
Secure two-party computation: a visual way

Paolo D’Arco and Roberto De Prisco

Dipartimento di Informatica

University of Salerno

Italy.

Abstract

In this paper we propose a novel method for performing secure two-party computation. By
merging together in a suitable way two beautiful ideas of the 80’s and the 90’s, Yao’s garbled
circuit construction and Naor and Shamir’s visual cryptography, respectively, we enable Alice
and Bob to securely evaluate a function f(·, ·) of their inputs, x and y, through a pure physical
process. Indeed, once Alice has prepared a set of properly constructed transparencies, Bob
computes the function value f(x, y) by applying a sequence of simple steps which require
the use of a pair of scissors, superposing transparencies, and the human visual system. A
crypto-device for the function evaluation process is not needed any more.

Keywords: Yao’s Construction, Visual Cryptography, Secure Computation.

1 Introduction

Yao’s Construction. Latins said: Verba volant, scripta manent. Yao’s construction disproves the
saying. Indeed, [22] and [23], the papers which usually are cited when the construction is used or
referred to, do not contain any description of it. It has never been written down by the author,
but only provided to the community during an oral presentation (FOCS 1986). Fortunately,
verba were captured by other researchers, who used the construction in subsequent papers, first
of all [13]. Later on, it has been widely exploited in protocol design, but, apart some notable
exceptions, it has more or less been considered as a powerful tool for establishing existential
results. However, in the last years, since it has been shown that fine-tuned implementations, for
reasonable input sizes, are becoming practical in many settings, new attention has been devoted
to it. A version of the construction has been clearly described and proved secure according to
precise definitions and assumptions in [19]. In a few other new recently introduced cryptographic
primitives and protocols, e.g., functional encryption [5] or non-interactive verifiable computing
[14], the construction plays a key role, and in [3] it has been even proposed to move from a view
of Yao’s construction as a cryptographic tool to a view of the construction as a cryptographic
goal, which can be achieved with several security properties and privacy degrees1. From a certain
point of view, Yao’s idea is living nowadays a sort of second life.

1The introduction of [3] offers a brief history of the construction and a nice accounting of the research efforts
which followed.

1

Roughly speaking, Yao’s construction, enables two parties, Alice and Bob, to privately evaluate
a boolean function f(·, ·) on their inputs, x and y, in such a way that each party gets the result
and, at the same time, preserves the privacy of its own input, apart from what can be inferred
about it by the other party from its input and the function value f(x, y), e.g., if the function
f(·, ·) is the xor function, given x xor y there is no way to preserve the other input.

In a nutshell, the construction works as follows: the boolean function f(·, ·) is represented
through a boolean circuit C(·, ·) for which, for each x, y, it holds that C(x, y) = f(x, y). Yao’s
idea is to use the circuit as a conceptual guide for the computation which, instead of a sequence
of and, or and not operations on strings of bits x and y, becomes a sequence of decryptions on
sequences of ciphertexts. More precisely, one of the party, say Alice, given C(·, ·), computes a
new object C̃, which is usually referred to as the garbled circuit [1], where:

- to each wire w of C(·, ·), are associated in C̃ two random keys, k0
w and k1

w, which (secretly,
the correspondence is not public) represent 0 and 1, and,

- to each gate G(·, ·) of C(·, ·), corresponds in C̃ a gate table G̃ with four rows, each of which
is a double encryption, obtained by using two different keys ka

w1
and kb

w2
, for a, b ∈ {0, 1}, of

a message which is itself a random key kc
w3

, for c ∈ {0, 1}. In details, each double encryption
Eab=Ekb

w2

(Eka
w1

(kc
w3

)) uses one of the four possible pairs of keys (ka
w1

, kb
w2

), associated to

the input wires (w1, w2) of gate G(·, ·), and the message which is encrypted is the random
key kc

w3
, associated to the wire w3 of output of the gate G(·, ·) if and only if G(a, b) = c. The

four double encryptions E00, E01, E10 and E11 are stored in the gate table rows in random
order.

Once C̃ has been computed, Alice sends to Bob all the gate tables G̃ associated to the circuit
gates G(·, ·), and reveals the random keys k0

w and k1
w, associated to all the output wires w, and

their correspondences with the values 0 and 1. Moreover, for the input wires of the circuit, she
sends to Bob the random keys kx1

w1
, kx2

w2
, . . . , kxn

wn
corresponding to the bit-values of her own input

x = x1x2 . . . xn. To perform the computation represented by C̃, then Bob needs only the keys
associated to the input wires corresponding to his own input. This issue can be solved by means of
executions of 1-out-of-2 oblivious transfer protocols [11], through which Bob receives the random
keys ky1

wn+1
, ky2

wn+2
, . . . , ky2n

w2n corresponding to the bit-values of his own input y = y1y2 . . . yn and
nothing else, while Alice from the transfer does not know which specific keys Bob has recovered.

Finally Bob, according to the topology of the original circuit C(·, ·), level after level, decrypts
one and only one entry from each gate table G̃ in C̃, until he computes one and only one random
key associated to each output wire. The binary string which corresponds to the sequence of
computed random keys, associated to the output wires, is the value C(x, y). Bob sends the result
of the computation to Alice2.

It is easy to check that the computation is correct and, intuitively, that the privacy of the
inputs is preserved. The random keys held by Bob, the rows of each G̃, and the random keys
obtained decrypting a row in each G̃, do not leak any information about the actual bits of the
input values.

Visual Cryptography. Visual cryptography is a special type of secret sharing in which the secret is
an image and the shares are random-looking images printed on transparencies. It was introduced

2Appendix B provides a detailed description of Yao’s protocol.

2

by Naor and Shamir [18]. The captivating peculiarity of this type of secret sharing is that the
reconstruction of the secret is performed without any computational machinery: it is enough
to superpose the shares (transparencies) in order to reconstruct the secret. Roughly speaking,
for black-and-white images, the bit value 0 is encoded as a transparent pixel, the bit value 1
is encoded as a black pixel, and the reconstruction operation is an or and is performed by the
human visual system when the shares are superposed. Visual cryptography has been extensively
studied; we refer the interested reader to [9] for a collection of surveys on several aspects of visual
cryptography. For the goal of this paper we will be using a particular type of visual cryptography:
probabilistic visual cryptography [21, 10].

Our Contribution. In this paper we merge together Yao’s construction and properly defined visual
cryptography schemes, in order to propose a method through which Alice and Bob can securely
evaluate a function f(·, ·) of their inputs, x and y, through a pure physical process.

Our efforts were inspired and driven by the work of Kolesnikov [17], who showed that a different
approach to the function evaluation process in Yao’s construction can be pursued. Roughly
speaking, instead of constructing the garbled circuit C̃ by using for each gate G(·, ·) a gate table
G̃, containing a double encryption for each possible input pair of keys, it is possible to use secret
sharing schemes designed to realize the functionalities implemented by the logical gates. Such
schemes were referred to as gate equivalent secret sharing schemes (GESS, for short) [17]. Using a
GESS, any time that two shares, say sha

w1
and shb

w2
, associated to the input wires w1 and w2 of gate

G(·, ·), are combined through the reconstruction function of the GESS, the secret sw3
, associated

to the output wire w3 of gate G(·, ·) is recovered. It follows that an explicit representation G̃
of G(·, ·) is not needed any more, because all the information required to reconstruct the secret
value associated to w3, depending on the functionality of the target gate G(·, ·), is coded and,
hence, implicitly represented, into the shares sha

w1
and shb

w2
. Therefore, given the circuit C(·, ·),

and by applying a bottom-up process, which starts from the circuit output wires and ends when
the circuit input wires are reached, Alice can construct shares associated to the circuit input wires
which encode all the information needed to evaluate C(·, ·) on every pair of inputs (x, y). Then, as
in Yao’s construction, Alice sends directly to Bob the shares corresponding to the bit-values of her
own input x, while Bob, by means of executions of 1-out-of-2 oblivious transfer protocols, receives
the shares corresponding to the bit-values of his own input y. Finally, Bob applies iteratively the
GESS reconstruction functions, until the secrets associated to the output wires, which correspond
to the value C(x, y), are obtained. We provide a generalization of the above approach and a visual
implementation.

