
International Journal of Software Engineering and Knowledge Engineering
 World Scientific Publishing Company

SECURE TROPOS: A SECURITY-ORIENTED EXTENSION OF THE TROPOS
METHODOLOGY

HARALAMBOS MOURATIDIS

1 School of Computing and Technology, University of East London, England

h.mouratidis@uel.ac.uk

PAOLO GIORGINI
2 Department of Information and Communication Technology, University of Trento, Italy

paolo.giorgini@dit.unitn.it

Although security plays an important role in the development of multiagent systems, a careful
analysis of software development processes shows that the definition of security requirements is,
usually, considered after the design of the system. One of the reasons is the fact that agent oriented
software engineering methodologies have not integrated security concerns throughout their
developing stages. The integration of security concerns during the whole range of the development
stages can help towards the development of more secure multiagent systems. In this paper we
introduce extensions to the Tropos methodology to enable it to model security concerns throughout
the whole development process. A description of the new concepts and modelling activities is given
along with a discussion on how these concepts and modelling activities are integrated to the current
stages of Tropos. A real life case study from the health and social care sector is used to illustrate the
approach.

Keywords: Agent-Oriented Software Engineering; Security Engineering; Methodologies; Tropos

1. Introduction

Work within the agent research community has led towards the development of the Agent
Oriented Software Engineering (AOSE) paradigm. AOSE introduces an alternative
approach in analysing and designing complex distributed computerised systems [24, 43,
21], according to which a complex computerised system is viewed as a multiagent system
[43], in which a collection of autonomous software agents (subsystems) interact with
each other in order to satisfy their design objectives. Therefore, developers view the
system as a society, similar to a human society, consisting of entities that possess
characteristics similar to humans such as mobility, intelligence and the capability of
communicating [33].

Due to these characteristics, agent oriented systems are gaining popularity in different
areas of our everyday life, such as military, health care, education, finance and
transportation. As a result, these systems include information related to many aspects of

2 Haralambos Mouratidis, Paolo Giorgini

someone’s private life, such as bank accounts, educational qualifications, and health
records.

Security has been identified as an important issue [22, 33] for the widespread use of
agent technology. However, the common approach towards the inclusion of security
within an agent oriented system is to identify security requirements after the definition of
the system [12, 30, 35]. This typically means that security enforcement mechanisms have
to be fitted into a pre-existing design. This approach leads to serious design challenges
that usually translate into the emergence of computer systems afflicted with security
vulnerabilities [1, 39].

Research efforts, so far, have mainly focused on the solution of individual security
problems, such as attacks from an agent to another agent; attacks from a platform to an
agent; and attacks from an agent to a platform [23]. In general, developers of agent
oriented methodologies have neglected security and although the agent oriented software
engineering is progressing rapidly and many agent oriented methodologies [13, 17, 20,
21, 42, 44] have developed during the last few years; agent oriented software engineering
practices and methodologies do not meet the needs for resolving the security related
problems, and fail to provide evidence of successfully integrating security concerns. As a
result, developers find no help when considering security during the development of
multiagent systems.

In this paper we extend the Tropos methodology to enable developers to consider
security issues during the software development process. Our aim is to provide an easy to
use development methodology that will allow developers (1) to integrate security related
analysis in order to identify desirable security aspects (2) reason about these aspects and
(3) develop a system that is composed of agents able to satisfy the desirable security
aspects of the system. It is not our aim to provide a methodology to analyze specific
security protocols and mechanisms. Although, this is an important area, it is outside the
scope of our work.

The paper, which is an extended and revised version of [33] and integrates results
from [34, 35], is structured as follows. Section 2 introduces the relation between security
and agent oriented software engineering and it discusses related work. Section 3 provides
an overview of the Tropos methodology, whereas in Section 4 we present the security-
related extensions to the Tropos methodology. Section 5 describes how the proposed
extensions are integrated within the development stages of the Tropos methodology and
it illustrates the extensions with the aid of an example taken from the health and social
care sector. Section 6 concludes this paper and presents directions for future work.

2. Security and Agent Oriented Software Engineering

Security of computer based information systems is concerned with methods providing
cost effective and operationally effective protection of information systems from
undesirable events [28]. In principle, security is usually defined in terms of the existence
of confidentiality, authentication, integrity, access control, non repudiation and
availability. Each of these properties is considered during the development of systems for

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 3

different reasons. However, most of the times, the development of a system would
require the consideration of more than one of these properties.

As Anderson claims [1], “security engineering is about building systems to remain
dependable in the face of malice, error or mischance”. The process of securing an
information system is usually a trade off between security requirements and other non-
functional1 and functional requirements. Security requirements are usually considered
non-functional requirements [10], and they are defined as “a manifestation of a high-level
organisational policy into the detailed requirements of a specific system” [12].

Nevertheless, differently than other non-functional requirements, such as reliability
and performance, for which software engineers have recognised the need to integrate into
the software development processes [11]; security still remains an afterthought and the
usual approach towards the inclusion of security within a system is to identify security
requirements after the definition of a system or to consider security only in certain stages
of the development process. However, this approach often leads to problems [1], since
security mechanisms have to be fitted into a pre-existing design, therefore leading to
serious design challenges that usually translate into software vulnerabilities [39].
Literature provides many examples of security disasters that took place while trying to
upgrade non-secure systems to secure systems (see for instance [4]).

To eliminate the above development mismatches, which result from the lack of
security consideration during the development process, we believe security should be
considered during the whole development process and it should be defined together with
the requirements specification. Taking security into account along with the functional
requirements throughout the development stages helps to limit the cases of conflict,
between security and functional requirements, by identifying them very early in the
system development, and find ways to overcome them. This argument is also supported
in the literature [12, 26, 41]. However, to consider security issues throughout the
development process of a software system, software engineering methodologies must
provide developers with models and processes to help them model security concerns.

The agent oriented software engineering paradigm presents a feasible approach for
the integration of security into software engineering. This is due to the appropriateness of
agent oriented philosophy, for dealing with security issues that exist in a computer
system. Security requirements are mainly obtained by analysing the attitude of the
organisation towards security and after studying the security policy of the organisation.
As mentioned in [25] agents act on behalf of individuals or companies interacting
according to an underlying organisation context. The integration of security within this
context will require for the rest of the subsystems (agents) to consider the security
requirements, when specifying their objectives and interactions therefore causing the
propagation of security requirements to the rest of the subsystems. In addition, the agent
oriented view is perhaps the most natural way of characterising security issues in

1 Non-functional requirements introduce quality characteristics, but they also represent constraints under which
the system must operate [37, 38].

4 Haralambos Mouratidis, Paolo Giorgini

software systems. Characteristics, such as autonomy, intentionality and sociality,
provided by the use of agent orientation allow developers first to model the security
requirements in high-level, and then incrementally transform these requirements to
security mechanisms.

However, current agent oriented methodologies do not meet the needs for resolving
the security related problems [41], and fail to provide evidence of integrating successfully
security concerns throughout the whole range of the development process. In other
words, they fail to adequately provide a security-oriented approach in the development of
agent oriented software systems. Nevertheless, recently, work has initiated towards the
solution of this problem.

Liu et al. [29] have presented work to identify security requirements during the
development of multiagent systems by analysing the relationships between strategic
actors, such as users and stakeholders, and potential attackers. In this work, three
different types of analysis techniques are proposed: agent oriented, goal oriented and
scenario based analysis. In addition, Yu and Cysneiros [45] provide an approach to model
and reason about non-functional requirements (with emphasis on privacy and security).
They are using the concept of soft-goal to assess different design alternatives, and they
determine how each of these alternatives contributes in achieving the soft-goal.

