
Secure Two-Party Computation in
Sublinear (Amortized) Time

S. Dov Gordon
Columbia University

gordon@cs.columbia.edu

Jonathan Katz
University of Maryland
jkatz@cs.umd.edu

Vladimir Kolesnikov
Alcatel-Lucent Bell Labs

kolesnikov@research.bell-
labs.com

Fernando Krell
Columbia University

fernando@cs.columbia.edu

Tal Malkin
Columbia University

tal@cs.columbia.edu
Mariana Raykova
Columbia University

mariana@cs.columbia.edu

Yevgeniy Vahlis
AT&T Security Research

Center
evahlis@att.com

ABSTRACT
Traditional approaches to generic secure computation begin
by representing the function f being computed as a circuit.
If f depends on each of its input bits, this implies a protocol
with complexity at least linear in the input size. In fact, lin-
ear running time is inherent for non-trivial functions since
each party must “touch” every bit of their input lest infor-
mation about the other party’s input be leaked. This seems
to rule out many applications of secure computation (e.g.,
database search) in scenarios where inputs are huge.

Adapting and extending an idea of Ostrovsky and Shoup,
we present an approach to secure two-party computation
that yields protocols running in sublinear time, in an amor-
tized sense, for functions that can be computed in sublin-
ear time on a random-access machine (RAM). Moreover,
each party is required to maintain state that is only (es-
sentially) linear in its own input size. Our protocol applies
generic secure two-party computation on top of oblivious
RAM (ORAM). We present an optimized version of our
protocol using Yao’s garbled-circuit approach and a recent
ORAM construction of Shi et al.

We describe an implementation of this protocol, and eval-
uate its performance for the task of obliviously searching a
database with over 1 million entries. Because of the cost
of our basic steps, our solution is slower than Yao on small
inputs. However, our implementation outperforms Yao al-
ready on DB sizes of 218 entries (a quite small DB by today’s
standards).

1. INTRODUCTION
Consider the task of searching over a sorted database of n

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$15.00.

items. Using binary search, this can be done in timeO(logn).
Now consider a secure version of this task where a client
wishes to learn whether an item is in a database held by
a server, with neither party learning anything more. Ap-
plying generic secure computation [22, 5] to this task, we
would begin by expressing the computation as a (binary or
arithmetic) circuit of size at least n, resulting in a protocol
of complexity Ω(n). Moreover, (at least) linear complex-
ity is inherent : in any secure protocol for this problem the
server must “touch” every entry of the database; otherwise,
the server learns information about the client’s input by ob-
serving which entries of its database were never accessed.

This linear lower bound seems to rule out the possibility of
ever performing practical secure computation over very large
datasets. However, tracing the sources of the inefficiency,
one may notice two opportunities for improvement:

• Many interesting functions (such as binary search) can
be computed in sublinear time on a random-access ma-
chine (RAM). Thus, it would be nice to have proto-
cols for generic secure computation that use RAMs —
rather than circuits — as their starting point.

• The fact that linear work is inherent for secure compu-
tation of any non-trivial function f only applies when
f is computed once. However, it does not rule out the
possibility of doing better, in an amortized sense, when
the parties compute the same function multiple times.

Inspired by the above, we explore scenarios where secure
computation with sublinear amortized work is possible. We
focus on a setting where a client and server repeatedly eval-
uate a function f , maintaining state across these executions,
with the server’s (huge) input D changing only a little be-
tween executions, and the client’s (small) input x chosen
anew each time f is evaluated. (It is useful to keep in
mind the concrete application of a client making several
read/write requests to a large database D, though our re-
sults are more general.) Our main result is:

Theorem 1. Suppose f can be computed in time t and
space s in the RAM model of computation. Then there is a
secure two-party protocol for f in which the client and server

1

run in amortized time O(t) · polylog(s), the client uses space
O(log(s)), and the server uses space s · polylog(s).

The above holds in the semi-honest adversarial model.
We show a generic protocol achieving the above bounds

by applying any protocol for secure two-party computation
in a particular way to any oblivious RAM (ORAM) con-
struction [6]. This demonstrates the feasibility of secure
computation with sublinear amortized complexity. We then
explore a concrete, optimized instantiation of our protocol
based on the recent ORAM construction of Shi et al. [18],
and using Yao’s garbled-circuit approach [22] for the secure
two-party computation. We chose the ORAM construction
of Shi et al. since it is the simplest scheme we know of, it
has poly-logarithmic worst-case complexity (as opposed to
other schemes that only achieve this in an amortized sense),
it requires small client state, and its time complexity in prac-
tice (i.e., taking constant factors into account) is among the
best known. (In Section 6 we briefly discuss why we expect
other schemes to yield worse overall performance for our
application.) We chose Yao’s garbled-circuit approach for
secure computation since several recent results [9, 14] show
that it is both quite efficient and can scale to handle circuits
with tens of millions of gates. When combining these two
schemes, we apply a number of optimizations to reduce the
sizes of the circuits that need to be evaluated using generic
secure computation.

We implemented the optimized protocol described above,
and evaluated it for the task of database search. For small
databases our protocol is slower than standard protocols for
secure computation, but our protocol outperforms the latter
for databases containing more than 218 entries.

1.1 Technical Overview
Our starting point is the ORAM primitive, introduced

in [6], which allows a client (with a small memory) to per-
form RAM computations using the (large) memory of a re-
mote untrusted server. At a high level, the client stores
encrypted entries on the server, and then emulates a RAM
computation of some function by replacing each read/write
access of the original RAM computation with a series of
read/write accesses such that the actual access pattern of
the client remains hidden from the server. Existing ORAM
constructions have the following complexity for an array of
length s: the server’s storage is s · polylog(s); the client’s
storage is O(log s); and the (amortized) work required to
read/write one entry of the array is polylog(s).

The above suggests a method for computing f(x,D) for
any function f defined in the random-access model of com-
putation, where the client holds (small) input x and the
server holds (large) input D: store the memory array used
during the computation on the server, and have the client
access this array using an ORAM scheme. This requires
an (expensive) pre-processing phase during which the client
and server initialize the ORAM data structure with D; af-
ter this, however, the client and server can repeatedly evalu-
ate f(xi, D) (on different inputs x1, . . . of the client’s choice)
very efficiently. Specifically, if f can be evaluated in time t
and space s on a RAM, then each evaluation of f in this
client/server model now takes (amortized) time t·polylog(s).

The above approach, however, only provides“one-sided se-
curity,” in that it ensures privacy of the client’s input against
the server; it provides no security guarantees for the server
against the client! We can address this by having the parties

compute the next ORAM instruction “inside” a (standard)
secure two-party computation protocol, with the intermedi-
ate state being shared between the client and server. The
resulting ORAM instruction is output to the server, who can
then read/write the appropriate entry in the ORAM data
structure that it stores, and incorporate the result (in case of
a read operation) in the shared state. The key observations
here are that (1) it is ok to output the ORAM instructions
to the server, since the ORAM itself ensures privacy for the
client; thus, secure computation is needed only to determine
the next instruction that should be executed. Moreover,
(2) each computation of this “next-instruction function” is
performed on small inputs whose lengths are logarithmic
in s and independent of t: specifically, the inputs are just
(shares of) the current state for the RAM computation of f
(which we assume to have size O(log s), as is typically the
case) and (shares of) the current state for the ORAM itself
(which has size O(log s)). Thus, the asymptotic work for
the secure computation of f remains unchanged.

