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Secure Transmission With Multiple Antennas I:
The MISOME Wiretap Channel
Ashish Khisti, Member, IEEE, and Gregory W. Wornell, Fellow, IEEE

Abstract—The role of multiple antennas for secure communi-
cation is investigated within the framework of Wyner’s wiretap
channel. We characterize the secrecy capacity in terms of gener-
alized eigenvalues when the sender and eavesdropper have mul-
tiple antennas, the intended receiver has a single antenna, and the
channel matrices are fixed and known to all the terminals, and
show that a beamforming strategy is capacity-achieving. In addi-
tion, we study a masked beamforming scheme that radiates power
isotropically in all directions and show that it attains near-optimal
performance in the high SNR regime. Insights into the scaling be-
havior of the capacity in the large antenna regime as well as exten-
sions to ergodic fading channels are also provided.

Index Terms—Artificial noise, broadcast channel, cryptography,
generalized eigenvalues, masked beamforming, MIMO systems,
multiple antennas, secrecy capacity, secure space-time codes,
wiretap channel.

I. INTRODUCTION

M ULTIPLE-ELEMENT antenna arrays are finding
growing use in wireless communication networks.

Much research to date has focused on the role of such arrays
in enhancing the throughput and robustness for wireless com-
munication systems. By contrast, this paper focuses on the role
of such arrays in a less explored aspect of wireless systems,
enhancing security. Specifically, we develop and optimize
physical layer techniques for using multiple antennas to protect
digital transmissions from potential eavesdroppers, and analyze
the resulting performance characteristics.

A natural framework for protecting information at the
physical layer is the so-called wiretap channel introduced by
Wyner [1] and associated notion of secrecy capacity. In the
basic wiretap channel, there are three terminals, one sender,
one receiver, and one eavesdropper. Wyner’s original treatment
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established the secrecy capacity for the case where the under-
lying broadcast channel between the sender and the receiver
and eavesdropper is a degraded one. Subsequent work general-
ized this result to nondegraded discrete memoryless broadcast
channels [2], and applied it to the basic Gaussian channel [3].

Motivated by emerging wireless communication applica-
tions, there is growing interest in extending the basic Gaussian
wiretap channel to the case when the terminals have multiple
antennas; see, e.g., [4]–[12] and the references therein. While in
principle the secrecy capacity for such nondegraded broadcast
channels is developed in [2] by Csiszár and Körner, the solution
is in terms of an optimized auxiliary random variable and has
been prohibitively difficult to explicitly evaluate. Thus, such
characterizations of the solution have not proved particularly
useful in practice.

In this paper, we investigate practical characterizations for the
specific scenario in which the sender and eavesdropper have
multiple antennas, but the intended receiver has a single an-
tenna. We refer to this configuration as the multi-input, single-
output, multi-eavesdropper (MISOME) case. It is worth em-
phasizing that the multiple eavesdropper antennas can corre-
spond to a physical multiple-element antenna array at a single
eavesdropper, a collection of geographically dispersed but per-
fectly colluding single-antenna eavesdroppers, or related varia-
tions. We note that the case where there are multiple non-col-
luding eavesdroppers has been recently been studied as a com-
pound wire-tap channel problem [13], [14]. Furthermore, in the
companion paper [15], we treat the multi-input, multi-output,
multi-eavesdropper (MIMOME) case.

We first develop the secrecy capacity when the complex
channel gains are fixed and known to all the terminals. A
novel aspect of our derivation is our approach to (tightly)
upper bounding the secrecy capacity for the wiretap channel.
Our result thus indirectly establishes the optimum choice of
auxiliary random variable in the secrecy capacity expression of
[2], addressing an open problem.

The capacity achieving scheme requires that the sender and
the intended receiver have knowledge of the eavesdropper’s
channel (and thus number of antennas as well), which is often
not practical. We also analyze a masked beamforming scheme
described in [4], [5]. This scheme is “semi-blind”, i.e., the
eavesdropper’s channel knowledge is not used in choosing the
transmit directions but used in selecting the rate.

In addition we study the secrecy capacity in two regimes: the
high SNR regime and the limit of many antennas. In the high
SNR regime, we show that the masked beamforming scheme
achieves a rate that is close to the capacity achieving scheme. In
the limit of many antennas we observe a that a critical threshold
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for the ratio of eavesdropping antennas to transmitting antennas.
Above this threshold, the secrecy capacity equals zero (almost
surely), whereas below this threshold the secrecy capacity re-
mains positive. The masked beamforming scheme also exhibits
a similar threshold.

Our results extend to the case of time-varying channels. We
focus on the case of fast (ergodic, Rayleigh) fading, where the
message is transmitted over a block that is long compared to
the coherence time of the fading. In our model the state of the
channel to the receiver is known by all three parties (sender,
receiver, and eavesdropper), but the state of the channel to the
eavesdropper is known only to the eavesdropper. Building on
techniques developed for the single transmitter antenna wiretap
problems [8], [9], we develop upper and lower bounds on the
secrecy capacity both for finitely many antennas and in the large
antenna limit.

As a final comment, we note that the idea of protecting infor-
mation at the physical layer (rather than the application layer)
is not a conventional approach in contemporary cryptography.
Indeed, the common architecture today has the lower network
layers focus on providing a noiseless public bit-pipe and the
higher network layers focus on enabling privacy via the ex-
change and distribution of encryption keys among legitimate
parties prior to the commencement of communication. As dis-
cussed in [7], [9], [16], and [17], for many emerging applica-
tions, existing key distribution methods are difficult to exploit
effectively. In such cases, physical-layer mechanisms such as
those developed in this paper constitute a potentially attractive
alternative approach to providing transmission security.