Both of these works are mainly focused on the requirements analysis area and not on
the whole development process. In addition, both Liu and Yu employ the concept of soft-
goal to help them in their analysis. Although soft-goals can support the security related
analysis of the system during the requirements analysis stage, they do not provide enough
detail when considering security in the later stages of the development process.
Therefore, as it has been argued in the literature [31], the concept of soft-goal does not
adequately model security issues throughout the development process.

Moreover, Huget [19] proposes a new agent oriented methodology, called Nemo, and
he claims that it tackles security. In his approach, security is not considered as a specific
model but it is included within the other models of the methodology. Nemo is a new
methodology and as a result it has not presented in the literature enough to allow a
thorough examination. However, from our point of view, the methodology tackles
security quite superficial and as the developer states “particularly, security has to be
intertwined more deeply within models” [19]. Therefore, more evidence will be required
to satisfy the claim of the developer that the methodology tackles security.

In addition, Giorgini at al. have introduced in [15] an enhancement of Tropos / i* that
is based on the clear separation of roles in a dependency relation between those offering a
service (the merchant processing a credit card number), those requesting the service (the
bank debiting the payment), and those owning the very same data (the cardholder). In
[16] they have proposed a PKI/trust management requirements specification and analysis
framework based on the clear separation of trust and delegation relationship. However,
the analysis produced by these approaches results in a high level analysis of security
properties and they lack a well defined process to transform such high level analysis to
operational security properties of the agents of the system.

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 5

In addition to the above approaches, a large number of related works comes from
close disciplinary areas such as requirements engineering [10, 11] object oriented
software engineering [26, 27, 30, 49, 52, 55] and patterns [54]. These approaches provide
a first step towards the integration of security and software engineering and have been
found helpful in modelling security requirements. However, they only guide the way
security can be handled within a certain stage of the software development process. For
example, McDermott and Fox’s approach [49] is used only during the requirements
analysis, whereas Jurgen’s analysis [27] take place in a fairly low level and it is suited to
a more operational analysis. In other words, Jurgen’s approach is only applicable during
the design stage.

Differently than the presented related work, this paper proposes an approach that
covers the whole development process using the same concepts and notations. As argued
earlier, considering security issues throughout the development process by using the
same concepts and notations is very important when developing software systems with
security on mind.

3. Tropos

For our work, we have decided to extend the Tropos methodology, rather than
creating a new methodology from scratch. This decision took place because we are
interested in enabling an agent oriented software engineering methodology to model
security, rather than creating one more methodology on the (already) large amount of
existing ones [13,17,20,21,42,44]. Moreover, the decision [35] to extend Tropos amongst
all the other available agent oriented software engineering methodologies was based on
the fact that Tropos spans in all the development stages using the same concepts; it is
easily extensible and it is more security-aware than other agent oriented software
engineering methodologies [35]. In addition, the Tropos methodology is well integrated
with other approaches, such as the UML, in which some security work has taken place
[26, 27, 30], and therefore existing work can be considered and incorporated within the
proposed approach. Moreover, the modelling concepts of Tropos are well suited to model
security requirements, which are usually expressed using notions such as agents and high
level goals such as confidentiality and authentication [15].

Tropos2 is a novel agent oriented software engineering methodology tailored to
describe both the organisational environment of a multiagent system and the system
itself. Tropos is characterised by three key aspects [9, 36, 17, 8]. Firstly, it deals with all
the phases (requirements analysis, system design and implementation) of a system
development, adopting a uniform and homogeneous way that it is based on the notion of
agents and all the related mentalistic notions, such as actors, goals, tasks, resources, and
intentional dependencies. Secondly, Tropos pays a great deal of attention to the early
requirements, emphasising the need to understand not only what organisational goals are

2 The name Tropos derives from the Greek “������” which means “way of doing things” but also has the
connotation of “easily changeable, easily adaptable”.

6 Haralambos Mouratidis, Paolo Giorgini

required but also how and why the intended system would meet its organisational goals.
Thirdly, Tropos is based on the idea of building a model of the system that is
incrementally refined and extended from a conceptual level to executable artefacts, by
means of a sequence of transformational steps [6, 7]. Such transformations allow
developers to perform precise inspections of the development process by detailing the
higher level notions introduced in the previous stages of the development.

Tropos adopts the i* modelling framework [46], which uses the concepts of actors,
goals and social dependencies for defining the obligations of actors (dependees) to other
actors (dependers). This means the multiagent system and its environment are viewed as
a set of actors, who depend on other actors to help them fulfil their goals. An actor [46]
represents an entity that has intentionality and strategic goals within the multiagent
system or within its organisational setting. A role represents an abstract characterisation
of the behaviour of a social actor within some specialised context or domain of endeavour
[46]. A position represents a set of roles, typically played by one agent. A (hard) goal
[46] represents a condition in the world that an actor would like to achieve. In other
words, goals represent actors’ strategic interests. In Tropos, the concept of hard-goal
(simply goal hereafter) is differentiated from the concept of soft-goal. A soft-goal is used
to capture non-functional requirements of the system, and unlike a (hard) goal, it does not
have clear criteria for deciding whether it is satisfied or not and therefore it is subject to
interpretation [46]. For instance, an example of soft-goal is “the system should be
scalable”. A task (also called plan in Tropos) represents, at an abstract level, a way of
doing something [17]. The fulfilment of a task can be a means for satisfying a goal, or for
contributing towards the satisficing of a soft-goal. In Tropos different (alternative) tasks,
that actors might employ to achieve their goals, are modelled. Therefore developers can
reason about the different ways that actors can achieve their goals and decide for the best
possible way. A resource [17] presents a physical or informational entity that one of the
actors requires. The main concern when dealing with resources is whether the resource is
available and who is responsible for its delivery. A dependency [46] between two actors
represents that one actor depends on the other to attain some goal, execute a task, or
deliver a resource. The depending actor is called the depender and the actor who is
depended upon is called the dependee. The type of dependency describes the nature of an
agreement (called dependum) between dependee and depender. A capability [17]
represents the ability of an actor of defining, choosing and executing a task for the
fulfilment of a goal, given certain world conditions and in presence of a specific event.
Figure 1 depicts a graphical representation of the above-mentioned concepts as used in
the Tropos methodology.

Tropos methodology covers five main software development stages: Early and Late
Requirements analysis, Architectural design, Detailed design, and Implementation. Both
early and late requirements analysis share the same methodological approach. As a result,
most of the ideas and concepts used during the early requirements are also used during
the late requirements. The Tropos process is presented in detail in [8].

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 7

Fig. 1. The concepts of the Tropos methodology

4. Extending Tropos with security related concepts

The Tropos methodology partially [31] tackles security modelling by allowing
developers to capture security requirements, as well as other non-functional requirements,
as soft-goals. The usage of soft-goals to model general non-functional requirements
although it allows developers to define, to some extent, together security and other
functional and non-functional requirements, it does not help in providing a clear
distinction between security and the other requirements of the system [35]. Such a
distinction is made even harder by the lack of definition of the Tropos concepts, such as
goals, tasks, and dependencies, with security in mind. Moreover, as discussed in previous
work [31], although the current Tropos concepts allow clear identification of the
dependencies between the actors; some possible (security) constraints that might be
imposed to some of these actors are not captured. The lack of modelling such constraints
results in an analysis, and eventually in a design, that lacks essential (security)
information and it restricts the modelling of security properties during the system
development. In addition, the methodology fails to integrate security modelling during
the early requirements analysis stage, since the modelling of security requirements as soft
goals is introduced during the analysis of the system-to-be (architectural design stage).
However, all the actors play an important role with respect to the security of the system
and all of them should be analysed with security in mind.