Notice that, the technique used by Kolesnikov [17], does not immediately extend to visual
secret sharing. In order to exploit visual secret sharing, some technical details and issues need
to be addressed. The most important ones are two: (i) we need to define and construct a visual
counterpart of a GESS scheme, and (ii) propose a physical method to perform the oblivious
transfer. Both of them are goals of independent interests. We show that the GESS construction
provided in [17] is a special case of a general construction which uses multi-secret sharing schemes.
Therefore, it can be instantiated by using a visual multi-secret sharing scheme. We also provide a
construction. Regarding the oblivious transfer, even if physical metaphors have often been used
for describing cryptographic primitives and protocols, only few papers have dealt with physical
implementations. To our knowledge, the state of the art is summarized in [20], which is the first
paper that rigorously addresses the issue of realizing cryptographic protocols by using tamper-

3

evident seals (sealed envelopes and locked boxes). We could use an oblivious transfer protocol
of [20], but since we discuss a simpler scenario, we propose an easier construction which uses
indistinguishable envelopes. The main result we achieve can be (informally) stated as follows:

Theorem 1.1 Every two-party computation representable by means of a boolean function f(·, ·)
can be performed preserving the privacy of the inputs x and y through a pure physical visual
evaluation process.

2 Definitions and Tools

Let us start by setting up the notation and stating basic definitions. We follow essentially the
treatment of [19, 12] (i.e., see Section 2 of [19] or Chapter 7 of [12]).

2.1 Notation

Efficient Algorithms. An efficient algorithm is a probabilistic algorithm running in poly(k) time,
where k is a security parameter. Efficient algorithms are referred to as PPT algorithms.
Negligible functions. A function f(·) is negligible if it vanishes faster than the inverse of any
fixed positive polynomial. That is, for any positive integer c, there exists an integer k0 such that
f(k) ≤ 1

kc , for any k ≥ k0. We denote by negl(k) a negligible function.
Algorithms and random variables. If A(·) is a probabilistic algorithm, then, for any x, the notation
A(x) refers to the random variable that assigns to the string σ the probability that A, on input
x, outputs σ.
Distribution Ensembles. If S is an infinite set, and X = {Xs}s∈S and Y = {Ys}s∈S are distribution

ensembles3, then we say the X and Y are identically distributed, X
p≡ Y for short, if, for every

distinguisher D and for every s ∈ S, it holds that |Pr[D(Xs) = 1] − Pr[D(Ys) = 1]| is equal
to 0. Similarly, if the Ds are PPT algorithms, and for all sufficiently large (in the length of the
parameter) s ∈ S it holds that |Pr[D(Xs) = 1]− Pr[D(Ys) = 1]| is a negligible function negl(s)

in s, we say that X and Y are computationally indistinguishable, X
c≡ Y for short.

2.2 Secure Two-party Computation

We consider two-party computation in presence of a static semi-honest adversary. The adversary
controls one of the parties and, although it follows the protocol specification, it might try to learn
extra information from the transcript of the messages received during the execution.

A two-party computation is a random process that maps pairs of inputs to pairs of outputs, one
for each party. We refer to such a process as a functionality and denote it f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗, where f(x, y) = (f1(x, y), f2(x, y)).

Let π be a two-party protocol for computing f . Intuitively, a protocol is secure if whatever a
party can compute participating in the protocol can also be computed by himself by using only his

3A random variable is sufficient to represent the input, the output or any intermediate computation of a ran-
domized entity in a single protocol execution. However, since it is of interest analyzing the behavior of protocol
executions, according to input sizes depending on the security parameter k, collections of random variables are
needed: an ensemble is exactly a family of random variables, where each of them, say Xs, is uniquely identified by
an index s, related to the security parameter k.

4

own input and his own function value. More precisely, for i ∈ {1, 2}, denoting with the random
variables viewπ

i (x, y), the view (i.e., input, random coins, messages received...) that party i has
during the execution of π(x, y), by outputπi (x, y) the output of party i, and by outputπ(x, y) the
output of both parties, we state the following4:

Definition 2.1 Let f be a functionality. A protocol π computes f in a perfectly (computationally)
secure way, in presence of a static semi-honest adversary, if

{outputπ(x, y)}(x,y)∈{0,1}∗ = {f(x, y)}(x,y)∈{0,1}∗

and there exists (PPT) algorithms Sim1 and Sim2 such that:

{Sim1(x, f1(x, y))}(x,y)∈{0,1}∗
p/c≡ {viewπ

1 (x, y)}(x,y)∈{0,1}∗ ,

{Sim2(y, f2(x, y))}(x,y)∈{0,1}∗
p/c≡ {viewπ

2 (x, y)}(x,y)∈{0,1}∗ .

3 Visual Gate Evaluation Secret Sharing

In this section, building on the definitions and the constructions provided in [17], we introduce the
notion of visual gate evaluation secret sharing (VGESS, for short), and we show how to construct
a VGESS scheme. We proceed as follows: (i) we recall some notions on visual secret and multi-
secret sharing schemes, (ii) we recall the definition of GESS schemes [17], (iii) we define a general
construction for GESS schemes, GenGESS for short, in terms of multi-secret sharing schemes5.
The construction in [17] ends up to be a special instance of it. Finally, in order to take benefits
from the general form, we define VGESS and, by using a visual multi-secret sharing scheme, we
realize an implementation.

3.1 Visual Cryptography

Given two images I1 and I2, with the same size, printed on transparencies, we denote with
Sup(I1, I2) the image that results from the superposition of the two images. Interpreting white as
0 and black as 1, for each pixel position (i, j), we have that Sup(I1, I2) = I1(i, j) or I2(i, j).

Let us start with the definition6 of a particular type of visual secret sharing scheme for a set
P = {1, 2} of two parties, with access structure defined by A = {{1, 2}} and F = {{1}, {2}}
and no pixel expansion. Such schemes are referred to as probabilistic (2, 2)-VCS with no pixel
expansion.

4We deal in the following with a deterministic functionality. Hence, we state the simplified versions of the
definitions in [19, 12]. Moreover, we also state the definition for the unconditionally secure case. As we will show
later, by using an unconditionally secure physical implementation of the oblivious transfer, known to be possible
[20], the definition in the physical world is achieved by our protocol.

5In Appendix C the reader can find general definitions and notions for secret sharing and multi-secret sharing
schemes, if he is not familiar with the subject.

6In this abstract, to simplify the presentation of our approach, instead of providing general definitions, we
concentrate on specific definitions of VCS for the tools we need in our construction.

5

Definition 3.1 Probabilistic (2, 2)-VCS with no pixel expansion. Let S be a set of secret
images, such that |S| ≥ 2. A probabilistic (2, 2)-VCS with no pixel expansion is a secret sharing
scheme realizing the access structure defined by A = {{1, 2}} and F = {{1}, {2}} where Shr and
Rec are such that

- Shr is a probabilistic algorithm which takes in input a secret I ∈ S and outputs a pair of
visual shares (sh1, sh2)

- Rec is the deterministic algorithm Sup(·, ·) which superposes sh1 to sh2

satisfying the following properties:

• Correctness: For each pixel position (i, j), if I(i, j) = • then Sup(sh1, sh2)(i, j) = •, and
if I(i, j) = ◦ then pr[Sup(sh1, sh2)(i, j) = ◦] > 0.

• Privacy: For each pixel position (i, j), regardless of the values of I(i, j), pr[sh1(i, j) = ◦] =
pr[sh2(i, j) = ◦], and, consequently, pr[sh1(i, j) = •] = pr[sh2(i, j) = •].

Notice that, in the above definition we require that black pixels are reconstructed perfectly.