For our optimized construction, we rely on the specific
ORAM construction of Shi et al. [18], and optimized versions
of Yao’s garbled-circuit protocol. We develop our concrete
protocol with the aim of minimizing our reliance on garbled
circuits for complex functionalities. Instead, we perform lo-
cal computations whenever we can do so without losing secu-
rity. For example, we carefully use encryption scheme where
block-cipher computations can be done locally, with just an
XOR computed via secure computation. For the parts of our
protocol that do utilize generic secure computation, we rely
on garbled-circuit optimization techniques such as the free-
XOR approach [11, ?], oblivious-transfer extension [10], and
pipelined circuit execution [9]. Wee also use precomputation
(e.g., [1]) to push expensive computations to a preprocess-
ing stage. Our resulting scheme only requires simple XOR
operations for oblivious-transfer computations in an on-line
stage, while exponentiations and even hashing can be done
as part of preprocessing.

1.2 Related Work
Ostrovsky and Shoup [16] also observed that ORAM and

secure computation can be combined, though in a different
context and using a different approach. Specifically, they
consider a (stateless) client storing data on two servers that
are assumed not to collude. They focus on private storage of
the data belonging to the client, rather than secure compu-
tation of a function over inputs held by a client and server
as we do here. Finally, they do not evaluate the concrete
efficiency of their approach.

Damg̊ard et al. [2] also observe that ORAM can be used
for secure computation. In their approach, which they only
briefly sketch, players share the entire (super-linear) state
of the ORAM, in contrast to our protocol where the client
maintains only logarithmic state. They make no attempt to
optimize the concrete efficiency of their protocol, nor do they
offer any implementation or evaluation of their approach.

Though the above two works have a flavor similar to our
own, our work is the first to explicitly point out that ORAM
can be used to achieve secure two-party computation with
sublinear complexity (for functions that can be computed in
sublinear time on a RAM).

Oblivious RAM was introduced in [6], and in the past
few years several improved constructions have been proposed
(c.f. [20, 21, 17, 7, 8, 12, 18, 19]). Due to space limitations,

2

we refer the reader to [18, 19] for further discussion and
pointers to the sizeable literature on this topic.

2. DEFINITIONS

2.1 Random Access Machines
In this work, we focus on RAM programs for computing

a function f(x,D), where x is a “small” input that can be
read in its entirety and D is a (potentially) large input that
is viewed as being stored in a memory array that we also de-
note by D and that is accessed via a sequence of read/write
instructions. Any such instruction I ∈ ({read,write} × N ×
{0, 1}`) takes the form (write, v, d) (“write data element d in
location/address v”) or (read, v,⊥) (“read the data element
stored at location v”). We also assume a designated “stop”
instruction of the form (stop, z) that indicates termination
of the RAM protocol with output z.

Formally, a RAM program is defined by a “next instruc-
tion” function Π which, given its current state and a value d
(that will always be equal to the last-read element), outputs
the next instruction and an updated state. Thus if D is an
array of n entries, each ` bits long, we can view execution
of a RAM program as follows:

• Set stateΠ = (1logn, 1`, start, x) and d = 0`. Then until
termination do:

1. Compute (I, state′Π) = Π(stateΠ, d). Set stateΠ =
state′Π.

2. If I = (stop, z) then terminate with output z.

3. If I = (write, v, d′) then set D[v] = d′.

4. If I = (read, v,⊥) then set d = D[v].

(We stress that the contents of D may change during the
course of the execution.) To make things non-trivial, we
require that the size of stateΠ, and the space required to
compute Π, is polynomial in logn, `, and |x|. (Thus, if we
view a client running Π and issuing instructions to a server
storing D, the space used by the client is small.)

We allow the possibility for D to grow beyond n entries,
so the RAM program may issue write (and then read) in-
structions for indices greater than n. The space complexity
of a RAM program on initial inputs x,D is the maximum
number of entries used by the memory array D during the
course of the execution. The time complexity is the number
of instructions issued in the execution as described above.
For our application, we do not want the running time of a
RAM program to reveal anything about the inputs. Thus,
we will assume that any RAM program has associated with
it a polynomial t such that the running time on x,D is ex-
actly t(logn, `, |x|).

2.2 Oblivious RAM
We view an oblivious-RAM (ORAM) construction as a

mechanism that simulates read/write access to an underly-

ing (virtual) array D via accesses to some (real) array D̃;
“obliviousness” means that no information about the virtual
accesses to D is leaked by observation of the real accesses
to D̃. An ORAM construction can be used to compile any
RAM program into an oblivious version of that program.

An ORAM construction consists of two algorithms OI
and OE for initialization and execution, respectively. OI
initializes some state stateoram that is used (and updated

by) OE. The second algorithm, OE, is used to compile
a single read/write instruction I (on the virtual array D)

into a sequence of read/write instructions Ĩ1, Ĩ2, . . . to be

executed on (the real array) D̃. The compilation of an in-

struction I into Ĩ1, Ĩ2, . . . , can be adaptive; i.e., instruction
Ĩj may depend on the values read in some prior instruc-
tions. To capture this, we define an iterative procedure
called doInstruction that makes repeated use of OE. Given a
read/write instruction I, we define doInstruction(stateoram, I)
as follows:

• Set d = 0`. Then until termination do:

1. Compute (Ĩ , state′oram) ← OE(stateoram, I, d), and
set stateoram = state′oram.

2. If Ĩ = (done, z) then terminate with output z.

3. If Ĩ = (write, v, d′) then set D̃[v] = d′.

4. If Ĩ = (read, v,⊥) then set d = D̃[v].

If I was a read instruction with I = (read, v,⊥), then the
final output z should be the value “written” at D[v]. (See
below, when we define correctness.)

Correctness. We define correctness of an ORAM construc-
tion in the natural way. Let I1, . . . , Ik be any sequence of
instructions with Ik = (read, v,⊥), and Ij = (write, v, d)
the last instruction that writes to address v. If we start
with D̃ initialized to empty and then run stateoram ← OI(1κ)
followed by doInstruction(I1), . . . , doInstruction(I1), then the
final output is d with all but negligible probability.

Security. The security requirement is that for any two
equal-length sequences of RAM instructions, the (real) ac-
cess patterns generated by those instructions are indistin-
guishable. We will use the standard definition from the lit-
erature, which assumes the two instruction sequences are
chosen in advance.1 Formally, let ORAM = 〈OI,OE〉 be an
ORAM construction and consider the following experiment:

Experiment ExpAPHORAM,Adv(κ, b):

1. The adversary Adv outputs two sequences of queries
(I0, I1), where I0 = {I0

1 , . . . , I
0
k} and I1 = {I1

1 , . . . , I
1
k}

for arbitrary k.

2. Run stateoram ← OI(1κ); initialize D̃ to empty; and
then execute doInstruction(stateoram, I

b
1), . . .,

doInstruction(stateoram, I
b
k) (note that stateoram is up-

dated each time doInstruction is run). The adversary

is allowed to observe D̃ the entire time.

3. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The
experiment evaluates to 1 iff b′ = b.

Definition 1. An ORAM construction ORAM = 〈OI,OE〉
is access-pattern hiding if for every ppt adversary Adv the
following is negligible:˛̨̨̨

Pr
ˆ
ExpAPHORAM,Adv(1

κ, b) = 1
˜
− 1

2

˛̨̨̨
1It appears that existing ORAM constructions are secure
even if the adversary is allowed to adaptively choose the next
instruction after observing the access pattern on D̃ caused
by the previous instruction, but this has not been claimed
by any ORAM construction in the literature.

3

2.3 Secure Computation
We focus on the setting where a server holds a (large)

databaseD and a client wants to repeatedly compute f(x,D)
for different inputs x; moreover, f may also change the con-
tents of D itself. We allow the client to keep (short) state
between executions, and the server will keep state that re-
flects the (updated) contents of D.

For simplicity, we focus only on the two-party (client/server)
setting in the semi-honest model but it is clear that our def-
initions can be extended to the multi-party case with mali-
cious adversaries.

Definition of security. We use a standard simulation-
based definition of secure computation [4], comparing a real
execution to that of an ideal (reactive) functionality F . In
the ideal execution, the functionality maintains the updated
state of D on behalf of the server. We also allow F to take
a description of f as input (which allows us to consider a
single ideal functionality).

The real-world execution proceeds as follows. An envi-
ronment Z initially gives the server a database D = D(1),
and the client and server then run protocol Πf (with the
client using input init and the server using input D) that
ends with the client and server each storing some state that
they will maintain (and update) throughout the subsequent
execution. In the ith iteration (i = 1, . . .), the environment
gives xi to the client; the client and server then run proto-
col Πf (with the client using its state and input xi, and the
server using its state) with the client receiving output outi.
The client sends outi to Z, thus allowing adaptivity in Z’s
next input selection xi+1. At some point, Z terminates ex-
ecution by sending a special end message to the players. At
this time, an honest player simply terminates execution; a
corrupted player sends its entire view to Z.

For a given environment Z and some fixed value κ for
the security parameter, we let realΠf ,Z(κ) be the random
variable denoting the output of Z following the specified
execution in the real world.

In the ideal world, we let F be a trusted functionality that
maintains state throughout the execution. An environment
Z initially gives the server a database D = D(1), which the
server in turn sends to F . In the ith iteration (i = 1, . . .),
the environment gives xi to the client who sends this value
to F . The trusted functionality then computes

(outi, D
(i+1))← f(xi, D

(i)),

and sends outi to the client. (Note the server does not learn
anything from the execution, neither about outi nor about
the updated contents of D.) The client ends outi to Z. At
some point, Z terminates execution by sending a special end
message to the players. The honest player simply terminates
execution; the corrupted player may send an arbitrary func-
tion of its entire view to Z.

For a given environment Z, some fixed value κ for the
security parameter, and some algorithm S being run by the
corrupted party, we let idealF,S,Z(κ) be the random vari-
able denoting the output of Z following the specified execu-
tion.

Definition 2. We say that protocol Πf securely com-
putes f if there exists a probabilistic polynomial-time ideal-
world adversary S (run by the corrupted player) such that
for all non-uniform, polynomial-time environments Z there

Secure initialization protocol

Input: The server has an array D of length n.

Protocol:
1. The participants run a secure computation of

OI(1κ, 1s, 1`), which results in each party receiv-
ing a secret share of the initial ORAM state. We
denote this by [stateoram].

2. For i = 1, . . . , n do

(a) The server sets I = (write, v,D[v])) and
secret-shares I with the client. Denote the
sharing by [I].

(b) The parties run ([state′oram], [⊥]) ←
doInstruction([stateoram], [I]) (see Figure 3),
and set [stateoram] = [state′oram].

Figure 1: Secure initialization protocol πInit.

exists a negligible function negl such that˛̨
Pr

ˆ
realΠf ,Z(κ) = 1

˜
− Pr [idealF,S,Z(κ) = 1]

˛̨
≤ negl(κ).

3. GENERIC CONSTRUCTION
In this section we present our generic solution for achiev-

ing secure computation with sublinear amortized work, based
on any ORAM scheme and any secure two-party computa-
tion (2PC) protocol. While our optimized protocol (in Sec-
tion 4) is more efficient, this generic protocol demonstrates
theoretical feasibility and provides a conceptually clean il-
lustration of our overall approach. A high-level overview of
our protocol was given in Section 1.1.

We provide our security definition in Appendix 2.3. We
briefly describe here the definition of ORAM; formal defini-
tions of the RAM and ORAM models of computation are
given in Appendix 2.1 and Appendix 2.2 respectively.

An ORAM provides read/write access to a (virtual) array
of length s using a data structure of length s · polylog(s),
where each “virtual” read/write instruction I (in the virtual
array of length s) is emulated using polylog(s) read/write

instructions Î1, . . . on the actual ORAM array (of length
s · polylog(s)). The underlying ORAM is defined by two
algorithms OI and OE. The first represents the initializa-
tion algorithm (i.e., key generation), which establishes the
client’s initial state and can be viewed as also initializing
an empty array that will be used as the main ORAM data
structure. This algorithm takes as input κ (a security pa-
rameter), s (the length of the virtual array being emulated),
and ` (the length of each entry in both the virtual and ac-
tual arrays). The second algorithm OE defines the actual
ORAM functionality, namely the process of mapping a vir-
tual instruction I to a sequence of real instructions Î1,
Algorithm OE takes as input (1) the current ORAM state
stateoram, (2) the virtual instruction I being emulated, and
(3) the last value d read from the ORAM array, and out-
puts (1) an updated ORAM state state′oram and (2) the next

instruction Î to run.
With the above in place, we can now define our proto-

col for secure computation of a function f over an input x
held by the client (and assumed to be small) and an array
D ∈ ({0, 1}`)n held by the server (and assumed to be large).
We assume f is defined in the RAM model of computation
in terms of a next-instruction function Π which, given the
current state and value d (that will always be equal to the

4

Secure evaluation protocol πf

Inputs: The server has array D̃ and the client has
input n, 1`, and x. They also have shares of an ORAM
state, denoted [stateoram].

Protocol:
1. The client sets stateΠ = (n, 1`, start, x) and d =

0` and secret-shares both values with the server;
we denote the shared values by [stateΠ] and [d],
respectively.

2. Do:

(a) The parties securely compute
([state′Π], [I]) ← Π([stateΠ], [d]), and set
[stateΠ] = [state′Π].

(b) The parties run a secure computation to see
if stateΠ = (stop, z). If so, break.

(c) The parties execute ([state′oram], [d′]) ←
doInstruction([stateoram], [I]). They set
[stateoram] = [state′oram] and [d] = [d′].

3. The server sends (the appropriate portion of) its
share of [stateΠ] to the client, who recovers the
output z.

Output: The client outputs z.