4.1. THE SECURE CONCEPTS

As discussed in the previous section, the current ontology of the Tropos methodology
fails to adequately model security during the development process of a multiagent
system. To enable developers to adequately capture security requirements we introduce
the concept of constraint and we extend it with respect to security. In addition, the Tropos
concepts of dependency, goal, task, resource, and capability are also extended with

8 Haralambos Mouratidis, Paolo Giorgini

security in mind. This section aims to describe these newly introduced and extended
concepts, which are defined within the Tropos project as secure concepts.

4.1.1. Constraint and Security Constraint

Constraints can represent a set of restrictions that do not permit specific actions to be
taken or prevent certain objectives from being achieved and more often [40] are
integrated in the specification of existing textual descriptions. Because of its importance
in the system development, the concept of constraint has been introduced to the Tropos
methodology as a separate concept [35], and the meta-model of the Tropos modelling
language has been extended by introducing the construct for modelling constraints [35].

For the purposes of our work, we introduce the concept of security constraint. A
security constraint is captured through a specialization of constraint and it is defined as a
restriction related to security issues, such as privacy, integrity and availability, which
can influence the analysis and design of a multiagent system under development by
restricting some alternative design solutions, by conflicting with some of the
requirements of the system, or by refining some of the system’s objectives.

It is worth mentioning that in our work, security constraints do not represent specific
security protocol restrictions, which should be specified during the implementation of the
system, and not during the analysis and design, but they contribute to a higher level of
abstraction. This higher level of abstraction allows for a generalised design free of
models biased to particular implementation languages.

Graphically, security constraints are modelled as illustrated in Figure 2; as clouds
within which the description of the (security) constraint is shown.

4.1.2. Secure Dependency

A secure dependency [35] introduces security constraint(s) that must be fulfilled for the
dependency to be satisfied. Both the depender and the dependee must agree for the
fulfilment of the security constraint in order for the secure dependency to be valid. That
means the depender expects from the dependee to satisfy the security constraint(s) and
also that the dependee will make an effort to deliver the dependum by satisfying the
security constraint(s). We define three different types of secure dependency. In a
dependee secure dependency (see Figure 2-a), the depender depends on the dependee and
the dependee introduces security constraint(s) for the dependency. In a depender secure
dependency (see 2-b), the depender depends on the dependee and the depender introduces
security constraint(s) for the dependency. In a double secure dependency, the depender
depends on the dependee and both the depender and the dependee introduce security
constraints for the dependency. Both must satisfy the security constraints introduced to
achieve the secure dependency (see 2-c).

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 9

Fig. 2. Secure dependencies

4.1.3. Secure Entities

In our work, we use the term secure entity to represent a secure goal, a secure task or a
secure resource. A secure goal represents the strategic interests of an actor with respect to
security. Secure goals are mainly introduced in order to achieve possible security
constraints that are imposed to an actor or exist in the system. However, a secure goal
does not particularly define how the security constraints can be achieved, since
alternatives can be considered. The precise definition of how the secure goal can be
achieved is given by a secure task. A secure task is defined as a task that represents a
particular way for satisfying a secure goal. A secure resource can be defined as an
informational entity that is related to the security of the multiagent system. A secure
capability represents the ability of an actor/agent to achieve a secure goal, carry out a
secure task and/or deliver a secure resource. The graphical representation of the Tropos
entities has been extended to enable modelling of secure entities. Secure entities are
indicated by the presence of an S within brackets before the description of the entity as
shown in Figure 3.

Fig. 3. Secure Entities

4.2. SECURITY MODELLING ACTIVITIES

The above-presented secure concepts form the basis of modelling security within the
Tropos methodology. However, to make use of the above concepts different modelling

(a) Dependee Secure Dependency

(b) Depender Secure Dependency

(c) Double Secure Dependency

10 Haralambos Mouratidis, Paolo Giorgini

activities contribute to the capturing and the analysis of the security requirements of a
multiagent system. There are four main modelling activities: the security reference
modelling, the security constraints modelling, the secure entities modelling and the
secure capability modelling. The following sections briefly describe each one of those3.

4.2.1. Security Reference Modelling

The security reference modelling involves the identification of security needs of the
system-to-be, problems related to the security of the system, such as threats and
vulnerabilities, and also possible solutions (usually these solutions are identified in terms
of a security policy that the organisation might have) to the security problems. During the
security reference modelling activity, the security reference diagram is constructed, after
analysing the security requirements of the system-to-be and its environment. The main
purpose of the security reference modelling is to allow flexibility during the development
stages of a multiagent system and also to save time and effort. Many system developers
face security issues similar to the issues faced by other developers. Therefore the security
reference diagram can be used as a reference point that can be modified or extended
according to specific needs of particular systems.

Although the security reference diagram is constructed during the initial stages of the
system development, it is not isolated from the rest of the development, since the security
reference modelling analysis can be used later in the development process to identify
security constraints that must be introduced to the system-to-be (by taking into account
the security needs of the system) and also to identify possible means (security
mechanisms) that contribute towards the satisfaction of the security constraints that are
introduced to the system.

During the security reference modelling activity, developers consider the security
features of the system-to-be, the protection objectives of the system, the security
mechanisms, and also the threats to the system’s security features. Security features
represent security-related attributes that the system under development must demonstrate.
Examples of security features are privacy, availability, and integrity. Protection
objectives represent a set of principles or rules that contribute towards the achievement of
the security features. These principles identify possible solutions to the security problems
and usually they can be found in the form of the security policy of the organisation.
Examples of protection objectives are authorisation, cryptography and accountability.
Security mechanisms represent standard security methods for helping towards the
satisfaction of the protection objectives. Some of these methods are able to prevent
security attacks, whereas others are able only to detect security breaches. It must be
noticed that furthered analysis of some security mechanisms is required to allow
developers to identify possible security sub-mechanisms. A security sub-mechanism
represents a specific way of achieving a security mechanism. For instance, authentication
denotes a security mechanism for the fulfilment of a protection objective such as

3 For a more detailed description please refer to [35]

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 11

authorisation. However, authentication can be achieved by sub-mechanisms such as
passwords, digital signatures and biometrics. Threats represent circumstances that have
the potential to cause loss; or problems that can put in danger the security features of the
system. Examples of threats are social engineering, password sniffing and eavesdropping
attacks.

A graphical representation of the above-mentioned concepts of the security reference
diagram is depicted in Figure 4.

Fig. 4. Security reference diagram concepts

Two types of links are employed to connect the above concepts. A positive
contribution link is used when one node helps in the fulfilment of another, whereas a
negative contribution link is used when a node contributes towards the denial of another.
Graphically, a positive contribution link is modelled as an arrow, which points towards
the node that is satisfied, with a plus (+) whereas a negative contribution link is
represented as an arrow with a minus (-) as shown in Figure 5.

Using the above concepts and notations, a developer can construct the security
reference diagram, according to the security requirements of the system under
development. However, this construction process can be affected by the security related
experience of the developer. For more experienced developers, the construction is easier
to perform and check, whether less security experienced developers might find it more
difficult. To overcome this kind of mismatch, we have developed a transformation
system4 to allow developers to precisely inspect, by checking whether or not the diagram
follows the construction rules, the development of the security reference diagram.