The organization of the paper is as follows. Section II sum-
marizes some convenient notation used in the paper and some
mathematical preliminaries. Section III describes the channel
and system model of interest. Section IV states all the main re-
sults of the paper. The proofs of our results appear in subsequent
sections and the more technical details are provided in the Ap-
pendices. Section V provides an alternate upper bound while
Section VI provides the secrecy capacity. Our analysis of the
masked beamforming scheme is provided in Section VII while
the scaling laws of the secrecy capacity and the masked beam-
forming scheme are provided in Section VIII. The extension to
ergodic fading channels with only intended receiver’s channel
state information is treated in Sections IX and X contains some
concluding remarks.

II. PRELIMINARIES

A. Notation

Bold upper and lower case characters are used for matrices
and vectors, respectively. Random variables are distinguished
from realizations by the use of san-serif fonts for the former
and seriffed fonts for the latter. And we generally reserve the
symbols for mutual information, for entropy, and for
differential entropy. All logarithms are base-2 unless otherwise
indicated.

The set of all -dimensional complex-valued vectors is de-
noted by , and the set of -dimensional matrices is de-
noted using . Matrix transposition is denoted using the

superscript , and the Hermitian (i.e., conjugate) transpose of a
matrix is denoted using the superscript . Moreover, de-
notes the null space of its matrix argument, and and
denote the trace and determinant of a matrix, respectively. The
notation means that is a positive semidefinite matrix
and we reserve the symbol to denote the identity matrix, whose
dimensions will be clear from the context.

A sequence of length is either denoted by or
sometimes more succinctly as ; in addition, we sometimes
need notation the for a sequence .

Finally, denotes a zero-mean circularly-symmetric
complex Gaussian distribution with covariance , and we use
the notation throughout the paper.

B. Generalized Eigenvalues

Many of our results arise out of generalized eigenvalue anal-
ysis. We summarize the properties of generalized eigenvalues
and eigenvectors we require in the sequel. For more extensive
developments of the topic, see, e.g., [18] and [19].

Definition 1 (Generalized Eigenvalues): For a Hermitian ma-
trix and positive definite1 matrix , we
refer to as a generalized eigenvalue-eigenvector pair of

if satisfy

(1)

Since in Definition 1 is invertible, first note that generalized
eigenvalues and eigenvectors can be readily expressed in terms
of regular ones. Specifically:

Fact 1: The generalized eigenvalues and eigenvectors of the
pair are the regular eigenvalues and eigenvectors of the
matrix .

Other characterizations reveal more useful properties for our
development. For example, we have the following:

Fact 2 (Variational Characterization): The generalized
eigenvectors of are the stationary point solution to a
particular Rayleigh quotient. Specifically, the largest general-
ized eigenvalue is the maximum of the Rayleigh quotient2

(2)

and the optimum is attained by the eigenvector corresponding
to .

The case when has rank one is of special interest to us.
In this case, the generalized eigenvalue admits a particularly
simple expression:

Fact 3 (Quadratic Form): When in Definition 1 has rank
one, i.e., for some , then

(3)

1When � is singular, we replace � with a pair ��� �� that satisfies ����� �
�����. A solution for which � �� � and � � � corresponds to an infinite eigen-
vector. Generalized eigenvalues and eigenvectors also arise in simultaneous di-
agonalization of ����� [18].

2Throughout the paper, we use � to denote the largest eigenvalue.
Whether this is a regular or generalized eigenvalue will be clear from context,
and when there is a need to be explicit, the relevant matrix or matrices will be
indicated as arguments. The Rayleigh quotient is defined as the argument of
the maxima in (2).
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III. CHANNEL AND SYSTEM MODEL

The MISOME channel and system model is as follows. We
use and to denote the number of sender and eavesdropper
antennas, respectively; the (intended) receiver has a single an-
tenna. The signals observed at the receiver and eavesdropper,
respectively, are, for

(4)

where is the transmitted signal vector,
and are complex channel gains, and and

are independent identically-distributed (i.i.d.) circularly-
symmetric complex-valued Gaussian noises:
and . Moreover, the noises are independent,
and the input satisfies an average power constraint of , i.e.,

(5)

Finally, except when otherwise indicated, all channel gains are
fixed throughout the entire transmission period, and are known
to all the terminals.

Communication takes place at a rate in bits per channel
use over a transmission interval of length . Specifically, a

code for the channel consists of a message uni-
formly distributed over the index set ,
an encoder that maps the message
to the transmitted (vector) sequence , and a de-
coding function that maps the received
sequence to a message estimate . The error event
is , and the amount of information ob-
tained by the eavesdropper from the transmission is measured
via the equivocation .

Definition 2 (Secrecy Capacity): A secrecy rate
is achievable if there exists a sequence of
codes such that and the equivocation term

where approaches zero as
. The secrecy capacity is the supremum of all achiev-

able secrecy-rates.
Note that our notion of secrecy capacity follows [1]–[3] in

requiring a vanishing per-symbol mutual information for the
eavesdropper’s channel (hence, the normalization by in Defi-
nition 2). Practically, this means that while the eavesdropper is
unable to decode any fixed fraction of the message bits, it does
not preclude the possibility of decoding a fixed number (but van-
ishing fraction) of the message bits.

Maurer and Wolf [20] (see also [21]) have observed that for
discrete memoryless channels, the secrecy capacity is not re-
duced even when one imposes the stronger requirement that

as . However, we remark in advance
that it remains an open question whether a similar result holds
for the Gaussian case of interest in this work.