In general, VCSs can be implemented by means of distribution matrices. Precisely, let n and m
be two integers, where n represents the number of parties and m the pixel expansion, i.e., the
parameter that specifies how many sub-pixels are needed in each share to encode a single pixel
of the secret image. A scheme is usually defined by two collections C◦ and C• of n ×m matrices
with elements in {◦, •}. The Shr algorithm, for each secret pixel, chooses a distribution matrix
M at random from C◦, if the secret pixel is white, or from C•, if the secret pixel is black, and
uses row i of M to construct the pixel on the i-th share. For example, the following collections
of distribution matrices can be used to realize a probabilistic (2, 2)-VCS with no pixel expansion
(m = 1):

C◦ =

{[

◦
◦

]

,

[

•
•

]}

C• =

{[

◦
•

]

,

[

•
◦

]}

More precisely, assuming that the set S of secret images contains all black-and-white square
images I of n×n pixels, and that R = {0, 1}, denoting the distribution matrices in C◦ as C◦,0, C◦,1,
and in C• as C•,0, C•,1, a probabilistic (2, 2)-VCS with no pixel expansion, can be realized as follows:

Probabilistic (2, 2)-VCS

Shr(I)
For every i, j = 1, . . . , n,

Choose uniformly at random ri,j ∈ R = {0, 1}
Use CI(i,j),ri,j

as distribution matrix for sh1(i, j) and sh2(i, j).

Output (sh1, sh2)

Rec(sh1, sh2)
Return I = Sup(sh1, sh2).

An example of application of the scheme is given in Figure 1.
It is easy to see that the Probabilistic (2, 2)-VCS satisfies Definition 3.1. More precisely:

6

Secret image Share 1 Share 2 Superposition of

shares 1 and 2

Figure 1: Example of shares and superposition for a probabilistic (2, 2)-scheme with m = 1.

Theorem 3.2 The Probabilistic (2, 2)-VCS construction realizes a probabilistic (2, 2)-VCS with
no pixel expansion.

We also remark that scheme Probabilistic (2, 2)-VCS is the same as the random grid scheme of
Kafri and Keren [15].

Let us now define a 2-MVCS with no pixel expansion, i.e., a visual multi-secret sharing scheme
for a set P = {1, 2, 3} of three parties, with access structures defined by A1 = {{1, 2}} ,F1 =
{{1}, {2}, {3}} and A2 = {{1, 3}} ,F2 = {{1}, {2}, {3}}. The scheme will be used to share 2
secret images I0 and I1 which will be reconstructed, respectively, by A1 and A2.

Definition 3.3 Probabilistic 2-MVCS with no pixel expansion. Let S be a set of secret
images, such that |S| ≥ 2. A probabilistic 2-MVCS is a multi-secret sharing scheme with domains
S1 = S2 = S realizing the access structure defined by A1 = {{1, 2}} ,F1 = {{1}, {2}, {3}} and
A2 = {{1, 3}} ,F2 = {{1}, {2}, {3}}, where Shr and Rec are such that

- Shr is a probabilistic algorithm which takes in input two secret images I0 ∈ S and I1 ∈ S
and outputs three visual shares (sh1, sh2, sh3).

- Rec is the deterministic algorithm Sup(·, ·) which superposes a pair of shares.

satisfying the following properties:

• Correctness: For h = 0, 1, for each pixel position (i, j), if Ih(i, j) = •, then Sup(sh1, sh2+h)(i, j) =
•, and if Ih(i, j) = ◦, then pr[Sup(sh1, sh2+h)(i, j) = ◦] > 0.

• Privacy: For each pixel position (i, j), pr[sh1(i, j) = ◦] = pr[sh2(i, j) = ◦] = pr[sh3(i, j) =
◦], and, consequently, pr[sh1(i, j) = •] = pr[sh2(i, j) = •] = pr[sh3(i, j) = •].

Notice that the definition does not state any requirement for the superposition of sh2 and
sh3, that is we neither require a reconstruction nor an assurance of no information leakage for the
combination of the two shares: we simply don’t care as in our application they will never appear
at the same time.

By using as building block the Probabilistic (2, 2)-VCS, and thus the same collections of distri-
bution matrices C◦, C•, a Probabilistic 2-MVCS can be realized as follows:

7

Probabilistic 2-MVCS

Shr(I0, I1)
For every i, j = 1, . . . , n,

Choose uniformly at random ri,j ∈ R = {0, 1}
Use CI0(i,j),ri,j

as distribution matrix for sh1(i, j) and sh2(i, j)

If I1(i, j) = • then
if sh1(i, j) = ◦ then sh3(i, j) = •
if sh1(i, j) = • then sh3(i, j) = ◦

If I1(i, j) = ◦ then
if sh1(i, j) = • then sh3(i, j) = •
if sh1(i, j) = ◦ then sh3(i, j) = ◦

Output (sh1, sh2, sh3)

Rec(shi, shj)
Return I = Sup(shi, shj).

It is easy to see that the Probabilistic 2-MVCS satisfies Definition 3.3. More precisely:

Theorem 3.4 The Probabilistic 2-MVCS construction realizes a probabilistic 2-MVCS with no
pixel expansion.

3.2 GESS: Definition

At this point, we recall the definition of a GESS scheme given in [17]. Let us define a selector v
as a pair of bits, that is v ∈ V 2 = {0, 1}× {0, 1}. A selection function Sel takes in input a pair of
pairs and a selector, and selects one element from each of the two pairs, according to the selector.
More precisely, Sel is defined as Sel : (((a0, a1), (b0, b1)), (v1, v2))→ (av1

, bv2
).

Given a gate G and a selector v = (v1, v2), we denote with G(v) the output of gate G on input
(v1, v2).

Definition 3.5 A gate evaluation secret sharing scheme for gate G is a pair of algorithms
(Shr,Rec) such that

- Shr is a probabilistic algorithm which takes in input two secrets s0 ∈ S and s1 ∈ S and out-
puts a tuple (t1, t2) where each ti, for i = 1, 2, consists of two shares, i.e., t1 = (sh1,0, sh1,1)
and t2 = (sh2,0, sh2,1)

- Rec is a deterministic algorithm which takes in input two shares and outputs s ∈ S or ⊥

satisfying the following conditions:

- Correctness: For each s0 ∈ S and s1 ∈ S, and for any selector v ∈ V 2, it holds that
Rec(Sel(Shr(s0, s1), v)) = sG(v).

- Privacy: There exists a PPT algorithm Sim such that, for each s0 ∈ S and s1 ∈ S, and for

any selector v ∈ V 2, it holds that Sim(sG(v))
p≡ Sel(Shr(s0, s1), v).

8

3.3 A General Construction for GESS

A GESS for a gate G (GESSG, for short) can be implemented by using a 2-MSSS (see Ap-
pendix C) Σ = (ShrΣ, RecΣ). More precisely, we use two instances of Σ for a set of parties
P = {1, 2, 3}, denoted with the letters A and B to simplify the presentation 7. Instance
A = (ShrA,RecA) and instance B = (ShrB,RecB), with ShrA = ShrB = ShrΣ and RecA = RecB =
RecΣ, have secret domains S1 = S2 = {s0, s1}, and both of them realize the pair of access struc-
tures defined by A1 = {{1, 2}} ,F1 = {{1}, {2}, {3}} and A2 = {{1, 3}} ,F2 = {{1}, {2}, {3}} .

The construction is given in Table 1. In step 1, the two instances of Σ provide shares which
reconstruct sG(0,0) and sG(0,1) (instance A) and sG(1,0) and sG(1,1) (instance B). Then, in step 2
the shares of A and B are viewed as sub-shares, and are rearranged and concatenated in order to
construct shares which reproduce the functionality implemented by G. The random permutation
bit b is used to hide the correspondence first-part/second-part of the share associated to the right
wire and the secret which is reconstructed. Finally, in step 3, the shares for the wires of G are
given in output.

Notice that the construction generalizes the construction given in [17]. Indeed, Kolesnikov’s con-
struction is a special case, where, assuming that the secrets s0, s1 are n-bit strings and R0 and R1

are also n-bit strings, chosen uniformly at random, the shares produced by the two instances of the
2-MSSS are shA

1 = R0, sh
A
2 = sG(0,0)R0, sh

A
3 = sG(0,1)R0, and shB

1 = R1, sh
B
2 = sG(1,0)R1, sh

B
3 =

sG(1,1)R1, where R0 and R1 is the fresh randomness used by A and B, respectively, and the
Rec(·, ·) function is the xor function.

We show now that the general construction for GESSG satisfies Definition 3.5. More precisely:

Theorem 3.6 The GenGESS construction realizes a GESSG.