4.2.2. Security constraint modelling

The security constraint modelling involves the modelling of the security constraints
imposed to the actors and the system, and it allows developers to perform an analysis by
introducing relationships between the security constraints or a security constraint and its
context. Security constraint modelling is divided into a number of smaller modelling
activities such as security constraint delegation, security constraint assignment, and
security constraint analysis. Security constraint delegation allows the delegation of a
security constraint from one actor to another. Security constraints can be imposed to
actors through a secure dependency. However, it might be the case that one actor
delegates the responsibility for the satisfaction of a dependency to another actor, and as a
result the security constraint imposed by the secure dependency is also delegated.

4 Readers interested in the definition of the transformation system please check Appendix.

 Threat

12 Haralambos Mouratidis, Paolo Giorgini

In cases where a security constraint is not delegated to another actor, the goals of the
actor the imposed security constraint satisfies must be identified. The assignment of a
security constraint to a goal is indicated with a contribution link that carries the “restricts”
tag. This is known as security constraint assignment. When a security constraint is
imposed to a goal (or task), two analysis processes are employed. Security constraint
decomposition, which aims to further decompose the security constraint, and secure goal
introduction, which identifies possible secure goals that the constraint might introduce to
the system.

A security constraint can be decomposed into one or more security sub-constraints,
which define more precisely a security constraint. The decomposed constraint is called
the “root” constraint, and its satisfaction is implied if and only if all the security sub-
constraints are satisfied. Furthermore, security constraints can introduce goals to an actor.
This is known as secure goal introduction. The purpose of these goals is to help towards
the achievement of the security constraint. In other words, during the process of secure
goal introduction, the developer refines the goals of an actor to allow the satisfaction of a
security constraint.

These activities should be combined with Tropos’s original modelling activities when
developing a system. It depends on the designer to decide which activity must be
employed at which stage of the system development, since the main aim of these
activities is not to restrict the designer to a step-by-step development of the system-to-be,
but rather to provide a framework that allows the developer to go from a high level
design to a more precise and defined version of the system.

4.2.3. Secure entities modelling

The Secure entities modelling involves the analysis of secure goals, tasks and
resources identified in a multiagent system, and it is considered complementary to the
security constraints modelling. Moreover, it follows the same reasoning techniques, such
as means-end, contribution and decomposition analysis, that Tropos employs for goal and
task analysis [7]. In particular, during the security entities modelling, means-end analysis
aims at identifying secure tasks and resources that provide means for achieving a secure
goal; contribution analysis permits developers to identify secure goals that contribute
positively or negatively to the secure goal being analysed; and decomposition provides a
decomposition of a secure goal and/or task into sub-goals and sub-tasks respectively.

4.2.4. Secure capability modelling

The modelling of secure capabilities involves the identification of the secure
capabilities of the multiagent system’s actors and agents to guarantee the satisfaction of
the security constraints. Secure capabilities can be identified by considering dependencies
that involve secure entities in the extended actor diagram. When identified, the secure
capabilities are furthered specified in terms of plans of particular agents of the system.

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 13

4.3. The security process

There are three main aims when considering security issues throughout the
development stages of a multiagent system. Firstly to identify the security requirements
of the system; secondly to develop a design that meets the specified security
requirements; and thirdly to validate the developed system with respect to security.
Having the above in mind, the security-oriented process in Secure Tropos is one of
identifying the security requirements of the multiagent system, transform these
requirements to a design that satisfies them, and validate the developed system with
respect to security.

The first step (takes place during the early and late requirements) in the proposed
security oriented process aims to identify the security requirements of the system.
Security requirements are identified by employing the modelling activities described in
the previous section, such as security reference, security constraints and secure entities
modelling. In particular, the security constraints imposed to the system and the
stakeholders, are identified and secure goals and entities, which guarantee the satisfaction
of the identified security constraints, are imposed to the actors of the system.

The second step in the process (during architectural and detailed design) consists of
identifying a design that satisfies the security requirements of the system, as well as its
functional requirements. To achieve this, agents are identified with the aid of the Tropos
modelling techniques [8] and secure capabilities that guarantee the satisfaction of the
security entities identified during the previous step are given to the agents. It is worth
mentioning that in this stage, different architectural styles might be used to satisfy the
functional requirements of the system. However, there should be an evaluation of how
each of these architectural styles satisfies the security requirements of the system.
Although, this in general is left to the developers, a process [35] that is based on the
measure of satisfiability [51] can be employed to determine whether for example a
mobile agent or a client server architecture is more likely to satisfy the security
requirements of the system under development.

The third step of the process is the validation of the developed solution. The secure
Tropos process allows for two types of validation. A model validation and design
validation. The model validation involves the validation of the developed models (for
example, the goal diagram or the actor diagram) with the aid of a set of validation rules
[35]. It is worth mentioning that the validation rules are divided into two different
categories, the inter-model rules and the outer model rules, the first allows the validation
of each model individually, whereas the second allows the validation of the consistency
between the different developed models. The inner model rules allow developers to
validate the relationships between the components of the different security related
models, such as the relationship between the security features and the threats in the
security reference diagram; to validate the consistency between same components
appeared in more than one models, such as a security constraint that appears in the actors’
model as well as in the goal model; and validate the consistency when delegation of
components between actors takes place.

14 Haralambos Mouratidis, Paolo Giorgini

The design validation aims to validate the developed solution against the security
policy of the system. A key feature of the Secure Tropos that allows us to perform such a
validation is the fact that the same secure concepts are used throughout the development
stage. Moreover, the definition of these concepts allows us to provide a direct map
between them, and therefore be able to validate whether the proposed security solution
satisfies the security policy.

5. Integrating the proposed extensions to Tropos: the eSAP case study

The previous section described the proposed security extensions to the Tropos
methodology. To provide a better understanding of the approach, in this section we
describe5, with the aid of a real life case study, how the proposed extensions can be
integrated within the development phases of the Tropos methodology and how they can
be practically applied. The case study is based on the development of the electronic
Single Assessment Process (eSAP) system [35], an agent-based health and social care
system for the effective care of older people. To make this example simpler and more
understandable, we consider a substantial part of the eSAP system, since our aim is not to
describe in detail the analysis and design of the eSAP but rather to make the application
of the proposed security related extensions easier to understand.

5.1. Early Requirements

The early requirements analysis is the first stage of the Tropos methodology and its
output is an organisational model, which includes relevant actors, and their respective
dependencies.

Regarding the proposed extensions, during the early requirements analysis stage the
security reference diagram is constructed and security constraints are imposed to the
stakeholders of the system (by other stakeholders). In addition, the imposed security
constraints are expressed (initially) in high-level statements, and then they are further
analysed [35] and security entities are introduced to satisfy them.

 In our case study, we consider five actors. The Professional actor, who represents a
health and social care professional; the Older Person, who represents a patient over 65;
the DoH actor, which represents the English Department of Health, the R&D Agency
actor, which represents a research and development agency interested in obtaining
medical information for research purposes; and the Benefits Agency, which represents
an agency that financially helps the older person.

The first step in the early requirements analysis is the construction of the security
reference diagram. The main security features of the security reference diagram for the

5 It is worth mentioning that in the presented case study we have focused our analysis in the security issues, and
we are not presenting in detail the techniques of the Tropos methodology. Readers interested in this should refer
to [8].

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 15

eSAP system are privacy, integrity and availability [35], and a part of it6 is shown in
figure 5.