IV. MAIN RESULTS

The MISOME wiretap channel is a nondegraded broadcast
channel. In Csiszár and Körner [2], the secrecy capacity of the

nondegraded discrete memoryless broadcast channel is
expressed in the form

(6)

where is an auxiliary random variable over a certain alphabet
that satisfies the Markov relation . More-
over, the secrecy capacity (6) readily extends to the continuous
alphabet case with a power constraint, so it also gives a charac-
terization of the MISOME channel capacity.

Rather than attempting to solve for the optimal choice of
and in (6) directly to evaluate this capacity,3 we consider an
indirect approach based on a useful upper bound as the converse,
which we describe next. We note in advance that, as described
in [10], our upper bound has the added benefit that it extends
easily to the MIMOME case (i.e., when the receiver has multiple
antennas).

A. Upper Bound on Achievable Rates

A key result is the following upper bound, which we derive
in Section V.

Theorem 1: An upper bound on the secrecy capacity for the
MISOME channel model is

(7)

where with and

(8)

and where

(9)

with

(10)

To obtain this bound, we consider a genie-aided channel in
which the eavesdropper observes but the receiver observes
both and . Such a channel clearly has a capacity larger than
the original channel. Moreover, since it is a degraded broadcast
channel, the secrecy capacity of the genie-aided channel can
be easily derived and is given by (cf. [1])
where the maximum is over the choice of input distributions.
As we will see, it is straightforward to establish that the
maximizing input distribution is Gaussian (in contrast to the
original channel). Next, while the secrecy capacity of the
original channel depends only on the marginal distributions

and (see, e.g., [2]), mutual information
for the genie-aided channel depends on the joint distribution

. Accordingly we obtain the tightest such upper bound

3The direct approach is explored in, e.g., [11] and [12], where the difficulty
of performing this optimization is reported even when restricting � to be
singular (a deterministic mapping) and/or the input distribution to be Gaussian.
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by finding the joint distribution (having the required marginal
distributions), whence (7).

The optimization (7) can be carried out analytically, yielding
an explicit expression, as we now develop.

B. MISOME Secrecy Capacity

The upper bound described in the preceding section is achiev-
able, yielding the MISOME channel capacity. Specifically, we
have the following theorem, which we prove in Section VI-A.

Theorem 2: The secrecy capacity of the channel (4) is

(11)

with denoting the largest generalized eigenvalue of its ar-
gument pair. Furthermore, the capacity is obtained by beam-
forming (i.e., signaling with rank one covariance) along the di-
rection of the4 generalized eigenvector corresponding to

with an encoding of the message using a code for the scalar
Gaussian wiretap channel.

We emphasize that the beamforming direction in Theorem 2
for achieving capacity will in general depend on all of the target
receiver’s channel , the eavesdropper’s channel , and
the SNR ( ). In the high SNR regime, the MISOME capacity
(11) exhibits one of two possible behaviors, corresponding to
whether

(12)

is finite or infinite, which depends on whether or not has a
component in the null space of . Specifically, we have the
following corollary, which we prove in Section VI-B.

Corollary 1: The high SNR asymptote of the secrecy capacity
(11) takes the form

(13a)

(13b)

where denotes the projection matrix onto the null space of
, i.e.,

where is a matrix whose columns constitute an orthonormal
basis for the null space of .

This behavior can be understood rather intuitively. In partic-
ular, when , as is typically the case when the eaves-
dropper uses enough antennas ( ) or the intended re-
ceiver has an otherwise unfortunate channel, the secrecy ca-
pacity saturates to a constant as . In essence, while
more transmit power is advantageous to communication to the
intended receiver, it is also advantageous to the eavesdropper,
resulting in diminishing returns.

By contrast, when , as is typically the case
when, e.g., the eavesdropper uses insufficiently many antennas

4If there is more than one generalized eigenvector for � , we choose any
one of them.

( ) unless the eavesdropper has an otherwise unfor-
tunate channel, the transmitter is able to steer a null to the
eavesdropper without simultaneously nulling the receiver, and,
thus, capacity grows by 1 b/s/Hz with every 3 dB increase in
transmit power as it would if there were no eavesdropper to
contend with. The MISOME capacity (11) is also readily spe-
cialized to the low SNR regime, as we develop in Section VI-C,
and takes the following form.

Corollary 2: The low SNR asymptote of the secrecy capacity
is

(14)

In this low SNR regime, the direction of optimal beam-
forming vector approaches the (regular) eigenvector corre-
sponding to the largest (regular) eigenvalue of .
Note that the optimal direction is in general not along . Thus,
ignoring the eavesdropper is in general not an optimal strategy
even at low SNR.

C. Masked Beamforming

In our basic model, the channel gains are fixed and known to
all the terminals. Our capacity-achieving scheme in Theorem 2
uses the knowledge of for selecting the beamforming direc-
tion. However, in many applications, it may be difficult to know
the eavesdropper’s channel. Accordingly, in this section we an-
alyze a simple alternative scheme that uses only knowledge of

in choosing the transmit directions, yet achieves near-optimal
performance in the high SNR regime.

The scheme we analyze is a masked beamforming scheme de-
scribed in [4], [5]. In this scheme, the transmitter signals isotrop-
ically (i.e., with a covariance that is a scaled identity matrix), and
as such can be naturally viewed as a “secure space-time code.”
More specifically, it simultaneously transmits the message (en-
coded using a scalar Gaussian wiretap code) in the direction cor-
responding to the intended receiver’s channel while transmit-
ting synthesized spatio-temporal white noise in the orthogonal
subspace (i.e., all other directions).

The performance of masked beamforming is given by the fol-
lowing proposition, which is proved in Section VII-A.

Proposition 1 (Masked Beamforming Secrecy Rate): A rate
achievable by the masked beamforming scheme for the MI-
SOME channel is

(15)

While the rate (15) is, in general, suboptimal, it asymptoti-
cally near-optimal in the following sense, as developed in Sec-
tion VII-B.