3.4 Visual GESS

Visual gate evaluation secret sharing schemes (V GESS, for short) are a visual realization of a
GESS scheme. More precisely:

Definition 3.7 A visual gate evaluation secret sharing scheme for gate G (V GESSG, for short)
is a pair of algorithms (Shr,Rec) such that

- Shr is a probabilistic algorithm which takes in input two secret images I0 ∈ S and I1 ∈ S
and outputs a tuple (t1, t2) where each ti, for i = 1, 2, consists of two visual shares, i.e.,
t1 = (sh1,0, sh1,1) and t2 = (sh2,0, sh2,1)

- Rec is the deterministic algorithm Sup(·, ·) which superposes a pair of shares.

satisfying the following conditions:

- Correctness: For each I0 ∈ S and I1 ∈ S, and for any selector v ∈ V 2, it holds that, for
each pixel position (i, j), if IG(v)(i, j) = •, then Sup(Sel((Shr(I0, I1), v))(i, j) = •, and if
IG(v)(i, j) = ◦, then pr[Sup(Sel((Shr(I0, I1), v))(i, j) = ◦] > 0.

7We stress that the scheme is the same, and it is used twice with independent and fresh randomness.

9

GenGESS

Shr(s0, s1)

1. Run ShrA(s0, s1) and ShrB(s0, s1). Let the shares and the possible reconstructed secrets
be denoted as follows:

MSSS scheme ShrΣ(s0, s1) RecΣ(shX
1 , shX

2) RecΣ(shX
1 , shX

3)
A shA

1 , shA
2 , shA

3 sG(0,0) sG(0,1)

B shB
1 , shB

2 , shB
3 sG(1,0) sG(1,1)

2. Choose uniformly at random a permutation bit b ∈ {0, 1} and, denoting with || the
concatenation operator, constructs shares sh1,0 and sh1,1 for the left wire of G, and
sh2,0 and sh2,1 for the right wire, as follows:

left wire right wire (if b = 0) right wire (if b = 1)
sh1,0 = b||shA

1 sh2,0 = shA
2 ||shB

2 sh2,0 = shB
2 ||shA

2

sh1,1 = b||shB
1 sh2,1 = shA

3 ||shB
3 sh2,1 = shB

3 ||shA
3

3. Output ((sh1,0, sh1,1), (sh2,0, sh2,1))

Rec(c||shα, shβ ||shγ)

- If c = 0 then output RecΣ(shα, shβ); else output RecΣ(shα, shγ).

Table 1: General construction for a GESS scheme with a multi-secret sharing scheme.

- Privacy: There exists a PPT algorithm Sim such that, for each I0 ∈ S and I1 ∈ S, and for

any selector v ∈ V 2, it holds that Sim(sG(v))
p≡ Sel(Shr(s0, s1), v).

It is easy to check that the general construction for GESSG, based on a multi-secret sharing
scheme, realizes a V GESSG if the multi-secret sharing scheme therein used is substituted with a
visual multi-secret sharing scheme. Indeed, the following result holds:

Corollary 3.8 The GenGESS construction for a gate G realizes a V GESSG if the 2-MSSS is
instanced with the Probabilistic 2-MVCS.

4 A Visual Two-party Protocol

In this section we describe our visual two-party protocol. We start by showing how to realize a
physical oblivious transfer and then we provide a full specification of the protocol.

10

4.1 Physical Oblivious Transfer

The 1-out-of-2 oblivious transfer (1-out-of-2-OT, for short) functionality [11] is an extensively
studied cryptographic primitive, which plays a key-role in secure computation. Several imple-
mentations under general assumptions (e.g., enhanced trapdoor permutations) and specific as-
sumptions (e.g., factoring, discrete-log assumption) are available, secure w.r.t. semi-honest and
malicious adversaries, respectively. It is well known that the oblivious transfer is sufficient for
secure multi-party function evaluation. Actually, the protocol we are going to propose is an
unconditionally secure reduction of secure two-party function evaluation to 1-out-of-2-OT.

Let Alice’s secrets be n-bit strings z0 and z1, let σ be Bob’s bit-choice, and let ⊥ denote no
output. The 1-out-of-2-OT functionality is specified by ((z0, z1, σ) → (⊥, zσ)). The construction
we propose is partially inspired to the approach pursued in [8], when the voter comes out from
the booth.

A physical 1-out-of-2 OT protocol. Let us assume that the two secrets z0 and z1 are rep-
resented in form of transparencies, and Alice has two indistinguishable envelopes which perfectly
hide the transparency inside. Alice and Bob proceed as follows:

1. Alice puts the two secrets in the two envelopes, one in the first and one in the second, and
closes both of them. She also adds to each envelope a paper post-it with number 0 and
number 1, depending on the secret which is inside. Then, she hands the two envelopes to
Bob.

2. Bob turns his shoulders to Alice8, checks that the envelopes are identical, takes the envelopes
with the post-it corresponding to the secret he is interested in, removes the post-it from both
envelopes, turns again in front of Alice, and inserts under Alice surveillance the remaining
envelope in a paper-shredder which reduces the envelop and its content in dust9.

Theorem 4.1 Assuming that indistinguishable envelopes which perfectly hide the transparency
inside can be used, then the Physical 1-out-of-2 OT protocol realizes a physical perfectly secure
1-out-of-2-OT.

4.2 Our Visual Two-Party Protocol

The protocol is the same reduction of secure function evaluation to 1-out-of-2 OT given via
Construction 1 in [17], but with V GESSs instead of GESSs.

V2PC Protocol. Let f : {0, 1}n × {0, 1}n → {0, 1}m be the target functionality and let C(·, ·)
be a boolean circuit that computes f(·, ·), i.e., C(·, ·) is such that, for all inputs x, y ∈ {0, 1}n,
it outputs C(x, y) = f(x, y). Let us also assume that the circuit is composed of q wires, labeled
uniquely with ω1, . . . , ωq, 2n of which are input wires, say ω1, . . . , ω2n, and m of which are output
wires, and ℓ gates, represented for h = 1, . . . , ℓ by functions Gh : {0, 1} × {0, 1} → {0, 1}. No
circuit-output wire is also a gate-input wire. Along the same line of the original Yao’s protocol,

8If Alice thinks that Bob has had a career as illusionist, in order to be sure that Bob does not substitute the
envelope that will be destroyed with an identical but fake one, might requests the Bob shows up in swimsuit.

9An alternative could be that the envelope is burned in front of Alice. The key-property that need to be satisfied
is that the physical process should be irreversible, the secret cannot be even partially recovered.

11

V2PC Protocol

Shares construction phase (performed by Alice)

1. Let I0 and I1 be two images that encode the values 0 and 1. Associate them to the
output wire of the output gates.

2. For each gate Gh whose output wire ωk has been associated to images s0 and s1

(a) Let ωi and ωj be the input wires, and let V GESSGh
be a visual GESS realizing

gate Gh
(b) Run Shr(s0, s1), where s0 encodes 0 and s1 encodes 1, to obtain the shares

shGh

1,0 , shGh

1,1 , and shGh

2,0 , shGh

2,1 . Let shGh

1,0 , shGh

1,1 be the images s0 and s1 associated to

0 and 1 for the wire ωi, and let shGh

2,0 , shGh

2,1 be the images s0 and s1 associated to
0 and 1 for the wire ωj .

3. Output the shares associated to wires ω1, . . . , ωn (Alice’s input) and to ωn+1, . . . , ω2n

(Bob’s input).

Computation phase (performed by Alice and Bob)

1. Alice hands to Bob the shares shG1

1,x1
, shG2

1,x2
, . . . , shGn

1,xn
, corresponding to her input x =

x1, . . . , xn, associated to wires ω1, . . . , ωn.

2. For every j = 1, . . . , n, Alice and Bob execute the 1-out-of-2 OT protocol described

before in which Alice’s inputs are the shares sh
Gj

2,0, sh
Gj

2,1, associated to wire ωn+j , while
Bob’s input is the bit yj of his own input y = y1, . . . , yn.

3. Bob, for h = 1, . . . , ℓ, applies the Rec algorithm of the V GESSGh
, and computes the

circuit output value C(x, y) = f(x, y).

4. Finally Bob shows the result to Alice.

Table 2: V2PC Protocol

the description can be split in two phases: (i) shares construction phase, and (ii) interactive
computation phase, described in Table 2.