Fig. 5. Part of the eSAP security reference diagram

The next step of the process involves the modelling of the stakeholders of the system
together with their goals, dependencies and security constraints. For this purpose, Tropos
employs the actor diagram [8]. In such a diagram each node represents an actor, and the
links between the different actors indicate that one depends on the other to accomplish
some goals. In addition, the imposed security constraints (by other stakeholders) indicate
that the actors must satisfy them for the dependencies to be valid. A part of the eSAP case
study actor diagram is shown in Figure 6. In the eSAP case study, the Professional
depends on the Older Person to Obtain (Older Person) OP Information; however one
of the most important and delicate matters for the Older Person (as with any patient) is
the privacy of their personal medical information and the sharing of it. Thus, most of the
times, the Professional is imposed a constraint to share this information only if the older
person’s consent has been obtained.

Similarly, the Older Person depends on the Benefits Agency to Receive
Financial Support. However, the Older Person worries about the privacy of their
finances and as a result they impose a constraint to the Benefits Agency actor, to keep
their financial information private. Moreover, one of the main goals of the R&D Agency

6 The illustrated security reference diagram has been constructed after analysing all the different issues
regarding the security of the eSAP as described in [35].

 Social
Engineering

Care Plan
Changing

Cryptographic
Attack

Physical
Attack

Denial of
Service
Attack

-

Password
Sniffing

- -

-

-

Viruses

-

-

-

 Eavesdro-
pping

-

-

-

-
-

-

16 Haralambos Mouratidis, Paolo Giorgini

is to Obtain Clinical Information in order to perform tests and research. To get this
information the R&D Agency depends on the Professional. However, the Professional
is imposed a constraint (by the Department of Health) to Keep Patient Anonymity.

Fig. 6. Partial actor diagram for the eSAP case study

When the stakeholders, their goals, the dependencies between them, and the security
constraints have been identified, the next step of this phase is to analyse more in depth
each actor’s goals and the security constraints imposed to them. In addition, secure
entities are introduced to help towards the satisfaction of the imposed security
constraints.

The security analysis starts by assigning the security constraints of the actor, to the
goals of the actor they (the security constraints) restrict. As indicated in the previous
sections, this assignment is indicated using a constraint link (a link that has the “restricts”
tag).

Consider for instance the Professional actor (see Figure 7). According to the
analysis that took place in the actor diagram (see Figure 6), the Professional actor has
been imposed two security constraints (Share Info Only If Consent Achieved and
Keep Patient Anonymity). By analysing the Professional actor’s goals and tasks, we
have identified the Share Medical Info goal [32]. However, this goal is restricted by the
Share Info Only If Consent Achieved constraint imposed to the Professional by the
Older Person. For the Professional to satisfy the constraint, a secure goal is introduced
Obtain Older Person Consent. However this goal can be achieved with many different
ways, for example a Professional can obtain the consent personally or can ask a nurse to
obtain the consent on their behalf. Therefore, a sub-constraint is introduced, Only Obtain
Consent Personally. To achieve this sub-constraint the secure goal Personally Obtain

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 17

Consent is introduced to the actor, which is divided into two sub-tasks: Obtain
Consent by Mail or Obtain Consent by Phone.

Fig. 7. Professional actor partial analysis

Moreover, one of the goals of the Professional actor is to Provide Medical

Information for Research. However, this goal is restricted by the Keep Patient
Anonymity constraint, which has been imposed to the Professional (see Figure 7). As a
result, to satisfy this security constraint the secure goal Provide Only anonymous Info
is introduced to the Professional.

5.2. Late Requirements

When all the actors have been analysed, the next phase involves the analysis of the
system under development within its operational environment, and along with relevant
functions, and qualities. The system is introduced as one more actors, to which existing
actors delegate responsibilities for some of the goals and the dependencies that they
cannot satisfy. The delegated dependencies define all the functional and non-functional
requirements of the system.

18 Haralambos Mouratidis, Paolo Giorgini

Regarding the proposed extensions, security constraints are imposed to the system-
to-be (by taking into account the security diagram) and these constraints are further
analysed according to the security constraint analysis processes [35], and security goals
and entities necessary for the system to guarantee the security constraints are identified.

The main goal of the eSAP system (see Figure 8) is to Automate Care, and therefore
help professionals provide faster and more efficient care, and also allow older people get
more involved in their care.

Fig. 8. eSAP System Partial Analysis

Taking into consideration the security reference diagram (see Figure 5) there are three
main constraints imposed (by the desired security features of the system- privacy,
integrity and availability) to the eSAP’s main goal - Keep Data Integrity, Keep Data
Available and Keep Data Private. For the eSAP to satisfy these constraints three secure
goals have been identified. Ensure Data Integrity, Ensure Data Availability and
Ensure Data Privacy.

This example focuses only on the Keep Data Private security constraint. This
security constraint can be further analysed to security sub-constraints: Allow Only
Encrypted Data Transfer, Allow Only Authorised Access, and Allow Access Only
to Personal Care Plan. Taking into account the security reference diagram, secure
goals are introduced to help towards the satisfaction of the imposed security constraints.

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 19

Thus the secure goals Use Cryptography, Check Authorisation, Check Access
Control, and Check Information Flow are introduced. In addition, some of the secure
goals are further analysed in terms of secure tasks.

For instance, the Use Cryptography goal is divided to two secure tasks: Encrypt
Data and Decrypt Data. Although these tasks could be furthered decomposed by
indicating for example the type of the encryption algorithm this is not the case in this
stage, since the type of the encryption algorithm depends on the implementation of the
system and it will restrict the designers of the system in a particular implementation style.

Moreover, the Check Authorisation goal is decomposed into four secure tasks:
Check Password, Check Digital Signatures, Check Biometrics and Call Back.
However, it is indicated in the diagram that the last two tasks contribute negatively
towards the mobility of the system, and this is one factor that the developers must take
into consideration in the implementation of the system.

5.3. Architectural Design

The architectural design involves (1) the addition of new actors, in which new actors are
added to make the system interact with the external actors; (2) actor decomposition, in
which each actor is described in detail with respect to their goals and tasks; (3)
capabilities identification, in which capabilities needed by the actors to fulfil their goals
are identified; and (4) agent assignment, in which a set of agent types is defined and each
agent is assigned one or more capabilities.

From the security point of view, we identify the security constraints and secure
entities that the new actors introduce and also during the actor decomposition we identify
security sub-constraints and sub-entities. In addition secure capabilities are identified and
assigned to each agent of the system. Moreover, during the architectural design the
developers should decide for the architecture of their system. As mentioned earlier, such
a decision should take into account the security requirements of the system. In other
words, an architectural style that satisfies as much as possible the system’s security
requirements should be chosen. Although, there are different ways to determine that and
in general it is left to the developers, a process that involves the evaluation of different
architectural styles with respect to the security requirements of the system has been
proposed [50]. The analysis that took place following this process, has identified [35] that
a client server architectural style would satisfy more the security requirements of the
eSAP system, than for example a mobile agent architectural style. As a result, the system
has been designed with this consideration in mind.

It was derived from the late requirements stage that one of the system’s secure goals
is to Ensure Data Privacy. Responsibility for the achievement of this goal is delegated
from the eSAP to the newly introduced sub-actor Privacy Manager.

The Privacy Manager has four main secure goals (see Figure 9), Check
Authorisation, Check Access Control, Check Information Flow and Use
Cryptography. Therefore, the Privacy Manager is decomposed and responsibilities for
the satisfaction of these secure goals are delegated to the Authorisation Manager,

20 Haralambos Mouratidis, Paolo Giorgini

Access Control Manager, Information Flow Manager and Cryptography Manager
respectively.