Theorem 3: The rate achievable by masked beam-
forming scheme for the MISOME case [cf. (15)] satisfies

(16)
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Fig. 1. Performance over an example MISOME channel with � � � transmit antennas. The successively lower solid curves give the secrecy capacity for � � �

and � � � eavesdropper antennas, respectively, and the dotted curves indicat the corresponding high-SNR asymptote. The dashed curves give the corresponding
rates achievable by masked beamforming.

From the relation in (16) we note that, in the high SNR
regime, the masked beamforming scheme achieves a rate
of , where is the number of transmit antennas.
Combining (16) with (13), we see that the asymptotic masked
beamforming loss is at most , or equivalently

in SNR. Specifically

.
(17)

That at least some loss (if vanishing) is associated with
the masked beamforming scheme is expected, since the ca-
pacity-achieving scheme performs beamforming to concentrate
the transmission along the optimal direction, whereas the
masked beamforming scheme uses isotropic inputs. As one
final comment, note that although the covariance structure of
the masked beamforming transmission does not depend on the
eavesdropper’s channel, the rate of the base (scalar Gaussian
wiretap) code does, as (15) reflects. In practice, the selection
of this rate determines an insecurity zone around the sender,
whereby the transmission is secure from eavesdroppers outside
this zone, but insecure from ones inside.

D. Example

In this section, we illustrate the preceding results for a typical
MISOME channel. In our example, there are transmit
antennas, and eavesdropper antennas. The channel to
the receiver is

while the channel to the eavesdropper is

(18)

where .
Fig. 1 depicts communication rate as a function of SNR. The

upper and lower solid curves depict the secrecy capacity (11)
when the eavesdropper is using one or both its antennas, respec-
tively.5 As the curves reflect, when the eavesdropper has only
a single antenna, the transmitter can securely communicate at
any desired rate to its intended receiver by using enough power.
However, by using both its antennas, the eavesdropper caps the
rate at which the transmitter can communicate securely regard-
less of how much power it has available. Note that the lower and
upper curves are representative of the cases where is, and
is not , respectively.

Fig. 1 also shows other curves of interest. In particular, using
dotted curves we superimpose the secrecy capacity high-SNR
asymptotes as given by (13). As is apparent, these asymptotes
can be quite accurate approximations even for moderate values
of SNR. Finally, using dashed curves we show the rate (15)
achievable by the masked beamforming coding scheme, which
doesn’t use knowledge of the eavesdropper channel. Consistent
with (17), the loss in performance at high SNR approaches 3 dB
when the eavesdropper uses only one of its antennas, and 0 when
it uses both. Again, these are good estimates of the performance
loss even at moderate SNR. Thus, the penalty for ignorance of
the eavesdropper’s channel can be quite small in practice.

5When a single eavesdropper antenna is in use, the relevant channel corre-
sponds to the first row of (18).
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E. Scaling Laws in the Large System Limit

Our analysis in Section IV-B of the scaling behavior of ca-
pacity with SNR in the high SNR limit with a fixed number of
antennas in the system yielded several useful insights into secure
space-time coding systems. In this section, we develop equally
valuable insights from a complementary scaling. In particular,
we consider the scaling behavior of capacity with the number of
antennas in the large system limit at a fixed SNR.

One convenient feature of such analysis is that for many large
ensembles of channel gains, almost all randomly drawn real-
izations produce the same capacity asymptotes. For our anal-
ysis, we restrict our attention to an ensemble corresponding to
Rayleigh fading in which and are independent, and each
has i.i.d. entries. The realization from the ensemble is
known to all terminals prior to communication.

In anticipation of our analysis, we make the dependency
of secrecy rates on the number of transmit and eavesdropper
antennas explicit in our notation (but leave the dependency
on the realization of and implicit). Specifically, we
now use to denote the secrecy capacity, and

to denote the rate of the masked beamforming
scheme. With this notation, the scaled rates of interest are

(19a)

and

(19b)

Our choice of scalings ensures that the and
are not degenerate. In particular, note that the capacity scaling
(19a) involves an SNR normalization. In particular, the trans-
mitted power is reduced as the number of transmitter antennas

grows so as to keep the received SNR remains fixed (at spec-
ified value ) independent of . However, the scaling (19b) is
not SNR normalized in this way. This is because the masked
beamforming already suffers a nominal factor of SNR loss
[cf. (16)] relative to a capacity-achieving system.

In what follows, we do not attempt an exact evaluation of the
secrecy rates for our chosen scalings. Rather we find compact
lower and upper bounds that are tight in the high SNR limit.

We begin with our lower bound, which is derived in Sec-
tion VIII-B.

Corollary 3 (Scaling Laws): The asymptotic secrecy capacity
satisfies

(20)

where

(21)

Furthermore, the same bound holds for the corresponding
asymptotic masked beamforming rate, i.e.,

(22)

Since the secrecy rates increase monotonically with SNR, the
infinite-SNR rates constitute a useful upper bound. As derived
in Section VIII-C, this bound is as follows.

Corollary 4: The asymptotic secrecy capacity satisfies

.
(23)

Furthermore, the right hand side of (23) is also an upper bound
on , i.e.,

(24)

Note that it is straightforward to verify that the lower bound
(20) is tight at high SNR, i.e., that, for all

(25)

The same argment confirms the corresponding behavior for
masked beamforming.

Our lower and upper bounds of Corollary 3 and 4, respec-
tively, are depicted in Fig. 2. In particular, we plot rate as a func-
tion of the antenna ratio for various values of the SNR .