At this point, we have all the elements needed to state and prove the following result:

Theorem 4.2 Let f : {0, 1}n × {0, 1}n → {0, 1}m be a boolean function, and let C(·, ·) be a
boolean circuit that computes f(·, ·), i.e., C(·, ·) is such that, for all inputs x, y ∈ {0, 1}n, it holds
that C(x, y) = f(x, y). Then, assuming indistinguishable envelopes can be used, the V2PC protocol

computes f in a perfectly secure way, in presence of a static semi-honest adversary.

Remark. Notice that in the V2PC Protocol the size of the shares associated to the right wire input
gate, doubles at each level of the circuit. However, as shown in [17], it is the best that can be done
in a perfectly secure reduction of secure function evaluation to OT which uses GESS schemes.

12

5 Conclusions

Chapter 7 of [9] describes several applications of visual cryptography. In this paper we have
shown that every two-party computation representable by means of a boolean function f(·, ·)
can be performed preserving the privacy of the inputs x and y through a pure physical visual
evaluation process. Several extensions are possible: e.g., study non-trivial extensions to the multi-
party case, optimizations, use of different visual cryptography schemes in order to achieve different
properties, just to name a few.

Cryptography is a wonderful world created by humans for serious and noble reasons, popu-
lated by many inanimate actors: goals, which are conceptualized and formalized, often in terms
of randomized functionalities, in order to treat them properly; basic tools and techniques, which
can be used to cope with the different issues an adversarial environment gives rise to when a func-
tionality need to be realized, and protocols, which implement a well-defined communication and
computational multi-party strategy to achieve the target goal, i.e., compute a certain functionality.
Other actors are definitions and proofs, which are the usual linguistic, logical and mathematical
constructs through which functionalities and tools are precisely stated and presented, and proto-
cols are shown to achieve the functionalities for which they are designed in an adversarial model.
Research papers often use all of them but, sometimes, some actors are missing, or do not play the
roles they deserve. Depending on the contribution the paper provides to the field, papers could be
categorized in different ways: in some papers creativeness, intuition and new ideas are the main
components; in others, generalization, abstraction, or sound and rigorous formalization of ideas
introduced in a rough or partial form before take the greatest part, while in others, optimization,
refinement, and efficiency improvements of protocols, tools and techniques, are the main features.
Papers might also be categorized according to the impact on the real world, i.e., if they provide a
valuable technological transfer, or to the theoretical advancement to the field they bring with them.
Nevertheless, some papers might just use some of the above actors for intellectual or aesthetic
pleasure: neither technological transfer nor theoretical advancement (at least immediately) are
provided. However, they might be a useful tool in divulgation activities, and in preparing simple
and intriguing presentations of more complex ideas for a general audience. The current paper,
perhaps, is (partially) a representative of the last class of papers.

References

[1] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In Proc.
22nd ACM Symp. on Theory of Computing, pages 503-513, 1990.

[2] A. Beimel. Secret Sharing: A survey, Proc. of IWCC 2011, 2011.

[3] M. Bellare, V. T. Hoang, and P. Rogaway. Garbling schemes. Cryptology ePrint Archive,
Report 2012/265, 2012.

[4] M. Bellare and P. Rogaway. Robust computational secret sharing and a unified account of
classical secret-sharing goals. Proc. of the 14th ACM Conference on Computer and Commu-
nications Security (ACM CCS), ACM Press, 2007.

13

[5] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In
TCC, pages 253-273, 2011.

[6] R. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro. On the size of shares for secret
sharing schemes. J. of Cryptology, vol. 6, pp. 157167, 1993.

[7] R. Canetti, Security and Composition of Multiparty Cryptographic Protocols, J. of Cryptology,
vol 13, pp. 143-202, 2000.

[8] D. Chaum, Secret-Ballot Receipts and Transparent Integrity, available at
http://www.vreceipt.com/article.pdf

[9] S. Cimato and C.-N. Yang editors, Visual Cryptography and Secret Image Sharing, CRC
Press, Boca Raton, Florida, USA, ISBN 978-1-4398-3721-4, 2012.

[10] S. Cimato, R. De Prisco and A. De Santis Probabilistic Visual Cryptography Schemes. Com-
put. J. 49(1): 97-107, 2006

[11] S. Even, 0. Goldreich, and A. Lempel. A Randomized Protocol for Signing Contracts. CACM,
vol. 28, No. 6, pp. 637-647, 1985.

[12] O. Goldreich. Foundations of Cryptography, Vol. II, MIT Press, 2004.

[13] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC, pages
218-229, 1987.

[14] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In CRYPTO, pages 465-482, 2010.

[15] O. Kafri and E. Keren, Encryption of pictures and shapes by random grids, Optics Letters,
Vol.12(6) pp. 377-379, 1987.

[16] E. Karnin, J. Greene, and M. Hellman. On secret sharing systems. IEEE Transactions on
Information Theory, vol. 29, no. 1, pp. 3551, 1983

[17] V. Kolesnikov. Gate Evaluation Secret Sharing and Secure One-Round Two-Party Compu-
tation. In ASIACRYPT 2005, LNCS, Vol. 3788, pp. 136-155, 2005.

[18] M. Naor and A. Shamir. Visual cryptography, in Advances in Cryptology—Eurocrypt ’94,
Lecture Notes in Comput. Sci., Vol. 950, pp. 1-12, 1995.

[19] Y. Lindell and B. Pinkas. A proof of security of Yaos protocol for two-party computation.
Journal of Cryptology, Vol. 22, pp. 161-188, April 2009.

[20] T. Moran and M. Naor, Basing cryptographic protocols on tamper-evident seals, Theoretical
Computer Science, Vol. 411, pp. 1283− 1310, 2010.

[21] C-N. Yang. New Visual Secret Sharing Schemes using Probabilistic Method, Pattern Recog-
nition Letters, 25, 481-494, 2004.

14

[22] A. C. Yao. Protocols for secure computations. In Proc. 23tr IEEE Symp. on Foundations of
Comp. Science, pages 160-164, 1982.

[23] A. C. Yao. How to generate and exchange secrets (extended abstract). In Proc. 27th IEEE
Symp. on Foundations of Comp. Science, pages 162-167, 1986.

A A simple example

In this section we provide a simple example of application of the proposed method. The secret
function is

f((x1, x2), (y1, y2)) = (x1 and y1) or (x2 and y2)

where (x1, x2) is the private input of Alice and (y1, y2) is the private input of Bob, with x1, x2, y1

and y2 being bits.

Image(0)≡ 0 Image(1)≡ 1 Permutation bit 0 Permutation bit 0 Permutation bit 1

Figure 2: Bit representations: bit value, Image(0) and Image(1), and permutation bit, prepended
to a blank image.

Binary values are represented as two images consisting of 8 × 8 pixels, more specifically we
will use Image(0) and Image(1) shown in Figure 2 to encode 0 and 1.

The correctness property of the VGESS definition 3.7 requires that the black area of the
secret image will be reconstructed (deterministically) with black pixels while the white area will
be reconstructed, with some probability, with at least on white pixel. The rationale behind the
definition is that in the reconstruction phase we will have to be able to visual distinguish the final
output value of the function. The “quality” of the reconstructed image heavily depends on the
depth of the circuit. Indeed, the more levels are in the circuit the more image superpositions,
e.g., intermediate image reconstructions, have to be performed. For each intermediate image
reconstruction, the number of black pixels in the output can only increase. Thus, the size of the
image that we use to encode the values of the output (0 and 1), must be sufficiently large in
order to guarantee that the reconstruction of the output will have, with some probability, at least
one white pixel in the white area of the original secret image. More specifically, denoting with
d the depth of the circuit, we have that the probability that a specific pixel in the reconstructed
white area is white is equal to (1

2)d. Since our representation encodes the bit values (0 and 1)
as images containing a secret white area of m2/2 pixels then, the a-priori probability that one of
these pixels is white is equal to 2

m2 . Thus, to make sure (with any wanted probability) that we
will be able to recognize the encoding of the bit values, we have to choose a sufficiently large m,
i.e., m >>

√
2d+1. In our example d = 2 and we have chosen m = 8.