Fig. 9. Actors’ decomposition diagram

For each new (sub) actor introduced in the system, an extended diagram is required to
capture the dependencies of the new actor with the already existing actors of the system.
Figure 10 shows a part (focused on the privacy) of the extended diagram for the task
Access Care Plan Info of the Professional actor (see Figure 7). The Care Plan
Manager is responsible for providing the Professional access to the Care Plan Info. It
depends on the Authorisation Manager to deal with authorisation procedures, on the
Access Control Manager and the Information Flow Manager to perform access
control checks and information flow checks respectively, and on the Cryptography
Manager for encrypting and decrypting information.

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 21

Fig. 10. Extended diagram with respect to “Access Care Plan Info” task

The next step in the architectural design is to identify (secure) capabilities for each
actor. Taking into consideration the extended actor diagram (Figure 10), each
dependency relationship can give place to one or more capabilities triggered by external
events. The actors along with their capabilities with respect to the extended diagram of
Figure 10 are shown in Table 1.

When the actors along with their capabilities have been identified the next step is the
agents’ assignment. A set of agent types are defined and each one of them is assigned one
or more different capabilities (Table 2) with respect to the capabilities identified in the
previous step (Table 1).

Table 1. Actors and their Capabilities

 Actors Capability Cap. ID
Professional Provide Care Plan Info Request 1

 Provide Authorisation Details 2
 Obtain Care Plan Info 3

Care Plan Manager Obtain Care Plan Info Request 4
 Provide Care Plan Info 5
 Request Encryption of Data 6
 Obtain Encrypted Data 7
 Request Decryption of Data 8
 Obtain Plain Data 9

22 Haralambos Mouratidis, Paolo Giorgini

 Obtain Authorisation Clearance 10
 Obtain Access Control Clearance 11
 Obtain Information Flow

Clearance
12

Cryptography Manager Encrypt Data 13
 Decrypt Data 14

Information Flow Manager Provide Information Flow
Clearance

15

Access Control Manager Provide Access Control Clearance 16
Authorisation Manager Obtain Authorisation Details 17

 Provide Authorisation Clearance 18

5.4. Detailed Design

From the security point of view, during the detailed design the developers specify the
agent capabilities and interactions taking into account the security aspects derived from
the previous steps of the analysis. In doing so AUML [3] notation is employed. The only
difference is the introduction of security rules. These are similar to the business rules that
UML has for defining constraints on the diagrams (see for instance Figure 11). In this
case, security constraints can be formally expressed (and verified) with the aid of the
Object Constraint Language (OCL). However, for reasons of simplicity we present here
the security constraints with the aid of notes as shown in Figure 11.

Table 2. Agents and their capabilities

Agent Capabilities

Professional 1,2,3

Care Plan Agent 4,5,6,7,8,9,10,11,12

Privacy Agent 13,14,15,16,17,18

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 23

Fig. 11. An example of a security rule modelled in a sequence diagram

6. Conclusions and Future Work

In this paper we presented Secure Tropos, an extension to Tropos methodology,
which allows developers to consider security issues throughout the development process
of multiagent systems. Secure Tropos provides a well-guided process, consisting of
various modelling activities, which allows developers to consider security issues during
the development of multiagent systems. The key point on the security process of Secure
Tropos is the usage of the same concepts and notations throughout the development
stages. The usage of the same concepts together with the definition of the relationships
between those concepts allows us to validate the solution in different ways. First of all,
by tracking the developed solution all the way back to the security requirements and the
security policy. This allows validation of the design by making sure that all the security
policy rules are considered by the security solution. Although this does not guarantee a
100% secure system, such a claim cannot be made by any approach or any system, it
guarantees that the developed design takes into account all the security requirements of
the system, and appropriate capabilities are given to the agents of the system (and thus on
the system) to satisfy these requirements. Secondly, the developers can validate each of
the development steps by following a set of consistency and validation rules that have
been proposed [35] for the security process.

The above validation processes are supported by automated techniques and tools to
assist developers during the development. In particular, a security pattern language has
been developed [35] to assist developers in transforming the analysis specification to a

24 Haralambos Mouratidis, Paolo Giorgini

design by applying proven solutions in a systematic and structured way. Moreover,
Security Attack Scenarios [35] have been proposed and integrated into the Secure Tropos
process to validate the security solution against the system’s security requirements. In
addition, formal definition of the methodology’s concepts is supported using the formal
Tropos language and an automated tool, T-Tool [16], allows the automatic consistency
validation of the specifications and it assists developers in identifying whether the
proposed solution respects a number of desired security properties. T-Tool animations
can also be used to give the user immediate feedback on its implications.

This is an ongoing research and more work is required to achieve our aim, which is to
provide a well guided process of integrating security and functional requirements
throughout the development stages of multiagent systems. Currently, we are working on
refining the process, to make it applicable even by developers with minimum knowledge
of security.

References

1. R. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems,
Wiley Computer Publishing, 2001.

2. M. Andries, G. Engels, A. Habel, B. Hoffmann, H-J Kreowski, S. Kuske, D. Plump, A.
Schurr, G. Taentzer, Graph Transformation for Specification and Programming, Science of
Computer Programming, 1999.

3. B. Bauer, J. Müller, J. Odell, Agent UML: A Formalism for Specifying Multiagent
Interaction, In Agent-Oriented Software Engineering, Paolo Ciancarini and Michael
Wooldridge (eds.), Lecture Notes in Computer Science, pp. 91-103, Springer, Berlin, 2001.

4. Paul Beynon-Davies, Information systems `failure': case of the LASCAD project, European
Journal of Information Systems, 1995

5. M. Bradshaw, Software Agents, American Association Artificial Intelligence Publication,
1997.

6. P. Bresciani, P. Giorgini, The Tropos Analysis Process as Graph Transformation System, In
Proceedings of the Workshop on Agent-oriented methodologies, at OOPSLA 2002, Seattle,
WA, USA, Nov, 2002.

7. P. Bresciani, A. Perini, P. Giorgini, G. Giunchiglia, J. Mylopoulos, Modelling early
requirements in Tropos: a transformation based approach, In Agent Oriented Software
Engineering II. M. Wooldridge, and G. Wei� (eds.). Lecture Notes in Computer Science,
Springer-Verlag 2222, 2002.

8. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos A. Perini, TROPOS: An Agent
Oriented Software Development Methodology. Journal of of Autonomous Agents and Multi-
Agent Systems. Kluwer Academic Publishers Volume 8, Issue 3, Pages 203 - 236, May 2004.

9. J. Castro, M. Kolp, J. Mylopoulos, Towards Requirements-Driven Information Systems
Engineering: The Tropos project, In Information Systems (27), pp 365-389, Elsevier,
Amsterdam - The Netherlands, 2002.

10. L. Chung, B. Nixon, Dealing with Non-Functional Requirements: Three Experimental Studies
of a Process-Oriented Approach, In Proceedings of the 17th International Conference on
Software Engineering, Seattle- USA, 1995.

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 25

11. Dardenne, A. van Lamsweerde, S. Fickas, Goal-directed Requirements Acquisition, Science of
Computer Programming, Special issue on the 6th International workshop of Software
Specification and Design, 1991.

12. P. Devanbu, and S. Stubblebine, Software Engineering for Security: a Roadmap, Proceedings
of the conference of The future of Software engineering, 2000.

13. R. Evans, P. Kearney, J. Stark, G. Caire, F. J. Carijo, J. J. Gomez Sanz, J. Pavon, F. Leal, P.
Chainho, and P. Massonet. MESSAGE: Methodology for Engineering Systems of Software
Agents, AgentLink Publication, September 2001

14. K. Fischer, D. Hutter, M. Klusch, W. Stephan, Towards Secure Mobile Multiagent Based
Electronic Marketplace Systems, Electronic Notes in Theoretical Computer Science, Vol. 63,
Elsevier, 2002.