Figure 2: Secure evaluation of a RAM program de-
fined by next-instruction function Π.

last-read element), outputs the next instruction and an up-
dated state. We let s denote a bound on the number of
memory cells of length ` required by this computation (in-
cluding storage of D in the first n positions of memory).
Our protocol proceeds as follows:

1. The parties run a secure computation of OI. The re-
sulting ORAM state stateoram is shared between the
client and server.

The doInstruction subroutine

Inputs: The server has array D̃, and the server
and client have shares of an ORAM state (denoted
[stateoram]) and a RAM instruction (denoted [I]).

1. The server sets d = 0` and secret shares this value
with the client; we denote the shared value by [d].

2. Do:

(a) The parties securely compute

([state′oram], [Î]) ← OE([stateoram], [I], [d]),
and set [stateoram] = [state′oram].

(b) The parties run a secure computation to see

if Î = (done, z). If so, set [d] = [z] and break.

(c) The client sends its share of [Î] to the server,

who reconstructs [Î]. Then:

i. If Î = (write, v, d′), the server sets

D̃[v] = d′ and sets d = d′.

ii. If Î = (read, v,⊥), the server sets d =

D̃[v].

(d) The server secret-shares d with the client.

Output: Each player outputs its shares of stateoram

and d.

Figure 3: Subroutine for executing one RAM in-
struction.

2. The parties run a secure computation of a sequence of
(virtual) write instructions that insert each of the n
elements of D into memory. The way this is done is
described below.

3. The parties compute f by using secure computation
to evaluate the next-instruction function Π. This gen-
erates a sequence of (virtual) instructions, shared be-
tween the parties, each of which is computed as de-
scribed below.

4. When computation of f is done, the state associated
with this computation (stateΠ) encodes the output z.
The server sends the appropriate portion of its share
of stateΠ to the client, who can then recover z.

See Figures 1 and 2 for the secure initialization and secure
computation of the RAM next-instruction. In the figures, we
let [v] denote a bitwise secret-sharing of a value v between
the two parties. It remains to describe how a single virtual
instruction I (shared between the two parties) is evaluated.
This is done as follows (also see Figure 3):

1. The parties use repeated secure computation of OE to
obtain a sequence of real instructions Î1, Each such
instruction Î is revealed to the server, who executes the
instruction on the ORAM data structure that it stores.
If Î was a read instruction, then the value d that was
read is secret-shared with the client.

2. After all the real instructions have been executed, em-
ulation of instruction I is complete. If I was a read
instruction, then the (virtual) value d′ that was read
is secret-shared between the client and server.

The key point to notice is that each secure computation
that is invoked is run only over small inputs. This is what
allows the amortized cost of the protocol to be sublinear.

The following summarizes our main theoretical result. The
proof is tedious but relatively straightforward; due to space
limitations, it is omitted from the present version but is
available from the authors upon request.

Theorem 2. If an ORAM construction and a 2PC pro-
tocol secure against semi-honest adversaries are used, then
our protocol securely computes f against semi-honest adver-
saries. Furthermore, if f can be computed in time t and
space s on a RAM, then our protocol runs in amortized time
O(t) · polylog(s), the client uses space O(log(s)), and the
server uses space s · polylog(s).

We comment that if the underlying secure-computation is
secure against malicious parties, then a simple change to our
protocol will suffice for obtaining security against malicious
parties as well. We simply change the outputs of all se-
cure computations to include a signature on the outputs de-
scribed above (using a signing key held by the other party),
and we modify the functions used in the secure-computation
such that they verify the signature on each input before con-
tinuing. We leave the proof of this informal claim to future
work. We note that we cannot make such a claim for our
more efficient, concrete solution presented in Section 4.1.

5

4. OUR OPTIMIZED PROTOCOL
In Section 3 we showed that any ORAM protocol can be

combined with any secure two-party computation scheme to
obtain a secure computation scheme with sublinear amor-
tized complexity. In this section we present a far more
efficient and practical scheme, based on instantiating our
generic protocol with Yao’s garbled circuits and the ORAM
construction of Shi et. al [18]. However, rather than apply-
ing the secure computation primitive on the entire ORAM
instruction, we deviate from the generic protocol by per-
forming parts of the computation locally, whenever we could
do so without violating security. This section describes our
scheme, including concrete algorithmic and engineering deci-
sions we made when instantiating our protocol, as well as im-
plementation choices and complexity analysis. In Section 5
we present experimental performance results, demonstrat-
ing considerable improvement over using traditional secure
computation over the entire input (i.e. without ORAM). We
do not describe Yao’s garbled circuit technique here, as this
has been described in many prior works (see [13] for a very
clear exposition). We do, however, attempt to present the
discussion in a way that requires minimal knowledge of this
particular technique.

The ORAM Construction of Shi et. al. [18].
We begin with an overview of the ORAM construction of

[18], which is the starting point of our protocol. The main
data storage structure used in this scheme is a binary tree
with the following properties. To store N data items in the
ORAM, we construct a binary tree of height logN , where
each node has the capacity to hold logN data items. Every
item stored in the binary tree is assigned to a randomly cho-
sen leaf node. The identifier of this leaf node is appended
to the item, and the item, along with its assignment, is en-
crypted and stored somewhere on the path between the root
and its assigned leaf node. To find a data item, the client be-
gins by retrieving the leaf node associated with that item; we
will explain how this is done below. He sends the identifier
of the leaf node to the server, who then fetches and sends all
items along the appropriate path, one node at a time. The
client decrypts the content of each node and searches for
the item he is looking for. When he finds it, he removes it
from its current node, assigns it a new leaf identifier chosen
uniformly at random and inserts the item at the root node
of the tree. He then continues searching all nodes along the
path in order to prevent the server from learning where he
found the item of interest.

Since the above lookup process will work only while there
is room in the root node for new incoming items, the authors
of [18] devise the following load balancing mechanism to
prevent nodes from overflowing. After each ORAM access
instruction, two nodes are chosen at random from each level
of the tree. One arbitrary item is evicted from each of these
nodes, and is inserted in the child node that lies on the
path towards its assigned leaf node. While the server will
learn which nodes were chosen for this eviction, it should
not learn which children receive the evicted items. To hide
this information, the client insert encrypted data in both of
the two child nodes, performing a “dummy” insertion in one
node, and a real insertion in the other.

All that remains to describe is how the client recovers the
leaf identifier associated with the item of interest. The num-
ber of such identifiers is linear in the size of the database,

so storing the identifiers on the client side is not an option.
The solution is to store these assignments on the server,
recursively using the same type of binary trees. A crucial
property which makes this solution possible is that an item
can store more than a single mapping. If an item stores r
mappings, then the total number of recursively built trees is
logr N . The smallest tree will have very few items, and can
thus be stored by the client. As an example, let the largest

tree contain items with virtual addresses v
(1)
1 , . . . , v

(1)
N that

are assigned leaf identifiers L
(1)
1 , . . . , L

(1)
N . Then the tree

at level 2 has N
r

items with virtual addresses v
(2)
1 , . . . , v

(2)
N
r

,

where the item with virtual address v
(2)
j contains mappings

(v
(1)
i , L

(1)
i) for (j− 1)r < i ≤ jr. With this modification, an

ORAM lookup consists of a series of lookups, one in each of
these trees, beginning with the smallest tree. In particular,
given a virtual address v for a database query, the client
derives the lookup values that he needs to use in tree i by
computing v(i) = b v

ri c for 0 ≤ i ≤ logr N . Having these
values the client starts with a lookup in the smallest tree for
value v(logr N). He retrieves L(logr N) from his local memory
and finds in it the mapping (v(logr N−1), L(logr N−1)). Now

he looks for v(logr N−1) in the next smallest tree using leaf
identifier L(logr N−1). This process continues until the client
retrieves the real database item at address v from the largest
tree at the top level of the recursion. In each tree, the ac-
cessed item is assigned a new leaf node at random, and the
item is inserted back in the tree’s root node. In addition, its
mapping is updated in the tree below to record its new leaf
node.