In the share construction phase of the V2PC protocol, Alice has to construct a VGESS for
each gate. Alice starts from gate G3. Gate G3 gives the output value of f , which can be either 0
or 1. Alice constructs the VGESSG3

which uses the two 2-MVCS A and B. The shares of scheme

15

A reconstruct the secrets sG3(0,0), sG3(0,1), and those of scheme B reconstruct sG3(1,0), sG3(1,1).
Since G3 is an or gate we have that scheme A reconstructs Image(0), Image(1), and scheme B
Image(1), Image(1).

To finish up the construction of the shares for VGESSG3
Alice has to choose, at random, the

permutation bit b. In the example we are constructing we assume that the share of scheme A
are placed on the left, so that b = 0 for ShA

1 and clearly b = 1 for ShB
1 . The random bit will be

visually represented as a 2-pixel image which encodes 0 as one black pixel and one white pixel
and 1 as two black pixels10.

The 2-pixel image will be prepended to the share image (and will become part of the share).
Figure 2 shows the permutation bit prepended to a blank share.

Figure 3 (left) shows the shares for G3, including the permutation bit.

Figure 3: Shares construction for gate G3 (left) and gate G1 (right).

Now Alice can go on and consider gate G1. The output of G1 can be either 0||ShA
1 or

1||ShB
1 , where the first element is the permutation bit. Hence the secrets that we need to share

are {0||ShA
1 , 1||ShB

1 }. Share ShA
1 corresponds to the wire value 0, while share ShB

1 to the wire
value 1. Since G1 is an and gate, Alice will need to use two 2-MVCS schemes C and D such
that scheme C reconstructs sG1(0,0) = 0||ShA

1 and sG1(0,1) = 0||ShA
1 , and scheme B reconstructs

sG1(1,0) = 0||ShA
1 and sG1(1,1) = 1||ShB

1 .
Also for gate G1 Alice has to choose the permutation bit that will allow the correct recon-

struction. Also in this case we decided to use b = 0. Figure 3 (right) shows the shares for
G1.

Finally Alice constructs the shares for G2. The output wire of G2 has to be able to reconstruct
either ShA

2 ||ShB
2 (when the wire value is 0) or ShA

3 ||ShB
3 (when the wire value 1). Gate G2 is an and

10Notice that, for the permutation bit, we are using a deterministic (2, 2)-VCS with pixel expansion m = 2. We
have used this solution for the permutation bit because, first of all it is possible to use a scheme with pixel expansion
since each permutation bit propagates only from one level of the circuit to the subsequent one, and secondly because
a scheme with pixel expansion allows a deterministic reconstruction.

16

gate, hence Alice will need to use two 2-MVCS schemes E and F such that scheme E reconstructs
sG2(0,0) = ShA

2 ||ShB
2 and sG2(0,1) = ShA

2 ||ShB
2 , and scheme F reconstructs sG2(1,0) = shA

2 ||ShB
2

and sG2(1,1) = ShA
3 ||ShB

3 .
Also for gate G2 Alice has to choose a permutation bit that will allow the correct reconstruc-

tion. In this case we decided to use b = 1. Figure 4 shows the shares for G2.

Figure 4: Shares construction for gate G2

Alice has now completed the construction phase and all the shares that she needs for the
computation are the ones shown in Figure 5. The figure shows for each input wire the shares
that correspond to the values 0 and 1. For example for the left input wire of G1 the value 0
corresponds to share ShC

1 while the value 1 corresponds to the share ShD
1 .

Figure 5: Visual circuit for the computation of f

Notice that all the shares shown in the figure are known only to Alice so far. At this point
Alice chooses the shares that represent the values of her input. As an example, assume that
Alice’s input values are x1 = 0 and x2 = 1. Alice can throw away ShD

1 and ShE
1 and keep ShC

1 ,
that represents x1 = 0, and ShF

1 , that represents x2 = 1. Alice passes both shares, ShC
1 and ShF

1

to Bob. Then Alice and Bob run two executions of the 1-out-of-2 physical OT protocol so that
Alice will pass to Bob only the shares that correspond to Bob’s input. As an example assume

17

that Bob’s input values are y1 = 1 and y2 = 1. After the execution of the two 1-out-of-2 OT
protocols, Bob has all the shares that correspond to his input values and can perform the visual
computation of f((1, 0), (1, 1)), as depicted in Figure 6. Bob starts by evaluating gate G1. He
first looks at the permutation bit for G1, which is 0. Then it takes the share on the left wire and
superposes it on the left part of the share on the right wire, obtaining an intermediate share that
will go on the left input wire of G3. In a similar way Bob will evaluate G2. At this point Bob has
the input shares for G3 and thus can evaluate also this gate. The permutation bit for gate G3 is
0 and thus Bob superposes the share on the left input wire to the left part of the share on the
right input wire. The result is the final output of the function and corresponds to 1.

Figure 7 shows another example of computation for the input x1 = 0, x2 = 1, y1 = 1 and
y2 = 0.

c

Figure 6: An example of visual evaluation of the circuit for the computation of f for the input
((1, 0), (1, 1))

B Yao’s Protocol

Let (Gen, E, D) be a symmetric encryption scheme, and let f : {0, 1}n×{0, 1}n → {0, 1}n be the
target functionality11. Moreover, let C(·, ·) be a boolean circuit that computes f(·, ·), i.e., C(·, ·)
is such that, for all inputs x, y ∈ {0, 1}n, it outputs C(x, y) = f(x, y). Let us also assume that the
circuit is composed of m wires, 2n of which are input wires and n are output wires, labeled uniquely
with ω1, . . . , ωm, and ℓ gates, represented for h = 1, . . . , ℓ by functions Gh : {0, 1}×{0, 1} → {0, 1}.
No circuit-output wire is also a gate-input wire.

The protocol description can be split in two phases:

11Compared to the general model, and w.l.o.g. [19], Alice and Bob compute a deterministic same output func-
tionality, i.e., f(x, y) = f1(x, y) = f2(x, y). Moreover we assume that n is polynomial in the security parameter
k.

18

c

Figure 7: An example of visual evaluation of the circuit for the computation of f for the input
((0, 1), (1, 0))

- the garbled circuit construction phase (off-line)

- the interactive two-party phase (on-line)

In the first phase, Alice constructs a garbled version C̃ of C(·, ·) as follows: for i = 1, . . . ,m and
j = 0, 1, using Gen, generates independently encryption keys kj

ωi ← Gen(1n), and associates to
each wire ωi the encryption keys k0

ωi
and k1

ωi
. Then, she constructs and associates to each gate

Gh(·, ·) a gate table containing four double encryptions: assuming for example that the input
wires and the output wire for a certain gate Gh(·, ·) are labeled ωi, ωj and ωk, respectively, the
table contains, in a randomly permuted order:

Ek0
ωj

(Ek0
ωi

(k
Gh(0,0)
ωk

))

Ek0
ωj

(Ek1
ωi

(k
Gh(0,1)
ωk

))

Ek1
ωj

(Ek0
ωi

(k
Gh(1,0)
ωk

))

Ek1
ωj

(Ek1
ωi

(k
Gh(1,1)
ωk

))

Notice that to not gates do not correspond tables. Indeed, they are easy to deal: it is just
needed in the garbled circuit construction to associate to the output wire of a not gate the keys
associated to the input wire in switched order, i.e., a not gate switches the semantics 0 and 1
secretly associated to the input keys.

The garbled circuit C̃ is the collection of all the gate tables associated to the gates G1, . . . , Gℓ,
along with the keys associated to the circuit-output wires, with an explicit mapping of the bits 0
or 1 to these keys.

In the second phase, Alice and Bob proceed as follows

1. Alice sends the garbled circuit C̃ to Bob.

19

2. Assuming that ω1, . . . , ωn are the input wires corresponding to x and ωn+1, . . . , ω2n are the
input wires corresponding to y, then

(a) Alice sends Bob the encryption keys kx1
ω1

, kx2
ω2

, . . . , kxn
ωn

.

(b) For ever j = 1, . . . , n, Alice and Bob execute a 1-out-of-2 oblivious transfer protocol in
which Alice’s inputs are k0

ωn+j
, k1

ωn+j
while Bob’s input is the bit yj .

3. Bob, by using the decryption algorithm D and proceeding table after table, computes the
circuit output value C(x, y) = f(x, y). Then, he sends f(x, y) to Alice and both of them
output f(x, y) and halt.