As Fig. 2 reflects, there are essentially three main regions of
behavior. For , the eavesdropper is effectively thwarted
and any desired required rate is achieved. Second, for

the eavesdropper has proportionally more antennas than the
sender, and thus can cap the secure rate achievable to the re-
ceiver regardless of how much power the transmitter has avail-
able.

Finally for , the eavesdropper is able to entirely pre-
vent secure communication (drive the secrecy capacity to zero)
even if the transmitter has unlimited power available. Useful in-
tuition for this phenomenon is obtained from consideration of
the masked beamforming scheme, in which the sender trans-
mits the signal of interest in the direction of and synthesized
noise in the directions orthogonal to . With such a
transmission, the intended receiver experiences a channel gain
of . In the high SNR regime, the eavesdropper must
cancel the synthesized noise, which requires at least re-
ceive antennas. Moreover, after canceling the noise it must have
the “beamforming gain” of so its channel quality is of the
same order as that of the intended receiver. This requires having
at least more antennas. Thus, at least antennas are
required by the eavesdropper to guarantee successful intercep-
tion of the transmission irrespective of the power used, which
corresponds to as .
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Fig. 2. Secrecy capacity bounds in the large system limit. The solid red curve is the high SNR secrecy capacity, which is an upper bound on the for finite SNR.
The progressively lower dashed curves are lower bounds on the asymptotic secrecy capacity (and masked beamforming secrecy rate). The channel realizations are
fixed but drawn at random according to Gaussian distribution.

F. Capacity Bounds in Fading

Thus far, we have focused on the scenarios where the receiver
and eavesdropper channels are fixed for the duration of the
message transmission. In this section, we briefly turn our atten-
tion to the case of time-varying channels, specifically the case
of fast fading where there are many channel fluctuations during
the course of transmission. In particular, we consider a model
in which and are temporally and spatially i.i.d. se-
quences that are independent of one another and have
elements, corresponding to Rayleigh fading.

In our model, is known (in a causal manner) to all the
three terminals, but only the eavesdropper has knowledge of

. Accordingly, the channel model is, for

(26)

The definition of the secrecy rate and capacity is as in Def-
inition 2, with the exception that the equivocation is
replaced with , which takes into account the
channel state information at the different terminals.

For this model, we have the following nontrivial upper and
lower bounds on the secrecy capacity, which are developed in
Section IX. The upper bound is developed via the same genie-
aided channel analysis used in the proof of Theorem 2, but with
modifications to account for the presence of fading. The lower
bound is achieved by the adaptive version of masked beam-
forming described in [4].

Theorem 4: The secrecy capacity for the MISOME fast
fading channel (26) is bounded by

(27a)

(27b)

where is the set of all valid power allocations, i.e.,

(28)

and

(29a)

(29b)

In general, our upper and lower bounds do not coincide. In-
deed, even in the case of single antennas at all terminals (

), the secrecy capacity for the fading channel is unknown,
except in the case of large coherence period [8]. However, based
on our scaling analysis in Section IV-E, there is one regime in
which the capacity can be calculated: in the limit of both high
SNR and a large system. Indeed, since (22) and (23) hold for
almost every channel realization, we have the following propo-
sition, whose proof is provided in Section IX-C.

Proposition 2: The secrecy capacity of the fast fading
channel satisfies

(30)

where is as defined in (21), and

(31)

with the as given in (23).
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Finally, via (25), we see that (30) and (31) converge as
.
This concludes our statement of the main results. The fol-

lowing sections are devoted to the proofs of these results and
some further discussion.

V. UPPER BOUND DERIVATION

In this section, we prove Theorem 1. We begin with the fol-
lowing lemma, which establishes that the capacity of genie-
aided channel is an upper bound on the channel of interest. A
proof is provided in Appendix I, and closely follows the general
converse of Wyner [1], but differs in that the latter was for dis-
crete channels and thus did not incorporate a power constraint.

Lemma 1: An upper bound on the secrecy capacity of the
MISOME wiretap channel is

(32)

where is the set of all probability distributions that satisfy
.

Among all such bounds, we can choose that corresponding to
the noises being jointly Gaussian (they are already con-
strained to be marginally Gaussian) with a covariance making
the bound as small as possible. Then, provided the maximizing
distribution in (32) is Gaussian, we can express the final bound
in the form (7)

It thus remains only to show that the maximizing distribution
is Gaussian.

Lemma 2: For each , the distribution maxi-
mizing is Gaussian.

Proof: Since

and the second term does not depend on , it suffices to estab-
lish that is maximized when is Gaussian.

To this end, let denote the linear minimum mean-
square error (MMSE) estimator of from , and the
corresponding mean-square estimation error. Recall that

(33)

(34)

depend on the input and noise distributions only through their
(joint) second-moment characterization, i.e.,

(35)

Proceeding, we have

(36)

(37)

(38)

where (36) holds because adding a constant doesn’t change en-
tropy, (37) holds because conditioning only reduces differential
entropy, and (38) is the maximum entropy bound on differential
entropy expressed in terms of

(39)

where is the estimation error

(40)

It remains only to verify that the above inequalities are tight
for a Gaussian distribution. To see this, note that (37) holds
with equality when is Gaussian (and thus are jointly
Gaussian) since in this case is the (unconstrained) MMSE es-
timation error and is, therefore, independent of the “data” .
Furthermore, note that in this case (38) holds with equality since
the Gaussian distribution maximizes differential entropy subject
to a variance constraint.

VI. MISOME SECRECY CAPACITY DERIVATION

In this section, we derive the MISOME capacity and its high
and low SNR asymptotes.