The intuition for the security of this scheme can be sum-
marized as follows. Every time the client looks up item vi, he
assigns it a new leaf node and re-inserts it at the root. It fol-
lows that the paths taken to find vi in two different lookups
are independent of one another, and cannot be distinguished
from the lookup of any other two nodes. During the eviction
process, a node is just as likely to accept a new item as it
is to lose an item. Shi et al. prove in their work that with
buckets of size O(log(MN/δ)) the probability that a bucket
will overflow after M ORAM instructions is less than δ. It
follows that with a bucket size of O(logN), the probability
of overflow is negligible in the security parameter. However,
as we shall see below, the precise constant makes a big dif-
ference, both in the resulting security and in the efficiency
of the scheme.

4.1 High Level Protocol
As above, we assume a database of N items, and we allow

each item in each recursive level to hold r mappings between
virtual addresses and leaf identifiers from the level above.
The client and a server perform the following steps to access
an item at an address v:

1. The parties have shares vC and vS of the virtual ad-
dress for the query in the database v = vC ⊕ vS .

2. The client and the server run a two party computa-

tion protocol to produce shares v
(1)
C , . . . , v

(logr N)
C and

v
(1)
S , . . . , v

(logr N)
S of the virtual addresses that they will

lookup in each tree of the ORAM storage: b v
ri c =

v
(i)
C ⊕ v

(i)
S for 0 ≤ i ≤ logr N

3. The server generates random leaf identifiers

6

L̃(1), . . . , L̃(logr N) that will be assigned to items as they
are re-inserted at the root.

4. The last tree in the ORAM storage has only a constant
number of nodes, each containing a constant number
of items. The client and server store shares of the leaf
identifiers for these items. They execute a two party
protocol that takes these shares as inputs, as well as

the shares v
(logr N)
C and v

(logr N)
S . The server’s output

of the secure computation is the leaf value L(logr N).
The client has no output.

5. For each i such that logr N ≥ i ≥ 2:

(a) The server retrieves the nodes on the path be-

tween the root and the leaf L(i) in the i-th tree.

(b) The parties execute a secure two party protocol.
The server’s inputs are the nodes recovered above,

and the secret share v
(i−1)
S . The client’s input is

v
(i−1)
C . The server receives value L(i−1) as output,

which is the value stored at address v
(i−1)
C ⊕v(i−1)

S ,

and which lies somewhere along the path to L(i).

(c) The parties execute a secure two party protocol to

update the content of item v(i) with the value of
the new leaf identifier L̃(i−1) that will be assigned

to v
(i−1)
C ⊕ v(i−1)

S in the i− 1-th tree.

(d) The parties execute a secure two party protocol

to tag item v(i) with it’s new leaf node assignment
L̃(i), and to insert v(i) in the first empty position
of the root node.

6. For the first level tree that contains the actual items
for the database, the server retrieves the nodes on the
path between the root and the leaf L(1). The parties
execute a secure two party protocol to find item v =

v
(1)
C ⊕ v

(1)
S . The outputs of the protocol are secret

shares of the data d = dC⊕dS found at virtual address
v. The server tags v with L̃(1), and the parties perform
another secure protocol to insert v at the first empty
spot in the root node.

4.2 Optimizations and Implementation Choices

Encryption and Decryption.
In our protocol description so far, we have left implicit

the fact all data stored in the database at the server must
be encrypted. Every time a data item is used in the RAM
computation, it must first be decrypted, and it must be re-
encrypted before it is re-inserted at the root node. In a naive
application of our generic solution, the parties would have
to decrypt, and later re-encrypt the data item completely
inside a Yao circuit, which can be very time consuming.
We choose the following encryption scheme, with an eye to-
wards minimizing the computation done inside the garbled
circuit: Enc(m; r) = (FK(r) ⊕ m, r), where F can be any
pseudo-random function. The key K is stored by the client,
and kept secret from the server. To ensure that encryption
and decryption can be efficiently computed inside a garbled
circuit, the server sends r to the client in the clear, along
with a random r′ that will be used for re-encryption. The
client computes FK(r) and FK(r′) outside the secure com-
putation. Now the only part of decryption or re-encryption

that has to be done inside the garbled circuit is boolean
XOR, which is very cheap.

While this greatly improves the efficiency of our scheme,
we note that it has to be done with care: sending the en-
cryption randomness to the client could reveal information
about the access pattern of the RAM, and, consequently,
about the server’s data. The issue arises during the evic-
tion procedure, when a data item is moved from a parent to
one of its children. During this process, it is important that
neither player learn which child received the evicted data;
the construction of Shi et al. [18] has the client touch both
children, writing a dummy item to one of the two nodes, and
the evicted item to the other node, thereby hiding from the
server which node received the real item. In our case, this
must be hidden from the client as well, which is ensured
by performing the operation inside a secure computation.
However, the exact way in which randomness is assigned
to ciphertext has a crucial effect on security. For example,
suppose the server sends randomness r1 and r2 to be used
in the re-encryption, and our operation is designed so that
r1 is always used for encrypting the dummy item and r2

is always used for the real item. The client can then keep
track of the real item by waiting to receive r2 for decryption
in the future! We must therefore design the re-encryption
operation so that randomness is associated with a node in
the tree rather than the content of the ciphertext. Then, r1

is always used in the left child, and r2 in the right, indepen-
dent of which node receives the real item and which receives
the dummy item.

Although this issue is easily handled2, it demonstrates
the subtlety that arises when we depart from the generic
protocol in order to improve the efficiency of the scheme.

Choosing a Bucket Size.
At each node of the ORAM structure we have a bucket of

items, and choosing the size of each bucket can have a big
impact on the efficiency of the scheme: we have to perform
searches over B logN items for buckets of size B. However,
if the buckets are too small, there is a high probability that
some element will “overflow” its bucket during the eviction
process. This overflow event can leak information about the
access pattern, so it is important to choose large enough
buckets. Shi et al. [18] prove that in an ORAM containing
N elements, if the buckets are of size (log(MN/δ)), then
after M memory accesses, the probability of overflow is less
than δ. It follows that to get, say, security 2−20, it suffices
to have buckets of size O(logN), but the constant in the
notation is important.