Theorem 7 in [19], under standard assumptions on the oblivious transfer protocol and on
the symmetric encryption scheme, proves that the construction computes f in a computationally
secure way, in presence of static semi-honest adversaries.

C Secret sharing and multi-secret sharing schemes

Let us briefly introduce secret sharing and multi-secret sharing schemes. We do not follow the
traditional entropy-based characterization, e.g., [16, 6], since in our analysis we are not going to
use the entropy function12. Roughly speaking, a secret sharing scheme is a method through which
a dealer shares a secret s among a set of parties, in such a way that, later on, some subsets of
parties can reconstruct the secret, while others do not get any information about it. Similarly,
a multi-secret sharing scheme enables the dealer to share more than one secret among the set of
parties, in such a way that different subsets of parties reconstruct different secrets.

Let P = {1, . . . , n} be a set of n parties. A collection of subsets A ⊂ 2P is monotone if A ∈ A
and A ⊆ B imply that B ∈ A.

Definition C.1 Access structure. An access structure on the set of parties P is a pair (A,F)
such that A ⊂ 2P is a monotone collection, F ⊂ 2P , and A ∩ F = ∅.

(A,F) is a specification of the sets which reconstruct the secret and of the sets which do not
get any information about it. Usually sets in A are called authorized, while sets in F are called
forbidden. Sets in 2P \ (A ∪ F) are sets for which we do not care.

Let S, R, SH1, . . . , SHn be finite sets. The set S is usually referred to as the set of secrets, the
set R as the set of random strings, and the sets SH1, . . . , SHn as the sets of shares. Moreover,
denote with s, r and sh1, . . . , shn elements belonging to S, R and SH1, . . . , SHn, respectively, and
for each X = {i1, . . . , im} ⊆ P, with SHX = SHi1 × . . .×SHim and with shX = (shi1 , . . . , shim).
Using the above notation, we state the following:

Definition C.2 Secret sharing scheme (SSS for short). Let S be a set of secrets, where
|S| ≥ 2. A secret sharing scheme Σ = (Shr,Rec) with secret domain S realizing the access structure
(A,F) is a pair of algorithms Shr and Rec where

12A comprehensive study of secret sharing schemes which does not use the language of information theory can
be found in [4]. See also a recent survey [2].

20

- Shr is a probabilistic algorithm which takes in input a secret s ∈ S and outputs a set of
shares sh1, . . . , shn.

- Rec is a deterministic algorithm which takes in input a set of shares shX for X ⊆ P, and
outputs either s ∈ S or ⊥

satisfying the following properties:

1. Correctness. For each A ∈ A, and for every secret s ∈ S, it holds that

Pr[Rec(Shr(s)A) = s] = 1

2. Privacy. For each F ∈ F , and for every s1 ∈ S and s2 ∈ S, it holds that

Pr[Shr(s1)F = shF] = Pr[Shr(s2)F = shF]

Property 1 guarantees that each authorized subset reconstructs the secret, while property 2 that
each forbidden subset does not get any information from its subset of shares, since the subset is
compatible with each possible secret with the same probability. Moreover, the definition does not
assume any probability distribution on the sets S and R, and can be weakened by not requiring
perfect reconstruction or by requiring just statistical or computational privacy. Definition C.2
can also be easily extended to multi-secret, i.e., the case in which the dealer distributes more than
one secret. Formally, it is necessary to consider, instead of a single set of secrets S and a single
access structure (A,F), sets of secrets S1, . . . , Sℓ and access structures (A1,F1), . . . , (Aℓ,Fℓ).

Definition C.3 Multi-secret sharing scheme (MSSS for short). Let S1, . . . , Sℓ be sets of
secrets where, for i = 1, . . . , ℓ, it holds that |Si| ≥ 2. A multi-secret sharing scheme Σ = (Shr,Rec)
with secret domains S1, . . . , Sℓ realizing the access structures (A1,F1), . . . , (Aℓ,Fℓ) is a pair of
algorithms Shr and Rec where

- Shr is a probabilistic algorithm which takes in input a tuple of secrets sM ∈ SM and outputs
a sequence of shares sh1, . . . , shn.

- Rec is a deterministic algorithm which takes in input a sequence of shares shX for X ∈ P,
and outputs either s ∈ Sm, for m ∈M, or ⊥

satisfying, for i = 1, . . . , ℓ, the following properties:

1. Correctness. For each A ∈ Ai, and for every secret si ∈ Si, it holds that

Pr[Rec(Shr(sM)A) = si] = 1

2. Privacy. For each F ∈ Fi, and for every sM , s′M ∈ SM , it holds that

Pr[Shr(sM)F = shF] = Pr[Shr(s′M)F = shF]

Remark. Notice that, in our construction we consider a simple case of MSSS: the set of
parties is P = {1, 2, 3}, the sets of secrets are two and are equal, i.e., S1 = S2 = S, and the
access structures are defined by A1 = {{1, 2}} ,F1 = {{1}, {2}, {3}} and A2 = {{1, 3}} ,F2 =
{{1}, {2}, {3}} .

21

D Proofs for VCS

Theorem D.1 The Probabilistic (2, 2)-VCS construction realizes a probabilistic (2, 2)-VCS with
no pixel expansion.

Proof: We show that both properties of Definition 3.1 are satisfied.

Correctness. It is immediate to check that, for each i, j = 1, . . . , n, due to the structure of the
matrices in C•, a secret pixel I(i, j) = • is perfectly reconstructed, i.e, Sup(sh1, sh2)(i, j) = •.
On the other hand, for each i, j = 1, . . . , n, due to the structure of the matrices in C◦, and since
ri,j ∈ R is chosen uniformly at random, a secret pixel I(i, j) = ◦ is reconstructed as ◦ with
probability 1/2, i.e., Pr[Sup(sh1, sh2)(i, j) = ◦] = Pr[ri,j = 0] = 1/2 > 0.

Privacy. Due to the structure of the matrices in the collections C◦, C• for each pixel position
(i, j), a ◦ pixel in sh1(i, j) appears when I(i, j) = ◦ and Shr chooses ri,j = 0 or when I(i, j) = •
and Shr chooses ri,j = 0; while, a ◦ pixel in sh2(i, j) appears when I(i, j) = ◦ and Shr chooses
ri,j = 0 or when I(i, j) = • and Shr chooses ri,j = 1. Hence, in both cases, twice with the same
probability. Similarly, it is easy to check that a • pixel in sh1(i, j) appears when I(i, j) = ◦ and
Shr chooses ri,j = 1 or when I(i, j) = • and Shr chooses ri,j = 1; while, a • pixel in sh2(i, j)
appears when I(i, j) = ◦ and Shr chooses ri,j = 1 or when I(i, j) = • and Shr chooses ri,j = 0.
Again, in both cases, twice with the same probability. Thus, the property is satisfied.

Theorem D.2 The Probabilistic 2-MVCS construction realizes a probabilistic 2-MVCS with no
pixel expansion.

Proof: We show that both properties of Definition 3.3 are satisfied.

Correctness. Notice that sh1 and sh2 are constructed as in a probabilistic (2, 2)-VCS using I0

as secret image. Hence, black pixels of I0 are reconstructed perfectly, i.e, when I0(i, j) = • we
have Sup(sh1, sh2)(i, j) = •, while white pixels of I0 are correctly reconstructed with probability
1/2, i.e., when I0(i, j) = ◦ we have that Pr[Sup(sh1, sh2)(i, j) = ◦] = Pr[ri,j = 0] = 1/2 > 0.
Moreover, by construction of sh3(i, j) we have that the same holds for sh1 and sh3 with respect
to I1, that is when I1(i, j) = • we have Sup(sh1, sh3)(i, j) = •, and when I1(i, j) = ◦ we have that
Pr[Sup(sh1, sh3)(i, j) = ◦] = Pr[ri,j = 0] = 1/2 > 0.