15. P. Giorgini, F. Massacci, J. Mylopoulos, Requirement Engineering meets Security: A Case
Study on Modelling Secure Electronic Transactions by VISA and Mastercard, In Proceedings
of the 22nd International Conference on Conceptual Modeling (ER'03), Chicago, Illinois, 13-
16 October, 2003.

16. P. Giorgini, F. Massacci,J. Mylopoulous, and N. Zannone. Requirements Engineering meets
Trust Management: Model, Methodology, and Reasoning. In Proceedings of the Second
International Conference on Trust Management (iTrust 2004), Lecture Notes in Computer
Science 2995, pages 176-190. Springer-Verlag Heidelberg, 2004.

17. F. Giunchiglia, J. Mylopoulos, A. Perini, The Tropos Software Development Methodology:
Processes, Models and Diagrams, Lecture Notes in Computer Science 2585, pp 162-173,
Springer 2003

18. D. Gollmann, Computer Security, John Willey and Sons, July 2001
19. M.-P. Huget, Nemo: An Agent-Oriented Software Engineering Methodology, In Proceedings

of OOPSLA Workshop on Agent-Oriented Methodologies, John Debenham, Brian
Henderson-Sellers, Nicholas Jennings and James Odell (eds), Seattle, USA, November 2002.

20. C. A. Iglesias, M. Garijo, J. Gonzalez, J. R. Velasco, Analysis and design of multiagent
systems using MAS-CommonKADS, Workshop on Agent Theories, Architectures and
Languages, 1997.

21. C. Iglesias, M. Garijo, J. Gonzales, A survey of agent-oriented methodologies, Intelligent
Agents IV, Lecture Notes in Computer Science, Springer-Verlag 1555, 1999.

22. W. Jansen, Countermeasures for Mobile Agent Security, Computer Communications, Special
Issue on Advanced Security Techniques for Network Protection, Elsevier Science BV,
November 2000.

23. W, Jansen, T. Karygiannis, Mobile Agent Security, National Institute of Standards and
Technology, Special Publication 800-19, August 1999.

24. N. R. Jennings, An agent-based approach for building complex software systems,
Communications of the ACM, Vol. 44, No 4, April 2001

25. N. R. Jennings, M. Wooldridge, Agent–Oriented Software Engineering, in the Proceedings of
the 9th European Workshop on Modelling Autonomous Agents in a Multi-Agent World :
Multi-Agent System Engineering (MAAMAW-99), Valencia, Spain, 1999

26. Jan Jürjens, Towards Secure Systems Development with UMLsec, Fundamental Approaches
to Software Engineering (FASE/ETAPS) 2001, International Conference, Genoa 4-6 April
2001

27. J. Jürjens, UMLsec: Extending UML for Secure Systems Development, UML 2002, Lecture
Notes in Computer Science 2460, pp 412-425, Springer 2002

28. V. P. Lane, Security of Computer Based Information Systems, Macmillan education ltd, 1985
29. L. Liu, E. Yu, J. Mylopoulos, Analyzing Security Requirements as Relationships Among

Strategic Actors, in the Proceedings of the 2nd Symposium on Requirements Engineering for
Information Security (SREIS’02), Raleigh, North Carolina, October 2002.

26 Haralambos Mouratidis, Paolo Giorgini

30. T. Lodderstedt, D. Basin, J. Doser, SecureUML: A UML-Based Modelling Language for
Model-Driven Security, in the Proceedings of the 5th International Conference on the Unified
Modeling Language, 2002.

31. H. Mouratidis, P. Giorgini, G. Manson, I. Philp, A Natural Extension of Tropos Methodology
for Modelling Security, In the Proceedings of the Agent Oriented Methodologies Workshop
(OOPSLA 2002), Seattle-USA, November 2002.

32. H. Mouratidis, P. Giorgini, I. Philp, G. Manson, Using Tropos Methodology to Model and
integrated Health Assessment System, In Proceedings of the Fourth International Bi-
Conference Workshop on Agent-Oriented Information systems (AOIS-02) at CAiSE2002,
Toronto, Canada, 2002.

33. H. Mouratidis, P. Giorgini, G. Manson, Modelling Secure Multiagent Systems, in the
Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent
Systems, Melbourne-Australia, pp. 859-866, ACM 2003.

34. H. Mouratidis, P. Giorgini, G. Manson, An Ontology for Modelling Security: The Tropos
Approach, in the Proceedings of the 7th International Conference on Knowledge-Based
Intelligent Information & Engineering Systems (KES 2003), Invited Session on Ontology and
Multi-Agent Systems Design (OMASD’03), Oxford-England, September 2003.

35. H. Mouratidis, A Security Oriented Approach in the Development of Multiagent Systems:
Applied to the Management of the Health and Social Care Needs of Older People In England,
PhD thesis, University of Sheffield, 2004.

36. A. Perini, P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, Towards an Agent
Oriented Approach to Software Engineering, Proceedings of the Workshop Dagli oggetti agli
agenti: tendenze evolutive dei sistemi software, Modena - Italy, 4-5 Sept 2001.

37. G.C. Roman, A Taxonomy of Current Issues in Requirements Engineering, IEEE Computer,
Vol. 18, No. 4, pp 14-23, April 1985.

38. I. Sommerville, Software Engineering – Sixth Edition, Addison-Wesley Publishing Company,
2001.

39. W. Stallings, Cryptography and Network Security: Principles and Practice, Second Edition,
Prentice-Hall 1999.

40. E. Steegmans, J. Lewi, M. D'Haese, J. Dockx, D. Jehoul, B. Swennen, S. Van Baelen, P. Van
Hirtum, EROOS Reference Manual Version 1.0, Department of Computer Science,
K.U.Leuven, CW Report 208,176 p. Leuven, B, 1995.

41. T. Tryfonas, E. Kiountouzis, A. Poulymenakou, Embedding security practices in
contemporary information systems development approaches, Information Management &
Computer Security, Vol 9 Issue 4,pp 183-197, 2001.

42. Mark Wood, Scott A. DeLoach, An Overview of the Multiagent Systems Engineering
Methodology, in Agent-Oriented Software Engineering, P. Ciancarini, M. Wooldridge, (Eds.),
Lecture Notes in Computer Science. Vol. 1957, Springer Verlag, Berlin, January 2001.

43. M. Wooldridge, P.Ciancarini, Agent-Oriented Software Engineering: The State of the Art, In
P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software Engineering. Springer-
Verlag Lecture Notes in AI Volume 1957, January 2001

44. M. Wooldridge, N. R. Jennings, D. Kinny, A methodology for Agent-Oriented Analysis and
Design, In O. Etzioni, J. P. Muller, and J. Bradshaw (eds.), Agents ’99: Proceedings of the
Third International Conference on Autonomous Agents, Seattle, WA, May 1998.

45. E. Yu, L. Cysneiros, Designing for Privacy and Other Competing Requirements, 2nd
Symposium on Requirements Engineering for Information Security (SREIS’ 02), Raleigh,
North Carolina, 15-16 November, 2002.

46. E. Yu, Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis, Department
of Computer Science, University of Toronto, Canada, 1995.

47. B. W. Boehm, Software Engineering Economics, Prentice Hall, 1981.

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 27

48. C. Meadows, A Model of Computation for the NRL protocol analyser, Proceedings of the
1994 Computer Security Foundations Workshop, 1994.

49. J. McDermott, C. Fox, Using Abuse Care Models for Security Requirements Analysis,
Proceedings of the 15th Annual Computer Security Applications Conference, December 1999.