In Figure 4 we provide our results from simulating over-
flow for various bucket sizes. Notice that the value ap-
proaches 0 only as we approach 2 logN , and in fact the
probability of failure is very high for values closer to logN .
Based on these simulations, we have chosen to use buckets
of size 2 logN . We ran our experiment with N = 216 and

2We defer the proof of security to the full version. However,
to give some intuition, note that as long as the assignment
of the encryption randomness is independent of the access
pattern, nothing can be learned by the client during decryp-
tion. To make this formal, we show that we can simulate
his view by choosing random values for each bucket, storing
them between lookups, and sending those same values the
next time that bucket is scanned. This simulation would fail
only if the assignment of the random values to buckets were
somehow dependent on the particular content of the RAM.

7

 0

 20

 40

 60

 80

 100

 18 20 22 24 26 28 30 32

Fa
ilu

re
 P

er
ce

nt
ag

e

Bucket Size

Figure 4: Overflow probability as a function of
bucket size, for 65536 virtual instructions on a
database of 65536 items.

estimated the probability of overflowing any bucket when
we insert all N items, and then perform an additional N
operations on the resulting database. We used 10,000 tri-
als in the experiment. Note that for the specific example
of binary search, we only need to perform logN operations
on the database; for 216 elements and a bucket size of 32,
we determined with confidence of 98% that the probability
of overflow is less than .0001. The runtime of our protocol
(roughly) doubles when our bucket size doubles, so although
we might prefer still stronger security guarantees, increasing
the bucket size to 3 logN will have a considerable impact on
performance.

Computing Addresses Recursively.
Recall that the leaf node assigned to item v(i) in the ith

tree is stored in item v(i+1) = b v
(i)

r
c of the i + 1th tree.

In Step 2, where the two parties compute shares of v(i) for
each i in 1, . . . , logr N , we observe that if r is a power of
2, each party can compute its own shares locally from its
share of v. If r = 2j and v = vC ⊕ vS , then we can obtain

v(i) = b v
ri c by deleting the last i · j bits of v. Similarly v

(i)
C

and v
(i)
S can be obtained by deleting the last i · j bits from

the values vC and vS . This allows us to avoid performing
another secure computation when recovering shares of the
recursive addresses.

Node Storage Instantiation.
Shi et al. [18] point out that the data stored in each node

of the tree could itself be stored in another ORAM scheme,
either using the same tree-based scheme described above, or
using any of the other existing schemes. We have chosen to
simply store the items in an array, performing a linear scan
on the entire node. For the data sets we consider, N = 106

or 107, and 20 ≤ logN ≤ 25. Replacing a linear scan with an
ORAM scheme costing O(log3 N), or even O(log2 N), sim-
ply does not pay off. We could consider the simpler ORAM
of Goldreich and Ostrovsky [6] that has overhead O(

√
N),

but the cost of shuffling around data items and computing
pseudorandom functions inside garbled circuits would cer-
tainly erase any savings.

Using Client Storage.
When the client and server search for an item v, after

they recover the leaf node assigned to v, the server fetches
the logN buckets along the path to the leaf, each bucket
containing up to logN items. The parties then perform a
secure computation over the items, looking for a match on
v. We have a choice in how to carry out this secure com-
putation: we could compare one item at a time with v, or
search as many as log2 N items in one secure computation.
The advantage to searching fewer items is that the garbled
circuit will be smaller, requiring less client-side storage for
the computation. The disadvantage is that each computa-
tion will have to output secret shares of the state of the
search, indicating whether v has already been found, and, if
so, what the value of its payload is; each computation will
also have to take the shares of this state as input, and recon-
struct the state before continuing with the search. The extra
state information will require additional wires and gates in
the garbled circuits, as well as additional encryptions and
decryptions for preparing and evaluating the circuit. We
have chosen to perform just a single secure computation
over log2 N items, using the maximal client storage, and
the minimal computation. However, we note that the addi-
tional computation would have little impact,3 and we could
instead reduce the client storage at relatively little cost. To
compute the circuit that searches log2 N items, the client
needs to store approximately 400, 000 encryption keys, each
80 bits long.

Garbled Circuit Optimizations.
The most computationally expensive part of Yao’s garbled

circuit protocol is often thought to be the oblivious transfer
(OT) sub-protocol [3]. The parties must employ OT once for
every input wire of the party that evaluates the circuit, and
each such application (naively performed) requires expensive
operations such as exponentiations. We use the following
known optimizations to reduce OT costs and to further push
its computation almost entirely to the preprocessing stage,
before the parties begin the computation (even before they
have their inputs), reducing the on-line OT computations to
just simple XOR operations.

The most important technique we use is the OT extension
protocol of Ishai et al. [10], which allows to compute an ar-
bitrary number of OT instances, given a small (security pa-
rameter) number of “base” OT instances. We implement the
base instances using the protocol of Naor and Pinkas [15],
which requires six exponentiations in a prime order group,
three of which can be computed during pre-processing. Fol-
lowing [10], the remaining OT instances will only cost us
a couple of hash evaluations per instance. We then push
these hash function evaluations to the preprocessing stage,
in a way that requires only XOR during the on-line stage.
Finally, Beaver’s technique [1] allows us to start computing
the OT’s in the preprocessing stage as well, by running OT
random inputs for both parties; the output is then corrected
by appropriately sending real input XORed with the used
random inputs in the online stage.

We rely on several other known garbled circuit optimiza-
tions. First, we use the free XOR gates technique of Kolesnikov
and Schneider [11], which results in more than 60% improve-

3This is because sharing the state and reconstructing the
state are both done using XOR gates, which are particularly
cheap for garbled circuits, as we discuss below.

8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 13 14 15 16 17 18 19 20 21

Ti
m

e
(s

)

Log2 (# entries)

Our Protocol
Basic Yao

Figure 5: Time for performing binary search using
our protocol vs. time for performing binary search
using a standard garbled-circuit protocol as a func-
tion of the number of database entries. Each entry
is 512 bits long.

ment in the evaluation time for an XOR gate, compared to
other gates. Accordingly, we aim to construct our circuits
using as few non-XOR gates as possible.

Second, we utilize a wider variety of gates (as opposed
to the traditional Boolean AND, OR, XOR, NAND gates).
This pays off since in the garbled circuit construction every
non-XOR gate requires performing encryption and decryp-
tion, and all gates of the same size are equally costly in this
regard. In our implementation we construct and use 10 of
the 16 possible gates that have 2 input bits and one output
bit. We also rely heavily on the multiplexer gate on 3 input
bits; this gate uses the first input bit to select the output
from the other two input bits. In one circuit, we use a 16-bit
multiplexer, which uses 4 input bits to select from 16 other
inputs.

Finally, we utilize pipelined circuit execution, which avoids
the naive traditional approach where one party sends the
garbled circuit in its entirety to the second one. This naive
approach is often impractical, as for large inputs the garbled
circuits can be several gigabytes in size, and the receiving
party cannot start the evaluation until the entire garbled
circuit has been generated and transmitted and stored in
his memory. To mitigate that, we follow the technique in-
troduced by Huang et al. [9], allowing the generation and
evaluation of the garbled circuit to be executed in parallel,
where the sender can transmit each garbled gate as soon as
he generates it, and continue to garble the next gates while
the receiver is evaluating the received gates, thus improving
the total evaluation time. This also alleviates the memory
requirements for both parties since the garbler can discards
the gates he has sent, and the receiver can discard a gate
that he has evaluated.