A. Proof of Theorem 2

Achievability of (11) follows from evaluating (6) with the
particular choices

(41)

where is as defined in Theorem 2. With this choice of
parameters

(42)

(43)

(44)

where (42) follows from the fact that is a deterministic func-
tion of , (43) follows from the choice of and in (41), and
(44) follows from the variational characterization of generalized
eigenvalues (2).

We next show a converse, that rates greater than (11) are not
achievable using our upper bound. Specifically, we show that
(11) corresponds to our upper bound expression (7) in Theorem
1.

It suffices to show that a particular choice of that is admis-
sible (i.e., such that ) minimizes (7). We can do this
by showing that

(45)

with the chosen corresponds to (11).
Since only the first term on the right hand side of
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depends on , we can restrict our attention to maximizing this
first term with respect to .

Proceeding, exploiting that all variables are jointly Gaussian,
we express this first term in the form of the optimization

(46)

and bound its maximimum over according to

(47)

where (47) follows6 by observing that a rank one maximizes
the quadratic form .

We now separately consider the cases and
.
Case: : We show that the choice

(48)

in (45) yields (11), i.e., .
We begin by noting that since , the variational char-

acterization (2) establishes that and thus as
defined in (10).

Then, provided that, with as given in (48), the right hand
side of (47) evaluates to

(49)

we have

6The elegant derivation that rank-1 covariance matrix maximizes the differ-
ential entropy (46) was suggested to us by Y. C. Eldar and A. Wiesel. In the
literature, this line of reasoning has been used in deriving an extremal charac-
terization of the Schur complement of a matrix (see, e.g., [22, Chapter 20], [23]).

i.e., (11), as required. Verifying (49) with (48) is a straight-
forward computation, the details of which are provided in Ap-
pendix II.

Case: , Full Column Rank: We show that the
choice

(50)

in (45) yields (11), i.e., zero.
To verify that , first note that since , it

follows from (2) that

(51)
so that for any choice of

(52)

Choosing in (52) yields , i.e.,
, as required.

Next, note that (47) is further upper bounded by choosing any
particular choice of . Choosing yields

(53)

which with the choice (50) for is zero.
Case: , Not Full Column Rank: Consider a

new MISOME channel with transmit antennas, where
is the column rank of , where the intended receiver and

eavesdropper channel gains are given by

(54)

and where is a matrix whose columns constitute an orthog-
onal basis for the column space of , so that in this new
channel has full rank. Then provided the new channel (54)
has the same capacity as the original channel, it follows by the
analysis of the previous case that the capacity of both channels
is zero. Thus, it remains only to show the following.

Claim 1: The MISOME channel corresponding to
(54) has the same secrecy capacity as that corresponding to

.
Proof: First we show that the new channel capacity is no

larger than the original one. In particular, we have

(55)

(56)

(57)

(58)

(59)
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where to obtain (55) we have used (2) for the new channel, to
obtain (56) we have used (54), to obtain (57) we have used that

, to obtain (58) we have used that we are maximizing
over a larger set, and to obtain (59) we have used (2) for the
original channel. Thus

(60)

Next, we show the new channel capacity is no smaller than
the original one. To begin, note that

(61)

since if , then ,
which would violate (51).

Proceeding, every can we written as

(62)

where and thus, via (61), as well. Hence, we
have that , , and , so any
rate achieved by on the channel is also achieved by

on the channel , with derived from via (62),
whence

(63)

Combining (63) and (60) establishes our claim.

B. Proof of Corollary 1

We restrict our attention to the case where the
capacity is nonzero. In this case, since, via (2)

(64)
where

(65)

We have

(66)

for all .
To obtain an upper bound note that, for all

(67)

(68)

where (67) follows from the Rayleigh quotient expansion (64)
and the fact that, due to (66), the right hand side of (64) is in-

creasing in , and where (68) follows from (2). Thus, since the
right hand side of (68) is independent of , we have

(69)
Next, defining

(70)

we have the lower bound

(71)

(72)

where (71) follows from (2) and (72) follows from (70).
Since (69) and (72) coincide, we obtain (12). Thus, to obtain

the remainder of (13a), we need only verify the following.
Claim 2: The high SNR capacity is finite, i.e.,

, when .
Proof: We argue by contradiction. Suppose

. Then there must exist a se-
quence such that for each , but

as . But then the hypothesis cannot be
true, because, as we now show, , when viewed
as a function of , is bounded whenever the denominator is
nonzero.

Let be any vector such that . It suffices to
show that

(73)

where is the smallest nonzero singular value of . To verify
(73), we first express in the form

(74)

where and are unit vectors, and are real and nonneg-
ative, is the projection of onto the null space of , and

is the projection of onto the orthogonal complement of
this null space.

Next, we note that , whence

(75)

but since it follows that , so

(76)

where the first inequality follows from the Cauchy-Schwarz in-
equality, and the second inequality is a simple substitution from
(75). Dividing through by in (76) yields (73).

We now develop (13b) for the case where .
First, defining

(77)
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we obtain the lower bound

(78)

(79)

where to obtain (79), we have used

(80)

Next we develop an upper bound. We first establish the fol-
lowing.

Claim 3: If then there is a function such that
as , and

Proof: We have

(81)

(82)

(83)

where to obtain (81), we have used the Cauchy-Schwarz in-
equality , to obtain (82), we have used
(65), and to obtain (83), we have used (80).

Rearranging (83) then gives

as desired.

Thus, with , we have

(84)

(85)

where (84) follows from (2) and Claim 3 that the maximizing
lies in .

Now, as we will show

(86)

So using (86) in (85), we obtain

(87)

Finally, combining (87) and (79), we obtain

whence (13b).
Thus, it remains only to verify (86), which we do now.
We start by expressing in the form [cf. (74)]

(88)

where and are unit vectors, are real valued scalars in
, is the projection of onto the null space of , and

is the projection of onto the orthogonal complement of
this null space.