50. H. Mouratidis, P. Giorgini, G. Manson, Integrating Security and Systems Engineering:
Towards the Modelling of Secure Information Systems, in the Proceedings of the 15th
Conference on Advance Information Systems (CAiSE 2003), Velden-Austria, June 2003.

51. P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R. Sebastiani. Reasoning with Goal Models, In the
Proceedings of the 21st International Conference on Conceptual Modeling (ER2002),
Tampere, Finland, October 2002.

52. S. Rohrig, Using Process Models to Analyze Health Care Security Requirements,
International Conference Advances in Infrastructure for e-Business, e-Education, e-Science,
and e-Medicine on the Internet, L'Aquila, Italy, January, 2002.

53. B. Schneier, Secrets & Lies: Digital Security in a Networked World, John Wiley & Sons,
2000.

54. M. Schumacher, U. Roedig, Security Engineering with Patterns, in the Proceedings of the 8th
Conference on Pattern Languages for Programs (PLoP 2001), Illinois-USA, September 2001.

55. G. Sindre, A. L. Opdahl, Eliciting Security Requirements by Misuse Cases, Proceedings of
TOOLS Pacific 2000, November 2000.

Appendix

The proposed transformation system, defines the construction of the security
reference diagram in terms of a graph transformation [2], in which a diagram (graph) is
progressively derived through subsequent more and more precise versions of it, according
to the application of a set of rules to the diagram. Such rules are called graph
transformation rules and a precise definition can be found in [2]. It is worth mentioning
that the security reference diagram transformation system is based on the graph
transformation system introduced by Andries et al. [2], and the analysis proposed for
Tropos’ actor and goal diagrams by Bresciani and Giorgini [6]. Moreover, regarding the
transformation rules, the notion of a graph transformation rule proposed by Bresciani and
Giorgini [6] for Tropos diagrams is followed.
Formally, the security reference diagram can be represented as a special case of a labelled
directed diagram >ΕΝ=< ltsG ,,,, , where

• N is a finite set of nodes that can be connected by one or more edges of the finite set
E;

s and t are two functions that assign the source and the target node to each node
respectively Ν→Ε:,ts ;

l represents a label function for each of the nodes and edges. In addition, for the security
reference diagram we can assume that >→<Ν∪Ε LTl ,: , where T = {SecurityFeatures,
SecurityThreats, Protection Objectives, SecurityMechanisms} and L represents a set of
identifiers.

In addition, a graph transformation rule is defined as a pair ,r L R= , where L and R are

graphs called the left-hand-side (LHS) and the right-hand-side (RHS) of the rule. From

28 Haralambos Mouratidis, Paolo Giorgini

the analysis done by Bresciani and Giorgini [6] it derives that a graph H can be obtained

from a graph G by the application of a set of transformation rules { }1,..., nP r r= as
P P

G H or� � in the case G is the empty graph.

However, such a derivation process is non-deterministic due to the choice of a
particular rule, at each step. Additionally, the chosen rule might be applicable to several
occurrences of the graph’s LHS [2]. To control this kind of non-determinism during the
construction of the security reference diagram, we have assigned a set of priority rules:
Rule 1: Introduce the security features to the diagram

>><<
><

},*{{},{},{},},{:
{}{},{},{},{},:

11 SFnnRHS

LHS

�

The application of this rule results in the introduction of a new security feature (SF) in the
RHS graph.
Rule 2: Introduce the security threats and associate them with the security features

},,*,,*{},{},{},{},,{:

},*{{},{},{},},{:

1211121121

11

><><><<
>><<

εNegConeSTnSFnneneennRHS

SFnnLHS

�����

�

 The application of this rule results in the introduction of a security threat (ST) in the
RHS graph and the introduction of new edge(s) associated with this node.

Rule 3: Introduce the protection objectives and associate them with the security features

1 1

1 2 1 1 2 1 1 1 2 1

: { },{},{},{},{ ,* }

: { , },{ },{ },{ },{ ,* , ,* , }

LHS n n SF

RHS n n e e n e n n SF n PO e PosCon ε
< < > >
< < > < > < >

�

� � � � �

The application of this rule results in the introduction of a protection objective (PO) in
the RHS graph and the introduction of new edge(s) associated with this node.
Rule 4: Introduce the security mechanisms and associate them with the protection
objectives

1 1

1 2 1 1 2 1 1 1 2 1

: { },{},{},{},{ ,* }

: { , },{ },{ },{ },{ ,* , ,* , }

LHS n n PO

RHS n n e e n e n n PO n SM e PosCon ε
< < > >
< < > < > < >

�

� � � � �

The application of this rule results in the introduction of a security mechanism (SM) in
the RHS graph and the introduction of new edge(s) associated with this node.

Rule 5: Decompose the security mechanisms to security sub-mechanisms

1 2

1 2 1 1 2 1 1 1

: { , },{},{},{},{ ,* }

: { , },{ },{ },{ },{ ,* , , }
i

i

LHS n n n SM

RHS n n e e n e n n SM e AND DEC ε
< < > >
< < > < − >

�

� � � �

The application of this rule results in the introduction of new node(s) and edge(s)
associated with the security mechanisms of the diagram.

Taking into account the above transformation system rules, we have developed an
algorithm (shown in Figure 12) for the construction of the security reference diagram.
The algorithm works as follows: First all the known security features are applied to the
diagram. Then the threats are applied to the diagram and the contribution links between

Secure Tropos: A Security-Oriented Extension of the Tropos Methodology 29

the threats and the security features are indicated. Then the protection objectives and their
associations to the security features are applied. Finally, the security mechanism are
introduced and associated to the protection objectives, and if necessary they are further
analysed to security sub-mechanisms. This process assumes that the developers know all
the elements of the diagram prior to its construction. However, most likely the developers
will come across some new required security issues after the application of a specific
rule. For instance, a security feature can be identified after the application of the security
feature rule (rule 1). To avoid a delay in the analysis, it is convenient sometimes to allow
some simple exceptions. Thus, it may be preferable to introduce the new node (by
applying the corresponding rule) and then continue with the rest of the rules. For this
reason, we have introduced to our algorithm an outer REPEAT loop to deal with
situations where the application of one rule for a particular node, might require the
application of a rule for another node.

BEGIN
Initialise Graph G (**should be empty in the initialisation process**)
 REPEAT

REPEAT
‘choose rule 1’;
‘choose an occurrence’ i for the application of rule 1;
 G: = (G\I(L\R)+ I(R\L)

UNTIL G = desired graph or no rule 1, for no occurrence i, remains;
REPEAT

‘choose rule 2’;
‘choose an occurrence’ i for the application of rule 2;

G: = (G \ I (L\R) + I (R\L)
UNTIL G = desired Graph or no rule 2, for no occurrence i, remains;
REPEAT

‘choose rule 3’;
‘choose an occurrence’ i for the application of rule 3;

 G: = (G \ I (L\R) + I (R\L)
UNTIL G = desired Graph or no rule 3, for no occurrence i, remains;
REPEAT

‘choose rule 4’;
‘choose an occurrence’ i for the application of rule 4;

 G: = (G \ I (L\R) + I (R\L)
UNTIL G = desired Graph or no rule 4, for no occurrence i, remains;
REPEAT

‘choose rule 5’;
‘choose an occurrence’ i for the application of rule 5;

 G: = (G \ I (L\R) + I (R\L)
UNTIL G = desired Graph or no rule 5, for no occurrence i, remains;

 UNTIL all rules are satisfied for all occurrences;
END

Fig. 12. The algorithm for the construction of the security reference diagram