5. IMPLEMENTATION
The goal of our experiments was to evaluate and com-

pare execution times for two protocols implementing binary
search: one using standard optimized Yao, and the other
using our ORAM-based approach described in the previous
sections. In our experiments, each of the two parties was

 0

 20

 40

 60

 80

 100

 120

 140

 160

 128 256 512 1024 2048

Ti
m

e
(s

)

Item Data Size (bits)

65536 DB size
131072 DB size
262144 DB size
524288 DB size

Figure 6: Single ORAM lookup times for different
database sizes and item data lengths.

run on a different server, each with a Intel Xeon 2.5GHz
CPU, 16 GB of RAM, two 500 GB hard disk drives, and
running a 64-bit Ubuntu operating system. They each had
a 1 Gbit ethernet interface, and were connected through a
1Gbit switch.

Before running our experiments, we first populated the
database structure on the server side: in our ORAM pro-
tocol, we randomly placed the encrypted data throughout
the ORAM structure, and in the Yao protocol performing
a linear scan, we simply stored the data in a large array.
We then generated and stored the necessary circuit descrip-
tions on each machine. Finally, the two parties interacted
to pre-process the expensive part of the OT operations, in a
manner that is independent of their inputs. We did not cre-
ate the garbled gates for the circuits during pre-processing;
the server begins generating these once contacted by the
client. However, the server sent garbled gates to the client
as they were ready, so as to minimize the impact on the total
computation time. When we measured time in our experi-
ments, we included: 1) the online phase of the OT protocol,
2) the time it takes to create the garbled gates and transfer
the resulting ciphertexts, and 3) the processing time of the
garbled circuits.

5.1 Performance
In Figure 5, we compare the performance of our construc-

tion when computing a ORAM-based binary search to the
performance of a Yao-based linear scan. We have plotted the
x-axis on a logarithmic scale to improve readability. From
the plot it can be seen that we outperform the Yao lin-
ear scan by a factor of 3 when dealing with input of size
219, completing the logN operations in less than 7 minutes,
compared to 24 minutes for Yao. For input of size 220, we
complete our computation in 8.3 minutes, while the Yao im-
plementation failed to complete (we were unable to finish
the linear scan because the OS began swapping memory).
While we had no trouble running our ORAM-based proto-
col on input of size 220, for N = 221, we ran out of memory
when populating the server’s ORAM during pre-processing.

In Figure 6 we demonstrate how our protocol performs
when evaluating a single read operation over N data ele-
ments of size 512 bits, for N ∈ {216, 217, 218, 219, 220}. We
note that runtime for binary search using the ORAM is al-

9

most exactly the time it takes to run logN single lookups;
this is expected, since the circuit for computing the next
RAM instruction is very small. For 216 items and a bucket
size of 32, a single operation takes 27 seconds, while for
220 items and buckets of size 40, it takes about 50 seconds.
Recall that when relying only on secure computation, com-
puting any function, even those making a constant number
of lookups, requires a full linear scan; in this scenario, the
performance gain is more than 30-fold. One example of such
a function allows the client to search a large social network,
in order to fetch the neighborhood of a particular node.

5.2 Discussion

Memory Constraints.
Memory is the primary limitation on scaling the computa-

tion to larger values of N . For the linear scan, the problem
stems from the size of the circuit description, which is more
than 23 gigabytes and 850 million wires, if N = 219 and
the data elements are 512 bits. The pipe-lining technique
of Huang et al. [9] prevents the parties from storing all 23
gigabytes in RAM, but the client still stores an 80 bit secret
key for every wire in the circuit, and the server stores two;
this requires 8.5 gigabytes of memory for the client and 17
gigabytes for server. This ends up requiring far more space
than the data itself, which is only 512N = 33 megabytes.

In contrast, when N = 219 and the data size is 512, the
largest circuit in our protocol is less than 50 megabytes, and
contains about 1million wires. On the other hand, each level
of the data storage has a factor of 4 logN overhead (when
our bucket size is 2 logN), so server storage for the top level
alone is more than 40000N = 2.5 gigabytes. This explains
why we eventually ran into trouble when pre-processing the
data; to broaden the scale of what we can handle, we will
need to improve the way we handle memory while inserting
elements into the ORAM structure.

Pre-processing.
We have not done any calculations regarding the time re-

quired for secure pre-processing. As explained above, when
running our experiments, we populated the ORAM structure
by randomly placing items in the trees. This is of course in-
secure, since the server will know where all the items are
in the ORAM: to ensure security, the insertion of the data
would have to be interactive. One naive way to ensure se-
curity is to insert each item, one at a time, by performing
the “write” protocol inside a secure computation, precisely
as we have described an ORAM lookup. If we start this
process with a data structure large enough to hold all items,
we can estimate the time it will take to insert 216 elements
of 512 bits each, by multiplying the 13 seconds we require
for a write operation by 216. It seems this would take al-
most 20 days to compute! We leave the problem of finding
a more efficient method for data insertion to future work.
One natural approach would be to start with smaller struc-
tures, repeatedly doubling their size in some secure manner
as insertion progresses. We stress that the pre-processing
we do in our work is fully secure in a three-party model,
where the database owner pre-processes his data, and then
transfers the encrypted data to a semi-honest third party,
who performs the secure computation on his behalf.

The Recursion Parameter.
In all of our experiments, we have chosen r = 16; that is,

every item in tree i > 1 stores the leaf nodes of 16 items from
tree i− 1. This is a parameter that we could change, and it
may have an impact on performance. However, one parame-
ter we did investigate is the choice of how far to recurse. As
can be seen in Table 1, the best performance occurs when
the bottom level, which requires a linear scan, holds fewer
than 212 items. Interestingly, beyond that, further recursion
does not seem to make a difference. The ith tree

Counting Gates.

10

DB size 2 trees 3 trees 4 trees 5 trees

220 35 14 12.5 13

219 20 11.5 12.5 -

218 12.5 9.5 9.5 -

Table 1: Time in seconds of a single ORAM ac-
cess, with various numbers of recursion levels in the
ORAM structure. The number of items in the bot-
tom level is 2N−4i+4 when there are i trees.

Let N be the number of elements, let d be the length
of each element, and let B denote the bucket size of each
node. We calculate the number of non-XOR gates in the
garbled circuits of our ORAM operation, and provide some
relevant observations. We first consider the top level tree
that contains the database items. During a lookup we need
to check logN nodes along the path to the leaf associated
with the searched item. Each of these nodes contains B el-
ements of size logN + d: a virtual address of size logN and
a data element of size d. We use approximately 1 non-XOR
gates for each of these. Therefore, a single lookup consists
of B logN(logN +d) non-free gates. In the eviction process
that follows, we scan 2 logN nodes for eviction, and write to
both of children of each node (one write is dummy). Thus,
the eviction circuits require 6B logN(logN + d) non-free
gates, which gives us a total of 7B logN(logN +d) non-free
gates for each ORAM operation in the top level tree. The
analysis at the lower level trees is similar, but asymptoti-
cally, this dominates the computation, since the lower level
trees have only N/16i elements. We provide concrete num-
bers in Table 2, taken directly from our circuits. We con-
sidere B = 2 logN and d=512. We note that our circuits
grow linearly in the size of each bucket. Also interesting is
that it grows linearly in d. Since the Yao linear scan is also
linear in the data size, with dN gates, we see that varying
the length of the data element will have little impact on our
comparison.