With these definitions, we have

(89)

since and . Finally

(90)

(91)

(92)

(93)

(94)

where (90) follows from substituting (88), (91) follows from the
fact that , and are orthogonal, (92) follows from using (89)
to bound , and (94) follows from the fact that and
(80).

C. Proof of Corollary 2

We consider the limit . In the following steps, the order
notation means that as

(95)

(96)

(97)

(98)

(99)

(100)

where (96) follows from the definition of generalized eigen-
value, (97) follows from the Taylor series expansion of

, where we have assumed that is sufficiently small
so that all eigenvalues of are less than unity, (98) and
(99) follow from the continuity of the eigenvalue function in its
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arguments and (100) follows from the property of eigenvalue
function that .

In turn, we have

(101)

(102)

where to obtain (101) we have used (100) in (11), and to obtain
(102) we have used Taylor Series expansion of the func-
tion.

Finally, taking the limit in (102) yields (14) as desired.

VII. MASKED BEAMFORMING SCHEME ANALYSIS

From Csiszár–Körner [2], secrecy rate
is achievable for any choice of and that satisfy

the power constraint . While a capacity-achieving
scheme corresponds to maximizing this rate over the choice of

and [cf. (6)], the masked beamforming scheme corre-
sponds to different (suboptimal) choice of these distributions.
In particular, we choose

(103)

where we have chosen the convenient normalizations

(104)
and

(105)

In this form, the secrecy rate of masked beamforming is
readily obtained, as we now show

A. Proof of Proposition 1

With and as in (103), we evaluate (6). To this end, first
we have

(106)

Then, to evaluate , note that

so

(107)

where we have repeatedly used the matrix identity
valid for any and with compatible

dimensions.
Thus, combining (106) and (107), we obtain (15) as desired

where to obtain the last equality we have used the special form
(3) for the largest generalized eigenvalue.

B. Proof of Theorem 3

First, from Theorem 2 and Proposition 1, we have, with again
as in (104) for convenience

(108)
Next, with denoting the generalized eigenvector corre-

sponding to , we have

(109)

(110)

(111)

Finally, substituting (109) and (110) into (108), we obtain

(112)

the right hand side of which approaches zero as ,
whence (16) as desired.

VIII. SCALING LAWS DEVELOPMENT

We begin by summarizing a few well-known results from
random matrix theory that will be useful in our scaling laws;
for further details, see, e.g., [24].

A. Some Random Matrix Properties

Three basic facts will suffice for our purposes.
Fact 4: Suppose that is a random length- complex vector

with independent, zero-mean, variance- elements, and that
is a random complex positive semidefinite matrix dis-

tributed independently of . Then if the spectrum of con-
verges, we have

(113)

where is the -transform [24] of the matrix .
Of particular interest to us is the -transform of a special class

of matrices below.
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Fact 5: Suppose that is random matrix whose
entries are i.i.d. with variance . As with the
ratio fixed, the -transform of is given by

(114)

where is as defined in (21).
The distribution of generalized eigenvalues of the pair

is also known [25], [26]. For our purposes,
the following is sufficient.

Fact 6: Suppose that and have i.i.d. entries,
and . Then

(115)
where is the F-distribution with and

degrees of freedom, i.e.,

(116)

where denote equality in distribution, and where and are
independent chi-squared random variables with and

degrees of freedom, respectively.
Using Fact 6, it follows that with fixed

(117)
Indeed, from the strong law of large numbers we have that the
random variables and in (116) satisfy, for

(118)
Combining (118) with (116) yields (117).

B. Proof of Corollary 3

First, from Theorem 2, we have that

(119)

where (119) follows from the quadratic form representation (3)
of the generalized eigenvalue.

Rewriting (119) using the notation

and (120)

we then obtain (20) as desired

(121)

where to obtain (121), we have applied (113) and (114).

The derivation of the scaling law (22) for the masked beam-
forming scheme is analogous. Indeed, from Proposition 1, we
have

as

where as above the last line comes from applying (113) and
(114).

C. Proof of Corollary 4

When (i.e., ), we have almost
surely, so (13b) holds, i.e.,

(122)

as (23) reflects.
When (i.e., ) is nonsingular almost

surely, (13a) holds, i.e.,

Taking the limit with fixed, and using
(117), we obtain

as (23) asserts.
Furthermore, via (16), we have that

whence (24).

IX. FADING CHANNEL ANALYSIS

We prove the lower and upper bounds of Theorem 4 sepa-
rately.

A. Proof of (27a)

By viewing the fading channel as a set of parallel channels
indexed by the channel gain of the intended receiver7 and the
eavesdropper’s observation as , the rate

(123)

is achievable for any choice of and that satisfies
the power constraint . We choose distributions
corresponding to an adaptive version of masked beamforming,
i.e., [cf. (103)]

(124)

7Since the fading coefficients are continuous valued, one has to discretize
these coefficients before mapping to parallel channels. By choosing appropri-
ately fine quantization levels one can approach the rate as closely as possible.
See, e.g., [9] for a discussion.



KHISTI AND WORNELL: SECURE TRANSMISSION WITH MULTIPLE ANTENNAS I: THE MISOME WIRETAP CHANNEL 3101

where we have chosen the convenient normalizations [cf. (104)
and (105)]

(125)

and

(126)

Evaluating (123) with the distributions (124) yields (27a)
with (29a)

(127)

(128)

(129)

where the steps leading to (128) are analogous to those used
in Section VII-A for the nonfading case and hence have been
omitted.