Privacy. The privacy of sh1 and sh2 derives from the fact that they are constructed as in a
probabilistic (2, 2)-VCS. Since sh1 satisfy privacy we have that for every i, j, Pr[sh1(i, j) = ◦] =
Pr[sh1(i, j) = •] = Pr[ri,j = 0] = 1/2 > 0. Share sh3 is constructed simply by flipping the pixels
of sh1 when I1 has a black pixel and keeping the pixels of sh1 when I1 has a white pixel. Since
Pr[sh1(i, j) = ◦] = Pr[sh1(i, j) = •] = Pr[ri,j = 0] = 1/2 we have that the same holds for sh3,
that is for every i, j, Pr[sh3(i, j) = ◦] = Pr[sh3(i, j) = •] = Pr[ri,j = 0] = 1/2 > 0.

E Proof of the GESS

Theorem E.1 The GenGESS construction for a gate G realizes a GESSG.

Proof: (Sketch). We show that both properties of Definition 3.5 are satisfied.

22

Correctness. Correctness follows from a simple inspection of all possible cases. For example,
let us assume that the permutation bit b = 0, and let us analyze the four possible input-gate
configurations, defined by properly setting the selector v:

• Let v = (v1, v2) = (0, 0). In this case Sel(Shr(s0, s1), (0, 0)) = (sh1,0, sh2,0). Since b = 0, it
holds that Rec(sh1,0, sh2,0) = RecΣ(shA

1 , shA
2) = sG(0,0), due to the correctness property of

the instance A of the 2-MSSS scheme Σ.

• Let v = (v1, v2) = (0, 1). In this case Sel(Shr(s0, s1), (0, 1)) = (sh1,0, sh2,1). Since b = 0, it
holds that Rec(sh1,0, sh2,1) = RecΣ(shA

1 , shA
3) = sG(0,1), due to the correctness property of

the instance A of the 2-MSSS scheme Σ.

• Let v = (v1, v2) = (1, 0). In this case Sel(Shr(s0, s1), (1, 0)) = (sh1,1, sh2,0). Since b = 0, it
holds that Rec(sh1,1, sh2,0) = RecΣ(shB

1 , shB
2) = sG(1,0), due to the correctness property of

the instance B of the 2-MSSS scheme Σ.

• Let v = (v1, v2) = (1, 1). In this case Sel(Shr(s0, s1), (1, 0)) = (sh1,1, sh2,1). Since b = 0, it
holds that Rec(sh1,1, sh2,1) = RecΣ(shB

1 , shB
3) = sG(1,1), due to the correctness property of

the instance B of the 2-MSSS scheme Σ.

If the permutation bit b = 1, a similar analysis holds, switching the first and the second parts of
the share associated to the left input wire of G.

Privacy. We need to show that there exists a PPT simulator Sim which, on input sG(v), outputs
a pair of shares (sh1,x, sh2,y), associated to the left and right input wires of G, distributed exactly
as the shares provided in a real execution of the protocol by Sel(Shr(s0, s1), v). Such an algorithm
can be constructed as follows:

Sim(sG(v))

1. Choose uniformly at random a secret s′ ∈ S and the permutation bit b.

2. Construct two instances, C and D, of the 2-MSSS scheme Σ

3. Run ShrC(sG(v), s
′) = (shC

1 , shC
2 , shC

3) and ShrD(sG(v), s
′) = (shD

1 , shD
2 , shD

3)

4. If b = 0 then set sh1,x = b||shC
1 and sh2,y = shC

2 ||shD
2

else set sh1,x = b||shD
1 and sh2,y = shD

2 ||shC
2

5. Output (sh1,x, sh2,y).

Since Sim applies the same strategy of Shr(·, ·) and the same 2-MSSS scheme Σ, used in a real
execution of the GESSG scheme, it follows that the pair of shares (sh1,x, sh2,y) is distributed
exactly as the shares provided in a real execution of the protocol. Indeed, notice that the only
differences between the output of Sim and the output of a real execution is that Sim invokes
Shr(·, ·) by giving in input as first input the secret sG(v) and a random secret s′ as second while,
in a real execution, one of the secret is sG(v), and could be the first or the second in input, and
another secret which might be different from the secret s′. We show that both differences do not
induce a different distribution on the shares.

23

Case 1: (The pairs of secrets are different.) Assuming the sG(v) = s0, a difference in the distributions

of shC
3 ||shD

3 , provided by Sim, and shC
3 ||shD

3 , provided by the real execution, would imply
the existence of two sets of secrets, {sG(v), s

′} and {sG(v), s
′′} which contradicts the privacy

property of the instance C or D of the MSSS. Hence, the use of an s′ different from the
other real secret s′′ used in a real execution, does not induce a different distribution on the
shares.

Case 2: (The order of the secrets is different.) Similarly, a difference in the distributions of shC
2 ||shD

2

and shC
3 ||shD

3 , provided either by Sim or by a real execution, would imply the existence of
two sets of secrets, {sG(v), s

′} and {s′, sG(v)} which contradicts the privacy property of the
instance C or D of the MSSS. Hence, also the order does not matter.

F Proofs for the visual TPC procotol

Theorem F.1 Assuming that indistinguishable envelopes which perfectly hide the transparency
inside exist, then Construction 1 realizes a physical perfectly secure 1-out-of-2-OT.

Proof: (Sketch.) It is easy to check that the protocol is correct. To prove that it matches
Definition 2.1 we show that an efficient physical simulator Sim2 can be realized. Indeed, since
Alice does not receive anything from Bob, Sim1 is trivial, it does nothing. Instead, Sim2

• chooses, from the same sets from which Alice chooses envelopes and post-its, two indistin-
guishable envelopes and two post-its

• writes 0 and 1 on the two post-its, associates them to the envelopes, and inserts the trans-
parency zσ he has received from the protocol in the envelope with number σ and a blank
transparency in the other.

It is easy to see that this view is identically distributed to the real view he has running the protocol
with Alice.

Theorem F.2 Let f : {0, 1}n × {0, 1}n → {0, 1}m be a boolean function, and let C(·, ·) be a
boolean circuit that computes f(·, ·), i.e., C(·, ·) is such that, for all inputs x, y ∈ {0, 1}n, it holds
that C(x, y) = f(x, y). Then, assuming indistinguishable envelopes can be used, the V2PC Protocol

computes f in a perfectly secure way, in presence of a static semi-honest adversary.

Proof: (Sketch). The proof, according to the paradigm formalized in [7], proceeds in two steps:
first, in a hybrid model where we assume that the ideal functionality 1-out-of-2 OT is available, we
show that the V2PC Protocol computes f in a perfectly secure way, in presence of a static semi-
honest adversary. Actually, in this step, since the V2PC Protocol we have described coincides with
Construction 1 given in [17], up to the use of V GESSs instead of GESSs, the same proof given in
[17] applies. Indeed, V GESS schemes are a special class of GESS schemes. Hence, any time the
simulator SimBob in [17] invokes the simulator SimGESSG

for a GESSG, our simulator invokes
the simulator SimV GESSG

. Then, in the second step, using Theorem F.1 and the composition
theorem in [7], we conclude that V2PC Protocol computes f in a perfectly secure way, in presence
of a static semi-honest adversary.

24

G The shares

The last pages of the paper contain enlarged versions of all the shares used in the examples. These
pictures can be printed on transparencies and used to reproduce manually the visual computation
of the examples.

25

Sh
1
A	 Sh

1
B	

Sh
2
A	 Sh

2
B	

Sh
3
A	 Sh

3
B	

Figure 8: Shares for schemes A and B.

26

S
h
1
C
	

S
h
3
D
	

S
h
3
C
	

S
h
1
D
	

S
h
2
D
	

S
h
2
C
	

Figure 9: Shares for schemes C and D.

27

Sh
1
F	

Sh
1
E	

Figure 10: Shares 1 for schemes E and F .

28

S
h
2
F
	

S
h
2
E
	

S
h
3
E
	

S
h
3
F
	

Figure 11: Shares 2 and 3 for schemes E and F .

29

	Introduction
	Definitions and Tools
	Notation
	Secure Two-party Computation

	Visual Gate Evaluation Secret Sharing
	Visual Cryptography
	GESS: Definition
	A General Construction for GESS
	Visual GESS

	A Visual Two-party Protocol
	Physical Oblivious Transfer
	Our Visual Two-Party Protocol

	Conclusions
	A simple example
	Yao's Protocol
	Secret sharing and multi-secret sharing schemes
	Proofs for VCS
	Proof of the GESS
	Proofs for the visual TPC procotol
	The shares

