmission.

APPENDIX

IDENTITY FOR A SPECIAL CLASS OF GAUSS

HYPERGEOMETRIC FUNCTION

Here, we obtain a simplified expression for the Gauss hy-

pergeometric function in the form of 2F1(1, 1;N + 1;x) or

2F1(N,N ;N + 1;x) for the integer N ≥ 1. From [28], we

know that these two forms of the Gauss hypergeometric func-

tion are related to each other by

2F1(1, 1;N + 1;x) = (1 − x)N−1
2F1(N,N ;N + 1;x).

(43)

In addition, we know from [28] that

dN−1

dxN−1 2F1(1, 1; 2;x)=
(1)N−1(1)N−1

(2)N−1
2F1(N,N ;N + 1;x)

where (a)b is the rising factorial. Therefore, we have

2F1(N,N ;N + 1;x)

=
(2)N−1

(1)N−1(1)N−1

dN−1

dxN−1 2F1(1, 1; 2;x)

= −
N

(N − 1)!

N−1
∑

l=0

(

N − 1

l

)

dl

dxl
ln(1 − x)

dN−1−l

dxN−1−l
x−1

(44)

where we have used the identity 2F1(1, 1; 2;x) = − ln(1 −
x)/x from [28]. It is easy to show that

dk

dxk
ln(1 − x) = −

dk−1

dxk−1
(1 − x)−1

= −
(k − 1)!

(1 − x)k
, k = 1, 2, 3, . . .

dk

dxk
z−1 =

(−1)kk!

xk+1
, k = 0, 1, 2, 3, . . . .

Substituting the above expressions for the derivatives into (44),

we obtain an identity expression as

2F1(N,N ;N+1;x)

= −
N

(N−1)!

×

(

ln(1−x)
(−1)N−1(N−1)!

zN

−q

N−1
∑

l=1

(N−1)!

l!(N−1−l)!

(l−1)!

(1−x)l

(−1)N−1−l(N−1−l)!

xN−l

)

=
(−1)NN

xN

(

ln(1−x)−

N−1
∑

l=1

1

l

xl

(x−1)l

)

. (45)

Using (43), we also have

2F1(1, 1;N + 1;x)

=
(−1)NN(1 − x)N−1

xN

(

ln(1 − x) −

N−1
∑

l=1

1

l

xl

(x − 1)l

)

.

(46)
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