B. Proof of (27b)

Suppose that there is a sequence of codes such that
for a sequence (with as )

(130)

1) An Auxiliary Channel: We now introduce another channel
for which the noise vaiables and are correlated, but
the conditions in (130) still hold. Hence, any rate achievable on
the original channel is also achievable on this new channel. In
what follows, we will upper bound the rate achievable for this
new channel instead of the original channel.

We begin by introducing some notation. Let

(131)

denote the transmitted power at time , when the channel real-
ization of the intended receiver from time 1 to is . Note that

satisfies the long term average power constraint, i.e.,

(132)

Next, let, and denote the density functions of and
, respectively, and let and denote the density func-

tion of the noise random variables in our channel model (26).
Observe that the constraints in (130) (and hence the capacity)
depend only on the distributions and

. Furthermore since the channel model (26) is

memoryless and are i.i.d. and mutually independent,
we have

(133)

(134)

Let denote the set of conditional-joint distributions
with fixed conditional-marginals, i.e.,

(135)

Suppose that for each we select a distribution
and consider a channel with distribu-

tion

(136)

This new channel distribution has noise variables
correlated, where the correlation is possibly time-dependent,
but from (135) and (136), note that and are marginally
Gaussian and i.i.d., and satisfy (133) and (134). Hence, the con-
ditions in (130) are satisfied for this channel and the rate is
achievable.

In the sequel, we select
to be the worst case noise distribution for the

Gaussian channel with gains , and, , and
power of in Theorem 2, i.e., if is the eigen-
vector corresponding to the largest generalized eigenvalue

,

where

(137)

and where and are related to and as in
(54). Our choice of is such that
only depend on the , i.e.,

(138)

forms a Markov chain.
2) Upper Bound on the Auxiliary Channel: We now upper

bound the secrecy rate for the channel (136). Note that this also
upper bounds the rate on the original channel.
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From Fano’s inequality, that there exists a sequence such
that as , and

(139)

(140)

(141)

where (139) follows from the secrecy condition [cf.
(130)], and (140) follows from the Markov relation

, and (141) holds because
for the channel (136), we have

We next upper bound the term
in (141) for each

(142)

(143)

where (142) follows from the fact that [cf. (138)]

forms a Markov chain and (143) follows since our choice of the
noise distribution in (137) is the worst case noise in (7) for the
Gaussian channel with gains , and power ;
hence, the derivation in Theorem 2 applies.

Substituting (143) into (141), we have

(144)

(145)

(146)

(147)

(148)

(149)

where (145) and (148) follow from Jensen’s inequality since
is a capacity

and, therefore, concave in , (146) follows by defining

(150)

Equation (147) follows from the fact that the distribution of both
and does not depend on , and (149) follows by defining

.
To complete the proof, note that

(151)

(152)

where (151) follows from (150) and the fact that the channel
gains are i.i.d., and (152) follows from (132).

C. Proof of Proposition 2

The proof is immediate from Corollary 3, 4, and Theorem
4. For the lower bound, we only consider the case when

, since otherwise the rate is zero. We select
to be fixed for each . Then we have from Corol-

lary 3 that

Finally since almost-sure convergence implies convergence in
expectation

which establishes the lower bound (30). For the upper bound,
since

we have from Theorem 4 that

(153)

and hence

where we again use the fact that almost sure convergence im-
plies convergence in expectation.
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X. CONCLUDING REMARKS

The present work characterizes the key performance charac-
teristics and tradeoffs inherent in communication over the MI-
SOME channel. Since the submission of the present paper, the
capacity for the more general MIMOME case has also been
obtained [15], [27]–[30]. However, extensions to time-varying
fading channels for that case remain to be developed.

More generally, many recent architectures for wireless sys-
tems exploit the knowledge of the channel at the physical layer
in order to increase the system throughput and reliability. Many
of these systems have a side benefit of providing security. It is
naturally of interest to quantify these gains and identify poten-
tial applications.

APPENDIX I
PROOF OF LEMMA 1

Suppose there exists a sequence of codes such that
for every , and sufficiently large, we have that

(154)

(155)

(156)

We first note that (154) implies, from Fano’s inequality

(157)

where as . Combining (155) and (157), we have
for

(158)

(159)

(160)

(161)

(162)

(163)

(164)

where (158) and (159) each follow from the chain of mutual in-
formation, (160) follows from the fact that conditioning cannot
increase differential entropy, (161) follows from the Markov re-
lation , and (162) follows from the fact the
channel is memoryless. Moreover, (163) is obtained by defining
a time-sharing random variable that takes values uniformly
over the index set and defining to be
the tuple of random variables that conditioned on , have

the same joint distribution as . It then follows
that for our choice of and given (156), . Finally,
(164) follows from the fact that is concave in (see,
e.g., [9, Appendix I] for a proof), so that Jensen’s inequality can
be applied.

APPENDIX II
DERIVATION OF (49)

The argument of the logarithm on left hand side of (49) is
convex in , so it is straightforward to verify that the minimizing

is

(165)

In the sequel, we exploit that by the definition of generalized
eigenvalues via (1)

(166)

or, rearranging

(167)

First we obtain a more convenient expression for , as fol-
lows:

(168)

(169)

(170)

(171)

where (168) follows from substituting (48) into (165), and (169)
follows from substituting via (166).

Next, we have that

(172)

(173)

(174)

where (172) follows from substituting from (171) with (48), and
(173) follows by substituting (167). Thus

(175)
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To simplify (175) further, we exploit that

(176)

(177)

where (176) follows by again substituting from (48), and (177)
follows by again substituting from (167). In turn, replacing the
term in brackets in (175) according to (177) then yields

(178)

Finally, substituting (178) then (171) into the left hand side of
(49) yields, following some minor algebra, the right hand side
as desired.
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