DB size XOR gates Non-free gates Wires

220 19,159,883 3,730,546 44,039,222

219 16,519,818 3,166,420 37,656,448

218 14,219,281 2,700,966 30,941,947

217 12,185,264 2,302,208 27,366,108

216 10,377,527 1,954,042 23,655,368

Table 2: Gate and wires counts for different size
databases with item data of length 512

6. USING OTHER ORAM SCHEMES
In our concrete protocol we instantiated (and then opti-

mized) our generic construction using the tree-based ORAM
scheme of [18]. However, there are several other oblivious
RAM schemes which we considered as possible instantia-
tions for our ORAM component. We discovered that these
schemes would entail higher complexity in the context of
a two party computation protocol4 since they involve more
complicated building blocks such as pseudorandom shuffling
protocol and Cuckoo hashing.

4Note that a better performing ORAM protocol does not
necessarily translate to a better performing protocol when
put through a generic secure computation.

For example, the ORAM protocol of Goldreich and Os-
trovsky [6] introduced the basic hierarchical structure that
underlies many subsequent ORAM protocols. This approach
crucially relies on two components that turn out to be quite
inefficient when evaluated with a secure two-party compu-
tation: (1) the use of a pseudorandom function (PRF) in
order to consistently generate a random mapping from vir-
tual addresses to physical addresses; and (2) a joint shuffling
procedure for mixing the different levels in the ORAM data
structure. We direct the reader to [6] for the full details of
the scheme.

Several more-recent ORAM solutions [17, 7, 8, 12] rely
on cuckoo hashing (in addition to also using PRF computa-
tions). For their security, a new construction for a cuckoo
hash table is needed [7], which involves building the corre-
sponding cuckoo graph and conducting breadth-first search
on the graph in order to allocate each new item inserted
into the cuckoo table. Compiling this step into a secure
two-party computation protocol seems likely to introduce a
prohibitive performance hit.

7. CONCLUSION
In this work we showed efficient protocols for secure two

party computation achieving only a small polylogarithmic
overhead over the running time of the insecure version of
the same functionality. This is a significant asymptotic im-
provement over traditional generic secure computation tech-
niques, which inherently impose computation overhead at
least linear in the input size. Our protocols rely on any (ar-
bitrary) underlying oblivious RAM and generic two party
computation protocols. We further investigate the most effi-
cient instantiation of the protocol and demonstrated, empir-
ically, the expected theoretical improvement. In particular,
we implemented a protocol that performs a single access to
a databases of size 218 elements, outperforming an imple-
mentation of basic secure computation by a factor of 60.
This translates also to a three-fold improvement in the run-
ning time of binary search. In addition to these concrete
improvements, our work sheds light on many of the details
faced when implementing ORAM and secure computation.

Acknowledgments
This work was supported in part by the Intelligence Ad-
vanced Research Project Activity (IARPA) via Department
of Interior National Business Center (DoI / NBC) contract
Number D11PC20194. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoI/NBC, or the
U.S. Government.

8. REFERENCES
[1] D. Beaver. Precomputing oblivious transfer. In

Advances in Cryptology — Crypto ’95, volume 963 of
LNCS, pages 97–109. Springer, 1995.

[2] I. Damg̊ard, S. Meldgaard, and J. B. Nielsen. Perfectly
secure oblivious RAM without random oracles. In 8th
Theory of Cryptography Conference — TCC 2011,
volume 6597 of LNCS, pages 144–163. Springer, 2011.

11

[3] S. Even, O. Goldreich, and A. Lempel. A randomized
protocol for signing contracts. Comm. ACM,
28(6):637–647, 1985.

[4] O. Goldreich. Foundations of Cryptography. Volume I:
Basic Tools. Cambridge University Press, 2001.

[5] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game, or a completeness theorem for
protocols with honest majority. In 19th Annual ACM
Symposium on Theory of Computing (STOC), pages
218–229. ACM Press, 1987.

[6] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious RAMs. J. ACM,
43(3):431–473, 1996.

[7] M. T. Goodrich and M. Mitzenmacher.
Privacy-preserving access of outsourced data via
oblivious RAM simulation. In 38th Intl. Colloquium
on Automata, Languages, and Programming (ICALP),
Part II, volume 6756 of LNCS, pages 576–587.
Springer, 2011.

[8] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Privacy-preserving group data
access via stateless oblivious RAM simulation. In 22nd
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 157–167. ACM-SIAM,
2011.

[9] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
In 20th USENIX Security Symposium, 2011.

[10] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.
Extending oblivious transfers efficiently. In Advances
in Cryptology — Crypto 2003, volume 2729 of LNCS,
pages 145–161. Springer, 2003.

[11] V. Kolesnikov and T. Schneider. Improved garbled
circuit: Free XOR gates and applications. In 35th Intl.
Colloquium on Automata, Languages, and
Programming (ICALP), Part II, volume 5126 of
LNCS, pages 486–498. Springer, 2008.

[12] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the
(in)security of hash-based oblivious RAM and a new
balancing scheme. In 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
143–156. ACM-SIAM, 2012.

[13] Y. Lindell and B. Pinkas. A proof of security of Yao’s
protocol for two-party computation. Journal of
Cryptology, 22(2):161–188, 2009.

[14] L. Malka. VMCrypt — modular software architecture
for scalable secure computation. In 18th ACM Conf.
on Computer and Communications Security (CCS),
pages 715–724. ACM Press, 2011. Available at
http://eprint.iacr.org/2010/584.

[15] M. Naor and B. Pinkas. Efficient oblivious transfer
protocols. In 12th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 448–457.
ACM-SIAM, 2001.

[16] R. Ostrovsky and V. Shoup. Private information
storage. In 29th Annual ACM Symposium on Theory
of Computing (STOC), pages 294–303. ACM Press,
May 1997.

[17] B. Pinkas and T. Reinman. Oblivious RAM revisited.
In Advances in Cryptology — Crypto 2010, volume
6223 of LNCS, pages 502–519. Springer, 2010.

[18] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li.

Oblivious RAM with o((logn)3) worst-case cost. In
Advances in Cryptology — Asiacrypt 2011, volume
7073 of LNCS, pages 197–214. Springer, 2011.

[19] E. Stefanov, E. Shi, and D. Song. Towards practical
oblivious RAM. In NDSS. The Internet Society, 2012.

[20] P. Williams and R. Sion. Usable PIR. In NDSS. The
Internet Society, 2008.

[21] P. Williams, R. Sion, and B. Carbunar. Building
castles out of mud: practical access pattern privacy
and correctness on untrusted storage. In 15th ACM
Conf. on Computer and Communications
Security (CCS), pages 139–148. ACM Press, 2008.

[22] A. C.-C. Yao. How to generate and exchange secrets.
In 27th Annual Symposium on Foundations of
Computer Science (FOCS), pages 162–167. IEEE,
1986.

12

